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Abstract 

End-stage kidney disease is increasing in prevalence and is associated with high levels of 

morbidity and mortality. At present, the only treatment options are dialysis or renal 

transplantation. However, dialysis is very costly and is associated with high levels of 

morbidity, whereas the problem with transplantation is that there is a shortage of organ 

donors. For these reasons, over recent years, there has been an increasing interest in 

developing novel therapies in the field of regenerative medicine including stem cell based 

therapies and tissue engineering. Stem cells could be used in a number of ways to develop 

new therapies for kidney disease. Firstly, they could be administered as cell therapies to 

patients with kidney disease, and secondly, they could be used to generate specific types of 

renal cells in vitro that could be used for understanding disease mechanisms and for drug 

discovery programmes. 

The barriers to the development of novel stem cell therapies include the difficulties in 

expanding kidney-derived stem cells in culture without altering their phenotype, and 

directing their differentiation to specific types of renal cells. These issues could be addressed 

by developing biomaterial substrates that provide an appropriate microenvironment for the 

successful culture and differentiation of stem cells.  

Within this study we interrogated a wide range of biomaterial substrates for their capability 

to direct the differentiation of kidney derived progenitor / stem cells. These materials were 

thoroughly characterised in terms of their physicochemical properties, such as surface 

chemistry, nanotopography and wettability by employing a wide range of analytic 

techniques, including X-Ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy 

(AFM), colorimetry and contact angle measurements. 

We firstly investigated a range of polyacrylates. These substrates were novel in that, they 

were precisely designed to mimic cell binding motifs of the extracellular matrix 

stereochemically by using monomeric precursors that display particular chemical functional 

group chemistries, namely amine, hydroxyl, carboxyl groups or aliphatic spacer groups. We 

found that these materials differed strongly in the presence and distribution of surface 

functional group chemistries and topographical features, including the distribution of surface 

artefacts on a macroscale. Moreover, some of these materials were able to direct the 

differentiation into specialised renal cell lines. Two substrates, namely ESP 003 and ESP 004, 

directed the differentiation of kidney derived stem cells into podocytes and two further 
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substrates, namely ESP 007 and BTL 15, directed differentiation into functional proximal 

tubule cells. These four substrates stimulated cell differentiation to an extent of about 40 to 

50% after only 96 h in cell culture. We were moreover able to identify surface 

physicochemical cues, including surface micro- and nanoscale topography and surface 

functional group chemistries that are important to stimulate the differentiation process.  

In addition, we investigated a range of plasma polymer coatings composed of allylamine and 

octadiene that were provided as homo-or copolymers and in form of chemical gradients, the 

latter one differing in the amount of nitrogen functional group chemistries across the 

surfaces. We found that substrates with higher allylamine content displayed a greater 

amount of nitrogen functional groups and therefore increased in wettability. Moreover, 

those plasma polymer substrates with higher amine functionality directed kidney progenitor 

cell differentiation into podocytes, whereas substrates with higher octadiene concentration 

directed cell differentiation into functional proximal tubule cells, both to an extent of 35 to 

45% after only 96 h in culture. To further study cell differentiation, we then incorporated 

gold nanoparticles underneath these plasma coatings, either in form of homogeneous 

coatings or in form of a nanoparticle density gradient. We found that surface topographic 

gradients increased cell differentiation into podocytes 3- to 4-fold, whereas differentiation 

into proximal tubule cells was only dependent on surface chemistry. Our studies on plasma 

polymer substrates highlighted not only the great potential of plasma polymers to modify 

surface functionality of a wide range of surfaces, but also emphasized the great capabilities 

of surface gradients, whether chemical or topographical in nature, to effect cellular fate. 

In summary, the results of this study include the identification of biomaterial substrates that 

have the potential to differentiate kidney-derived progenitor/stem cells in vitro and of the 

cues that are necessary to assist in the differentiation process. In the future, these 

biomaterials could be useful for directing the differentiation of pluripotent stem cell-derived 

renal progenitors to specific types of renal cells that could be used for applications in 

regenerative medicine and drug discovery programmes. 
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1 Introduction 

Kidney disease is common and associated with significant comorbidities, high risk of mortality 

and high health care costs. The prevalence of chronic kidney disease (CKD) in the UK is 

estimated at about 6.8 to 8.5% of the adult population and rising, with an associated cost of 

around £1.45 billion [1, 2]. Ultimately it may lead to end stage renal disease (ESRD), with 

dialysis or renal transplantation being the only treatment options.  The problem with dialysis 

is that it does not replace all of the functions of the kidney, leading to increased rates of 

morbidity and mortality. Transplantation is the better option but there is a shortage of 

suitable organs. Therefore there is a need for novel therapies to improve the outcome of 

patients suffering from CKD. 

There has been a recent interest in potential stem cell therapies for kidney patients, 

particularly since a number of areas within the nephrons, the kidney’s functional units, have 

been identified that contain putative kidney progenitor or stem cell populations [3-7]. Stem 

cells are remarkable cells with the potential to self-renew and to differentiate into different 

cell types of the body. Within the last decades scientists have been working intensely on stem 

and progenitor cell characterisation, localisation and potential applications for regenerative 

medicine. If these cells could be isolated, expanded and differentiated in vitro, it would allow 

the study of physiological and pathophysiological processes and the possibility of genetically 

modifying patient-derived cells. Moreover, by directing the differentiation of the cells into 

particular specialised cells, it may allow us to explore the underlying mechanisms of disease 

progression and identify new drug therapies. 

However, it can be challenging to devise appropriate cell culture protocols for directing cell 

differentiation because cell behaviour and differentiation is regulated by various factors in 

the environment, including soluble factors, such as growth factors and cytokines, and solid 



 

Introduction – Biomaterials as stem cell regulators| 2  
  

factors, such as extra-cellular matrix molecules. Biomaterials can assist in overcoming these 

impediments as they can be developed in a way that allows us to mimic physical, chemical 

and mechanical properties of a cells extracellular environment, which can guide cell 

behaviour and differentiation. 

1.1 Biomaterials as stem cell regulators 

Biomaterials have a variety of applications in vitro, such as cell culture platforms, but also in 

vivo, i.e. as scaffolds for cell transplantation. Biomaterials can differ widely in their 

composition depending on their purpose. For example, metals, such as titanium and 

chromium- based alloys, are often used in orthopaedic prosthesis whereas ceramics, such as 

hydroxyapatite, are commonly employed for bone reconstruction [8, 9]. Particularly 

polymers are widely used in implantable devices, such as in cardiovascular and ophthalmic 

applications [10, 11]. A good material for biological contact should meet a number of criteria, 

including non-cytotoxicity, promotion of cell-substrate interactions, limited stimulation of  

immune responses as well as compatibility with aqueous solutions and physiological 

conditions [12]. 

Especially in the field of (stem) cell culture polymers are widely used. These are long chain or 

branched molecules, generally composed of carbon, hydrogen, oxygen and nitrogen that are 

arranged in repeating monomeric units. Generally one can classify between natural and 

synthetic polymers [13, 14]. Natural materials, such as hyaluronic acid or agarose, are often 

employed for repair or replacement of damaged human tissues [15, 16]. On the other hand, 

many synthetic polymers have been developed and studied in terms of cell culture and 

biomedical research. They are often more advantageous, as they can be of high purity and 

are easily reproducible and tuneable in terms of physicochemical properties or in response 

to external stimuli, including temperature and pH [17-19]. Recently also 3D materials, such 
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as hydrogels or foams, have become increasingly recognised as they can often more closely 

represent the physiological environment [17].  

1.1.1 Mimicking extracellular matrices and the stem cell niche 

An essential part of tissues is the extracellular space that is largely composed of a complex 

network of macromolecules, and establishes the extracellular matrix (ECM) which is 

comprised of two major classes of biomolecules: glycosaminoglycans (GAGs) and proteins, 

such as laminin and collagen (Figure 1.1). The ECM is a key regulator of cellular function and 

critical for the maintenance of tissue homeostasis [20-22]. It furthermore provides a 

supportive scaffold for cells and tissues and presents specific physicochemical cues that 

influence cell fate. Cells anchor to an underlying substrate through specific cell surface 

receptors, integrins (transmembrane receptors), that connect the intracellular cytoskeleton 

to the substrate, which results in the formation of  focal adhesions (cell–matrix adhesions) 

[23]. Moreover, the ECM is an important component of the stem cell niche that is responsible 

for the regulation of stem cells. An increasing understanding of the interactions between 

ECM and cells in vivo has raised interest in developing biomaterials that mimic the 

extracellular environment and its physicochemical properties. A number of recent studies 

have highlighted the importance of surface nano- and microscale structures, chemistry and 

elasticity of the ECM in regulating cell behaviour, including morphology, differentiation or 

migration [24-28]. This has led to an increased development of natural biomaterials that are 

based on ECM proteins [25, 29-32]. 
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Figure 1.1: The extracellular matrix consists of a complex network of macromolecules: structural proteins, 
proteoglycans and adhesive glycoproteins that support the attachment of cells to the matrix. 

1.1.2 Biomaterial-cell interface and cellular regulation 

A large number of proteins that commonly comprise the ECM have been used in order to 

support and manipulate cell behaviour in vitro. Also the modification of synthetic materials 

with peptide sequences that function as cell-binding motifs within ECM proteins, such as RGD 

(arginine-glycine-aspartic), PDSGR (proline-aspartic acid-serine-glycine-arginine) and YIGSR 

(tyrosine-isoleucine-glycine-serine-arginine) have been commonly conjugated to surfaces 

(chapter 3.1, p 56) [33-37]. 

However, the cell-substrate interface is a complex microenvironment in which each directs 

one another’s fate. The material directs cell behaviour through its physical and chemical 

properties, such as topography, elasticity or the presence of chemical cues, whereas cells 

sense the material properties, can remodel its surface and respond by adapting their 

behaviour, such as cytoskeletal organisation and differentiation (Figure 1.2) [38-49]. 

Understanding these interactions between cells and their surroundings in both, in vivo and 

in vitro, are highly important for the development of new materials for biological 

applications. These cues are increasingly adapted in order to create defined biological 

microenvironments [50]. A major drawback of natural biomaterials is the difficulty to 
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manipulate their physical and chemical cues, whereas synthetic biomaterials can be designed 

and tuned in order to mimic these properties. 

 

Figure 1.2: Cells adhere to a substrate (i.e. ECM or biomaterial) through focal adhesions and sense its 
physicochemical cues, including topography, elasticity, wettability and chemistry. Cells then adapt their 
properties in response.  

1.1.2.1 Substrate chemical properties 

Surface chemistry is an important parameter that highly influences cell behaviour. Although 

the exact mechanisms are unclear, it is often correlated with a release of signalling molecules 

(i.e. growth factors or glycoproteins) through cell adsorption [51]. Therefore, the 

employment of simple functional groups to direct cell behaviour is rapidly evolving. For 

example, Benoit et al. investigated the effects of small molecules on mesenchymal stem cell 

(MSC) differentiation on 2D arrays and found that phosphate groups (physiological important 

for bone mineralisation) directed cell differentiation into osteocytes, whereas carboxyl 

groups (mimic GAGs in cartilage) directed cell differentiation into chondrocytes and t-butyl 

groups (mimic lipid sustained environment) into adipocytes [45]. Others directed MSC 

differentiation by modifying silane surfaces with various functional groups (-CH3, -NH2, -SH, -

OH, -COOH) and have shown that functional groups control protein adsorption and therefore 

cell behaviour [46]. Furthermore, they discovered that –CH3 surfaces maintained the MSC 
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phenotype, while –NH2 and –SH modification directed cells towards osteocytes and –OH and 

–COOH groups towards chondrocytes [46]. Moreover, material inherent surface groups can 

be further modified, i.e. by covalent binding of biological molecules, such as peptides, growth 

factors or GAGs to influence cell behaviour [32, 52-54].  

Interestingly, the impact of surface chemistry on cell behaviour and differentiation has 

opened new possibilities for developing surfaces that allow screening of cellular response on 

a large number of data points across a single surface to support the identification of the 

optimal surface composition for the desired cell type [55-57]. In this respect plasma polymer 

gradients have proven particularly useful, as these can be applied thinly and smoothly onto 

any surface without changing the underlying topography [32, 56, 58]. For example, the 

influence of surface chemistry on MSCs has been explored using acrylic acid – diethylene 

glycol dimethyl ether (AcAc - DG) plasma (surface chemical) gradients, where it was found 

that cell attachment increased on AcAc rich areas, whereas it was rather inhibited on DG rich 

areas [56]. Moreover, this resulted in a cell density gradient that in turn triggered cell 

differentiation into osteocytes whereas differentiation into adipocytes was independent of 

cell density [56]. Such novel strategies of screening are emerging rapidly. 

Alongside surface chemistry, surface charge has been correlated with cell response due to 

the promotion of attractive or repulsive forces [59]. The cell membrane contains proteins 

that are negatively charged and therefore adhere to positively charged surfaces [60]. For 

example, positive surface charge typically enhances cell attachment and spreading of 

osteoblasts and fibroblasts compared to negative or neutral charges [61]. Similar results were 

obtained on nerve cells [62].  

1.1.2.2 Surface wettability 

Surface wettability is a key factor in regulating cell behaviour. Generally, cells show greater 

adhesion and spreading on hydrophilic surfaces [63-66]. This was shown on a number of cell 
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types, including osteoblasts and fibroblasts [67, 68]. However, hydrophilic surfaces can also 

enhance cell differentiation. Osteoblast-like cells, for example, increase cell attachment and 

metabolic activity, collagen production and osteogenic differentiation on hydrophilic 

surfaces [69-71]. Similarly, Ayala et al. systematically altered substrate hydrophobicity by 

amending the alkyl side chain length whereas chemical and mechanical properties were kept 

constant. They found that MSC adhesion, cytoskeletal organisation and differentiation was 

highly dependent on substrate wettability [72]. In contrast, others claim that there are no 

direct correlations between wettability and cell response as changes in surface wettability 

are often accompanied by changes of other surface properties such as chemistry and 

topography [73, 74]. For example, plasma treated hydrophilic poly (l-lactic acid) was found 

to support cell adhesion, growth and neurite outgrowth on nerve cells. However, 

hydrophilicity through plasma treatment was accompanied by chemical changes of these 

surfaces [75, 76].  

It has to be underlined that protein adsorption will occur almost immediately once a surface 

is in contact with physiological fluids or cell culture medium, which will affect surface 

wettability [68, 77, 78]. Proteins attach particularly to hydrophobic surfaces, whereas 

adsorption onto hydrophilic surfaces is energetically unfavourable [79-82]. Moreover, the 

identity of these proteins might influence cell response. Vitronectin and collagen I for 

example were shown to promote the differentiation of MSCs into osteocytes [83]. Others 

claim that these findings cannot be generalised [67, 80].  

1.1.2.3 Surface topography 

Cells are highly sensitive to nanoscale features of the ECM in vivo, which makes the 

incorporation of topographical cues (roughness) interesting for the development of 

biomaterials [71, 84-87]. Depending on the extent of surface nanotopographic features it is 

possible to distinguish between nanoroughness (< 100 nm), microroughness (100nm to 100 
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μm) or macroroughness (>100 μm), all of which will affect cell types differently [88]. For 

example, neuronal cells displayed enhanced spread on nanorough surfaces, whereas 

microscale roughness inhibited these effects with cells being rather round-shaped and poorly 

branched [89]. Osteoblasts responded with higher proliferation and improved formation of 

osteoblastic features on rough surfaces compared to smooth ones [71, 90-93]. Also, 

substrate pore size can impact cell response. Osteoblast-like cells show inhibited 

proliferation and spread with increasing micropore size, but an improved differentiation rate 

[91]. Similar observations were made on mesenchymal stromal cells that showed increased 

spreading, adhesion, cytoskeletal organisation and osteoblastic differentiation in response 

to surface topographical cues [43].  

The impact of nanotopography on cell response has caused the rapid emergence of a large 

number of substrates with various types of surface features. New techniques allow the 

creation of different shapes of biomaterials, such as nanospheres, nanotubes or nanofibers, 

but also the introduction of surface features such as gratings, nanoparticles or pits that can 

be randomly or symmetrically distributed, all of which can effect cell response significantly 

[94-98]. For example, MSCs were shown to align and elongate along nanogratings and 

undergo transdifferentiation towards neuronal cell lineages under appropriate cell culture 

conditions [99, 100]. Endothelial cells form aligned capillary-like tubes when cultured on 

nanogratings [101]. Also the geometric control of surface topographical cues can influence 

cell response [42, 102-104].  

Another interesting form of biomaterials are nanofibres and nanochannels as they closely 

display basement-membrane-like fibres (5 to 200 nm) and pore size (3 to 80 nm) [105]. The 

fibres allow the development of scaffolds and 3D matrices which enable us to explore cell 

behaviour in another dimension. For example, ESCs cultured on electrospun fibrous scaffolds 

showed large cell spread, improved cell-cell interactions and differentiation towards 
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neuronal cell lineages although these findings were simultaneously correlated with substrate 

stiffness [106]. The design of new biomaterials with nanotopographic cues is rapidly evolving 

and will contribute to a greater understanding of the mechanisms by which cells respond to 

and sense nanofeatures. 

1.1.2.4 Surface mechanical properties 

Another factor that is increasingly recognised to influence cell response are the surface 

mechanical properties (elasticity / stiffness) [107, 108]. The cellular natural environment 

contains a large number of external cues, including surrounding cells, biomolecules and the 

ECM, all of which transmit information to regulate cell fate [109]. The tissue stiffness differs 

considerably, ranging from 1 kPa (brain) to few kPa (muscles, adipose tissue) to GPa (bones) 

[26]. In vitro it has been shown that MSCs cultured on substrates with varying stiffness 

commit to differentiate accordingly: soft (brain-like) matrices direct towards neurogenic 

cells, stiffer (muscle-like) matrices give rise to myogenic cells and rather rigid (bone-like) 

matrices direct MSC differentiation towards osteocytes [26]. Generally, MSC attachment 

requires relatively hard substrates that mimic tissue closely [110].  

Moreover, tissue mechanical properties are not static but rather change through 

physiological and pathophysiological processes. For example, injury of the connective tissue 

causes an alteration of the ECM stiffness. This can be sensed by fibroblasts which, in 

response, migrate, synthesize ECM (fibrogenesis) and differentiate into myofibroblasts. This 

is consistent with a study that found fibroblasts being able to remodel collagen gels and 

increase stiffness of the gels in vitro [111]. Moreover fibroblasts were shown to migrate 

towards stiffer regions when cultured on stiffness gradients in vitro [112]. Stiffer substrates 

also increased fibroblast sensitivity towards transforming growth factor beta (TGF-β1), which 

resulted in the increased expression of smooth muscle actin (α-SMA) [113]. Therefore, the 
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mechanical surface properties are an important cue to direct cell behaviour and may be a 

great advance in exploring biological process in vitro. 

1.2 Stem and progenitor cells 

1.2.1 Background 

Stem cells have the capability to self-renew and differentiate into specialised cells [114-116]. 

For that they either divide symmetrically to form two identical daughter stem cells or 

asymmetrically to generate a copy of themselves and another, more committed, stem 

(progenitor) cell that will eventually undergo lineage specific differentiation [117]. 

The first steps towards the term “stem cell” arose in the early 20th century when the existence 

of “(hematopoietic) stem cells” (HSCs) was firstly proposed [118, 119]. Shortly after, 

scientists first proved the presence of HSCs in mouse bone marrow (BM) [120]. Only a few 

decades later the first scientific evidence was provided for the existence of self-renewing 

cells in the BM and stem cell activity in the brain [114, 121]. In the 1980s,  Evans et al. and 

Martin et al. independently isolated embryonic stem cells (ESCs) from the inner cell mass of 

mouse embryos [122, 123]. Only one decade later,  ESCs were isolated from a human embryo 

[124].  

1.2.2 Embryonic stem cells and their progeny 

The fusion of a sperm cell and an egg ultimately results in a fertilised one-cellular egg (Figure 

1.4). This single cell and its early progeny (up to morula stage) are totipotent blastomeres  

that are capable of differentiating into any cell type in the body as well as extra-embryonic 

tissues (i.e. placenta and umbilical cord) [125]. After the blastocyst forms, the embryo 

comprises an outer layer of trophectoderm, a blastocoel cavity and an inner cell mass 

containing pluripotent ESCs. These cells generate all three germ layers (ectoderm, endoderm 

and mesoderm) and the germ line as well as some extraembryonic tissues. ESCs carry a great 
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potential for studying biological developmental processes as well as in pharmaceutical and 

medical research areas [126-128].  

1.2.3 Adult stem cells and the stem cell niche 

Adult (somatic) stem cells (ASCs) are undifferentiated cells that can self-renew, maintain 

homeostatic conditions and repair and regenerate cell types of the tissue in response to 

injurious stimuli [129-131]. However, unlike ESCs, they are not pluripotent, but either multi- 

or unipotent.   ASCs are present in many tissues and have therapeutic potential. For example, 

HSCs are multipotent stem cells that continuously renew blood and give rise to all blood cell 

types. However, they cannot differentiate into specialised cells of other tissue [132, 133]. 

Another type of ASCs are MSCs which can differentiate into a variety of specialised cells 

including osteoblasts [134], chondrocytes [135, 136] and adipocytes [137, 138] and are 

therefore very beneficial for potential stem cell therapies. If scientists were able to identify 

and characterise ASCs and be able to control their differentiation precisely, these cells could 

become the foundation for transplantation-based therapies [139-141]. 

Within the body stem cells live in tissue specific microenvironments, the so-called ‘niches’, 

where they are kept in a quiescent state until they are mobilised to proliferate and/or 

differentiate [142, 143] (Figure 1.3). The niche regulates and supports the cells and is the 

centre of interactions between stem cells and other stem cells, progenitor cells, terminally 

differentiated cells, adhesion molecules and the extracellular environment, which includes 

chemokines, cytokines and growth factors [144, 145]. Once injurious signals arise, i.e. due to 

tissue injury or disease, the stem cells respond to the microenvironment, they proliferate and 

then self-renew, some then exit the niche and differentiate into the desired cell types in order 

to repair and regenerate tissue [142, 143]. Within the niches, the ECM is an important 

component that is characterised by its tissue specific biochemical and physicochemical 

properties, and has a major impact on tissue homeostasis and regeneration [20, 21]. 
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The stem cell niche starts directing cell behaviour during early fetal development. During 

adulthood the stem cells and their niche are continuously interacting in order to maintain 

one another. Within the body various niches have been identified, the first being the HSC 

niche located in the BM [146]. Many other niches have been identified since, including niches 

in the skin, brain and within the skeletal muscle [147-149]. However, scientists continue to 

study the composition of stem cell niches in order to replicate or mimic its properties in vitro 

and much progress has been achieved in recent years [150]. The development of such culture 

systems is important for the maintenance and expansion of ASCs as these generally undergo 

ageing in vitro which causes the loss of stemness [151-155]. Also synthetic engineered 

biomaterials offer alternative approaches and hold great promise for regulating stem cells as 

they can mimic characteristics of stem cell niches and the ECM, particularly biophysical 

properties, such as topography and elasticity [26, 27, 145, 156, 157]. Both approaches may 

support the long term cell culture, proliferation and eventually directed cell differentiation. 

1.2.4 Progenitor cells 

Generally, stem cells generate an intermediate cell type, so-called precursor or progenitor 

cells that are partly differentiated, cell lineage committed early descendants before they fully 

differentiate. Progenitor cells can be unipotent [158, 159] and are limited in their self-

renewal capacity and differentiation potential [160]. As with less committed stem cells, their 

main purpose is regeneration of damaged tissue [161, 162]. Therefore, progenitor 

populations are attractive candidates for studying developmental processes and tissue 

homeostasis, but also offer alternative treatment options for severe diseases in regenerative 

medicine, including gene therapy, cell transplantation and tissue engineering [163-166].  

1.2.5 Induced pluripotent stem cells 

In 2006 Takahashi et al. made significant progress in the field of stem cell research by 

developing a method for the induced dedifferentiation (reprogramming) of somatic cells into 
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an embryonic stem cell-like state by using retroviral transduction to introduce the 4 

transcription factors  Oct4, Sox2, Klf4 and cMyc [167, 168]. These cells were called induced 

pluripotent stem cells (iPSCs). Recent advances in the field show that iPSCs can be used to 

generate renal progenitor cells and specialised renal cells and therefore have great potential 

for future use in renal regenerative medicine therapies [169-171]. 

 

Figure 1.3: Within the stem cell niche, stem cells are kept in a quiescent state and stem cells are continuously 
interacting with their environment that includes the extracellular matrix, other stem cells, progenitors and 
differentiated cells. The combination of all signals that derive from the stem cell environment cause self-renewal 
and the maintenance of a stem cell pool. Once injurious signals arise (i.e. inflammatory cytokines) stem cells self-
renew, proliferate and differentiate into functional cells. 

1.2.6 Stem cells in regenerative medicine 

The ability of stem cells to self-renew and to differentiate into specialised cells makes them 

very attractive candidates in the field of clinical therapies and regenerative medicine [172, 

173]. However, the procurement of human ESCs requires the destruction of the embryo and 

is thus associated with some ethical issues [174]. On the other hand, ASCs can be harvested 

easily without ethical concerns from adults, infants, the placenta and umbilical cords but they 

have limitations [141, 171, 175, 176]. The cells have to be harvested from a source that 
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provides the specific cell lineage that is required. Moreover, as with ESCs, it remains 

challenging to culture these cells without loss of stemness [151-153]. However, a number of 

advances in regenerative medicine have been successfully carried out with these cells. 

For example, HSCs, which reside within the BM, peripheral blood and umbilical cord blood, 

are pluripotent and give rise to all hematopoietic and lymphoid cell lineages [177-180]. The 

intense growth and expansion of HSCs in the body due to the continuous blood renewal 

makes them very interesting subjects for clinical therapies. HSCs are already used in clinical 

therapies, i.e. for the treatment of patients who suffer from leukaemia or lymphoma [181, 

182]. Cancer patients who obtain chemotherapy often endure a loss of blood cells which can 

be counteracted by the transplantation of healthy HSCs in order to refunctionalise and 

replace damaged and dead cells [183]. Moreover, HSC transplantation can correct several 

genetic diseases such as blood or immune system disorders, including hemoglobinopathies, 

defects in leukocyte production, sickle cell anaemia and thalassemia [184-186]. Abbott et al. 

were the first to use HSCs as a vector for delivering genes intended to correct blood diseases 

[187]. There is, moreover, growing interest in genetically modified HSCs for novel therapies 

like the creation of resistances against infections, such as the human immunodeficiency virus 

type 1 (HIV-1) [188]. 

Also MSCs, multipotent stem cells, are thought to hold great potential in regenerative 

medicine. The BM stroma and blood vessel walls in most tissues contain MSCs, but MSC-like 

populations were also identified in other tissues, including adipose, muscle, cartilage and 

liver [189-193]. Within the body MSCs are involved in processes such as osteogenesis, 

adipogenesis and cartilage formation. It is widely believed that MSCs are involved in the 

repair of different tissue types, such as lungs and kidneys [194-196]. Moreover, there is 

evidence that MSCs can mobilise repair mechanisms via immune system modifications and 

suppression of inflammatory processes  [197, 198]. Therefore MSCs are investigated for their 



 

Introduction – Kidney disease and kidney stem cells | 15  
 

benefits in a wide range of disease conditions [199, 200]. First promising results were 

obtained on patients suffering from end-stage osteoarthritis [201].   

 

Figure 1.4: The fusion of sperm and egg results in the formation of a zygote, the ultimate, totipotent stem cell. 
Through cell division these cells will further differentiate to create a blastocyst with an outer and an inner cell 
mass, the latter one being the source of embryonic stem cells. Embryonic stem cells can continuously self-renew, 
but also further differentiate into all three germ layers (endoderm, mesoderm and ectoderm). These will then 
further develop to form an entire organism. Adult stem cells are present in tissue niches. They can also self-renew, 
but have a rather limited, more committed, differentiation potential. Moreover, specialised cells can be 
reprogrammed to become pluripotent again. All three cell types, embryonic, adult and induced pluripotent stem 
cells are known to be able to differentiate in vitro under the appropriate cell culture conditions. Adapted from 
Connor et al. [202]. 

1.3 Kidney disease and kidney stem cells 

1.3.1 Background 

The kidneys are highly complex organs that are responsible for the removal of metabolic 

waste products from the blood, tubular reabsorption of nutrients and the tubular secretion 

of solutes and wastes. Therefore they maintain important homeostatic functions, including 

the regulation and maintenance of electrolyte, fluid and acid-base balance [203, 204]. 

The nephrons are the main structural and functional units of the kidney and consist of a renal 

corpuscle and an associated renal tubule (Figure 1.5, p 17). Blood plasma filtration and urine 

formation (glomerular filtration) begins in the renal corpuscle through a collection of 
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capillaries, the glomerulus that is enclosed by an epithelial cup, the Bowman's capsule.  The 

filtrate then enters into the renal tubule where a process of reabsorption and secretion is 

initiated. Within the proximal convoluted tubule water, nutrients, plasma proteins and ions 

are actively reabsorbed from the filtrate whereas within the distal convoluted tubule, ions, 

toxins and drugs are secreted and sodium ions are reabsorbed from the tubular fluid. The 

filtrate (urine) then enters into a system of collecting and papillary ducts and is taken to the 

bladder [203, 204]. 

Kidney diseases generally involve injury of the nephrons and are commonly acute or chronic. 

In acute kidney injury (AKI) or severe dehydrating illness the kidney function suddenly drops. 

However, it is mostly short-term, but is associated with a high risk of mortality and morbidity. 

In addition, AKI can also be cause by intrinsic diseases, such as glomerulonephritis and 

vasculitis, which can lead to worsening of renal function.  

On the other hand, a long-term and progressive loss of the renal function is referred to as 

chronic kidney disease (CKD) and is generally divided into 5 stages with 1 being the initial and 

5 being the most severe. As a result of the consequent limited kidney function, metabolic 

waste products can build up in the body and cause side effects, such as hypertension and 

anaemia. It also increases the risks of heart attacks and vascular disease.  

The number of patients with CKD worldwide is rising and affects about 5–10% of the world 

population [205, 206]. Therefore, CKD is already a public health problem and should, if 

possible, be treated in the early stages [207, 208]. Yearly it is a significant expenditure for the 

public health system with medical costs for treatment estimated at £1.44 to £1.45 billion in 

2009/2010, which is about 1.3% of all NHS costs per year in the UK [164]. Moreover, millions 

are spent on concomitant health issues such as strokes and myocardial infarctions [209, 210].  

 



 

Introduction – Kidney disease and kidney stem cells | 17  
 

 

Figure 1.5: Simplified schematic of a nephron, the functional units of the kidney. Each nephron consist of a renal 
corpuscle which is associated with a renal tubule. The renal corpuscle is the place where blood plasma is filtered 
and urine formation begins. It consists of an epithelial cup, the Bowman's capsule that encloses a network of 
capillaries, the glomerulus. Podocytes (visceral epithelial cells) wrap around these capillaries. The current view 
assumes the presence of renal progenitors at the urinary pole of the Bowman's capsule, tubular progenitors are 
scattered along the tubules and podocyte precursors localise along the Bowman's capsule. The renal corpuscle is 
associated with the renal tubule that is comprised of several segments, one of them being the proximal 
convoluted tubule with the proximal tubule cells. It is responsible for the reabsorption of solutes from the filtrate 
(tubular fluid). At the fluid side, the proximal tubule cells have microvilli and the entire apical membrane contains 
a network composed of different receptors, coated pits and endosomes, whereas the basolateral membrane has 
multiple infoldings to increase surface area. Here most transport processes are driven by Na-K-ATPases. 

CKD may eventually lead to kidney failure, also called end-stage renal disease (ESRD, less than 

10% kidney function), which will ultimately require life-long dialyses or a kidney transplant  

[211]. However, dialysis is associated with higher morbidity and mortality rates. Also organ 

transplantation has drawbacks, such as limited availability of donor organs. Moreover, 

patients should be in a reasonable healthy state in order to survive the operation and the 

treatment with special drugs and immunosuppressants [212].  
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Therefore there is a high demand for novel therapies for kidney disease. An eventual 

replacement of diseased kidney cells with healthy cells can be difficult as the organs are often 

small and fibrotic in the later stages of CKD and ESRD, which may hinder the incorporation of 

such cells physiologically [164]. Research in these areas is ongoing, but will be a long-term 

goal. On the other hand, another promising approach aimed at preventing and tackling 

kidney disease is the development of drug-based therapies. However, one limitation is the 

lack of suitable in vitro cell lines and culture systems for relevant renal cell types, including 

podocytes and PTCs [213]. In this respect, biomaterial engineering holds great opportunities 

in terms of developing novel cell culture systems due to their advantages in providing 

relevant physicochemical cues to cells. This has opened new possibilities to direct the 

differentiation of progenitor and stem cells in vitro which can be very beneficial for drug 

development programs. This includes the identification of new drugs that hold potential for 

the treatment of patients with CKD or to prevent disease progression, as well as for the 

screening of new drugs to assess possible nephrotoxicity. 

1.3.2 Podocytes 

Podocytes (visceral epithelial cells) are complex, terminally differentiated cells and have a 

characteristic morphology, such as a distinctive voluminous cell body, large foot processes, a 

well-developed cytoskeleton, high cytoplasmic:nuclear ratio and a tendency to be binuclear  

(Figure 1.6) [214, 215]. They are located in the Bowman´s capsule and wrap around 

glomerular capillaries. The podocyte foot processes increase cellular surface area and cause 

the formation of a slit diaphragm to support blood filtration.  

Podocytes support glomerular structures and maintain the intra-glomerular hydrostatic 

pressure [216, 217]. In combination with glomerular endothelial cells and the glomerular 

basement membrane, they form a glomerular filtration barrier against protein loss. A 
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limitation of either of these functions can have severe consequences. Most kidney disorders 

are ascribed some kind of podocyte injury or loss.  

 

Figure 1.6: Phase contrast image (left) and F-actin and DAPI labelled (right) image of a podocyte. Scale bar is 100 
µm. 

In case of stress or injury, podocytes respond with vast changes in morphology. These include 

excessive hypertrophy, shedding of cytoplasm, increased turnover of cell material and foot 

process effacement (loss of the interdigitating foot process pattern), which is accompanied 

by cellular flattening and shortening of the foot processes. All of these changes can impair 

podocyte function [218-221].  

A loss of podocytes can also occur as a result of glomerular diseases which often provoke 

severe symptoms including proteinuria that is often accompanied by nephrotic syndrome 

and renal failure. Both can lead to glomerulosclerosis, a renal disease with symptoms like 

glomerular inflammation and renal angiogenesis, and eventually to renal failure [222, 223].  

A key stabiliser of the  podocyte actin cytoskeleton, regulator of podocytes integrity and key 

player in the development and maintenance of foot processes is synaptopodin, a proline-rich 

actin associated protein that is involved in various intracellular signalling pathways and has 

also been linked to cell migration in kidney podocytes [224, 225]. Synaptopodin gene 

silencing in podocytes results in the loss of stress fibers, the development of non-polarised 

filopodia and impaired cell migration [224, 226]. Alongside synaptopodin also nephrin 

(NPHS1) and podocin (NPHS2) are proteins that are expressed in mature podocytes. Both are 
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coexpressed strongly in the cell membrane and partially colocalise with actin and are 

associated with the slit diaphragm, a multiprotein complex that connects podocytes through 

the pairing of nephrin molecules [227, 228]. Alongside nephrin, podocin is also involved in 

podocyte foot process formation via actin fibers [228]. Nephrin expression is regulated by 

the WT1 gene (Wilms’ tumor 1) that controls the differentiation of podocytes and is involved 

in podocyte homeostasis  [229, 230]. Within the kidney, WT1 protein expression is restricted 

to podocytes [230].  

Podocytes lose their proliferation capacity and develop cell junctions in order to connect 

their unique foot processes in the mature, terminally differentiated state to the glomerular 

basement membrane [227]. Therefore, the loss of podocytes can cause severe kidney injury 

and lead to CKD and ESRD. The importance of podocytes for kidney function has given rise to 

much interest in analysing the underlying mechanisms of podocyte injury and loss. However, 

the culture of mature podocytes in vitro is challenging as these tend to dedifferentiate, a 

process that is accompanied by the loss of foot processes and synaptopodin [225]. In 

addition, the culture and dedifferentiation of immature podocytes is accompanied by an 

irreversible growth arrest. The generation of conditionally immortalised podocytes 

(ciPodocytes, contain a temperature sensitive T antigen as transgene) that proliferate at a 

permissive temperature (33°C) and differentiate at a nonpermissive temperature (37°C) has 

helped to overcome this problem [227, 228].    

1.3.3 Proximal tubule cells 

The proximal tubule is a section of the renal tubule (Figure 1.5) with proximal tubule cells 

(PTCs) being the most populous cell types [231]. PTCs are characterised by a uniform 

polarised morphology, tight junctions between cells and strong expression of cytokeratin 

[232]. The PTC surface and function is increased through the presence of microvilli on the 

apical surface membrane and basal involutions within the basolateral membrane, which 
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contains Na+/K+ ATPases for the reabsorption of fluids [204]. Within the nephrons, PTCs are 

responsible for the reabsorption of many molecules, such as water, amino acids, glucose, 

urea and ions from the urinary filtrate, its pH regulation and excretion of organic acids (i.e. 

creatinine) and bases into the filtrate [204, 233]. Being responsible for so many renal 

physiological processes, these cells are often involved in tubulointerstitial kidney injuries, 

that may be inherited, congenital or acquired [234].  

Megalin, a large glycoprotein, is an endocytic receptor in the PTC cell membrane, localised in 

cell surface microvilli, coated pits and endocytotic compartments. It is involved in protein 

reabsorption from the urinary filtrate [235-237]. When the transmembrane receptor cubilin 

binds to megalin (calcium dependent), albumin  can bind to megalin and its endocytic uptake 

is mediated [238].This process comprises the binding of albumin in clathrin-coated pits and 

subsequent endocytosis and degradation in lysosomes [236]. Malfunction of both 

transmembrane receptors can cause proteinuria [239].  

Another characteristic PTC marker is alkaline phosphatase (AlkPhos), an enzyme that within 

the kidney, is only active in PTCs, where it is located in the brush border. AlkPhos is 

responsible for the hydrolysis of phosphomonoesters thereby releasing inorganic phosphate 

(dephosphorylation). 

A large variety of drugs have been classified as nephrotoxic and some can cause AKI. For 

example, cisplatin (cis-diamminedichloroplatinum(II)) is a widely employed 

chemotherapeutic agent that has many side effects, one of which being nephrotoxicity [240]. 

High concentrations of cisplatin can induce necrosis in PTC monolayers [241], whereas lower 

concentrations induce apoptosis. About 20-30% of patients treated with cisplatin develop 

AKI [242]. Also a direct contact of PTCs with other toxins, such as antibiotics (i.e. gentamicin) 

or bacteria (i.e. sepsis accompanied by gram-negative bacteria), can result in acute tubular 

necrosis.  

https://en.wikipedia.org/wiki/NaKATPase
https://en.wikipedia.org/wiki/Inheritance
https://en.wikipedia.org/wiki/Congenital
https://en.wikipedia.org/wiki/Gentamicin
https://en.wikipedia.org/wiki/Acute_tubular_necrosis
https://en.wikipedia.org/wiki/Acute_tubular_necrosis
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In addition, diseases originating from the glomeruli, such as glomerulonephritis, diabetic 

nephropathy or vascular injury will progress within the tubules and directly affect PTC 

function. Lastly, also protein overload can result in PTC injury, a process that is i.e. process 

characteristic for glomerular diseases.  

As with podocytes, culture of PTCs in vitro is problematic because the cells tend to de-

differentiate and downregulate key proteins, including megalin and organic anion and cation 

transporters [233, 243-245]. To overcome these problems,  a conditionally immortalised PTC 

(ciPTC) line has been established which has extended proliferation capacity and expresses 

characteristic PTC markers and functional endogenous ion transporters [246]. As with 

podocytes, these cells also contain a temperature-sensitive T antigen that allows cell 

proliferation at a permissive temperature (33°C) and differentiation only at a nonpermissive 

temperature (37°C). ciPTCs present a powerful tool to study physiological and 

pharmacological processes. 

In summary, podocytes and PTCs are essential components for glomerular filtration and 

tubular reabsorption processes and therefore key for the treatment of many glomerular and 

tubular pathologies. 

1.3.4 Stem cells in the kidney 

Kidney-derived stem cells (KSCs) were first identified in the mouse renal papilla and were 

found to have differentiation capacity and the ability to form spheres post injury [247, 248]. 

Our group isolated a clonal KSC line from neonatal mouse kidney (mKSCs) [249, 250]. This 

mKSC population was shown to have self-renewal capacity, differentiation potential and 

expressed the renal progenitor markers Pax2 and Wt1 [250, 251]. Moreover, these cells had 

the potential to differentiate into specialised renal cell types, including podocyte- and 

proximal tubule-like cells, but also into non-renal cell types, such as adipocytes and 

osteocytes under appropriate cell culture conditions. Therefore, this cell line presents a great 

https://en.wikipedia.org/wiki/Glomerulonephritis
https://en.wikipedia.org/wiki/Diabetic_nephropathy
https://en.wikipedia.org/wiki/Diabetic_nephropathy
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model system and enables the study of renal physiological processes but is also valuable for 

toxicological studies in vitro. 

In recent years it has been suggested that progenitor cells exist in the adult human kidney [5, 

7, 164, 252-257]. These cells often express two stem cell characteristic markers, CD133 

(prominin-1 ) and CD24 (small cell lung carcinoma cluster 4 antigen) [258]. CD24 is a glycosyl- 

phosphatidylinositol-anchored protein that is expressed on immature cells, whereas CD133 

is a transmembrane glycoprotein that is often found within cellular protrusions and is 

expressed in immature cells, but also differentiated epithelial cells [259, 260].  

These putative CD133+/CD24+ progenitor cells were located within the parietal layer at the 

urinary pole of the Bowman’s capsule and following isolation, displayed self-renewal 

potential and the capacity to differentiate into podocytes and PTCs [5-7, 261].  

Lineage tracing studies have also shown that the kidney tubular epithelium contains mature 

cells (intrinsic tubular epithelial cells) that can initiate renal regeneration after injury [262, 

263]. Upon injurious stimuli these cells lose the brush border, dedifferentiate into 

mesenchymal-like cells and migrate into regions with cell detachment and death. 

Subsequently they proliferate and redifferentiate into epithelial-like cells and contribute to 

the repair of the post-ischemic nephron [264, 265]. These results suggest that, within the 

mouse kidney, renal cellular replacement post injury is mediated by epithelial cells rather 

than stem cells. However, these experiments were only performed in mouse models and 

cannot be implemented in humans.  

Based on these findings it is clear that particularly CD24 and CD133 have gained much 

recognition in terms of identifying KPCs. Double positive cells do indeed have self-renewal 

potential, maintain a stable phenotype in cell culture and can differentiate into podocytes 

and tubular cells in vitro and in vivo [5-7, 266]. However, there is still a dispute whether 

CD133+/CD24+ positivity is indeed sufficient to designate progenitors in the kidney.  
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In consideration of the above, it is still not clear whether there are stem or progenitor cells 

in the kidney. However, there are cell populations within embryonic, fetal and adult kidneys 

that have stem cell properties [6, 261, 267]. Many studies are focused on the identification 

of other potential KPC markers and new conjectures are published regularly. Among them 

are NCAM (neural cell adhesion molecule), EpCAM (epithelial cell adhesion molecule), FZD7 

(frizzled-7) and ALDH (aldehyd-dehydrogenasen) [266-269]. 

1.3.5 Potential of kidney-derived stem/progenitor cells for renal 

therapies and drug discovery 

Although dialysis supports kidney function, it is only a temporary solution and far from a 

healthy kidney. Therefore it is necessary to find new methods in order to repair or replace 

injured tissue. Generally the potential of stem and progenitor cells for regenerative therapies 

and tissue engineering is widely considered. There are numerous forms of kidney injury, 

within all of which different cell types are affected, which makes cell replacement therapies 

difficult and moreover require customised therapies for individual patients. 

However, in terms of renal therapies a number of potential cell types have been identified. 

The molecular mechanisms of nephron generating fetal cells have been thoroughly analysed 

in the past, but their activation and the involvement in renal homeostasis and repair remains 

indistinct [270]. Putative KPCs have been isolated from different parts of the nephrons and 

were shown to have regenerative potential in animal models of renal disease [5-7, 271]. 

Therefore, adult KPCs may have the potential for regenerative therapies in patients with 

renal injury. However, KPC therapies are restricted to the limited availability of source, a 

short period of proliferation and senescence. Another potential candidate are iPSCs, as they 

allow the ethical issues of embryonic stem cells to be circumvented and the production of 

autologous tissue from a patient’s own cells. However, their differentiation towards renal 



 

Introduction – Motivation and aim of this work | 25  
 

cell types is time consuming, long-term culture is difficult and iPSCs have tumorigenic 

potential [270]. 

On the other hand, biomaterial engineering provides an alternative solution to study renal 

disease. Developing platforms that support the proliferation and differentiation of KPCs 

would allow the study of (patho) physiological processes in vitro and therefore support the 

development of novel therapies for patients suffering from kidney disease or help delaying 

disease progression. At present, drug therapies cannot prevent further damage but only 

delay disease progress. A drawback is that patients often respond to these drugs by 

developing side effects. Biomaterials could offer a solution to allow not only long-term 

culture of renal cells, but also generation of kidney-derived progenitor cells in vitro and 

therefore offer a solution for understanding disease progression. Therefore, biomaterials 

would allow the identification new drug therapies, provide scale-up opportunities for drug 

screening to predict eventual toxicity and, in the future, may support the ex vivo production 

of cells for subsequent transplantation.  

1.4 Motivation and aim of this work 

A major drawback in the field of stem cell research and therapies are the difficulties 

associated with culturing, expanding and directing differentiation on a large scale into 

specialised cells. The availability of numerous stem and progenitor cells is raising hope both 

for cell replacement therapies and also for understanding (patho) physiological processes 

and developing new drugs for potential therapies. In this respect, biomaterials are valuable 

tools as they have the potential to regulate cell function and direct cell fate. Biomaterials 

have been engineered and successfully used on a large scale to differentiate stem and 

progenitor cells, with MSCs being generally the cell type of choice. However, there is still a 

requirement for such platforms for directing stem cells and more committed progenitors in 

higher quantities. Although a number of renal progenitors and other stem cells, such as iPSCs 
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or MSCs, have been identified and successfully used to repair kidney injury, there are only a 

limited number of publications on culturing kidney progenitors and directing their 

differentiation into specialised renal cells. 

Within this study, two physicochemically different types of polymers, polyacrylates and 

plasma polymers, were investigated for their potential to facilitate cell growth, expansion 

and differentiation of kidney stem/progenitor cells without the need for adding supplements, 

such as growth factors, to the cell culture medium. Mouse kidney-derived stem cells (mKSCs) 

were used as a renal stem cell model system which were explored for their ability to 

proliferate and generate functional renal cell types in vitro. These cells have typical stem cell 

properties, including unlimited self-renewal and multilineage potential, clonogenicity and 

have been previously shown to generate terminally differentiated renal cell types in vitro, 

such as podocytes and PTCs [249-251, 272]. In addition, preliminary studies were performed 

using fetal and infant human kidney-derived putative progenitor cells (KPCs). These cells do 

not have the capacity for extensive self-renewal and are therefore not stem cells. Moreover, 

their potential to be progenitor cells is also not convincing, as robust data showing their 

ability to differentiate to renal cell types is lacking. However, these cells have been 

extensively studied in recent years for their ability to ameliorate injury in models of kidney 

disease [5, 7, 261, 263]. 

Therefore, the aims of this study are as follows: 

(1) To develop novel polyacrylate substrates and thoroughly characterise their 

physicochemical properties, including surface chemistry, wettability, nano- and 

microscale topography and elasticity (chapter 3, p 56) 

(2) To interrogate whether polyacrylates have the ability to direct the differentiation of 

mKSCs into specialised renal cell lines, namely podocytes and proximal tubule cells 

(PTCs) (chapter 4, p 92). 
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(3) To investigate whether polyacrylates can stimulate the differentiation of human 

putative fetal and infant KPCs into specialised renal cell lines, namely podocytes and 

PTCs (chapter 4, p 92). 

(4) To thoroughly characterise the physicochemical properties of plasma polymers 

composed of allylamine and octadiene, including surface chemistry, wettability, 

nano- and microscale topography, elasticity and surface nitrogen functional group 

densities (chapter 5, p 151) 

(5) To examine whether plasma polymer coated substrates have the capability to direct 

the differentiation of mKSCs into specialised renal cell lines, namely podocytes and 

PTCs (chapter 6, p 174). 

(6) To modify the surface topography of plasma polymer coatings using gold 

nanoparticles, in a homogeneous manner or in form of density gradients, to 

investigate the combined effects of surface chemistry and topography on the 

differentiation of mKSCs (chapter 6, p 174) 

 

In summary, the main motivation of this work is the discovery of novel biomaterials that 

support the differentiation of mKSCs and KPCs into podocytes and PTCs as these are 

commonly effected in kidney injury. In the future, this would allow the study of (i) renal 

(patho) physiological processes (ii) the mechanisms that cause renal cells to be damaged in 

response to injurious signals and (iii) support the discovery of novel drugs for applications in 

drug discovery programmes to prevent or delay kidney disease and progression. 

 



 

Materials and Methods – Biomaterial coatings | 28  
 

2 Materials and Methods 

All solutions, chemicals, molecular compounds and equipment underlined are listed in the 

appendices (pp 239 - 245). 

2.1 Biomaterial coatings 

All polymer substrates were designed and synthesised by Biomer Technology Ltd. (BTL). The 

polymers were coated on glass coverslips using a dip coating procedure. The size of the 

underlying substrate was chosen corresponding to the analyses method employed.  

2.1.1 Polyacrylates 

2.1.1.1 Substrate preparation 

All samples were prepared in-house at BTL. Substrates (glass coverslips) were coated with 

the polymer through a dip coating and subsequent drying process under clean conditions 

(Figure 2.1). Each polymer batch was tested for consistency of chain length by gel permeation 

chromatography prior all experiments. Glass cover slips were handled with tweezers, 

mounted to a tensile testing unit (Lloyd Instruments LRX plus) and subsequently dipped once 

into the polymer solution (3% in dimethylformamide (DMF) at a rate of 75 mm/min to coat 

~50% of the coverslip and subsequently raised at the same rate. Samples were then 

transferred to a clip holder and placed into a fan assisted oven (Shell lab) at 85°C for 

approximately 15 mins to evaporate the solvent. The coverslips were then inverted and the 

dip coating – drying procedure was repeated once under the same conditions. Once all 

solvent evaporated and the samples were in undamaged condition, they were transferred 

into sterile tissue culture plastic (TCP) dishes and sealed until further use. Samples were only 

used within 4 weeks of production. 

http://de.wikipedia.org/wiki/Dimethylformamid
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Figure 2.1: Polymer dipcoating procedure. Step 1: A glass coverslip was immersed halfway through into the 
polymeric solution (polymer diluted in organic solvent) and subsequently dried in an oven at 85°C for 15 min to 
evaporate the solvent. Step 2: The half coated coverslip was then inverted and the other, uncoated half was 
immersed into the polymeric solution. The polymer coated coverslip was then taken back to the oven and heated 
another 15 min at 85°C to evaporate the solvent. Samples were stored in sealed tissue culture plates.    

2.1.1.2 Substrate sterilisation 

If samples were used for in vitro cell culture, they were sterilised using a UV ozone 

sterilisation unit within the laminar flow hood for 10 mins each side. Subsequently samples 

were transferred into the cell culture dishes using sterilised tweezers.  

2.1.1.3 Substrate cytotoxicity analyses  

Cytotoxicity studies were performed on all polyacrylates to assess whether there were any 

toxic effects on cells. Non-direct contact (solution) analyses were performed using mouse 

fibroblasts (mL929), whereas direct-contact studies were implemented on mL929 cells and 

primary bovine aortic endothelial (BAE) cells (chapter 2.4, p 45). 13 mm glass cover slips 

(VWR) were coated due to the ease of handling when using 24 well plates.   

Polyacrylate coated substrates (22 x 64 mm2) were investigated for cytotoxicity in 

consistency with the British Standards ISO 10993 part 5 [273, 274]. All experiments were 

performed in three biological and technical replicates. 
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Experimental setup was as follows (Figure 2.2):  

Start point / 0 h: 

(1) mL929 cells were seeded in 24 well plates at a density of 1 x 104 cells / well and left 

for 48 h (confluence reached) under standard cell culture conditions. 

(2) Contemporaneously, eluant (polymer conditioned cell culture medium A, pcCCM) 

was prepared as follows: for each experiment, 60 cm2 of sterile polymer coated 

coverslips were incubated in 20 mL cell culture medium A in sterile 50 mL centrifuge 

tubes, shaken vigorously and incubated under cell culture conditions (5% CO2, 37°C).  

Half-time , 48 h: 

(1) After 48 h the eluant (pcCCM) was filter sterilised through a sterile 0.2 um filter. 

Subsequently this eluant was diluted in standard cell culture medium (cell culture 

medium A) to obtain concentrations of eluant (pcCCM) : cell culture medium A of 

10%, 50% and 100% (v/v).  

(2) mL929 cells were then incubated in these (diluted) eluant solutions for a further 48 

h. The negative control (not cytotoxic) was cell culture medium A (0% eluant) and 

positive control (cytotoxic) was in latex incubated medium.  

(3) Cells were examined for cell death 24 and 48 h post incubation in the eluant and the 

experiment was only continued when the positive control showed healthy cells and 

the negative control cell death.  

End point, 96 h: 

(1) After 48 h exposure to the eluant (pcCCM), cells were washed twice with PBS, fixed 

with 4% (w/v) paraformaldehyde (PFA) and stained with methylene blue (0.04% (v/v) 

in ddH2O) for 15 mins at room temperature. Subsequently cells were washed until 

PBS was clear and visualised under the light microscope.  



 

Materials and Methods – Biomaterial coatings | 31  
 

 

Figure 2.2: Experimental setup of cytotoxicity experiments on polyacrylate substrates using mL929 cells.  

2.1.2 Plasma polymer coatings 

All plasma polymer coated substrates were provided by the University of South Australia. 

Cytotoxicity studies were not performed on plasma polymer coatings as these were already 

established and analysed as cell culture platforms before [275].  

2.1.2.1 Substrate preparation 

2.1.2.1.1 Plasma deposition 

Plasma polymerisation was performed in a custom-built 13.56 MHz radiofrequency plasma 

reactor described previously [276]. 13 mm thermanox coverslips were cleaned by treatment 

with air plasma for 3 min. Allylamine (AA) and 1,7-octadiene (OD) were used as precursors 

for plasma deposition to generate thin films. For generation of heteropolymers, AA and OD 

were mounted onto two separate needle valves and the plasma flow was carefully controlled 

with automated needle valves. Homopolymers were either 100% AA or 100% OD. 

Copolymers fabricated were (i) 75% AA / 25% OD (ii) 50 AA / 50% OD and (iii) 25% AA / 75% 

OD. In the following these coating will be referred to as 100 % AA, 75% AA, 50% AA, 25% AA 

and 0% AA.  Plasma layers were deposited at a flow rate of 10 standard cubic centimetres 

per minute (sccm) for 3 min. 
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For fabrication of AA-OD gradients the gradient shape was controlled by the rate at which 

AA:OD ratio was changed and has been described previously [277]. 

2.1.2.1.2 Gold nanoparticle synthesis 

Gold nanoparticles (AuNPs) were synthesised by reduction of hydrogen tetrachloroaurate 

with trisodium citrate as described previously [278]. AuNPs of a diameter of either 16 or 68 

nm in diameter were fabricated. The AuNP suspensions were stored at 4°C in the dark. 

2.1.2.1.3 Nanorough plasma polymer films 

AA plasma films were immobilised with 16 or 68 nm gold nanoparticles (AuNPs). For 

homogeneous coatings substrates were immersed into the AuNP solution for 2 h (16 nm) and 

6 h (68 nm), which initiated the covalent binding of AuNPs to AA. For fabrication of AuNP 

gradients substrates were gradually immersed into the AuNP solution by conducting a linear 

motion drive dip coater (Zaber T-LSR series) for 5 mm/h and 1.66 mm/h for the 16 and 68 nm 

AuNPs, respectively. Subsequently substrates were washed with ddH2O. The AuNP coated 

substrates were then overcoated with a 5 nm plasma layer composed of (i) 100% AA (ii) 75% 

AA/25% 1,7-octadiene (OD), (iii) 25% AA / 75% OD or (iv) 100% OD. The total precursor flow 

rate was 10 sccm and the plasma polymer films were deposited for 30 s at 30 W.  

The AuNP density on substrates with homogeneous AuNP coating equalled the AuNP density 

of the gradient section with highest AuNP density on gradients for both, 16 and 68 nm AuNPs. 

2.1.2.2 Substrate sterilisation 

Prior to cell culture experiments plasma coated glass coverslips were incubated in 

Penicillin/Streptomycin for 10 mins, then carefully washed with sterile 1x Dulbecco’s 

Phosphate Buffered Saline (PBS) and left to dry. 
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2.2 Physicochemical substrate characterisation 

2.2.1 Surface wettability analyses 

2.2.1.1 Sessile drop technique 

The sessile drop method is the most commonly used method to measure surface energy / 

wettability. A droplet of liquid (here ddH2O) with a known surface energy was placed onto 

the surface of a solid and an image was recorded.  Once the water comes in contact with the 

surface the contact angle (CA) occurs at the three interfaces liquid/solid surface (ƳSL), 

liquid/gas (ƳLG) and gas/solid (ƳGS) (Figure 2.3) and was calculated using the Young equation 

(Young’s contact angle ƟƳ, Equation 2.1) [279].  

 

Figure 2.3: Simple schematic of the sessile drop technique. (A) Schematic diagram of a drop contour where the 
CA is measured at the interface (Ƴ) between solid-gas (SG), solid-liquid (SL) and liquid-gas (LG) and (B) change of 
drop shape with increasing surface wettability.  

Equation 2.1: Young’s equation. 

𝛾𝑆𝐺 = 𝛾𝑆𝐿 +  𝛾𝐿𝐺 𝑐𝑜𝑠 𝜃𝛾 

All sessile drop CA measurements were conducted using a drop shape analysis system 

(DSA100m, Krüss) that consisted of a piezo dosing head which dispensed drops in picolitre 

volume, a camera combined with a microscope and a software controlled micro-step x–y 

stage.  Droplets of 80 pL degassed and deionised water were dropped on the substrate and 

images were recorded. The CAs in degree were collected using the circular segment method. 

A minimum of 5 samples and 7 different areas across the surface was measured.  
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For collection of CA maps, the stage with the sample was laterally moved in x and y direction 

and CAs were collected every 5 mm (~400 drops / 13 mm coverslips). For mapping only one 

representative single sample per polymer was chosen. Two and three dimensional CA maps 

were designed using Origin software (OriginLab, Northampton, MA). 

2.2.1.2 Captive bubble 

The captive bubble (CB) contact angle measurements were conducted using a drop shape 

analysis system (DSA100m, Krüss). A bubble was placed on the underside of the sample in 

liquid with a syringe connected to a needle (Figure 2.4). Each bubble was approximately 10 

µL in volume and an image was taken. 6 samples were measured 5 times and the average 

was taken. The CA was determined using the circular segment method and the Young’s CA 

was calculated using Equation 2.1.  

 

Figure 2.4: Schematic set up of the contact angle measurements using the CB method. 

2.2.1.3 Dynamic contact angle 

Dynamic contact angle (DCA) measurements were conducted using the Wilhelmy plate 

method utilising a Cahn DCA322 microbalance. The samples were slowly immersed into 

ddH2O and subsequently withdrawn. Advancing and receding angles of 6 samples (22 mm2 

coverslips) were recorded in ddH2O and results were analysed using WinDCA322 (Thermo 

Cahn, USA) software.  
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The mass (m in g) of the sample that is attached to the balance is measured once the solid 

comes into contact with the liquid (ddH2O, Figure 2.5). Three forces (F in N) occur: gravity 

force (g), upthrust buoyancy (Fb)and the capillary forces [280]. The contact angle was then 

determined using immersion depth, surface tension of the liquid (72.6 dyne cm–1 for ddH2O) 

/ surface free energy ƳLG (mN/m) and sample perimeter (P) (Equation 2.2). 

 

Figure 2.5: Simple schematic of the Wilhelmy plate method to assess substrate DCA. (A) Experimental setup. The 
substrate is immersed into the liquid downwards and subsequently taken out upwards. (B) Simultaneously 
advancing and receding curves are acquired using the associated software. 

Equation 2.2: Wetting force. 

𝐹 = 𝑚 ×  𝑔 + 𝑃 ×  𝛾𝐿𝐺  × 𝑐𝑜𝑠𝜃 − 𝐹𝑏 

2.2.2 Atomic Force Microscopy 

The Atomic Force Microscopy (AFM) experimental set up is shown in Figure 2.6. All AFM 

analyses (thickness, topographical imaging, surface roughness and nanomechanical 

properties) were performed using a NanoScope 8 MultiMode AFM (Bruker Nano Inc., Nano 

Surfaces Division, Santa Barbara, CA) equipped with a 150 x 150 x 5 µm scanner (J-scanner) 

operated with PFQNM modality [281]. Polymer coated glass cover slips were measured using 

silicon nitride tips with a nominal tip radius of 8 nm and a 5 N m-1 spring constant (Bruker 

AFM Probe TAP150A).  
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Figure 2.6: Atomic force Microscopy. (A) Simple illustration of the AFM setup. A tip attached to a cantilever raster 
scans a sample that is attached to a piezo element. An optical laser beam is focussed on the cantilever and the 
deflection is transferred onto a Photodiode. From here the detector analyses the deflection signal and gives a 3D 
image. (B) Schematic of a typical force curve measurement. The tip is in distance from the surface, no force (1). 
Once the tip approaches the surface, attractive forces (deflection downwards) occur and the tip contacts the 
surface (deflection upwards) (2). When the tip is retracted from the surface, adhesion forces maintain a certain 
distance between tip and sample (3  4) until the spring force allows to overcome adhesion forces (5) and the tip 
returns to position (1).  

For thickness analyses a part of the film was removed by scratching the samples with a 

scalpel. The resulting scan image showed a decline between the polymer coating and the 

underlying glass substrate and the height between coated and uncoated part was measured. 

For roughness analyses 5 µm2 images were taken, corrected using a plane fit and the root-

mean-square roughness (RMS) was calculated under utilisation of Equation 2.3 where zi is 

the z value for specific pixel, zav is the average of the z values in the scan area and N is the 

number of pixels within the same scan area. The AFM was operated in tapping mode.  

Equation 2.3: Calculation of the root mean square roughness. 

𝑅𝑀𝑆 =  √
1

𝑁 
 ∑ (𝑧𝑖 − 𝑧𝑎𝑣)2

𝑁

𝑖=1
 

The same tip was used for a large number of measurements to ensure a fair comparison 

between the samples.  

For determination of the elastic properties, the deflection (displacement) was converted into 

force using Hooks law, where F is the force, Kc the cantilever stiffness / spring constant and 

zc the  distance the cantilever is deflected (Equation 2.4) [282].  
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Equation 2.4: Hooks law. 

𝐹 =  −𝑘𝑐𝑧𝑐 

PeakForce quantitative nanomechanical property mapping (PFQNM) was employed to 

analyse substrate mechanical properties (elasticity). Prior to all measurements the tip 

(deflection) sensitivity was updated using a sapphire 12-m sample and the spring constant k 

was determined by thermal tuning. A polystyrene sample with known elastic modulus was 

employed to calibrate the instrument in order to measure mechanical properties that were 

then determined by employing the DMT model (Derjagin, Muller, Toropov) using Equation 

2.5, where F is the force, δ is indentation, R the tip radius, E* the reduced elastic modulus 

(comprises elastic modulus and Poisson’s ratio of the material to be indented) and γ the work 

of adhesion.  

Equation 2.5: Force calculation according to the DMT model. 

𝐹 =  
4

3
 𝐸∗ √𝑅𝛿

3
2 − 2𝜋𝑅𝛾 

A minimum of 3 samples and 5 areas for each coating were used for all analyses, all of which 

were performed by employing NanoScope Analysis v1.50 software.  

2.2.3 Characterisation of surface chemistry 

2.2.3.1 X-Ray Photoelectron Spectroscopy 

The experimental X-Ray Photoelectron Spectroscopy (XPS) set up is shown in Figure 2.7. All 

XPS analyses were conducted using a VSW ESCA XPS spectrometer, which was fitted with a 

multicrystal Al Kα X-ray monochromator. The sample holder was able to accommodate larger 

sample sizes (12x12 mm2) and was mounted on an x–y–z stage with ability to be rotated 

through 360°. A sample area of 15.7 mm2 was analysed. 
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Survey spectra were recorded at a 45° take-off angle at 150 eV, 0.8 mm slit at 1.8 kW. High 

resolution C1s, O1s and N1s spectra were obtained at pass energies of 20 eV for improved 

resolution. The sample electrons were excited with a low energy electron flood gun (Scienta 

FG300) in the analyses chamber under optimal spectral resolution.  

 

Figure 2.7: X-Ray Photoelectron Spectroscopy. (A) Simplified schematic of the instrumental XPS set up. An X-Ray 
source is focused on the substrate and excites core electrons in the upper layers of a substrate surface (B and C). 
These photoelectrons are ejected from an atomic level or valence band of the sample surface. Photoelectron 
energy is determined using a concentric hemispherical analyser. The signal then becomes transferred to a 
detector, resulting in a spectrum with a series of photoelectron peaks and is visualised as intensity (electron 
counts) versus electron energy. The entire process takes place within a chamber that maintains ultra-high vacuum 
(UHV) which avoids surface contamination and increases the scope of the electrons when ejected 

The recorded spectra were analysed by curve fitting using CasaXPS (Casa software Ltd) 

software. The photoelectron specific kinetic energy (Ekin) was determined using Equation 2.6, 

where hv is the excitation energy, EB the binding energy and φ the work function  [283, 284].  

Equation 2.6: Determination of the elemental kinetic energy Ekin. 

𝐸𝑘𝑖𝑛 = ℎ𝑣 − 𝐸𝐵 −  𝜑  

Carbon, oxygen and nitrogen content was quantified by peak fitting (determination of peak 

edges) of the survey (wide scan) spectra by calculation of the area underneath the curve 

(Figure 2.8 A). The hydrocarbon C-C/C-H peak was referenced to a binding energy of 285.0 

eV for all spectra recorded in order to account for sample charging. Other peaks that 
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corresponded to carbon binding states were added and fitted to the core level. The 

background was removed linearly and symmetrical peaks with a 80:20 Guassian : Lorentzian 

shape were employed for line-shape fitting with suitable relative sensitivity factors. (Figure 

2.8 B). Equal full width at half maximum (FWHM) values were used for each component for 

all core levels. Binding energy peak shifts were taken from available literature [285, 286]. 

 

Figure 2.8: (A) An example of a XPS wide scan spectrum that shows three peaks: a carbon 1s (C1s) peak, an oxygen 
1s (O1s) peak and a nitrogen 1s (N1s) peak at their characteristic binding energies. The background originates 
from electrons that are excited by the X-Ray Bremsstrahlung radiation and from inelastic photoelectron 
scattering. 

2.2.3.2 Amine content quantification 

The surface primary amine density was quantified as previously described using either 

Coomassie Brilliant Blue (CBB) [287] or Orange 2, [288-290] (Figure 2.9).  

 

Figure 2.9: Simplified schematic of the colorimetric determination of the surface amine content. The samples are 
incubated in a solution that contains the dye that binds to amine groups at a specific pH.  After washing, the pH 
of the solution is changed, the bound dye is released into the solution whose optical density can then be 
determined and correlated with the optical density of a standard solution with known dye concentration.  

2.2.3.2.1 Coomassie Brilliant Blue method 

Coomassie Brilliant Blue (CBB) is a large bivalent dye and was used to quantify surface amine 

groups quantitatively. For primary amine density determination, polymer coated substrates 

were immersed in 0.3 mL of a solution of 0.5 mg/mL CBB in acidic solution (85:10:5 v/v 
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dH2O/methanol/acetic acid, pH 2.2) for 5 min at room temperature. To eliminate any excess 

dye, the samples were then thoroughly washed with the acidic solution without dye until the 

rinsing solution was clear. The samples were then dried at room temperature in air. To 

remove the amine-bound dye, 0.3 mL of an alkaline solution (0.125 M K2CO3 in 50:50 v/v 

dH2O/ methanol, pH 11.25) was added. The alkaline solution was then transferred into a 96 

well plate and adjusted to pH 3 (by adding 7.5% v/v of 3 M HCl). The optical density (OD) of 

the solution was measured at 615 nm using an Anthos labtec instruments spectrophotometer 

LP400 (Figure 2.10).  

 

Figure 2.10: CBB absorption spectrum and molecule isomeric forms depending on the solution pH. 

2.2.3.2.2 Orange 2 method 

Orange 2 is a small, monovalent dye and therefore assumed to be able to reach steric 

hindered or covered primary amines easier than CBB (Figure 2.11). Polymer coated samples 

were immersed in 0.3 mL of a solution of 14 mg/mL Orange 2 dye in acidic solution (dH2O at 

pH 3 adjusted with 1 M HCl) for 30 min at 40°C. To eliminate any excess dye, the samples 

were subsequently thoroughly washed in the acidic solution without dye until the rinsing 

solution was clear. The samples were then dried at room temperature in air. To remove the 

amine-bound dye, 0.3 mL of an alkaline solution (dH2O at pH 12 adjusted with 1 M NaOH) 

was added. The alkaline solution was then transferred into a 96 well plate and adjusted to 

pH 3 (by adding 1% v/v of 12.3 M HCl). The optical density (OD) of the solution was measured 

at 484 nm using an Anthos labtec instruments spectrophotometer LP400. 
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Figure 2.11: Orange 2 absorption spectrum and its isomeric forms. 

2.2.3.2.3 Quantification of primary amines 

Prior all measurements, a stock solution of 0.05 g/mL CBB in acidic solution (85:10:5 v/v 

dH2O/methanol/acetic acid, pH 2.2) or 0.05 g/mL Orange 2 in acidic solution (dH2O at pH 3 

adjusted with 1 M HCl) was prepared. From these, standard solutions were prepared by 

taking a certain volume of stock solution and topping up with acidic solution to reach a final 

volume of 0.3 mL in 96 well plates. CBB and Orange 2 interact with N+ in a ratio of 1:1 (Ndye = 

NNH2). Therefore, one molecule dye reacts with one single primary amine group [291]. As 

solution volume and concentration were known, the mass m of dye was calculated and, using 

its molar mass M (MCBB = 854.02 g/mol, MOrange II = 350.32 g/mol) the amount of substance 

was determined (Equation 2.7). The particle number N was then calculated using the 

Avogadro constant NA (Equation 2.8).  

Equation 2.7: Molar mass. 

𝑀 =
𝑚 

𝑛
 

Equation 2.8: Avogadro constant. 

𝑁𝐴 =  
𝑁

𝑛
= 6.02214129 ∗ 1023𝑚𝑜𝑙−1 
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From the absorption of the standard solutions the particle number N per coverslip was then 

calculated and the amine density was determined in pmol/mm2. Background measurements 

were taken alongside and subtracted from the absorbance values. 

2.2.3.2.4 Correlation of amine content 

Linear correlation between primary amine density determined by CBB and Orange 2 was 

determined to compare both methods with each other as well as with the amine content 

determined by XPS (N/C). 

2.3 Cell culture 

2.3.1 Cell lines 

Throughout the course of this study seven cell lines were used and assessed for their cell 

response to biomaterial substrates used in this study.   

i) mouse fibroblasts (mL929) cells, provided by Biomer Technology Ltd.  

ii) bovine aortic endothelial (BAE) cells, provided by Biomer Technology Ltd. 

iii) mouse kidney-derived stem cells (mKSC), established by the Stem Cell Research 

group (University of Liverpool) [249] 

iv) conditionally immortalised podocytes (ciPodocytes), provided by Saleem et al. 

[227] 

v) conditionally immortalised proximal tubule cells (ciPTCs), provided by 

Masereeuw et al. [246] 

vi) putative fetal kidney progenitor cells (fKPCs), pre-sorted to be double negative 

or double positive for CD133 and CD24, provided by Winyard et al. [292] 

vii) putative infant kidney progenitor cells (iKPCs), pre-sorted to be double negative 

or double positive for CD133 and CD24, established by the Stem Cell Research 

group (University of Liverpool) 
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2.3.2 Routine cell culture 

All cell culture procedures were performed under sterile conditions in a Biomat class II safety 

cabinet. Surfaces and equipment used during cell culture were cleaned with 70% ethanol. 

Solutions and buffers were pre-warmed to 37°C before use. Cells were cultured in their 

particular cell culture medium in standard tissue culture plates (TCPs). The medium was 

exchanged every 2-3 days and cells were kept in a humidified chamber with 5% CO2 at 37°C.  

Conditionally immortalised (ci) cell lines were kept at 5% CO2 at 33°C for proliferation, 

whereas the conditions were changed to 5% CO2 at 37°C in order to initiate cell 

differentiation.  

mL929, BAE cells and mKSCs were kept in cell culture medium A ciPodocytes in cell culture 

medium B, ciPTCs in cell culture medium C and fKPCs and iKPCs in cell culture medium D 

(Appendix I, p 239). 

Cells were passaged when confluent as follows; two washing steps in PBS that was then 

aspirated and cells were incubated in 1% trypsin at 37°C for 3-5 mins until cells were detached 

from the culture dish. Subsequently cell culture medium was added to neutralise the trypsin 

and cells were carefully transferred into a 15 mL centrifuge tube and spun down at 233 x g 

for 3 mins. Supernatant was then aspirated and the cell pellet was resuspended in the 

required volume of cell culture medium. Cell number determination for cell seeding was 

performed as follows: 10 µL of cell suspension were transferred into a 96 well plate and 

mixed with 10 µL trypan blue. 10 µL of this solution were transferred into a cell counting 

plate and cell number was determined using a TC20™ Automated Cell Counter. The required 

number of cells was seeded into TCPs for cell culture expansion.  
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2.3.3 Cell culture on biomaterial substrates 

Cells were handled under standard cell culture conditions as described above. If cells were 

to be seeded on substrates, a solution of the required cell number in the required volume of 

medium was made up. The cell number required was seeded directly on substrates in a 

volume of 150 µL / 13 mm polymer coated coverslip and left for attachment under the cell 

culture hood (Table 2.1). After 2 h the wells were topped up with 1 mL medium. For mKSC 

culture on substrates, 1 x 103 cells were diluted in 1 mL medium and directly placed into the 

well for maintenance of a homogeneous cell distribution. 

Table 2.1: Seeding density and cell culture conditions of the particular cell type when meant to be analysed on 
polyacrylate substrates. 

Cell type Seeding density Cell culture conditions 

mL929 cells 1 x 10 4 cells / 13 mm coverslip 96 h / 37°C 

BAE cells 1 x 10 4 cells / 13 mm coverslip 96 h / 37°C 

mKSCs 1 x 10 3 cells / 13 mm coverslip 96 h / 37°C 

ciPodocytes 1 x 10 3 cells / 13 mm coverslip 6 days / 37°C, 5 days / 37°C 

ciPTCs 1 x 10 3 cells / 13 mm coverslip 6 days / 37°C, 5 days / 37°C 

fKPCs 5 x 10 3 cells / 13 mm coverslip 7 days / 37°C 

iKPCs 5 x 10 3 cells / 13 mm coverslip 7 days / 37°C 

 

2.3.4 Cryopreservation 

Cells were washed with PBS, trypsinised and centrifuged for 2.5 min / 233 xg. The medium 

was then aspirated and cells were resuspended in Recovery™ cell culture freezing medium 

at 1 x 106 cells / 0.5 mL and subsequently transferred into cryovials. Aliquots were then frozen 

overnight in freezing containers that were filled with 2-propanol and kept in a freezer at -

80°C thereby cooling down 1°C / min. The next day vials were transferred in liquid nitrogen 

containers for long term storage. 
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2.3.5 Cell recovery 

Frozen cell aliquots stored in cryovials were removed from the liquid nitrogen tank, quickly 

thawed in a 37°C water bath and immediately suspended in 10 mL cell culture medium. The 

cell solution was then centrifuged for 2.5 min / 233 xg, medium was aspirated, cells were 

resuspended in fresh medium and seeded into 10 cm TCPs. All cells were left for recovery for 

at least 3 days and passaged at least once before usage for in vitro experiments.  

2.4 Evaluation of the cell response 

For quantitative studies cells were seeded onto sterile 13 mm polymer coated glass cover 

slips. Plain glass cover slips and TCP were used as controls. Cell seeding densities can be found 

in Table 2.2. 

2.4.1 Morphological assessment using methylene blue 

The methylene blue (MB) staining was performed in either 24 well TCPs (cytotoxicity studies) 

or on polymer coated samples. The medium was aspirated, cells were washed twice with 

PBS, subsequently fixed with 4% (w/v) PFA for 10 mins at room temperature and washed 

three times with PBS. Following that the cells were stained with a solution of 0.04% (v/v) MB 

in ddH2O for 10 min at room temperature and again washed with PBS until rinsing solution 

was clear. Samples were morphologically investigated using a light microscope. 

2.4.2 Cell viability 

The viable cell number was determined at different time points, generally every day (mL929, 

BAE cells and mKSCs) or every other day (ciPodocytes, ciPTCs, fKPCs, iKPCs). 

For analyses, cell culture medium was aspirated and cells were washed with PBS. Then 150 

µL of a solution of 10% Cell Counting Kit-8 (CCK-8) in cell culture medium (1:10, respectively) 

was added to each well and cells were incubated for 1.5 h. Subsequently, the dye- medium 
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solution was transferred into a 96 well plate.  The absorbance of the solution was measured 

in an Anthos labtec instruments spectrophotometer LP400 at wavelengths of 450 nm for 

detection (620 nm reference filter). A standard curve was set up prior all experiments using 

the same cell batch in order to interpolate the obtained data. Alongside all measurements a 

background measurement (blank medium) was collected and subtracted from all values.  

CCK-8 is a readily available solution (WST-8 [2-(2-methoxy-4- nitrophenyl)-3-(4-nitrophenyl)-

5-(2,4-disulfophenyl)-2H-tetrazolium]). It becomes reduced through the biological activity of 

dehydrogenase of living cells into a colorimetrically detectable dye.  

2.4.3 Cell proliferation, population doubling time and cell spread 

Cells were fixed at the required time point using 4% PFA and subsequently incubated in Alexa 

Fluor® 488 Phalloidin (diluted in PBS 5:200) for 30 min at room temperature in the dark. 

Subsequently cells were washed with PBS three times and incubated in a solution of 4',6-

diamidino-2-phenylindole (DAPI) (300 nM in PBS) for 30 min at room temperature in the dark. 

The cells were then washed another three times with PBS and coverslips were carefully lifted 

with tweezers and cell side-down mounted onto microscopy slides using Dako fluorescence 

mounting medium. The coverslips were then analysed under epifluorescence illumination 

using a Leica DM2500 microscope coupled to a Leica DFC420C camera. Cell number was 

quantified by counting stained nuclei from the images obtained. Cell number was determined 

at different time points, generally every day (mL929, BAE cells and mKSCs) or every other day 

(ciPodocytes, ciPTCs, fKPCs, iKPCs). 

Population doubling time (PDT) was determined with Graphpad software from these cell 

numbers by employing nonlinear regression (exponential growth equation) analysis 

(Equation 2.9), where K is the rate constant. 
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Equation 2.9: Population doubling time. 

𝑃𝐷𝑇 =
ln(2)

𝐾
 

Cell spread was calculated from actin stained cells using ImageJ [293, 294]. An average of 10 

images per coverslip was taken. All images depicted are representative for the entire surface 

from one sample from three biological and technical replicates.  

2.4.4 Immunostaining  

All staining procedures were accomplished on cells seeded on 13 mm polymer coated 

coverslips, a 13 mm glass control or on TCPs. The general procedure was as follows; cell 

culture medium was aspirated, cells were washed twice with PBS and fixed with 4% (w/v) 

PFA for 10 mins at room temperature. Subsequently cells were washed 3 times with PBS and 

blocked for 1 h at room temperature with 10% serum (goat or chicken, depending on the 

host animal the secondary antibody was raised in). The serum was then removed and a 

primary antibody solution, that contained 1% of specific serum and 0.1% Triton-X 100 in PBS 

and the primary antibody (AB1) at the required concentration, was added and left at on the 

cells at 4°C over night in the dark. The following day cells were washed 3 times with PBS and 

the secondary antibody solution, containing 1% of specific serum and 0.1% Triton-X 100 in 

PBS and the secondary antibody (AB2) at the required concentration, was added and cells 

were incubated for 2 h at room temperature in the dark. Antibody solutions were centrifuged 

using a Microcentaur centrifuge (Sanyo Electroc Co. Ltd. Osaka, Japan) for 1 min at 233 xg 

prior usage. After another three washes with PBS, cell nuclei were stained with DAPI (300 nM 

in PBS) for 30 min at room temperature in the dark. Alongside all immunofluorescence 

experiments a negative control was included that was treated the exact same way as all other 

substrates except that no primary antibody was added. The coverslips were then washed 

three times with PBS, carefully removed from the 24 well plates and mounted with Dako 
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Fluorescence Mounting Medium. Images were acquired under epifluorescence illumination 

using a Leica DM2500 microscope coupled to a Leica DFC420C camera. 

All primary and secondary antibodies, including dilutions used within this study, are listed in 

the Appendix II (p 241).  

If images were to be quantified, an average of 10 images were taken of each sample and 

number of positive cells was quantified using ImageJ software [293, 294]. All experiments 

were accomplished in three biological and technical replicates and images shown represent 

the entire sample surface as well as an average of all experiments.  

2.4.5 Alkaline phosphatase staining 

Following 10 min cell fixation with 4% (w/v) PFA at room temperature cells were washed 3 

times with PBS and incubated in Tris-HCl at pH 9.2 for 5 min at room temperature.  

Subsequently Tris-HCl was removed and cells were incubated in a solution of 2 mg (0.02% 

(w/v)) naphtol AS-MX phosphate and 10 mg (0.1% (w/v) Fast Red TR in 10 mL Tris-HCl (pH 

9.2) for 15 min at room temperature in the dark. In the presence of the alkaline phosphatase, 

the naphthol AS-MX is liberated from the phosphate and interacts with the Fast Red 

diazonium salt to give the red precipitate that is fluorescently detectable. The staining 

solution was then removed and cells were washed once with Tris-HCl pH 9.2 and twice with 

PBS. Cells were co-stained with DAPI for 30 min in the dark at room temperature. The 

coverslips were then carefully removed from the 24 well plates and mounted with Dako 

Fluorescence Mounting Medium and images acquired under epifluorescence illumination 

using a Leica DM2500 microscope coupled to a Leica DFC420C camera. 

2.4.6 Live cell imaging 

For live cell imaging, cells were seeded at the required density and left to attach and 

proliferate in an incubator for 24 h as described previously. The following day the well plate 



 

Materials and Methods – Evaluation of the cell response | 49  
 

was transferred to a life cell imaging instrument (Cell-IQ®, CM Technologies) and phase 

contrast images were taken every hour for a determined period of time. The Cell-IQ allows 

long term cell culture under the required culture conditions.  

2.4.7 Podocyte quantification 

For podocyte quantification, life cell images taken every 24 h were chosen and the number 

of podocyte like cells was quantified from their typical morphological characteristics, such as 

a voluminous cell body with an arborised well-developed cytoskeleton and binuclearity [214, 

215, 250]. Life cell imaging allowed quantification at the same area throughout the cell 

culture period. A minimum of four spots per substrate was chosen and all experiments were 

performed in three biological triplicates. 

2.4.8 Fluorescence activated cell sorting 

2.4.8.1 Separation of cell populations 

Fluorescence activated cell sorting (FACS) was used to separate fetal and infant KPCs to be 

either double positive (DP) or double negative (DN) for the putative kidney progenitor cell 

markers CD133 and CD24. Cells to be sorted were kept under cell culture conditions. The 

medium was aspirated, cells were washed with PBS, trypsinised and centrifuged at 233 xg. 

The pellet was then resuspended in the antibody solution, containing the antibody diluted in 

PBS, for 10 mins at 4°C. Subsequently PBS was added and the cells were centrifuged at 233 

xg. The washing step was repeated another two times. Cells were transferred into round-

bottom glass tubes and kept on ice until sorted. FACS sorting was accomplished using a using 

a BD FACSAria (BD Biosciences) instrument by employees of the FACS Facility of the 

University of Liverpool. Sorted cells were collected in FACS buffer and kept on ice until they 

were seeded into TCPs in their medium.  
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2.4.8.2 Routine cell sorting 

Cells were routinely analysed using cytofluorometry to determine the percentage of 

fluorescently labelled cells within a population. Cell culture conditions and seeding densities 

are listed in Table 2.2. 

For analyses, medium was aspirated, cells were washed with PBS, trypsinised and centrifuged 

at 233 xg. The pellet was then resuspended in the antibody solution that contained the 

antibody diluted in PBS, for 10 min at 4°C. Afterwards PBS was added and the cells were 

centrifuged at 233 xg. The washing step was repeated twice. The labelling procedure was 

repeated if cells were co-stained with a second antibody. The cells were kept on ice in 

Eppendorf tubes in FACS buffer until analysis. 

In order to sort cells these were transferred into glass tubes and analysed using a BD 

FACScalibur (BD Biosciences) instrument, using the required lasers to detect the fluorescently 

labelled cells. The results were analysed using Flowing Software 2. The baseline was set by 

using non-labelled cells prior analysis of labelled cells. This control served as a threshold. All 

antibodies used are listed in the Appendix III (p 242).  

2.4.8.3 Uptake of fluorescently labelled albumin 

Cells were seeded on polymer coated coverslips und kept in routine cell culture under the 

required conditions (Table 2.2). One day before the end of the cell culture cells were washed 

three times thoroughly with PBS and cultured for another 24 h in serum-free medium 

(without FBS). Cells were then incubated for 1 h in serum-free medium that contained 40 

g/mL of FITC-conjugated bovine serum albumin (F-BSA) for 1 h at 37°C.  

If a competitive inhibition was performed, cells were parallel cultured for 15 min in serum-

free medium that contained 40 g/mL of F-BSA and 4 mg/mL of unlabelled bovine serum 

albumin (albumin, BSA). Afterwards cells were washed 3 times with PBS. 
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If cells were to be analysed immunofluorescently under the microscope, cells were fixed with 

4% PFA at this point, co-stained with the desired antibody and DAPI for 30 min in the dark at 

room temperature. The coverslips were then carefully removed from the 24 well plates and 

mounted with Dako fluorescence mounting medium and images were acquired under 

epifluorescence illumination using a Leica DM2500 microscope coupled to a Leica DFC420C 

camera. 

If cells were to be analysed using cytofluorometry, these were trypsinised, serum-free 

medium was added and cells were centrifuged at 233 xg. The medium was then aspirated, 

the pellet was resuspended in FACS buffer and cells were kept on ice until analysed. The cell 

solution was then sorted using a BD FACScalibur (BD Biosciences) instrument under 

employment of the FL1 detector. The results were analysed as described above.  

Table 2.2: Seeding density and cell culture conditions of cell lines seeded on substrates and analysed using either 
FACS or PCR. 

Cell type Seeding density (number of coverslips combined  per replicate) Cell culture conditions 

mKSCs  2.5 x 10 3 cells / 19 mm coverslip (x3) 96 h / 37°C 

ciPTCs 2.5 x 10 3 cells / 19 mm coverslip (x3) 6 days / 37°C, 5 days / 37°C 

fKPCs 1.5 x 10 4 cells / 19 mm coverslip (x3) 7 days / 37°C 

iKPCs 1.5 x 10 4 cells / 19 mm coverslip (x3) 7 days / 37°C 

 

2.4.9 Reverse transcription quantitative real-time polymerase chain 

reaction 

Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR) was used 

to evaluate relative mRNA expression between cells seeded on different substrates. For 

analyses, cells were seeded on 19 mm polymer coated coverslips in order to get enough RNA 

material and thus cDNA to analyse (Table 2.2). A minimum of 3 biological replicates was 

performed for each cell line.  
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2.4.9.1 Primer design 

If not present in-house, primer pairs for qRT-PCR were designed using NCBI Primer Blast 

[295]. The primers were optimised for the following parameters: Tm of 60°C, product size of 

50-200 base pairs, length of 18-23 base pairs and GC content between 40 to 60% as suggested 

by Udvardi et al. [296]. 

2.4.9.2 Total RNA extraction 

Medium was aspirated, TRIzol® reagent was added (volume as chosen corresponding to the 

well size) and left for 5 min at room temperature on cells in order to recover ribonucleic acids 

(RNAs). Cells were then triturated and the solution was transferred into microfuge tubes. The 

chloroform (1/5 of the existing volume) was added, the vial was shaken for 15 seconds and 

the solution was centrifuged at 4°C for 15 min at 12000 xg. From this solution, now separated 

into 3 phases, the upper phase was transferred into a fresh 1.5 mL Eppendorf tube that 

already contained 1 µL glycogen. Subsequently isopropanol (1/2 of the existing volume) was 

added, the solution inverted a few time and then incubated for 10 min at room temperature. 

Following that, the solution was centrifuged at 4°C for 10 min at 12000 xg. The supernatant 

was then removed and the pellet was washed with 75% ethanol (diluted in nuclease free 

water). The pellet was either stored at -80°C or, if immediate to be used, supernatant was 

removed and pellet air dried for a few minutes and diluted  in about 20 µL nuclease free 

water.   

RNA concentration was determined using a 1 µL NanoDrop™ 1000 Spectrometer (NanoDrop 

Technologies, Wilmington, USA).  

2.4.9.3 DNAse treatment 

The required amount of RNA was transferred into a 0.2 mL microfuge tube, 1 l DNAse buffer 

and 1 l DNAse were added. The solution was topped up with nuclease free water to obtain 
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a volume of 10 l and incubated 37°C for 30 min. Subsequently 1 l of Stop buffer was added 

and the solution incubated for 15 min at 60°C. Both steps were employed using a 2720 

Thermal Cycler. The solution was either kept at -80°C or, if to be used immediately, kept on 

ice.   

2.4.9.4 cDNA synthesis 

A mastermix was prepared containing 4 l 5x buffer, 1l 0.1M dithiothreitol (DTT) and 1l 

Superscript III (200U/l) per reaction. 8 µL DNAse treated RNA were transferred into a fresh 

0.2ml microfuge tube. 1 l of a 100ng/l stock solution of random hexamers, 1 l of desoxy-

nucleotides (dNTP mix, 10mM stock). Additionally nuclease free water was added to give a 

final volume of 14 l. The solution was incubated at 65°C for 5 min and then rested on ice for 

a minimum of 1 min. Then 6 l of the master mix were added. The final solution was 

incubated for 5 mins at 25°C, 60 mins at 50°C. For enzyme inactivation, the solution was then 

incubated for 15 mins at 70°C. All steps were performed using a 2720 Thermal Cycler. The 

solution (cDNA) was subsequently diluted in 30 l nuclease free water and either kept at             

-80°C or, if to be used immediately, kept on ice.   

2.4.9.5 Quantitative PCR 

For quantitative analyses two solutions were prepared: a primer master mix and a cDNA 

master mix (Table 2.3). 4.5 µL primer mix and 5.5 µL were transferred into the well of a 96 

well PCR plate. Each sample and primer was run in triplicates. Alongside these analyses two 

controls were run: a no-template-control (NTC) were as well as a no-reverse-transcriptase 

(NRT) control in order to verify the purity of genomic DNA. All primers are listen in the 

Appendix IV (p 243).  
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Table 2.3: Composition of the primer and cDNA mastermix for cDNA amplification. 

Primer mix cDNA mix 

0.5 µl forward primer (6.25 pmol/µl) 0.5 µl diluted cDNA 

0.5 µl reverse primer (6.25 pmol/µl) 5 µl 2X Sybr Taq mix 

3.5 µl nuclease-free water   

4.5  µl 5.5  µl 

 

The cDNA amplification was performed using a Biorad CFX Connect Real-Time PCR detection 

system. The cycling conditions were as follows: initial enzyme activation for 3 mins at 95°C, 

followed by a 2-step amplification cycle of 95°C for 10 s and annealing (TA) at 60°C for 30 s 

(mKSCs). The PCR reaction was ended after 40 cycles. Following that a dissociation curve was 

recorded, in which temperature was increased 0.5°C every 5 s thereby detecting the product 

melting temperature. The final amplification curves were analysed using the Bio-Rad CFX 

System Test Software. The cycle threshold (Ct) value was then transferred to Microsoft Excel  

software and fold change was assessed by employing the Pfaffl method in order to analyse 

the fold changes [297]. Gapdh and beta Actin (ACTB) were used as reference genes.  

2.4.9.6 Agarose gel electrophoresis 

The amplified product was run on an agarose gel in order to visualise and verify fragment 

identity and estimate the product size. 

A 2% (w/v) agarose gel was prepared by adding agarose into 1 x TAE buffer to a conical flask. 

The mixture was melted for a few minutes in a microwave, cooled down at room temperature 

and ethidium bromide was added (1 µL / 50 mL) in order to allow posterior detection of 

nucleic acids under ultraviolet (UV) light. Subsequently the gel was poured into an 

electrophoresis gel tray and a comb was inserted into the gel to introduce pockets. The gel 

was left to set for a minimum of 1 h to set at room temperature. Afterwards the gel tray was 

transferred into an electrophoresis chamber filled with 1 x TAE buffer.
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5x HyperLadder™ loading buffer was added to the cDNA product (1 x final concentration) to 

increase the product density. Of this solution, 10 µL were pipetted into the gel pockets and 

the products were run at 80 V for 40 min. Alongside 2 references were run: HyperLadder™ I 

(200 bp-10 kb) and / or HyperLadder™ IV (100 bp-1000 bp), depending on the expected 

product lengths.  

2.5 Statistical analyses 

Standard deviation (SD) error was used for descriptive analysis and standard error of the 

mean (SEM) for inferential statistics with a minimum of 3 independently conducted 

experiments (n=3). One-way analyses of variance (ANOVA) and post-hoc Tukey test were 

performed to evaluate statistical significances between two groups of samples. All statistical 

analyses were performed using Graphpad (GraphPad Prism v5.0 software for Windows, 

GraphPad Software Inc., San Diego, CA). P < 0.05 was considered as statistically significant.  
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3 Physicochemical characterisation of 

polyacrylates 

3.1 Introduction 

Confidentiality Agreement 

All polyacrylates used in this study are proprietary to Biomer Technology Ltd. including the 

polymerisation process and the chemical composition and quantities of the individual 

monomers. Detailed chemical properties of the substrates remain confidential. 

 

In the field of tissue engineering and (stem) cell research, cell behaviour is often investigated 

and manipulated in combination with biomaterials [110, 156, 298, 299]. It is advantageous 

for such biomaterials to mimic the cells extracellular environment in order to present the 

cells with natural cues, which can be physical, chemical or biochemical in nature [299-301]. 

All of these features have been shown to influence cell behaviour on different levels, 

including adhesion, proliferation and differentiation [59, 302-304]. 

This study focuses on novel, synthetic, polyacrylate materials, all of which were developed, 

manufactured and provided by Biomer Technology LTD (BTL). These polymeric substrates 

were synthesised from discrete acrylic monomers using a propriety free radical 

polymerisation technique. The free radical process reacts at the carbon-carbon double bonds 

opening it to form the polyacrylate carbon backbone structure (Figure 3.1).   

One advantage of this approach is the range of acrylic monomers available for synthesis. It 

opens up the possibility to design the polymers with functional group chemistry and 

stereochemistry in such a way that allows them to mimic (in a simple synthetic analogue) 

protein sequences, such as cell binding motifs that are present within a cells in vivo 
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extracellular environment. Accordingly, all polymer substrates were composed of multiple 

acrylic monomers with different key functional groups that include amine (-NH2), hydroxyl (-

OH) and carboxyl (-COOH) groups. Two discrete monomers, comprising ethyl and butyl 

chains, were used to create hydrophobic spacer groups.  By modulating the ratio of these 

monomers it was possible to introduce varying degrees of steric hindrance into the polymers. 

The number of monomers used was determined by the proportion and distribution of the 

individual functional group chemistries and stereochemistry. There were also practical 

considerations dependent upon the target polymer molecular weight and the multi-

monomer compatibility. Each polyacrylate batch was internally tested, by the company, for 

chemical consistency, purity and chain length using gel permeation chromatography.  

 

Figure 3.1: Polyacrylate structure. (A) Polyacrylate monomeric and polymeric unit. R1 and R2 indicate potential 
functionalities. (B) Representative stick ball schematic of a random polyacrylate with a carbon backbone and a 
variety of potential representative side chains with different functionalities. 

To date, the polyacrylates can be divided into two primary groups, the BTL series and the ESP 

series. The BTL series was structurally based on a particular collagen cell binding motif and 

its modifications. The series was initially designed for the Company’s propriety coronary stent 

coating application and was, in this respect, shown to influence cell adhesion and 

proliferation of human aortic endothelial cells and coronary artery smooth muscle cells [305-

307]. The BTL series substrates differed primarily in the proportion of the hydrophobic spacer 

chain monomers which influence steric hindrance within the polymer chain. Such spacer 

groups are generally important as functional units as they influence physicochemical 

properties and additionally induce flexibility and stability into the polymer chain [308]. 
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Moreover, from a biological point of view, such side chains may influence biological 

accessibility of e.g. certain proteins, biological ligands, growth factors or cells [308-311]. 

In contrast, the development of the embryonic stem cell polymer (ESP) series was inspired 

by the composition of other functional protein sequences / cell binding motifs within a 

variety of extracellular matrix (ECM) proteins such as fibronectin and laminin. 

One motif of great interest was RGD, a three amino acid sequence (Arginine-Glycine-Aspartic 

Acid), which was first identified in fibronectin [312]. However, it has since been detected 

within a number of ECM proteins including fibrinogen, entactin, vitronectin and laminin and 

is within each protein present in a different conformation depending on the immediate 

surrounding components and structures [313-315]. The RGD motif is well known as a cell 

attachment motif that cells can bind to through integrin-mediated adhesion [316, 317] and 

is additionally involved in cell behavioural features such as the  formation of focal adhesions 

and cell polarisation [318]. Therefore it is commonly utilised to modify biomaterial surfaces 

to enhance cell attachment and eventually migration [317, 319, 320]. Since then a large 

variety of synthetic polymers has been developed that incorporate the RGD motif, such as 

GRGDS (Glycine–Arginine–Glycine–Aspartic acid–Serine) [321], RGDS (Arginine–Glycine–

Aspartic acid–Serine) [322] or GRGDVY (Glycine-Arginine-Glycine-Aspartic acid-Valine-

Tyrosine) [323] and show that these also mediate cell attachment, notwithstanding that 

these sequences are much shorter than actual ECM proteins. Figure 3.2 shows a simplified 

schematic representation of an integrin with an RGD binding site as well as a representation 

of the RGD motif (created using Chemsketch©, ACDlabs). 

Additionally the RGD motif has been shown to influence stem cell differentiation [37]. The 

RGD density on a solid support, for example, affects cell differentiation of myoblasts with a 

high density directing cells towards myofibrils whereas a lower density directs the 

differentiation towards hepatocytes [324].  Similarly, Ding et al. showed that mesenchymal 
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stem cells (MSCs) showed differences in their differentiation behaviour depending on RGD 

nanopatterns and nanospacing. Their results strongly suggested that the RGD nanospacing 

directly regulates stem cell differentiation [35, 36, 325].  

 

Figure 3.2: Integrin receptor. (A) Simplified schematic representation of an integrin hetero dimer with an RGD 
ligand binding site. (B) Chemical structure and (C) stick and ball model of the RGD motif. 

Many integrin receptors such as αvb3 and α5b1 bind directly to RGD, but the presence of an 

PHSRN (Proline–Histidine-Serine-Arginine-Asparagine) sequence within fibronectin 

synergises with the RGD sequence in order to increase the activation of the α5b1 integrin, 

and thus cell adhesion, about 100-fold [326-329]. Likewise the PDSGR (Proline-Aspartic acid-

Serine-Glycine-Arginine) sequence and the RYVVLPR (Arginine-Tyrosine-Valine-Valine-

Proline-Arginine) sequence promote cell binding to the YIGSR (Tyrosine-Isoleucine-Glycine-

Serine-Arginine) domain of laminin [33, 34]. Thus, when developing biomaterials, it is a useful 

approach to consider the combination of certain cell binding motifs with beneficial functional 

peptide domains. This knowledge has been increasingly utilised in the field of biomaterial 

engineering in terms of altering cell behaviour [12, 317, 330, 331]. 
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Many of these cell binding motif sequences are rich in nitrogen (such as arginine) or contain 

carboxyl groups (such as aspartic acid). Therefore, such groups are increasingly recognised 

and considered when developing biomaterials for improvement of cell attachment and 

regulation [332]. For example, the RGD motif as part of a protein shows very high affinity to 

integrins, whereas the motif as part of a very short peptide or even alone is much less 

effective. Hautanen et al. found that the GRGDSP (Glycine-Arginine-Glycine-Aspartic acid-

Serine-Proline) motif within fibronectin is 1000 times more effective in cell attachment as 

part of the fibronectin compared to the sequence motif alone [333]. Notwithstanding, 

integrin specificity is still maintained. However, if the aspartic acid is exchanged against 

glutamic acid (both carry a carbonyl functional group) or glycine replaced by alanine, the 

activity of the motif is reduced about 100 fold [333]. Moreover, the conformation (L or D) of 

the given amino acids is of great importance. For example, Pierschbacher et al. demonstrated 

that, within proteins, aspartic acid is only active in the L-form [334]. 

Alongside RGD, various ECM peptides were identified that encourage cell adhesion [335-

338]. Many of these show high similarities to the RGD motif. Some examples include the KGD 

motif (Lysine-Glycine-Aspartic acid, i.e. in barbourin, a desintegrin)[339], the RHD motif 

(Arginine-Histidine-Aspartic acid, i.e.in amyloid β) [340, 341] or the NGR motif (Asparagine-

Glycine-Arginine, i.e. in fibronectin)[342, 343], all of which are affine towards particular 

integrins [344]. 

A large range of the BTL and ESP materials had been investigated previously with respect to 

their ability to influence cell behaviour and stem cell differentiation [305, 345]. Considering 

the outcome of these studies, the most promising substrates were chosen for this study: ESP 

003, ESP 004, and ESP 007, and BTL 15 (Figure 3.3). The first three substrates are 

stereochemical analogues of the RGD motif in different conformations. ESP 003 and ESP 004 

were designed using amine and carboxyl functional group chemistries. ESP 007 is an analogue 
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to ESP 004, but with the carbonyl functionality replaced with hydroxyl functionality which 

allows the comparison of these functional groups. BTL 15 on the other hand was equipped 

with all three functional groups (Table 3.1).  

 

Figure 3.3: Schematic representation of polyacrylate substrates that mimic in vivo cell binding motifs (stereo) 
chemically. ESP 003, ESP 004 and ESP 007 mimic structurally the RGD motif in different conformations whereas 
BTL 15 mimics a cell binding motif present within collagen.  

During the course of this study a range of additional substrates have been developed that 

include stereochemically modified versions of these polymers or new designs that target 

other promising ECM cell binding motifs that were identified from the literature: ESP 008 

(Perlecan), ESP 009 (Laminin), ESP 010 (Collagen), ESP 011 (RGD, modified ESP 007) and ESP 

012 (laminin, modified ESP 009). 

Aims of this chapter 

This chapter aims to introduce the Biomer Technology Ltd. polyacrylate substrates used in 

this study as well as a thorough analysis of their physicochemical properties. The following 

information were provided by Biomer Technology Ltd in order to enable data analyses and 

interpretation (Table 3.1, Table 3.2, Table 3.3).  
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Table 3.1: Presence of functional groups that polyacrylates are equipped with. 

Polymer/functional groups -NH2 -COOH -OH 

ESP 003 X x   

ESP 004 x x   

ESP 007 x   x 

ESP 008 x x x 

ESP 009 x x X 

ESP 010 x x   

ESP 011 x   X 

ESP 012 x x X 

BTL 15 x x X 

 

Table 3.2: Theoretical trend of functional groups among polyacrylate polymers. 

functional group Trend 

-NH2 ESP 009 > ESP 007 =  ESP 010 > ESP 004 = ESP 008 > ESP 003 > BTL 15 > ESP 011 > ESP 0012 

-COOH ESP 010 > BTL 15 = ESP 003 > ESP 004 > ESP 009 > ESP 008 > ESP 012 

-OH ESP 008 > ESP 009 > ESP 011 > ESP 012 > ESP 007 > BTL 15 

 

Table 3.3: Theoretical trend of steric hindrance among polyacrylate polymers. 

Trend of steric hindrance 

ESP 009< ESP 010< ESP 008< ESP 003= ESP 004 = ESP 007 = ESP 011= ESP 012=BTL 15 

 

3.2 Results 

3.2.1 Surface characterisation using X-Ray Photoelectron 

Spectroscopy 

Polyacrylate surfaces were analysed using X-Ray photoelectron spectroscopy (XPS) in order 

to determine the surface elemental composition and the binding states of these elements 

within the surface. Representative fitted survey and high resolution spectra from ESP 003 are 

shown in Figure 3.4.  

 

 



 

Physicochemical characterisation of polyacrylates – Results | 63  
 

 

 

Figure 3.4: Representative XPS spectra obtained from ESP 003. (A) Survey scan highlighting the fitted peaks carbon 
(C1s). nitrogen (N1s) and oxygen (O1s). (B) O1s (C) N1s and (D) C1s high resolution spectra with fitted peaks. Note: 
y-scale is different for improved visibility of scans.  

All substrates were composed of a carbon based polymer backbone and various functional 

group chemistries (chapter 3.1, 56). Figure 3.5 shows the quantification of the surface 

elemental composition obtained for each polyacrylate and Table 3.4 the corresponding 

values. Notably, the component present in the highest percentage was carbon, as the 

polymer backbone and the aliphatic spacer monomers were primarily composed of it. 

Nitrogen was only present in pendant functional groups and therefore only occurred in 

reasonably low percentages (Figure 3.5 B).  
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Figure 3.5: Elemental surface composition. (A) Elemental contribution of each element to the substrate in per 
cent and (B) Ratio of oxygen/carbon and nitrogen/carbon. All data were obtained via analyses of the survey 
spectra. 

Table 3.4: Elemental surface composition. Shown are the elemental percentages of carbon (C), oxygen (O) and 
nitrogen (N) as analysed for each substrate and the O/C and N/C ratios. All data were obtained via analyses of the 
survey spectra. 

   Element                              Ratio 
 Carbon (%) Nitrogen (%) Oxygen (%)  N (%) / C (%) O (%) / C (%) 

ESP 003 58.45 1.95 39.6  0.03 0.68 

ESP 004 77.56 2.3 20.15  0.03 0.26 

ESP 007 77.52 2.57 19.91  0.03 0.26 

ESP 008 50.9 2.75 46.35  0.05 0.91 

ESP 009 50.89 3.75 45.54  0.07 0.89 

ESP 010 52.25 2.55 45.2  0.05 0.87 

ESP 011 51.9 1.22 46.88  0.024 0.90 

ESP 012 55.39 1.17 43.44  0.02 0.78 

BTL 15 54.8 1.24 43.96  0.02 0.80 

 

Further analyses of the elemental peaks allowed quantification of the elemental binding 

states present. Figure 3.6 shows the analyses of the carbon (C1s), oxygen (O1s) and nitrogen 

(N1s) peaks and Table 3.5 the corresponding values. The C1s peak composition (Figure 3.6 A) 

showed that three types of carbon bonds were present in all substrates: C-C/C-H (aliphatic, 
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non-polar bonds from the backbone and hydrophobic monomer spacer groups) and C-O/C-

N and COOH/COOR groups (polar functional groups and ester groups). ESP 011 and ESP 012 

appeared to contain more carboxyl (COOH/COOR), a larger content of C-O / C-N groups and 

less non-polar C-C/C-H-bonds compared to the other substrates. ESP 003, ESP 004 and BTL 

15 on the other hand contained very little carboxyl groups but more non-polar bonds.  

O1s peak analyses (Figure 3.6 B) revealed that three main bonds were present within the 

substrates: C-O-C (ester), C=O (carbonyl) and C-OH (hydroxyl), with the latter one being 

incorporated as functional groups in order to mimic cell binding motifs accordingly. However, 

ESP 003, ESP 004 and ESP 010 were not equipped with hydroxyl groups whereas all other 

substrates contained these to a certain extent.  ESP 008 and ESP 011 had the highest hydroxyl 

group content amongst the polyacrylate substrates.  

The nitrogen component was only present as part of the amine functional groups and was 

either charged or uncharged. Quantification of the nitrogen sub peaks to determine the 

composition was difficult as the peaks generally contain significant background noise. 

However, only a small difference between uncharged and charged nitrogen groups among 

the polyacrylates was detected (Figure 3.6 C) with ESP 003, ESP 004, ESP 12 and BTL 15 

containing a higher amount of charged groups compared to other substrates. 
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Figure 3.6: Element peak composition in per cent. (A) Carbon / C1s peak (B) Oxygen / O1s peak and (C) Nitrogen 
/ N1s peak.  All data were obtained by curve fitting analyses of C1s, O1s and N1s high resolution spectra. 

Table 3.5: Elemental surface composition in per cent. All data were obtained by curve fitting analyses of C1s / O1s 
and N1s high resolution spectra. 

    Carbon C1s                Oxygen O1s  Nitrogen N1s 

  C-C/C-H C-O/C-N COOH/COOR 
 

C-O-C C=O C-OH 
 

NH2 NH2/NH3
+ 

ESP 003 
 62.46 31.97 5.57  63.52 36.48   66.69 33.31 

ESP 004 
 65.34 30.59 4.07  53.84 46.16    

59.58 40.42 

ESP 007 
 60.40 32.44 7.16  60.66 32.90 6.44  

73.5 26.50 

ESP 008 
 53.59 36.99 9.42  61.66 24.91 13.43  

74.85 25.15 

ESP 009 
 53.08 37.46 9.46  81.16 12.94 5.90  

74.89 25.11 

ESP 010 
 51.52 38.26 10.22  61.61 38.39    

70.37 29.63 

ESP 011 
 45.38 40.39 14.04  54.34 36.13 9.53  

74.36 29.63 

ESP 012 
 43.64 41.92 14.43  65.62 28.31 6.06  

66.93 33.07 

BTL 15 
 62.99 31.44 5.57  70.63 23.97 5.40  

66.61 33.39 
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3.2.2 Surface wettability analyses 

3.2.2.1 Sessile drop 

Theoretically all substrates were considered to be relatively hydrophobic and thus expected 

to have high contact angles (CAs) as the main element within the substrates was carbon.    

Figure 3.7 shows the CAs obtained for the polyacrylates. All materials showed highly 

significant differences from the glass control suggesting that the coverslips were completely 

coated. CAs revealed high and hydrophobic values for most substrates that were in the range 

of 71 ± 1°. Three substrates, ESP 008, ESP 009 and ESP 010 were significantly more hydrophilic 

with CAs of about 64 ± 2°.   

 

Figure 3.7: Polyacrylate CA analyses. All substrates were significantly different from glass (Tukey model, p < 0.05). 
ESP 008, ESP 009 and ESP 010 were significantly more hydrophilic than other polyacrylates. 

Irrespective of the number of substrates measured to get an average CA value, there are 

various factors that might influence results such as contaminations (e.g. dust particles), 

surface oxidation through contact with air or surface roughness that might occur through 

nonhomogeneous surface coating. Therefore, surface CA maps were recorded that displayed 

the distribution of CA values across the entire surfaces. Figure 3.8 shows CA maps in a top 

view 2D perspective and in 3D. These highlighted indeed an uneven spreading of CAs across 

the entire substrate. However, when comparing the average CA values obtained by 

measuring replicates (Table 3.6), both methods were found to give results in a very similar 
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range. Therefore, the outcome of sessile drop CA can be seen as an accurate measure of the 

surface wettability. 

Table 3.6: Average CAs obtained for polyacrylates used in this study. 

Sample Static Contact Angle – 7 Replicates Static Contact Angle - Map 

ESP 003 71.03 ± 3.06 69.82 ± 4.27 

ESP 004 73.06 ± 3.02 73.98 ± 4.49 

ESP 007 72.76 ± 3.79 63.45 ± 6.62 

ESP 008 66.00 ± 2.43 57.98 ± 7.97 

ESP 009 62.45 ± 2.06 63.97 ± 9.69 

ESP 010 66.07 ± 5.11 64.04 ± 5.17 

ESP 011 71.22 ± 1.93 67.19 ± 1.78 

ESP 012 71.76 ± 1.32 71.57 ± 2.64 

BTL 15 71.87 ± 3.65 73.34 ± 2.85 

Glass 37.06 ± 5.60 45.70 ± 4.79 
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Figure 3.8: 2D (top view) and 3D CA maps of polyacrylate substrates.  2D maps show the wettability profile across 
the surface whereas 3D maps show wettability from one point perspective. Note: These maps do not represent 
topographical features. 
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3.2.2.2 Captive bubble 

Another option to investigate surface wettability is measuring the CA of an air bubble applied 

to a liquid-exposed substrate. Figure 3.9 shows the values obtained for the CAs either when 

the substrate was directly immersed in water or 2 h post exposure in FBS. Noticeably, all 

substrates were significantly different from glass. Consistent with the static CAs, ESP 008, ESP 

009 and ESP 010 were found to be more hydrophilic than the other substrates with ESP 004 

being the only exception. When substrates were exposed to FBS prior to CA measurements, 

a significant decrease of about 10° was noticed (Figure 3.9, Table 3.7). The only exceptions 

were ESP 008 and ESP 010 where the CA remained constant. Overall, static CA data for all 

substrates, excluding glass, were found to be between 60° and 80°, whereas values for the 

CB contact angles were between 40° and 60° and were thus about 20° lower.  

 

Figure 3.9: Polyacrylate CAs obtained using the CB method. All substrates were significantly different from glass 
(Tukey model, p < 0.05). ESP 008, ESP 009 and ESP 010 were significantly more hydrophilic than any other 
substrate. Delta is the difference between the dry and the in FBS incubated substrate. 
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Table 3.7: CB values obtained for polyacrylates in distilled water. Samples were either directly measured or 
exposed to FBS for 2 h prior measurements. 

Sample Captive bubble  Captive bubble post incubation in FBS 

ESP 003 57.28 ± 7.28 43.96 ± 5.55 

ESP 004 47.48 ± 4.78 38.14 ± 4.54 

ESP 007 58.54 ± 3.91 38.67 ± 2.85 

ESP 008 51.46 ± 5.00 49.31 ± 5.52 

ESP 009 48.34 ± 7.95 37.07 ± 3.44 

ESP 010 45.08 ± 4.50 44.61 ± 5.49 

ESP 011 57.74 ± 3.72 43.19 ± 6.95 

ESP 012 56.11 ± 2.72 41.91 ± 4.52 

BTL 15 51.14 ± 4.12 36.07 ± 2.42 

Glass 67.34 ± 6.19 35.99 ± 4.53 

 

3.2.2.3 Dynamic contact angle  

Dynamic contact angles (DCAs) were recorded to further assess substrate wettability. As the 

dry state was not representative for physiological conditions, DCAs were also collected after 

substrates were exposed to either water for 2 h (swollen state) or FBS (protein adsorption).  

All polyacrylates showed overall DCA values in a similar range in the dry state (Figure 3.10). 

The substrates showed significantly different advancing angles from glass (p < 0.05, Tukey 

model). All substrates showed high advancing angles (maximum possible CA / hydrophobic 

maximum) up to 100° with ESP 010 being the highest with 120°. The receding angles 

(minimum possible CA / hydrophilic minimum) were considerably lower with 30 ± 5°. 

Receding angles differed slightly between polyacrylates with ESP 007, ESP 011 and ESP 012 

being not significantly different from glass (Tukey, p < 0.05).  The hysteresis, particularly in 

dry state, strongly varied between substrates with ESP 004, ESP 011 and ESP 012 being the 

lowest. 

When substrates were pre-exposed to water for 2 h prior the actual DCA measurement 

(Figure 3.10 B) the substrates showed similar values for the hysteresis as in dry state. Overall, 

advancing and receding angles changed minimally. ESP 003 and ESP 004 were very similar 
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with respect to functional group composition: ESP 003 has less amine groups but more 

carboxyl groups. Little significant difference was found in the receding angle and no 

difference was detected in the hysteresis (p < 0.05, Tukey model). Structurally, ESP 007 was 

an analogue of ESP 004 with the only difference being that carboxyl groups were replaced by 

hydroxyl groups. However, no significant difference in CA was found between both (p < 0.05, 

Tukey model).  

 

Figure 3.10: DCAs obtained for all polyacrylates coated on 22 mm2 coverslips and measured in distilled water. 
Results represent the mean of 7 measurements ± SEM. (A) Dry state, (B) 2 h post exposure in water and (C) 2 h 
post exposure in FBS. Advancing and receding angles of most substrates were significantly (Tukey model, p < 0.05) 
different from glass in both, dry and hydrated state, but not after exposure in FBS. 

When the dry substrates were directly immersed in water for 10 repeated cycles, only little 

changes, depending on the substrate a decrease or an increase, occurred between the first 

and second wetting cycle. Afterwards the DCAs were essentially constant (Figure 3.11).  
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To further mimic a situation that resembles cell culture conditions, polyacrylates were 

immersed for 2 h in FBS prior DCA measurement (Figure 3.10 C). Interestingly this caused 

very prominent changes. The advancing CAs decreased in general about 40° whereas the 

receding angles increased about 30°. This resulted in a very small hysteresis. This trend was 

consistent throughout the range of substrates.  

 

Figure 3.11: DCA cycles. Dry 22 mm2 polymer coated glass cover slips were repeatedly immersed in distilled water 
for a duration of 10 cycles. Results represent the mean of three samples. SD is not shown in order to maintain 
visual clarity. (A) Advancing angle (B) receding angle and (C) hysteresis 

3.2.3 Substrate characterisation using Atomic Force Microscopy 

3.2.3.1 Surface topography and roughness 

Substrate thickness, nano- and microscale topography and elasticity were analysed using 

Atomic Force Microscopy (AFM). Figure 3.12 shows the thickness of the layer for each 

substrate. The polyacrylate layers were between 0.5 and 1 µm thick. ESP 009 and ESP 010 
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were thinner with values lying between 0.3 and 0.5 µm and therefore significantly lower than 

most other polyacrylates (p < 0.05, Tukey model). 

Generally, surface roughness and topography are important parameters that may influence 

accurate measurements of film thickness. Figure 3.13 shows 50 µm2 3D images of the 

polyacrylate surfaces. These images showed that some surfaces had larger hills (i.e. BTL 15) 

whereas others showed rather small / low hills (i.e. ESP 007). Also the shape and spreading 

of these features differed strongly between surfaces.  

 

Figure 3.12: Polymer layer thickness of polyacrylates coated on glass cover slips. Asterisks indicate significant 
difference towards ESP 009, # significant difference towards ESP 010 (p < 0.05, Tukey model). 

 

Figure 3.13: AFM 50 µm2 3D topographical surface images of all polymer substrates. Brighter colours represent 
high areas and darker colours represent deeper areas. AFM was operated in tapping mode. Note: Z-scale is 
different between images to improve visualization. 
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Figure 3.14 shows the quantification of the heights of these structures. It is notable that all 

polyacrylates showed a heterogeneous surface topography with many hill-like structures 

that are unevenly distributed across the surface. The quantification showed that there were 

very distinctive differences between substrates. ESP 011, ESP 012 and BTL 15 showed hills 

that were quite evenly distributed in height with hill-like structures reaching up into µm 

range, whereas ESP 007 and ESP 010 on the other hand appear lower with hill-like structures 

ranging between 50 and 200 nm height. Others, including ESP 003, ESP 004 and ESP 008, 

showed rather intermediate hill height. Notwithstanding that many substrates showed hills 

that differ strongly in height, the quantification still allowed a superficial observation and 

interpretation of topographical differences between substrates.  

 

Figure 3.14: Height quantification hill like structures on topographical images 50 µm2 AFM images. Each dot 
represents one measured hill from a range of a minimum of 3 different substrates and 5 different areas. 

Additionally, roughness was quantified on a smaller scale (nanoscale) by determination of 

the root mean square (RMS), a statistical measure based on an algorithm (Equation 2.3, p 

36). Figure 3.15 shows the analyses of the RMS roughness of all substrates. Notably most 

substrates showed RMS values of about 7-12 nm. ESP 007, ESP 008 and ESP 010 were much 

smoother compared to the other substrates. Interestingly this trend was similar to the hill 

height determined in Figure 3.14, where these three substrates appeared to have the 

smallest overall hill heights and therefore appeared smoother.
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Figure 3.15: Polyacrylate RMS roughness analyses. Asterisks indicate significant difference compared to ESP 003, 
number signs compared to ESP 004 and plus signs compared to ESP 007 (p < 0.05, Tukey model). 

3.2.3.2 Surface mechanical properties 

Also surface mechanical properties were analysed using the AFM. Figure 3.16 showed the 

Young’s modulus (elastic modulus) that was obtained for each of the polyacrylates. All 

substrates had an elastic modulus of about 2 ± 0.5 GPa without any significant differences 

between them (p < 0.05, Tukey model). 

 

Figure 3.16: Polyacrylate Young’s modulus (Elastic modulus) analyses. All substrates showed an elastic modulus 
of about 2 ± 0.5 GPa. No significant differences were found (p < 0.05, Tukey model). 

3.3 Discussion 

3.3.1 Surface characterisation using X-Ray Photoelectron 

Spectroscopy 

The effects of small functional groups on cell behaviour and differentiation have been 

intensely studied in recent years [272, 346, 347]. The functional groups that were used in this 
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study were chosen as they are present in the amino acids that peptides / proteins are 

composed of, which allowed us to mimic, to a certain extent, in vivo cell binding motifs.  

The polyacrylates investigated in this study were similar in that they all were composed of an 

acrylate based carbon backbone structure. The XPS results showed only small differences in 

their general surface composition with ESP 004 and ESP 007 being the only exceptions. All 

substrates were shown to have a very high carbon content (polymer backbone), which 

explains why the C1s peak revealed a high content of non-polar bonds throughout the range 

of substrates and was only slightly decreased with increasing presence of polar functional 

groups. Moreover, it can be assumed that substrates with a large degree of steric hindrance 

(higher amount of hydrophobic spacer groups) will have a higher carbon content. ESP 008, 

ESP 009 and ESP 010 had, among all substrates, less steric hindrance. However, their carbon 

content was not higher nor was the contribution of non-polar C-C/C-H bond notably higher 

within these substrates compared to other polyacrylates. This suggests that the surface 

functional groups did not necessarily have a large impact on substrate composition.  

All substrates were equipped with particular functional group chemistries, namely -OH, -

COOH or –NH2, wherein polyacrylates differed in identity and proportion of these groups as 

well as in stereochemistry and spatial distribution through the inclusion of alkyl hydrophobic 

spacer groups which were introduced by choosing monomers that presented these alkyl side 

chains. These appeared to influence carbon and nitrogen proportionally (decreasing oxygen 

and nitrogen percentages with higher carbon content). For example, BTL 15, that was 

equipped with a high number of hydrophobic spacer groups to introduce steric hindrance 

(see chapter 3.1, p 56), did not show apparent differences in elemental composition when 

compared to other substrates. It contained all three types of polar functional groups which 

influenced the overall elemental composition. However, it belonged to the substrates with 
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the highest percentage of non-polar bonds and consequently contained comparably less C-

O / C-N bonds (-NH2, -OH). 

Notably, the trend of functional group chemistry obtained by XPS did not necessarily confirm 

the theoretical trend. For example, looking at the carbon C1s peak of ESP 011 and ESP 012 

(Figure 3.6), both contained a high amount of C-O / C-N and COOH / COOR bonds compared 

to other substrates. Theoretically both substrates contained -NH2 and -OH groups. Contrary 

to the theoretical trend both substrates, ESP 011 and ESP 012, contained relatively fewer -

NH2 and -OH groups. Moreover, a high concentration of -COOH/-COOR groups was found 

within both substrates, nevertheless ESP 011 did not contain -COOH functional groups and, 

looking at the theoretical trend, ESP 012 contained the lowest amount of carboxyl groups 

compared to other substrates. It has to be noted that -COOH and -COOR (ester) bonds, which 

were present within all polyacrylates, were fitted within the component peak fit which 

impeded exact quantification of the carboxyl functional group composition. However, the 

quantification of the three carbon binding states was very similar between the two 

substrates. Only small variations between the other polyacrylates, with respect to these 

three carbon binding states, were found though all lay within each other’s typical XPS error 

(± 10%) range [348].  

Analyses of the oxygen O1s peak revealed that most substrates contained –OH groups with 

exception of ESP 003, ESP 004 and ESP 010. Again, there were apparent differences in the 

amount of –OH groups, which showed a trend very similar to the theoretical one (Table 3.2, 

p 62). Similarly to the carbon binding states, most variations of ester and carbonyl binding 

states were small and did not appear to be highly different between the substrates except 

ESP 009 which, compared to the other substrates, had very little carbonyl content. Otherwise 

all substrates showed a similar content of carbonyl and ester groups, again, lying within the 

range of XPS accuracy [348].  
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In summary, very little differences have been detected between substrates in the elemental 

composition and elemental binding states and it was therefore difficult to draw final 

conclusions from these. Although XPS is a widely known technique to analyse surface 

chemistry it has limitations. The general accuracy of XPS is only about ± 10% [348]. Moreover, 

the X-Ray beam photons penetrate the surface to a depth of about 5 to 10 nm [349]. This 

means the elements and binding states detected comprise the chemistry within this range 

and therefore did not allow us to draw any conclusions about the immediate surface 

chemistry at the substrate - air interface. These drawbacks will affect the outcome of the 

analyses and might be the reason for the differences between actual findings and theoretical 

expectations. 

Another perspective on the disparity between theoretical and actual values arises from the 

stereochemistry of the substrates. In theory, the polymers were designed using required 

monomers equipped with functional groups as well as hydrophobic alkyl spacer groups in 

order to mimic peptide sequences. Nevertheless, practically the spacer groups might have 

masked the functional groups or the functional groups might in turn have orientated towards 

the polymer bulk instead of reaching out of the surface [350, 351]. These conditions in turn 

could have been caused by unconsidered chemical interactions that influenced the 

stereochemistry of the bulk, such as attraction or repulsion of these groups [352]. For 

example, some of the functional groups within the substrates were charged. This was shown 

by N1s peak analyses that showed about 30 ± 5% of amines were charged with ESP 004 being 

the only exception (40%). Similarly, oxygen species might be charged, which is not detectible 

by XPS. The charge content could thus contribute to eventual unforeseen changes in 

stereochemistry. Additionally, nitrogen peaks are difficult to fit as the percentage is very low 

within all substrates and nitrogen peak background is generally very noisy. Moreover, surface 

contamination or oxidation could have potentially caused the presence of different types of 
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oxygen species on the polymer surface that could have influenced the quantification of 

functional groups. 

The quantification of surface primary amine groups using colorimetric analyses did not work 

well on the polyacrylates substrates, as these had the tendency to non-specifically adsorb 

the dye in high amount and it could not be entirely removed although the substrates were 

intensely washed with PBS (data not shown).  

3.3.2 Surface wettability analyses 

There is a dispute whether wettability alone is in fact altering cell behaviour, as it is often 

accompanied by other altered surface properties, such as topography and chemical 

composition. However, many studies suggest that wettability of a substrate influences cell 

behaviour through protein adsorption [68, 77, 78]. In example, Redey et al. investigated 

osteoblast cell behaviour on stoichiometric hydroxyapatite and type A carbonate apatite and 

found that low wettability decreased cell attachment and collagen production and thus 

suggested that surface modification with polar components might lead to improved cell 

attachment and osteoconduction [70]. Another study suggested that the wettability of 

titanium surfaces can modulate osteoblastic differentiation of osteoblast lineage cells [71]. 

Controversially, others claims there are no direct correlations [74] as other chemical or 

physical properties could be responsible that often entail a change in wettability. This 

highlights that it is challenging, in some cases, to relate cell behaviour to only one single 

surface property. 

Contact angles (CAs) measured by sessile drop technique revealed that the polyacrylates 

were hydrophobic with values in the range of 71 ± 1°. This was expected as all substrates 

contained large amounts of non-polar carbon bonds. The two substrates with the largest 

carbon content were ESP 004 and ESP 007. However, the CAs were not more hydrophobic 

than those of other substrates. Interestingly, ESP 008, ESP 009 and ESP 010 were found to be 
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significantly more hydrophilic (64 ± 2°). This was in line with the provided theoretical degree 

of steric hindrance that revealed the lowest degree for these three substrates. Therefore, 

polar, hydrophilic groups would be less covered and more accessible by water. From XPS 

analyses it was revealed that the nitrogen/carbon ratio was larger than in other substrates 

and would therefore cause a CA decrease. This could also be related to the elevated presence 

of nitrogen functional groups within these three polyacrylates as were detected by XPS 

analyses. The sessile drop CA maps show variability in the values across the entire substrate 

surface and demonstrate inhomogeneity. During the sessile drop method on the other hand 

a water droplet is applied on a presumably topographically heterogeneous surface and 

reaches the state of equilibrium. The final CAs reached are generally dependent on several 

parameters, including initial drop energy, interactions with the surface and energy barriers, 

all of which might influence the final results rather randomly [353].  

Instead of placing a water droplet on a dry surface, a substrate can be immersed in water 

and the CA of an air bubble can be measured. In this way, the substrate affinity to water can 

be analysed in a swollen / hydrated state. CAs obtained using a captive gas (air) bubble 

revealed values of about 58 ± 5°. Similar to the sessile drop technique ESP 008, ESP 009 and 

ESP 010 appeared more hydrophilic with values of about 48 ± 3°. As explained above, the 

reason for that could be their degree of steric hindrance that was lower within these three 

substrates and would therefore allow better accessibility of polar and hydrophilic groups by 

water. Additionally, ESP 004 and BTL 15 were found within the hydrophilic range which was 

surprising since ESP 004 had a very large carbon content (similar to ESP 007) and BTL 15 

contained many hydrophobic alkyl groups, which would theoretically cause rather high 

hydrophobicity. Compared to the sessile drop technique, the CB method has a range of 

advantages including limitation of contamination due to the exposure in water and the liquid 

(water) maintains a saturated environment. 
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The CAs obtained by the CB method were about 20° lower than those obtained using the 

sessile drop method. The exposure of substrates to water might have caused swelling due to 

its penetration into the bulk. This in turn could have caused rotational changes of the 

backbone and functional groups leading to polar groups reaching vertically out of the 

substrates and therefore making substrates more hydrophilic. Generally, in macromolecules 

(i.e. biomolecules or synthetic polymers), hydrophobic areas will accumulate in a non-polar 

environment to reduce contact with water (hydrophobic effect, favourable in terms of 

the free energy in the system) and vice versa [354-356]. Therefore, the substrates would 

ideally reorganise in order to minimise the systems free energy. However, the degree of 

reorganisation and rotation will be determined by the proportion of functional groups and 

the degree of steric hindrance through aliphatic groups, which will in turn determine the 

extent of interactions. Similarly hydrogen bonding will occur between hydrophilic groups 

within the polymers as well as with water molecules (i.e. O−H…N, O−H…O) which will cause 

changes of the polymer conformation. The interaction with water molecules could 

potentially cause the water to be trapped within the polymer bulk which would result in a 

restriction of freely rotating water molecules that are trapped within the bulk as well as at 

the substrate-liquid interface which will in turn influence cell behaviour [357, 358].  

The non-polar carbon backbone and bulky groups will not only increase substrate 

hydrophobicity, they might also mask hydrophilic functional groups, such as amine or 

hydroxyl groups and thus increase hydrophobicity even further [350]. The DCA analyses 

showed that all substrates had a very high hydrophobic maximum (advancing angle) and a 

very low hydrophilic minimum (receding angle).  Most interesting however is the hysteresis 

which is the difference (delta) of those two. Substrates with the largest hysteresis were ESP 

003 and ESP 010. These outstanding values might be related to swelling behaviour of the 

substrates in water and eventually subsequently developing changes in surface topography. 

On the other hand, the lowest hysteresis was found to be present in ESP 004, ESP 011 and 

https://en.wikipedia.org/wiki/Gibbs_free_energy
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ESP 012. The reason for that might be an inhibition of liquid penetrating the surface which 

might be caused by non-polar groups that eventually stick out from the surface. Overall, the 

hysteresis of CAs in dry and liquid (2 h water exposure) state ranged from 30 to 50°. This 

supported findings from the CA maps that showed distinct regions of hydrophobicity and 

hydrophilicity across the surfaces. This will cause altering behaviour of water towards 

particular regions (hydrophilic – water attracting / hydrophobic – water retracting). Such 

patterns might appear randomly, but they might also indicate a clustering of functional 

groups due to intramolecular interactions [359]. Moreover, as previously mentioned, surface 

functional groups may relocate once they are in contact with water which will change 

wettability, either of the entire surface or within such clusters [360]. The Wilhelmy plate 

(DCA) method generally holds some limitations. The practical advancing angle is usually lower 

than expected whereas the receding angle turns out higher due to the normal laboratory 

environment [353].  

Three different methods for CA analyses have been applied all of which gave a different 

answer to one question. As theoretically expected, all methods confirmed that substrates 

were relatively hydrophobic and significantly different from a hydrophilic glass control which 

is explainable with the elemental surface composition being mainly determined by carbon 

non-polar bonds.  

All CA measurements will be influenced by a variety of external parameters, including 

temperature and humidity. Moreover, substrate storage, ageing and contamination will 

influence wettability. This includes for example surface oxidation that can cause areas to be 

more hydrophilic than they were initially. Additionally, surface preparation might influence 

the data. When dip coating samples, thickness inhomogeneities might occur through an 

uneven distribution of polymer solution which in turn might change physical properties of 

the substrates, such as thickness and topography, which are known to influence substrate 
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wettability. Wettability differences were also found on a glass substrate that was cleaned 

before analysis. 

Additionally other surface properties will influence the CA measurements. These include 

surface chemistry and steric hindering groups that may mask hydrophilic functional groups 

and might therefore distort measurements. Also surface nano-roughness can be an 

important factor when measuring wettability [361, 362]. In any case, the standard error of 

all CA throughout the three different methods was about ± 5°, indicating that each technique 

in itself is satisfactory. However, there were prominent differences of the CAs between the 

three methods of about 20°. This suggests, that one method alone might not be sufficient to 

get accurate data on these substrates whereas analysis by a combination of methods may 

allow a better understanding of the polymer behaviour to be determined.  

The influence of protein presence (adsorption) on the CA was investigated using the CB as 

well as the DCA method. DCA measurements showed that with incubation in FBS the 

advancing angle decreased ~40° and the receding angle increase ~30° which consequently 

resulted in a very small hysteresis. Similarly the CA measured by the CB method showed a 

decrease of about 10°. Therefore, the exposure to FBS in both cases caused a decrease in 

wettability and indicated that proteins were adsorbed onto the surfaces. Proteins are 

composed of amino acids of which most contain hydrophilic functional groups (i.e. -OH in 

serine or -NH2 in lysine). Their adsorption might be promoted due to surface topography or 

the formation of chemical interactions, such as electrostatic bonds or van der Waals forces 

from the non-polar groups. Moreover, surface energy has always been linked to protein 

adsorption. Proteins in solution are much hydrated and will generally attach to hydrophobic 

surfaces (low energetic surface) once they are in contact with it. This process occurs due to 

the strong hydrophobic interactions [79]. Conversely, hydrophilic surfaces are designated for 

repulsive solvation forces due to water molecules that bind to the surfaces [80, 81]. 
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Generally, the mechanism of protein adsorption onto hydrophilic surfaces is energetically 

unfavourable [82].  

When the DCA was measured on samples that are continuously immersed into water for a 

number of 10 cycles, there was only a small change of the advancing angle noticeable 

between the first and second immersions. Receding angles did not show any difference which 

caused an equivalent trend of advancing angle and hysteresis. An increase of these two 

implies a decrease in hydrophobicity suggesting that water penetrated the polymer coating 

and therefore caused them to be more hydrophilic and vice versa. However, when the 

substrates were removed from the water and immersed the second time, excess water from 

the first cycle will still be attached to the substrate and come in contact with the liquid 

contemporaneously as the substrate resulting in the CA change. Contrary to this however, 

was that some substrates showed a decrease and others an increase of the CA which allowed 

us to conclude this change was related to the actual polymer properties.  

The DCA measurements were additionally performed after substrates were immersed in 

water for 2 h. Surprisingly this did not have any effects on advancing and receding angles 

compared to dry substrates. Moreover, the values were equal to those obtained when a dry 

substrate was immersed into distilled water for 10 cycles. This suggests that water itself does 

penetrate the surface quickly as soon as it is in contact with the substrate. No further changes 

will be caused by this penetration. This suggests that water induced a small change in the 

presentation of functional, hydrophilic or hydrophobic, groups which would in turn cause a 

change of the CA. Moreover, the constancy suggests that no more water is penetrating the 

surfaces as the substrate coating might have swollen and, following that, these would 

become more hydrophilic.  

Once substrates were in the cell culture environment (rather aqueous condition enriched 

with biological molecules) the CA will be of great importance as it is influencing cellular 
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response. Berg et al. suggested that, if a substrate CA is below 65° (hydrophilic), the surface 

will exert repulsive forces (Berg-limit) and vice versa [82, 363]. Moreover, it has been shown 

previously that surface CAs in the range of the Berg limit promote cell attachment. However, 

the ideal CA is dependent on the cell type [77, 364]. 2 h post exposure to either water or FBS 

led to receding angles of about 30-40°, which can be considered as hydrophilic. 

Finally it has to be emphasised that the glass cover slip might not have been the most suitable 

control for wettability measurements. All substrates were consistently and significantly 

different from glass, regardless of the method used, suggesting that the polymers covered 

the entire glass coverslip. When analysed by the sessile drop method, the CA was hydrophilic 

(~35°) as expected whereas determination using the CB approach revealed a more 

hydrophobic value (~68°). Cover slip glass is a hydrophilic substrate due to the presence of -

OH groups. The CA increase most likely occurred due to surface damage, such as small 

scratches or due to contamination, such as dust particles or air born lipids. The glass had not 

been specially treated with detergent / surfactant solution, neither had it undergone velocity 

jet cleaning or any kind of plasma or acid treatment prior measurements [365, 366]. An 

additional reason for differences between sessile drop / CB and DCA method is most likely 

the difference in the manufacturing process. The 13 mm as well as 22 mm2 coverslips were 

obtained from different companies (Appendix V, p 245). The wettability properties of glass 

will vary depending on the exact composition, including silicon concentration on the glass 

surface as well as and -OH groups density [367].  

3.3.3 Surface characterisation using Atomic Force Microscopy 

3.3.3.1 Surface thickness and topography 

All polyacrylates showed a similar thickness with relatively high standard deviations and 

therefore variations within particular substrate layers. A possible explanation for this could 

lie in the coating procedure, which could lead to differences in thickness between substrate 
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edges and the middle regions (Figure 3.17). Interestingly, ESP 009 and ESP 010 had the lowest 

thickness and variations within the layers, which could also explain their increased 

hydrophilicity compared to most other substrates. Moreover, thickness alterations between 

polyacrylate coatings may in turn effect surface roughness.  

 

Figure 3.17: Polyacrylate layer thickness may vary due to polymer dipcoating procedure. (A) The polymer coating 
procedure may result in thickness variation across the surfaces. (B) As a result polyacrylate thickness may be 
differeing between substrate edges and middle portion.  

Surface roughness cannot be accurately described using one single parameter. In this study 

AFM was applied to get information about the polyacrylate surface topography and 

roughness. For general roughness analyses, small AFM images (1-5 µm2) were taken and the 

RMS value was determined (Equation 2.3, p 36). This information limits the interpretation 

latitude as it only gives data on a very small area of the surface in a nanoscale. Therefore, 

besides the characterisation of such topographical 2D parameters in the nanoscale, also 3D 

parameters were applied which gave more insight into the actual surface topography in 

microscale and allowed a more thorough analyses of the substrate surfaces [368]. 

From the surface 3D images of the polyacrylates it was clear that all substrates were rather 

rough and showed both, deep hole-like and high hill-like structures. These differed 

immensely in their distribution across the surfaces of both single substrates as well as 

between different substrates. The quantification of the height of hill-like structures revealed 

that ESP 007 and ESP 010 had, when compared to other substrates, much lower hills. 

Interestingly those two showed also differences in the chemical composition. Both contained 

amine groups, but ESP 007 contained hydroxyl groups whereas ESP 010 contained carboxyl 
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groups. However, BTL 15 was eventually the roughest polyacrylate with a rather 

homogeneous distribution of hill heights throughout the surface, closely followed by ESP 011 

and ESP 003. When analysing the distribution of these structures there was no direct 

correlation with chemical composition. Again, neither of these substrates showed similarities 

with respect to surface chemistry. A preliminary conclusion would be that surface chemistry 

did not influence surface roughness notably. However, as discussed before (chapter 3.3.1, p 

76), the presence and interaction of surface functional groups with the polymer backbone 

and with other surface functional groups (charged / uncharged / aliphatic) could lead to 

orientation of the polymer structures which could in turn result in such hill-like formations. 

This process is, however, unpredictable and might be dependent on the actual 

stereochemical state, the presentation of functional groups and even on the coating 

procedure itself.   

Differences were found when comparing the topographical data (quantification of hill-like 

structures) from 3D images with the data obtained for nano RMS roughness. ESP 007, ESP 

008, ESP 010 and BTL 15 have the lowest RMS roughness. This was in compliance with the 

data found in 3D image analyses with BTL 15 being the only exception. BTL 15 had the largest 

hill-like structures but a small RMS nanoroughness compared to other substrates. However, 

again, no suggestive correlations can be made between surface chemistry and 

nanoroughness. 

The microscale topography of polyacrylates leaves large room for speculations. Although 

there are variations in hill height between substrates, but also within substrates, this may 

present a case of “organised disorder”. Therefore, it is possible that particular patterns of 

these hill-like structures may repeat themselves within the individual polyacrylates and that 

these patterns are indeed a typical characteristic of the individual polymers. There are a 

number of publications that highlight the effects of ordered and disordered, or random, 
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surface topographical features and these studies often emphasize the impact of such 

topographical effects on cell fate [44, 369, 370]. However, to our knowledge there are no 

publications that focus on the effects of such “organised disorder” phenomenona and our 

results emphasize the importance of studying these further.       

As mentioned before, surface roughness has a strong impact on the CA of surfaces. The 

polyacrylates do not represent ‘ideal’ substrates in terms of confidence in CA measurements 

as they are rather chemically and topographically heterogeneous surfaces. This in turn will 

influence the CA hysteresis (difference between advancing and receding angle). For example, 

the DCA method showed that particularly ESP 010 had an advancing angle that was notably 

high, whereas its receding angle was notably low. This resulted in a high hysteresis 

(significantly different to all other substrates) which indicated a high roughness. This is 

contrary to the data obtained for ESP 010 which had, compared to other substrates, lower 

nano- as well as microscale roughness. On the other hand, ESP 010 belonged with ESP 008 

and ESP 009 to the group of substrates with the lowest (more hydrophilic) CA when measured 

using the sessile drop and CB method, which correlates with their smoother appearing 

surfaces. Thus, the heterogeneity of ESP 010 that occurs during DCA measurements might be 

related to the general difference in the methods. The DCA method takes the entire substrate 

surface into account while the substrate is cycled in and out of the liquid (substrate dynamic). 

This technique might detect overall surface features that might be related to surface 

chemistry or topography, but could not be detected with another method. There are two 

models that are attempting to explain the wetting behaviour of non-ideal, rough surfaces: 

the Wenzel model and the Cassie model. The Cassie model claims that air becomes trapped 

once the drop comes in contact with a surface which would increase surface hydrophobicity 

(water droplet sits on air). The Wenzel model on the other hand claims that water penetrates 

the surface and thereby increases the surface area which in turn influences surface geometry 

and roughness. It also states that the introduction of roughness to a substrate will enhance 
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the wettability that is caused by surface chemistry. Thus a hydrophilic surface will become 

more hydrophilic and vice versa (Figure 3.18) [371, 372]. Naturally, the actual CA will vary 

depending on the local chemical composition and the area of the surface that is measured.  

 

Figure 3.18: CA measurement on a smooth (A) and a rough surface (B). General CAs changes depend on 
hydrophilicity (yellow lines) / hydrophobicity (orange lines) of a sample, but also on the roughness. (C) Apparent 
(measured) CA. The roughness is not visible when measuring and the CA appears a projection of the real value 
(dashed line). (D) Actual CA. 

Moreover, the CA maps obtained by sessile drop method revealed patterns of wettability 

that could, apart from chemical features, be related to the surface roughness.  

However, there are no strict guidelines that describe how rough a surface has to be in order 

to influence the CA. Therefore it is challenging to determine whether nano- or 

microroughness are influencing CA measurements in a particular case. Most likely both 

factors will influence surface wettability. Bhushan et al. developed a model to explore the 

effect of nano-and micropatterns on wettability (Figure 3.19) [373]. Although this model was 

developed to understand the interactions of liquids with superhydrophobic substrates, it still 

allows to hypothesise about how the combination of nano-and microroughness generally 

influence surface wettability. 

 

Figure 3.19: Simple schematic of the influence of roughness on substrate wettability. (A) Water droplet (blue) on 
a smooth surface (grey). The contact between solid and liquid decreases with (B) nanoroughness and (C) 
microroughness or in a (D) hierarchical manner. The principle is based on and schematic inspired by Bhushan and 
Jung et al. [373].
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Both, surface nano- and microscale roughness can influence cell response [374]. For example, 

Xu et al. showed that endothelial cell function was enhanced on smooth compared to rough 

surfaces [375, 376], whereas osteoblast-like cells were found to attach preferably to rougher 

surfaces [377]. Lastly, topographical surface features can influence interactions with proteins 

which may alter cell response additionally, including adsorption, density, orientation and 

spatial distribution [378]. This is supported by recent research that has shown that the 

nanotopography does not influence cell behaviour in serum free medium [93]. However, this 

process was not further analysed in the course of this study.  

3.3.3.2 Surface mechanical properties 

Several recent studies have shown the importance of material stiffness on cell attachment, 

and differentiation [26, 47, 379]. Polyacrylates are plastics and generally rather rigid and 

inflexible substrates. Surface elasticity was found to be consistently about 2.5 GPa. 

Therefore, other surface properties did not appear to influence substrate mechanical 

properties that will therefore not be further discussed.  

3.4 Conclusions 

Surface analyses revealed that all polymers showed only small differences in the surface elemental 

composition (carbon, nitrogen, oxygen). However, there were relative differences in the COOH, OH 

and NH2 content between the polyacrylates. The general high carbon content resulted in hydrophobic 

surfaces with ESP 008, ESP 009 and ESP 010 being exceptions. These three substrates had a 

significantly lower CA, which is most likely related to the higher amount of nitrogen, surface primary 

amine groups, respectively. Topographic surface analyses showed that substrates differed in the RMS 

roughness with values being in the range of 3 – 13 nm. Prominent differences were found in the 

presence of surface elevations (hills) that were low (ESP 007 and ESP 010) or intermediate (ESP 003, 

ESP 004, ESP 008 and ESP 12), for some substrates, but reached up into micrometre range for other 

substrates (ESP 009, ESP 011 and BTL 15). Polyacrylates did not differ with respect to their mechanical 

properties.  
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4 Effect of polyacrylates on kidney 

progenitor / stem cells 

4.1 Introduction 

In recent years there has been much research with promising outcomes in the field of 

biomaterials for stem cell differentiation [17, 110, 380-383]. A large variety of biomaterials 

of both, natural and synthetic origin, have been developed and successfully applied to direct 

the differentiation stem cells [301, 384-386].  

Acrylic substrates are commonly used and investigated as potential substrates for cell culture 

[387, 388]. They have various advantages, such as the ease of ‘tuning’ of their physical 

properties. Moreover, they can be conjugated with biologically active peptides (BAS). For 

example, acrylic substrates have been shown to be very suitable for the cell culture of 

undifferentiated human embryonic stem cells (hESCs) as well as for sustaining their self-

renewal. Moreover these substrates were shown to be suitable platforms for the 

differentiation of hESCs into differentiated progeny of cardiomyocytes [389]. 

Another well studied acrylic - based biomaterial is poly-2-hydroxyethyl methacrylate 

(pHEMA). It has been shown to be biocompatible and biodegradable in the presence of 

macrophages [390, 391]. However, the presence of hydroxyl groups often hinder its 

recognition by cells, but when combined with other acrylates, such as poly (methyl 

methacrylate), or in combination with natural ECM proteins it is recognised. For example, in 

combination with collagen it was shown to promote myogenesis of muscle stem cells [392].  

Moreover pHEMA  was found to be a suitable candidate for bone implantation [393, 394]. 

The polyacrylate substrates used in this study have various advantages. They are cheap, 

simple to manufacture and can be easily applied to a large variety of surfaces. Moreover, 
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they differ from other acrylic substrates insofar as they are composed of a range of 

monomeric units that all differ in their functional groups. The incorporation of amine, 

hydroxyl and carboxyl groups as well as non-polar groups that introduce steric hindrance to 

the system allowing the polymers to be designed in such a way that they can mimic cell 

binding motifs found within the extracellular matrix (ECM) (chapter 3.1, p 5656). Therefore, 

a large range of substrates can be produced that are designed to precisely mimic different 

ECM features. The main aim of using these substrates is however, to circumvent the need for 

expensive growth factors in order to regulate cell behaviour and maintain stem cell 

expansion and differentiation. 

So far the BTL polyacrylate range has been shown to influence cell adhesion and proliferation 

of human aortic endothelial cells and coronary artery smooth muscle cells. These substrates 

are based upon a single cell binding motif, but each with having a differing degree of steric 

hindrance within the polymer backbone which in turn influences the surface functional 

groups that will be presented to the cells.  The BTL range of polymers were designed and 

studied with the aim of developing coronary stent coating [305-307].  

The ESP polymer range was designed to mimic particular cell binding motifs present in the 

extracellular environment of individual cells of interest. The substrates have been shown to 

direct the differentiation of mouse and human mesenchymal stem cells (MSCs) into 

chondrocytes without the addition of growth factors into the medium [13, 345].  

Aims of this chapter: 

(1) Analyse substrates for possible cytotoxic effects using mouse fibroblasts and bovine 

endothelial cells 

(2) Investigate the ability of polyacrylate substrates to influence behaviour and 

differentiation of  mouse kidney stem cells 
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(3) Investigate the ability of polyacrylate substrates to influence behaviour of 

conditionally immortalised podocytes and proximal tubule cells 

(4) Investigate the ability of polyacrylate substrates to influence behaviour of human 

derived kidney progenitor cells. 

4.2 Results 

4.2.1 Polyacrylate biocompatibility  

4.2.1.1 Cytotoxicity assessment 

According to the British Standards ISO 10993, all materials with application in the medical 

devices industry have to undergo biological evaluation (ISO 10993-1) [395]. All substrates 

that were developed within this study were, prior any further cell experiments, evaluated for 

cytotoxic effects following the ISO 10993-5 guidelines (chapter 2.1.1.3, p 29) [274].  For 

evaluation of substrate cytotoxicity a commercially available mouse fibroblast cell line 

(mL929) was used. These cells are recommended for cytotoxicity studies on materials [396]. 

Morphological abnormalities typical for cytotoxic effects are listed in Table 4.1 corresponding 

to ISO 10993-5 [274]. 

Table 4.1: Qualitative morphological grading of cytotoxicity of extracts, adapted from [274]. These standards 
allow a relation of cell morphology with cytotoxic effects. 

Grade Reactivity Conditions of all cell cultures 

0 None Discrete intra-cytoplasmatic granules, no cell lysis, no reduction of cell growth 

1 Slight Less than 20% of the cells are round, loosely attached, without intra-
cytoplasmatic granules, changes in morphology; occasional lysed cells present; 

    only slight growth inhibition 

2 Mild Less than 50% of the cells are round, devoid of intra-cytoplasmatic granules, no  

    extensive cell lyses not more than 50 % growth inhibition observable. 

3 Moderate Less than 70% of the cell layers contain rounded cells or are lysed; cell layers not  

    completely destroyed but more than 50 % growth inhibition observable. 

4 Severe (Nearly) complete destruction of the cell layers. 
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Figure 4.1 shows images of mL929, stained with methylene blue, 48 h post incubation in 

polymer conditioned eluant (chapter 2.1.1.3, p 29) at different concentrations of 0%, 10%, 

50% and 100% (neat eluant) and a cytotoxic, positive control. Notably, regardless of the 

polyacrylate, cell numbers decreased with increasing polymer eluant concentration. Cells at 

a higher resolution (Figure 4.2) maintained the typical fibroblastic elongated and spindle 

shaped morphology on most substrates, but a number of cells appeared rounded and to 

undergo cell death. Particularly cells that were incubated for 48 h with the eluant of ESP 008, 

ESP 009 and ESP 010 showed this phenotype. However, from phenotype analyses these cells 

were graded level 1 and therefore still passed ISO standards (Table 4.1). Moreover, the 

viability of cells was assessed after exposure in polymer conditioned eluant at 0%, 50% and 

100%. These confirmed that the number of viable cells was slightly decreasing with increasing 

polymer eluant concentration, but cells were still proliferating and increasing in number with 

time. No significant difference of cell viability was found between substrates nor when 

changing the eluant concentration that originated from one single polymer. This suggested 

that substrates were not cytotoxic. As expected, no cytotoxic effects were noticed on the 

negative control either (TCP, no polymer conditioned eluant), whereas cells within the 

positive control (medium exposed to latex) were rounded and lysed with 100% of the cells 

being not viable / dead. Determination of the PDT (Figure 4.3 C) confirmed that cells needed 

about 20 h to double their population. This number was consistently maintained throughout 

the number of substrates at 50% eluant concentration. A small, non-significant, increase was 

only notable at 100%.  
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Figure 4.1: Brightfield microscopic images of mL929 cells exposed to 0%, 10%, 50% and 100% polymer conditioned 
eluant after 48 h stained with methylene blue. Cells were seeded at a density of 1 x 104 cells / well.  Positive 
(cytotoxic) control was latex, negative control (not cytotoxic) was pure medium. On all substrates cell density 
decreased with increasing eluant concentration.  



 

Effect of polyacrylates on kidney progenitor / stem cells – Results 97  
 

 

Figure 4.2: Brightfield microscopic images of mL929 cells exposed to 0%, 10%, 50% and 100% polymer conditioned 
eluant after 48 h stained with methylene blue. Cells were seeded at a density of 1 x 104 cells / well. Positive 
(cytotoxic) control was latex, negative control (not cytotoxic) was pure medium. On all substrates cell density 
decreased with increasing eluant concentration. 
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Figure 4.3: Cytotoxic effects of polymer conditioned (pc) eluant and quantification of cell viability. Cells were 
seeded at a density of 1 x 104 cells / well. (A) Cytotoxic effects of 50% and 100% polymer conditioned eluant 
compared to a 0% control for all substrates over time. Data were fitted using nonlinear regression / exponential 
growth equation. Results represent the mean of 3 biological replicates ± SEM. 
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Figure 4.3: continued: (B) Quantification of the number of viable cells 96 h post seeding. (C) Population doubling 
time. Results represent the mean of 3 biological replicates ± SEM. 

 

3.2.1.2. Analyses of mL929 and BAE cells on polymer substrates 

Once determined that the polyacrylates did not have a cytotoxic effect on the cells, two cell 

types, the mouse fibroblast cell line mL929 and bovine endothelial cells (BAE), were seeded 

onto substrates and analysed. mL929 cells are easy to handle and very proliferative cells that 

easily attach well to most substrates / materials [396, 397]. However, BAE cells are much 

more sensitive and their cell behaviour can provide a general indication on how more 

specialised cells may respond to a particular substrate / material. For analyses, both cell types 

were individually seeded on the polyacrylate substrates and left to grow for 96 h. Figure 4.4 

A shows mL929 cells stained with methylene blue at 10x and 40x resolution. The images show 

that the cells were proliferating and maintained a healthy phenotype on all substrates. There 

were no obvious differences in cell morphology on most polymers. However, there were 

visibly more rounded cells on ESP 009 and ESP 010 that had a rounded phenotype 
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characteristic for cell lysis and cell death. The cell number was quantified at four time points 

post seeding and cell proliferation and PDT was quantified (Figure 4.4 B and C).  

 

Figure 4.4: mL929 cells were seeded on polyacrylate substrates at a density of 1 x 104 cells / coverslip. (A) mL929 
cells stained with methylene blue 96 h post seeding at 10 x (top) and 40x (bottom) resolution. Corresponding (B) 
cell number of mL929 cells over the course of 96 h and (C) PDT. Asterisks indicate statistical difference compared 
to a glass control (Tukey model, p < 0.05). Data were fitted using nonlinear regression / exponential growth 
equation. Results represent the mean of three biological replicates ± SEM. Scale bar: 100 µm. 

The cell proliferation was similar on all substrates with little significant difference only 48 h 

post seeding. Otherwise cells were proliferating similarly on all substrates with no significant 

difference when compared to a glass control (p < 0.05). Also PDT did not show a significant 

difference between cells seeded on different polyacrylates, nor compared to a glass control. 

Figure 4.5 A shows BAE cells stained with methylene blue at 10x and 40x resolution 96 h post 

seeding on polyacrylates. BAE cells were proliferating and maintained the characteristic BAE 
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cell phenotype on nearly all substrates with exception of ESP 008, ESP 009 and ESP 010. Only 

very little increase in cell number over time was found particularly on ESP 009 and ESP 010. 

Images of BAE cells on these substrates showed rounded and elongated cells. The cell 

number was quantified on all substrates at four time points and cell proliferation and PDT 

was quantified (Figure 4.5 B and C). The data confirmed that cell proliferation was very low 

on ESP 009 and ESP 010 and the corresponding PDT showed that cells on these substrates 

took 6 times longer to double the population compared to cell cultured on other substrates. 

Moreover, cells on ESP 011 and ESP 012 proliferated very fast initially. However, by 96 h in 

culture the cell numbers were in line with the other substrates. The PDT was moreover 

slightly increased on both substrates but did not show any significant difference compared 

to a glass control (Tukey model, p < 0.05).  
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Figure 4.5: BAE cells were seeded on polyacrylate substrates at a density of 1 x 104 cells / coverslip. (A) BAE cells 
stained with methylene blue 96 h post seeding at 10 x (top) and 40x (bottom) resolution. Corresponding (B) cell 
number of BAE cells over the course of 96 h and (C) PDT. Asterisks indicate statistical difference compared to a 
glass control (Tukey model, p < 0.05). Data were fitted using nonlinear regression / exponential growth equation. 
Results represent the mean of three biological replicates ± SEM. Scale bar: 100 µm. 

4.2.2  Effect of polyacrylates on mouse kidney-derived stem cells 

4.2.2.1 Effect of polyacrylates on mouse kidney-derived stem cell behaviour 

Mouse kidney-derived stem cells (mKSCs) were seeded on four polyacrylate substrates that 

appeared to have potential to direct stem cell differentiation based on previous studies: ESP 

003, ESP 004, ESP 007, BTL 15 [13, 345]. Glass and tissue culture plate (TCP) were used as 

controls. The cells were seeded at a density of 1000 cells / well (24 well plate containing a 

polymer coated 13 mm coverslip). Cell number and cell viability were analysed at four 

different time points and population doubling time (PDT) was determined (Figure 4.6).  
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The cells were proliferating similarly on all substrates with little significant differences 

compared to a glass control. However, on ESP 003 cells were proliferating significantly less 

(Tukey model, p < 0.05). Cell viability analyses confirmed that cells were proliferating on all 

substrates with exponential growth, but showed less growth compared to a glass control. 

Determination of PDT showed that the cells needed on average about 20 h to double their 

population on all substrates, including controls. No significant difference was found (Tukey 

model, p < 0.05).  

 

Figure 4.6: mKSCs were seeded at a density of 1x103 cells / coverslip and cultured for 96 h. (A) Cell proliferation. 
(B) Number of viable cells. (C) PDT, as obtained using results from cell number (A). Results represent the mean of 
three biological replicates ± SEM. Asterisks indicate statistical difference compared to a glass control (Tukey 
model, p < 0.05). Data were fitted using nonlinear regression / exponential growth equation.  
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4.2.2.2 Effect of polyacrylates on mouse kidney-derived stem cell differentiation into 

podocytes 

For morphological analyses, mKSCs were seeded onto substrates and either analysed using 

live cell imaging or fixed and labelled with phalloidin and DAPI (Figure 4.7). The images show 

that 24 h post seeding cells looked similar in morphology. At 96 h post seeding changes in 

morphology were observed. Particularly on ESP 003 and ESP 004 cells were spread and 

rounded with a podocyte-like cell morphology (chapter 1.3.2, p18). Moreover, these large 

cells often contained two nuclei which is another indicator of podocytes.  

Subsequently, mKSC spread was analysed using phalloidin stained cells and the image 

analysis software ImageJ [293, 294]. Figure 4.8 shows the quantification of mKSC spreading. 

Notably, on ESP 003 and ESP 004 the mKSC spread area was significantly higher than the cell 

spread on glass. However, cells on other substrates showed only a small increase in cell 

spreading post seeding (about 1500 µm2) over time, whereas cells on ESP 003 and ESP 004 

showed a spreading of about 3000 – 4000 µm2. 
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Figure 4.7: mKSCs morphological analyses. mKSCs were seeded at a density of 1 x 103 cells / 13 mm polymer 
coated coverslip. The images show mKSC phase contrast images, as obtained by life cell imaging, and F-actin and 
DAPI labelled cells at a higher resolution 24 h and 96 h post seeding. Scale bar is 100 µm. 
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Figure 4.8: mKSC spread analyses. mKSC were seeded at a density of 1 x 103 cells / 13 mm polymer coated 
coverslip. Cell spread was quantified at four different time points post seeding. Asterisks indicate significant 
difference compared to a glass control. Results represent the mean of three biological replicates ± SEM. 

Cell morphology was then analysed and the number of podocyte-like cells quantified at two 

time points: 24 and 96 h post seeding (Figure 4.9). About 10-15% of the cells showed initially 

a podocyte-like morphology on all substrates (spontaneous differentiation) whereas, after 

96 h, this number was only little increasing on ESP 007, BTL 15 and on the controls. However, 

the number of podocyte-like cells was increased on ESP 004 and significantly increased on 

ESP 003 (Tukey test, p < 0.05).  

 

Figure 4.9: Number of podocyte-like cells. mKSCs were seeded at a density of 1 x 103 cells / polymer coated 
coverslip. The number of podocyte like cells was quantified. Asterisks indicate significant difference compared to 
a glass control (Tukey model, p < 0.05). Results represent the mean of three biological replicates ± SEM. 

Finally mKSCs were analysed for the expression of three podocyte-specific genes: 

Synaptopodin (Syn), Podocalyxin (Pdx) and Wilms Tumor Gene 1 (WT1). Figure 4.10 shows 
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the results of the RT-qPCR. The results showed a trend of increased podocyte gene 

expression on ESP 003 and ESP 004. Pdx expression was significantly increased on ESP 004 

and ESP 007 whereas it showed a trend for downregulation on BTL 15. However, Synpo and 

WT1 only showed a trend of higher expression on ESP 003 and ESP 004, but no significant 

difference was detected. 

 

Figure 4.10: RT-qPCR analyses of mKSCs for podocyte characteristic genes as relative expression to mKSC gene 
expression on a glass control. Seeding density: 1 x 103 cells / polymer coated coverslip. Gapdh and beta actin 
(ACTB) were used as housekeeping genes. Asterisks indicate significant differences compared to a TCP control. 
Results represent the mean of three biological replicates ± SEM. 

4.2.2.3 Effect of polyacrylates on mouse kidney-derived stem cell differentiation into 

proximal tubule cells 

In order to analyse whether the mKSCs were differentiating into PTCs two markers were 

used: Alkaline Phosphatase and the immunofluorescence marker megalin. Figure 4.11 shows 

mKSCs that were stained for alkaline phosphatase after 96 h in culture on the polyacrylate 

substrates. On ESP 007 notably more cells showed high alkaline phosphatase activity. Also 

cells cultured on BTL 15 showed a higher number of cells with the active enzyme. Cells on 

ESP 003 and ESP 004 showed, similarly to the glass and TCP control, only a small number of 

cells with alkaline phosphatase activity. Megalin staining confirmed an increased number of 

PTCs on ESP 007 and BTL 15 (Figure 4.12). Similar to the previous finding, cells on ESP 003, 

ESP 004 and those on the controls showed only a small number of megalin expressing cells.   
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Figure 4.11: Alkaline phosphatase staining. Blue: DAPI. mKSCs were seeded at a density of 1 x 103 cells / polymer 
coated coverslip. Scale bar: 100 µm. 
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Figure 4.12: Megalin staining. Blue: DAPI. Green: Laminin. mKSCs were seeded at a density of 1 x 103 cells / 
polymer coated coverslip. Cells were co-stained with laminin for better visualisation. Scale bar: 100 µm. 

To confirm that the increased number of megalin positive cells in fact resulted from the 

influence of the polyacrylate substrates, the cell number of megalin expressing cells was 

quantified at three different time points: 6, 48 and 96 h post seeding. Glass was used as a 
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control (Figure 4.13). The results showed that 6 h post seeding the same amount of cells 

(about 10%) were megalin positive (spontaneous differentiation). After 48 and 96 h a larger 

number of cells was expressing megalin on ESP 007 (40%) and BTL 15 (30%). 

In addition also the fluorescent area per image was quantified on images at 96 h post seeding 

and confirmed that there was indeed significantly higher megalin fluorescence (area) on ESP 

007 and BTL 15 (Figure 4.13 B), whereas this area remained low on ESP 003, ESP 004 and the 

glass control. 

 

Figure 4.13: Quantification of megalin expressing cells. mKSCs were seeded at a density of 1 x 103 cells / polymer 
coated coverslip. (A) The number of megalin expressing cells was quantified at three different time points post 
seeding. (B) Quantification of the fluorescent area 96 h post seeding (ratio of megalin : DAPI). Asterisks indicate 
significant difference compared to the glass control (Tukey test, p<0.0001). Data were fitted with and exponential 
growth equation. Results represent the mean of three biological replicates ± SEM. 

Subsequently, the ability of the mKSCs to uptake albumin via megalin-dependent endocytosis 

was assessed. Figure 4.14 shows mKSCs cultured on polyacrylate substrates that were 

stained for megalin and analysed for their ability to uptake fluorescently labelled bovine 

serum albumin (F-BSA). Cells that expressed megalin showed the typical punctuate staining 

pattern of endocytosed F-BSA. The results indicated that a large number of cells on ESP 007 

and BTL 15 did uptake the F-BSA that also colocalised with megalin. Only a small proportion 

of cells within the populations on ESP 003, ESP 004 and controls did appear to uptake F-BSA.  
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Figure 4.14: Albumin uptake assay. Red: Megalin, green: fluorescently labelled albumin (F-BSA), blue: DAPI. mKSCs 
were seeded at a density of 1 x 103 cells / polymer coated coverslip. F-BSA and megalin colocalise in higher 
proportions in cells cultured on ESP 007 and BTL 15. Scale bar: 25 µm. 

The F-BSA uptake of mKSCs was then quantified using flow cytometry after incubation of the 

cells either alone in F-BSA or in the presence of excess unlabelled bovine serum albumin (BSA) 

as a competitive inhibitor of the uptake process [236] (Figure 4.15).  Notably, the results 

showed that the number of cells that did uptake F-BSA was highest on ESP 007 and BTL 15 

(about 35-40%). Moreover, after simultaneous incubation of mKSCs in F-BSA and unlabelled 

albumin, the number of F-BSA+ cells decreased on all substrates. Only about 20% of cells 

within the population of mKSCs cultured on ESP 003 and ESP 004 displayed F-BSA uptake and 

only about 10% of cells cultured on the control substrate.  
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Figure 4.15: Albumin uptake assay. Flow cytometric analyses of mKSCs that were cultured on substrates. Cells 
were seeded at a density of 1 x 103 cells/polymer coated coverslip. (A) Flow cytometric representative spectra 
and (B) quantification. Asterisks indicate significant difference compared to a glass control (Tukey model p < 0.05). 
Results represent the mean of three biological replicates ± SEM. 

The gene expression of mKSCs was analysed for the expression of three PTC marker genes: 

megalin (Meg), alkaline phosphatase (AlkPhos) and aquaporin 1 (Aqp1). Figure 4.16 shows 

the results of the RT-qPCR analyses. The results showed a trend of increased PTC gene 

expression on ESP 004, ESP 007 and BTL 15. The trend showed that particularly Megalin and 

AlkPhos expression was higher in cells cultured on ESP 007 and BTL 15, whereas PTC gene 

expression on ESP 003 and TCP was lower compared to other substrates. However, no 

significant difference was found.  
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Figure 4.16: RT-qPCR analyses of mKSCs for PTC characteristic genes as relative expression to mKSCs on a glass 
control. Seeding density: 1 x 103 cells / polymer coated coverslip. Gapdh and beta actin (ACTB) were used as 
housekeeping genes. Results represent the mean of three biological replicates ± SEM. 

4.2.3 Effect of polyacrylates on conditionally immortalised kidney cell 

lines 

It has previously been shown that the mKSCs used in this study are multipotent, able to 

generate functional PTCs and podocytes and display long-term self-renewal in culture [251]. 

However, human kidney progenitor cells (KPCs) have not been so well-characterised and 

there is little information regarding their capacity to differentiate and self-renew in vitro. For 

this reason, our strategy was to use conditionally immortalised (ci) human podocytes and 

PTCs in the first instance, in order to identify substrates that were able to support the growth 

of these cell types and maintain their differentiated phenotype. Selected substrates would 

then be tested for their ability to promote the differentiation of human derived putative 

KPCs. In addition to the substrates previously tested (ESP 003, ESP 004, ESP 007 and BTL 15),  

five additional substrates were included that mimic cell binding motifs in the extracellular 

environment of podocytes and PTCs in vivo (ESP 008, ESP 009, ESP 010, ESP 011, ESP 012). 

4.2.3.1 Effect of polyacrylates on conditionally immortalised podocytes 

The ability of polyacrylates to support growth and viability and to maintain the differentiation 

of conditionally immortalised podocytes (ciPodocytes) was investigated. Figure 4.17 shows 

phase contrast and high resolution F-actin labelled images of cells cultured on ESP 007 
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(representative for ESP 003, ESP 004 and glass), ESP 012 (representative for ESP 011 and BTL 

15) and ESP 008. Cells on ESP 009 and ESP 010 showed cell death 24 h post seeding and no 

proliferation was observed. Until day 5 cells were kept at the permissive temperature, 33°C, 

to allow them to proliferate and then transferred to a non-permissive temperature, 37°C, to 

allow differentiation.  

 

Figure 4.17: Morphological analyses of ciPodocytes on representative polyacrylate substrates with cells showing 
the typical podocyte-like morphology, including a large cell body, arborised cytoskeleton and binuclearity. Cells 
were seeded at 1 x 103 cells / polymer coated 13mm coverslip and phase contrast images and fluorescence images 
were taken. Green: F-actin and blue: DAPI. Scale bar is 100 µm. 
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The images show ciPodocytes that looked similar on most substrates with cells being 

rounded. Actin was mainly present at the periphery of the cells. Once cells were transferred 

to the non-permissive temperature (37°C) to promote their differentiation, they started 

spreading and the actin cytoskeleton appeared more pronounced and distinctive, especially 

on ESP 011, ESP 012 and BTL 15 where the cells were very large and showed the typical 

podocyte-like morphology. On ESP 008, cells appeared to proliferate slower compared to 

cells cultured on all other substrates.  

Subsequently, quantitative analyses were performed to determine the effect of the 

substrates on PDT and viability (Figure 4.18).  The results showed that cells proliferated on 

all substrates with the exception of ESP 009 and ESP 010. Highest levels of proliferation were 

found to be on BTL 15 and glass (Figure 4.18 A).  Cells on ESP 003, ESP 004 and ESP 007 also 

showed a notable increase in cell number. However, cells on ESP 008, ESP 11 and ESP 012 

showed only a very small increase in cell number and viability over time. From the manual 

cell counts the PDT was quantified for cells culture at 33°C (day 1 to day 6) and 37°C (day 6 

to day 11). It was found that on all substrates PDT increased once cells were transferred to 

the non-permissive temperature (37°C) with ESP 009 and ESP 010 being the only exceptions. 

This was expected, as the cell culture temperature increase leads to cells undergoing a 

growth arrest. Although ciPodocytes continued to proliferate, the PDT was notably increased 

and was highest on ESP 007. PDT of ciPodocytes was similar on all other substrates and 

showed no significant differences compared to glass.  

A more detailed analyses of these results of cell proliferation and viability analyses can be 

found in the supplementary information (chapter 4.5, p 149).   
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Figure 4.18: ciPodocytes cell number, PDT and viability assessment on polyacrylate substrates. Cells were seeded 
at 1 x 103 cells / polymer coated 13 mm coverslip. Asterisks indicate significant difference compared to a glass 
control (Tukey model, p < 0.05) Results represent the mean of three biological replicates ± SEM. 

With cell spread being an important characteristic of differentiated podocytes, the extent of 

cell spread was followed over time (Figure 4.19). The results confirmed the trend that was 
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observed from phase contrast images (Figure 4.17). Cell spread was the largest on BTL 15, 

ESP 012, ESP 011 and ESP 007. On ESP 009 and ESP 010 cell spread was not quantified at day 

11 as cells appeared to undergo cell death, were very small and rounded. ciPodocytes on ESP 

004 and ESP 008 showed an intermediate degree of spreading compared to cells seeded on 

other substrates. 

 

Figure 4.19: Cell spread analyses of ciPodocytes on polyacrylate substrates. Cells were seeded at 1 x 103 cells / 
polymer coated 13 mm coverslip and cell spread was analysed. Asterisks indicate significant difference compared 
to a glass control (Tukey model, p < 0.05). Results represent the mean of three biological replicates ± SEM. 

Subsequently, the expression of podocyte markers was analysed. Figure 4.20 shows 

ciPodocytes that were cultured for 11 days on polyacrylates substrates and labelled for two 

characteristic markers: nephrin and podocin. ciPodocytes showed the typical large and 

rounded structure and expressed the characteristic markers on all substrates. Nevertheless 

cells on ESP 008 were less spread compared to cells cultured on other substrates, but they 

still did expressed these markers. Images of cells cultured on ESP 009 and ESP 010 could not 

be obtained as no more cells were present at this time point.   
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Figure 4.20: (A) Nephrin and (B) podocin staining of ciPodocytes on polyacrylate substrates. Cells were seeded at 
1 x 103 cells / polymer coated 13 mm coverslip. Blue: DAPI.  Scale bar is 100 µm. 

4.2.3.2 Effect of polyacrylates on conditionally immortalised proximal tubule cells 

The ability of polyacrylates to support growth and viability and to maintain the differentiation 

of conditionally immortalised PTCs (ciPTCs) was investigated. As with ciPodocytes, ciPTCs 

were cultured at a permissive temperature (33°C) for proliferation and then transferred to a 

non-permissive temperature (37°C) in order to initiate cell differentiation. Figure 4.21 shows 

phase contrast images and high magnification images of phalloidin labelled cells cultured on 

ESP 007 (representative for ESP 003, ESP 004 and glass), ESP 012 (representative for ESP 011 

and BTL 15) and ESP 008. Cells on ESP 009 and ESP 010 showed cell death 24 h post seeding 

and no proliferation was observed. The images showed that ciPTCs varied in morphology 

between the substrates. 5 days post seeding the ciPTCs were rather elongated and partially 
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rounded on most substrates. Once cells were incubated at 37°C for differentiation, they 

started spreading on all substrates except ESP 009 and ESP 010 where no more cells were 

observed from day 5 post seeding.  

 

Figure 4.21: Morphological analyses of ciPTCs on representative polyacrylate substrates. Cells were seeded at 1 x 
103 cells / polymer coated 13mm coverslip and phase contrast images and fluorescence images were taken. 
Green: F-actin and blue: DAPI. Scale bar is 100 µm. 
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To support these observations, cell number, PDT and cell viability were determined (Figure 

4.22). The analyses of cell number and viability showed that cells were proliferating on all 

substrates with those cultured on ESP 009 and ESP 010 being the only exceptions. Highest 

levels of proliferation were observed on ESP 007, ESP 004, ESP 003 and glass. Compared to 

these, proliferation on other substrates was lower. The assessment of cell viability confirmed 

these findings. In addition, PDT was analysed at both temperatures, as, ideally, ciPTCs would 

undergo growth arrest once transferred to the non-permissive temperature (37°C). It was 

found that on most substrates PDT was similar or lower at 33°C compared to 37°C (cells at 

37°C take more time to double the population). As cells cultured on ESP 009 and ESP 010 did 

not proliferate, but rather decreased in cell number over time, PDT was zero on these 

substrates. However, cell proliferation was on all substrates significantly less compared to a 

glass control.  

A more detailed analyses of these results on cell proliferation and viability can be found in 

the supplementary information (chapter 4.5, p 149). 
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Figure 4.22: ciPTC cell number, PDT and viability assessment on polyacrylate substrates. Cells were seeded at 1 x 
103 cells / polymer coated 13 mm coverslip. Asterisks indicate significant difference compared to a glass control 
(Tukey model, p < 0.05) Results represent the mean of three biological replicates ± SEM. 
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Cell spread is generally an indicator for adhesion and interactions of cells with substrates. 

Therefore the ciPTCs extend of cell spreading was assessed on all polyacrylates over time 

(Figure 4.23). The cell spread was similar on all substrates with ESP 007, ESP 011, ESP 012 and 

BTL 15 supporting cell spread to the highest extent. On ESP 009 and ESP 010 no more cells 

were detected post day 5.   

 

Figure 4.23: Cell spread analyses of ciPTCs on polyacrylate substrates. Cells were seeded at 1 x 103 cells / polymer 
coated 13 mm coverslip and cell spread was analysed. Asterisks indicate significant difference compared to a glass 
control (Tukey model, p < 0.05). Results represent the mean of three biological replicates ± SEM. 

Subsequently, ciPTC were assessed for the expression of characteristic markers. Figure 4.24 

shows ciPTCs that were cultured for 11 days on polyacrylate substrates and labelled for two 

characteristic markers: aquaporin 1 and megalin. The images show that ciPTCs expressed 

both markers on all substrates. Images of cells on ESP 009 and ESP 010 could not be obtained 

as no more cells were present at this time point.   
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Figure 4.24: (A) Aquaporin 1 and (B) megalin staining of ciPTCs on polyacrylate substrates. Blue: DAPI. Cells were 
seeded at 1 x 103 cells / polymer coated 13 mm coverslip. Scale bar is 100 µm. 

Lastly, the functionality of ciPTCs on substrates was analysed by investigating their ability to 

uptake fluorescently labelled albumin (F-BSA) through the transmembrane receptor megalin 

(Figure 4.25). The analyses showed that on nearly all substrates about 65% of the cells did 

uptake F-BSA. This percentage was significantly decreased on ESP 008 and glass. Once cells 

were incubated in F-BSA enriched medium and an excess of unlabelled albumin (competitive 

inhibition), the number of F-BSA up-taking cells decreased to about 20%.  
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Figure 4.25: Albumin uptake assay. ciPTCs were analysed for their ability to uptake F-BSA. Cells were seeded at a 
density of 1 x 103 cells / polymer coated 13 mm coverslip.  Asterisks indicate statistical difference compared to a 
TCP control. Results represent the mean of three biological replicates ± SEM. 

4.2.4 Effect of polyacrylates on putative human kidney progenitor 

cells 

The identification and characterisation of human kidney derived progenitor cells (KPCs) 

would be a great advantage for studying kidney function, regeneration and disease. 

However, there is still a scientific debate whether KPCs exist in the adult body and if so, 

whether these derive from one ultimate progenitor cell [252, 398, 399]. Some niches 

containing putative KPC populations were identified within the nephrons, mainly 

characterised by the expression of specific (progenitor/stem cell) markers, namely CD133 

and CD24, and many were found to support regeneration of kidney structure and function 

after renal injury [5, 7, 164, 252-258]. Putative human KPCs have been identified in the renal 

papilla and expressed, besides CD 133 also nestin [400]. Others identified KPC niches within 

the renal tubules and these cells were shown to, besides CD133 and CD24 also express Pax 2 

(embryonic renal marker) and vimentin [271]. Lastly, also within the parietal layer at the 

urinary pole of the Bowman’s capsule, putative KPCs were identified and these cells also 

expressed, in addition to CD133 and CD24, the stem cell–specific transcription factors Oct-4 

and Bmi-1 [5-7, 10, 16, 312] and others found that some of these cells also expressed CD106 

(vascular cell adhesion molecule 1 ) [5]. All of these cell lines had in common that they were 
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generally able to self-renew (highly proliferative), differentiate into specialised renal cell 

lines, often also displayed multilineage potential, and to initiate recovery post renal injury [5-

7, 261, 266, 271, 401-403].  

Based on these findings it is clear that particularly CD24 and CD133 have gained much 

recognition in terms of identifying kidney progenitors. CD133+/CD24+ cells do indeed have 

self-renewal potential, maintain a stable phenotype in cell culture and can differentiate into 

podocytes and tubular cells in vitro and in vivo [5-7, 266]. Although it is still not clear whether 

there are stem or progenitor cells in the kidney, it is assumed that there are cell populations 

within embryonic, fetal and adult kidneys as well as within the amniotic fluid that have stem 

cell properties [6, 261, 267, 404]. Further investigation of these population might lead to the 

establishment of the ultimate kidney progenitors. Many studies are focused on the 

identification of other potential KPC markers and new conjectures are published regularly. 

Among them are NCAM (neural cell adhesion molecule), EpCAM (epithelial cell adhesion 

molecule) and FZD7 (frizzled-7) and ALDH (aldehyd-dehydrogenasen ) [266-269]. 

Within this study two putative KPC lines derived from either fetal or infant kidneys were 

obtained and FACS sorted to be either CD133+/CD24+ double positive (DP) or CD133-/CD24- 

double negative (DN) to further interrogate their potential to differentiate into specialised 

renal cell lines on the here studied biomaterials. In conclusion from the results of our studies, 

the following three substrates were selected: ESP 003, ESP 007 and ESP 011. ESP 003 and ESP 

007 were selected because they were able to promote the differentiation of mKSCs into 

podocytes and PTCs, respectively, whereas ESP 011 supported growth and spreading of 

conditionally immortalised podocytes and PTCs. Moreover, ESP 011 was developed in close 

structural resemblance to ESP 007.  
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4.2.4.1 Effect of polyacrylates on fetal human kidney progenitor cells 

4.2.4.1.1 Effect of polyacrylates on morphology and behaviour of fetal kidney progenitor 

cells 

Fetal kidney progenitor cells (fKPCs) were FACS sorted to be either DP or DN for two putative 

kidney progenitor markers: CD24 and CD133. Therefore, it was expected that DP cells were 

kidney progenitor cells, whereas DN cells may represent a variety of kidney cells, such as 

differentiated cells. Figure 4.26 shows images obtained from both populations, DP and DN 

fKPCs 3 and 7 days post seeding. It was found that, on all substrates, the DN population had 

a higher rate of proliferation compared to DP cells. Both DN and DP cells adhered to all 

substrates, started to form monolayers and became more elongated over time. On ESP 003, 

however, cell proliferation appeared to be slower than on the other substrates and compared 

to controls.  

No morphological changes of either cell type seeded on different substrates could be found. 

However, when comparing the DN and the DP population the cells showed striking 

differences in their general phenotype and behaviour (Figure 4.26, Figure 4.27). Cell 

proliferation and viability analyses showed a consistent exponential growth of DN fKPCs with 

the obtained cell numbers being very similar on all substrates. The DP population on the 

other hand showed no or only little proliferation and presumably attachment: out of 5000 

seeded cells only about 1/5 was detected on all substrates 24 h post seeding. The assessment 

of cell viability confirmed these findings.  

In addition, the assessment of PDT confirmed these results. PDT of DN cells was found to be 

about 2 days, whereas it was about 4±1 days for DP cells. PDT was consistent between 

substrates for both, the DP and DN population.    
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Figure 4.26: Morphological analyses of fKPCs on polyacrylate substrates. Cells were seeded at 5 x 103 cells / 
polymer coated 13 mm coverslip. Images show phase contrast images and F-Actin labelled cells at a higher 
resolution at two different time point: 3 and 7 days post seeding. Blue: DAPI. (A) Double negative and (B) double 
positive population. Scale bar is 100 µm.  
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Figure 4.27: Analyses of iKPC (A) proliferation, (B) PDT (as determined from cell number values in (A) and (C) 
viability on polyacrylate substrates. Cells were seeded at a density of 5 x 103 cells / polymer coated 13 mm 
coverslip. Asterisks indicate significant difference compared to glass control (Tukey model, p < 0.05). Data were 
fitted with an exponential growth equation. Results represent the mean of three biological replicates ± SEM. 

Cell spread analyses was consistent with the microscopic images (Figure 4.28). The DN cell 

population showed a spread area of about 2000-3000 µm2 with this number being constant 

over the entire cell culture period. The DP cell population on the other hand showed an 

increased spread area over time (about 10000 µm2) after 7 days. Cells cultured on the glass 

control were the only exception with cells spreading up to 15000 µm2. 
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Figure 4.28: Cell spread analyses of fKPCs on polyacrylate substrates. Cells were seeded at a density of 5 x 103 
cells / polymer coated 13 mm coverslip. Cells were cultured for a period of 7 days. Asterisks significant difference 
compared to glass control (Tukey model, p < 0.05). Data were fitted with a non-linear fit / one phase decay 
equation. Results represent the mean of three biological replicates ± SEM. 

4.2.4.1.2 Effect of polyacrylates on the differentiation of fetal kidney progenitor cells 

After 7 days in cell culture on polyacrylate substrates, fKPCs were analysed for the presence 

of PTCs within the population. For that, a BSA uptake assay was performed and cells were 

co-labelled with the PTC marker alanine aminopeptidase (CD13) (Figure 4.29). fKPCs were 

then sorted using flow cytometry. It was found that the DN population contained about 25% 

CD13+ cells, of which about 2% were functional. No statistical difference was detected 

regardless of the substrate. The DP population on the other hand contained about 80% CD13+ 

cells of which about 20% were functional. The number of these functional PTCs within the 

DP population was significantly decreased on all these substrates, including the glass control, 

compared to the TCP control.  

 

Figure 4.29: fKPC flow cytometric analyses for assessment of functional PTCs after culture on substrates. Cells 
were seeded at a density of 1.5 x 104 cells / polymer coated (2x) 19 mm coverslip. An albumin uptake assay was 
performed and cells were co-labelled with CD13. Asterisks indicate significant difference compared to TCP control. 
Results represent the mean of three biological replicates ± SEM. 
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4.2.4.1.3 Effect of polyacrylates on the expression of the CD133+ and CD24+  

fKPCs are known to lose CD133+ and CD24+ in in vitro cell culture after only few passages. 

Therefore, it was assessed whether polyacrylates can support the expression of these 

markers. Cells between the passages 6 to 9 were cultured on substrates and subsequently 

analysed for expression of CD24 and CD133 using flow cytometry (Figure 4.30).  As expected, 

nearly 100% of the DN cells remained DN over the course of the cell culture period. Only a 

negligible number of cells were found to be CD24+ /CD133+ (1%) and a small percentage of 

cells were single positive for either CD24+ or CD133+ (1-8 %). Interestingly, the DP fKPC 

population did not remain DP over the cell culture period. After 7 days about 75% of these 

cells were CD24- /CD133- and only 2-4% of the cells remained CD24+/CD133+.  

 

Figure 4.30: Assessment of CD133/CD24 of fKPCs on polyacrylates. Cells were seeded at a density of 1.5 x 104 cells 
/ polymer coated (2x) 19 mm coverslip. Asterisks indicate significant significance compared to the TCP control. 
Results represent the mean of three biological replicates ± SEM. 

4.2.4.2 Effect of polyacrylates on infant human kidney progenitor cells 

4.2.4.2.1 Effect of polyacrylates on morphology and behaviour of infant kidney progenitor 

cells 

Infant kidney progenitor stem cells (iKPCs) were FACS sorted to be either DP or DN for two 

putative kidney progenitor markers: CD24 and CD133. Figure 4.31 shows images obtained 

from both, DP and DN iKPCs 3 and 7 days post seeding. As found for fKPCs, the DN population 

proliferated on all substrates. The cells adhered to and spread on all substrates, however, no 



 

Effect of polyacrylates on kidney progenitor / stem cells – Results 131  
 

morphological changes were detected over time. DP iKPCs showed a similar morphology but 

appeared less proliferative compared to the DN population. However, neither DP nor DN 

iKPCs showed morphological differences in dependence of the underlying substrate.  

Quantitative assessment of iKPCs proliferation showed that both populations grew on all 

substrates. However, the DN iKPCs cultured on ESP 003 showed significantly less proliferation 

compared to those DN cells cultured on the other substrates (Figure 4.32). Cell proliferation 

and viability of the DP population was less compared to the DN population (Figure 4.32).  

Analyses of the PDT confirmed these findings and showed that DN iKPCs took about 60 h to 

double the population, whereas DP cells took about 70 h. This was consistent, regardless of 

the underlying substrate.    
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Figure 4.31: Morphological analyses of iKPCs on polyacrylate substrates. Cells were seeded at 5 x 103 cells / 
polymer coated 13 mm coverslip. Images show phase contrast images and F-Actin labelled cells at a higher 
resolution at two different time point: 3 and 7 days post seeding. Blue: DAPI. (A) Double negative and (B) double 
positive population. Scale bar is 100 µm.   

In addition the extent of cell spreading was analysed on all substrates (Figure 4.33). Both, the 

DN and DP iKPC population showed a spread area of about 3000-4000 µm2 with this number 

remaining constant over the entire cell culture period regardless of the substrate. However, 

DP iKPCs showed significantly more spread on all substrates compared to a TCP control. 



 

Effect of polyacrylates on kidney progenitor / stem cells – Results 133  
 

 

Figure 4.32: Analyses of iKPC (A) proliferation, (B) PDT (as determined from cell number values in (A) and (C) 
viability on polyacrylate substrates. Cells were seeded at a density of 5 x 103 cells / polymer coated 13 mm 
coverslip. Asterisks indicate significant difference compared to glass control (Tukey model, p < 0.05). Data were 
fitted with an exponential growth equation. Results represent the mean of three biological replicates ± SEM. 

 

Figure 4.33: Cell spread analyses of iKPCs on polyacrylate substrates. Cells were seeded at a density of 5 x 103 
cells / polymer coated 13 mm coverslip. Cells were cultured for a period of 7 days. Asterisks indicate significant 
difference compared to glass control (Tukey model, p < 0.05). Data were fitted with a non-linear fit / one phase 
decay equation. Results represent the mean of three biological replicates ± SEM. 
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4.2.4.2.2 Effect of polyacrylates on the differentiation of infant kidney progenitor cells 

After 7 days in culture on polyacrylate substrates, iKPCs were analysed for the presence of 

PTCs within the population. For that, a BSA uptake assay was performed (chapter 2.4.8.3, p 

50) and cells were co-labelled with the PTC marker CD13 (Figure 4.34). fKPCs were then 

sorted using flow cytometry. DN iKPCs cultured on polyacrylates contained about 95% CD13+ 

cells on all substrates, including controls. About 40% of these cells were functional on 

polyacrylates and 80% on controls. DP iKPCs on the other hand contained about 75% CD13+ 

cells. Moreover, about 35% of these were functional on glass and TCP control. This number 

was significantly decreased when cells were cultured on polyacrylate substrates (20%). 

 

Figure 4.34: iKPC flow cytometric analyses for assessment of functional PTCs after culture on substrates. Cells 
were seeded at a density of 1.5 x 104 cells / polymer coated (2x) 19 mm coverslip. An albumin uptake assay was 
performed and cells were co-labelled with CD13. Asterisks indicate significant difference compared to TCP control. 
Results represent the mean of three biological replicates ± SEM. 

4.2.4.2.3 Effect of polyacrylates on the expression of the CD133+ and CD24+  

As fKPCs, also iKPCs lose CD133+ and CD24+ in in vitro cell culture within a few passages. 

Therefore, iKPCs between the passages 7 to 10 were cultured on substrates and analysed for 

expression of CD24 and CD133 using flow cytometry (Figure 4.35).  As expected, nearly 100% 

of the DN cells remained DN over the course of the cell culture period. In line with the findings 

on the fKPCs, the DP iKPC population did not remain CD24+/CD133+ over the cell culture 
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period. After 7 days in culture about 75% of the cells were CD24- /CD133- and only 1-2% of 

the cells remained CD24+/CD133+.  

 

Figure 4.35: Assessment of CD133/CD24 of iKPCs on polyacrylates. Cells were seeded at a density of 1.5 x 104 cells 
/ polymer coated (2x) 19 mm coverslip. Asterisks indicate significant significance compared to the TCP control. 
Results represent the mean of three biological replicates ± SEM. 

4.3 Discussion 

4.3.1 Polyacrylate biocompatibility 

Cellular response to biomaterials is a key factor in their design and application [405]. One of 

many methods to evaluate cell response towards a material is to analyse in vitro cytotoxicity 

and to determine material influence on cell behaviour and regulation [406, 407]. The typical 

consequence of a cytotoxic environment is cell lysis / cell death or an inhibition of 

proliferation. 

In order to investigate eventual cytotoxic effects of polyacrylates on cells, a mouse fibroblast 

cell line (mL929) was employed and analysed after incubation in polymer conditioned 

medium (chapter 2.1.1.3, p 29) according to ISO British standards 10093- 5 [395]. The cell 

response was then analysed for changes in morphology, proliferation and viability.  

Of the range of polyacrylates tested, none achieved a reactivity grade worse than grade 1 

(slight reactivity). The majority of polymers tested were graded level 0 (non-cytotoxic).  After 

incubation in the eluent of most substrates the mL929 appeared healthy and had the typical 
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morphology as with the negative (unconditioned, non-cytotoxic) control. The only exceptions 

were found to be ESP 009 and ESP 010, where a larger number of cells appeared to undergo 

cell death as indicated by the rounded morphology. 

It was also found that cell proliferation was generally slowed down with increasing polymer 

eluant concentration compared to a negative control. However, cell proliferation and PDT 

were not significantly affected, thus suggesting that the presence of eluant had only a minor 

influence on cell proliferation and that the polyacrylate substrates did not have a cytotoxic 

effect on mL929 cells.  

In addition to the standard cytotoxicity evaluation, direct substrate contact tests were 

performed. This did not only allow us to analyse the substrates influence on both  the mL929 

cell line and more sensitive bovine aorta endothelial (BAE) cell line, they also provided a level 

of understanding of their biocompatibility and wider potential function as a substrate 

platform for cell culture [396, 397]. 

It was found that mL929 cells were proliferative and showed the typical morphology on all 

substrates with exception of ESP 009 and ESP 010, where a notable number of cells looked 

rounded and appeared to have difficulties to attach to or maintain attachment on the 

substrates. In this respect, direct and indirect cytotoxicity analyses coincided with each other. 

The direct contact method had a greater localised concentration of the biomaterial and 

therefore a greater and more sensitive impact on cellular behaviour. When comparing 

indirect and direct cytotoxicity test, the cellular response did not show any notable changes 

in cell morphology or disruption of the monolayer structure.  

On the other hand BAE cells showed differences in cell behaviour. Cell death and detachment 

was greatest during the direct contact tests on ESP 009 and ESP 010. This confirmed that both 

substrates were unsuitable culture substrates.  However, there was a large initial increase of 

BAE cell number on ESP 011 and ESP 012, indicating that these substrates are very suitable 
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for cell culture. Moreover it was found that the BAE cell morphology was notably different 

between substrates. On ESP 003, ESP 007, ESP 011 and ESP 012 cells were well spread and 

displayed the characteristic BAE cell morphology, confirming that these substrates would be 

suitable for cell culture with other sensitive cell lines, such as stem and progenitor cells.  

4.3.2 Effect of polyacrylates on mouse kidney-derived stem cells 

The mKSC line studied here was isolated from neonatal mouse kidneys by Fuente-Mora et al. 

and has the ability to spontaneously generate podocyte-, mesangial- and proximal tubule-

like cells in vitro. However, they do not generate distal tubule or collecting duct cells [249, 

251]. Moreover, recent research has shown that most kidney stem cells (KSCs) can 

differentiate in vitro not only into a number of renal cells but also into non-renal cells [7, 271, 

408].  It would be of great benefit if cell differentiation could be directed in a way that allows 

large and pure populations of a desired cell type to be obtained, as this would be useful for 

drug development programmes and various other applications, such as furthering our 

understanding of (kidney) stem cell differentiation. Moreover, the human equivalent of such 

cell lines could have potential use in the field of regenerative medicine.  

Within this study, mKSC behaviour and differentiation was assessed using four novel 

polyacrylate substrates: ESP 003, ESP 004, ESP 007 and BTL 15. Therefore, the current study 

was aimed at identifying polyacrylate substrates that could direct the differentiation of 

mKSCs into specialised renal cell lines, namely podocytes or PTCs.    

The assessment of mKSC behaviour on polyacrylates ESP 003, ESP 004, ESP 007 and BTL 15 

showed that cells were viable and proliferating on all substrates. The cell morphology on ESP 

007, BTL 15 and glass looked very similar with cells maintaining a mKSC-like morphology. 

However, we found that about 40 - 45% of the cells cultured on ESP 003 and ESP 004 

differentiated into podocytes as evidenced by their large spread, the arborised cytoskeleton 

and often binuclearity which are typical characteristics of podocytes [250]. Compared to 
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mature podocytes, a large number of cells on ESP 003 and ESP 004 showed such a distinctive 

podocyte-like morphology. Considering these morphological changes that were followed and 

found to be increasingly present with increasing cell culture time on these two substrates our 

study has shown that these polyacrylates have the ability to direct mKSC differentiation into 

podocytes to high percentages.  

Further interrogation of cells cultured on the remaining two substrates, ESP 007 and BTL 15, 

has shown that these substrates promoted PTC differentiation as evidenced by megalin 

immunostaining and alkaline phosphatase activity. Following a 96 h cell culture period, about 

35 - 40% of cells on ESP 007 and BTL 15 expressed megalin, which was about 3-fold higher 

compared to other substrates, including controls. The number of megalin expressing cells 

was similar to the number of cells that stained positively for F-BSA (50% of cells on ESP 007; 

40% of cells on BTL 15).  Therefore, our results also proof that ESP 007 and BTL 15 promoted 

cell differentiation into functional PTCs. 

However, although we have shown cell differentiation into PTC and podocytes, we did not 

detect significant difference in gene expression of mKSCs. It should be noted that gene 

expression is controlled by a number of factors, including transcriptional and post-

transcriptional regulation (such as RNA processing, splicing and translation) [409-411]. The 

half-life of various proteins can range from minutes to days and is therefore often larger than 

the degradation rate of mRNAs. Moreover, the rate of mRNA transcription is lower than the 

rate of protein translation  [412]. Furthermore, protein concentration itself is influenced by 

various parameters, such as synthesis and cleavage. Therefore it is possible to have low 

mRNA expression but high concentration of protein, i.e. if a protein directly influences its 

own expression [413]. 
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However, we have shown by assessment of morphological features, protein expression and 

functionality studies as well as enzyme activity studies (alkaline phosphatase) that mKSCs 

indeed differentiated to significant percentages into the desired renal cell types  compared 

to controls.  A possible explanation of these findings lies in the polyacrylates structure and 

physicochemical features as all of these differed nano- and microscale topography, 

associated wettability and surface chemistry as caused by the identity and proportion of 

functional group chemistries. In addition, three substrates, ESP 003, ESP 004 and ESP 007 

mimicked the RGD binding motif, but appeared to have a different effect on cell 

differentiation. BTL 15 on the other hand mimicked a cell attachment motif from collagen 

(particular motif is company proprietary). However, ESP 007 and BTL 15 directed mKSC 

differentiation into PTCs. Both these substrates had two characteristics in common: (1) they 

contained hydroxyl groups alongside carboxylic acid and primary amine groups and (2) they 

had a lower degree of nanoroughness of about 4 ± 1.5 nm compared to the other substrates. 

Both these properties might have promoted cell differentiation into PTCs. Interestingly, the 

analyses of surface artefacts, hill heights, respectively, showed that ESP 007 had small hills in 

the range of about 100 nm whereas BTL 15 contained hills that reached up to 1.5 µm.  

Compared to ESP 007 and BTL 15, ESP 003 and ESP 004 contained (1) carboxylic acid and 

primary amine functional groups, but no hydroxyl groups and (2) higher nanoroughness (10 

± 2.5 nm). The hill heights of both levelled around 300 nm. These results suggested that cell 

differentiation might be influenced by the nanoscale roughness of a substrate in addition to 

the presence of specific surface functional group chemistries and it is assumed that also the 

spatial distribution and stereochemistry had an impact on cell differentiation, whereas hill 

height did not appear to have significant impact on it (Figure 4.36). 
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Figure 4.36: Correlation between polyacrylate surface properties and mKSC differentiation.  

However, we assume that surface topography presented a relevant cue for initiating cell 

differentiation. As discussed before (chapter 3.2.3.1, p 73) we here suggest that our surfaces 

may present a particular distribution of these hill like-structures that we refer to as 

“organised disorder” assuming that, within individual polymers, there may be a repetition of 

the pattern of such surface artefacts and this may in turn be another reason for promoted 

differentiation. Therefore it would be interesting to study this phenomenon further.   

The impact of surface topography on cell behaviour and differentiation has been shown in 

numerous studies and many of these studies investigated the effects of ordered versus 

disordered topographical features [42-44, 414]. For example, ordered topographical patterns 

inhibited cell adhesion of fibroblasts to underlying substrates [415], whereas disordered 

nanoscale  topography increased promoted cell adhesion and differentiation of i.e. MSCs [42, 

416]. Particularly in the case of MSCs it was found that cell differentiation is favoured on 

disordered surface topography [42]. However, the nanotopographies present within stem 

cell niches are not highly ordered, but rather disordered and this makes it difficult to perfectly 

design biomaterial topography [414, 417]. Consequently more research is now focussing on 

developing surfaces with such controllable disorder and some progress has been made: For 

example, Dalby et al. have developed topographies displaying controlled disorder using 

electron beam lithography and found that these substrates promoted differentiation of MSCs 
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into osteocytes in much higher percentage compared to highly ordered and random 

nanoscale features [42].  

Moreover the combinatory effects of nano- and microscale topography have to be 

considered as a possible effect on cell differentiation. For example, Gittens et al. have 

developed surfaces with micron- and submicron-scale surface roughness and found 

synergistic effects of micro and nanoscale hybrid structures on osteoblast activity and 

differentiation [24, 71]. Also other groups have suggested that cells do not only alter their 

cell behaviour in response to micro, but also nano topography by i.e. aligning along presented 

topographies of a cell culture surface [418, 419]. 

It has to be noted that substrate XPS and AFM analyses were performed in dry, and in the 

case of XPS under ultra-high vacuum conditions whereas biological experiments were 

performed in liquid (cell culture medium). This may have very likely altered the substrate 

properties, such as the direction of surface functional group chemistries. Therefore, in the 

case of this study, it is challenging to draw final conclusions about the influence of chemical 

functionalities on cell behaviour [420, 421]. 

To summarise our findings, all four substrates had significant effects on mKSC differentiation 

into podocytes or PTCs compared to glass and TCP controls. However, it is challenging to 

correlate only one surface feature to the particular cellular response. The available results 

suggested that surface chemistry and nanotopography were the key factors for regulating 

mKSC differentiation. However, the best way to verify that would be to develop substrates 

that only differ in a single parameter and compare results with cells. In addition, the polymer 

surface steric properties of the mimicked cell binding motifs were of great importance in this 

study, but a method to precisely determine the “true” conformation and steric properties of 

functional groups could not be identified as no methods with higher sensitivity in atomic 

scale were available.    
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Lastly it has to be noted that some recent research has explored the ability of some of the 

polyacrylate substrates studied here to induced differentiation of mKSCs into chondrocytes 

under appropriate cell culture conditions [13, 345] and ESP 004 in particular was found  to 

induce chondrogenesis. These findings were not observed within this study, which could be 

due to the fact that in the chondrogenesis study, mKSCs were seeded at a higher density (1 

x 104 cells / coverslip) and kept in culture for a longer time period (14 days).  

4.3.3 Effect of polyacrylates on conditionally immortalised renal cell 

lines 

Prior to investigating the differentiation potential of human putative kidney-derived 

progenitor cells (KPCs), conditionally immortalised renal cell lines were used to identify 

substrates that could support their growth and differentiation. The reason for doing this was 

because it was reasoned that substrates that were unable to support the growth of 

conditionally immortalised human renal cells would be unlikely to support the growth and 

differentiation of human KPCs. This approach would therefore enable us to exclude some 

substrates from subsequent experiments.  

Within this study two conditionally immortalised cell lines were used: PTCs (ciPTCs) and 

podocytes (ciPodocytes). Both cell lines proliferated in cell culture at the permissive 

temperature of 33°C and differentiated at the nonpermissive temperature of 37°C.  

ciPodocytes were obtained from Saleem et al. [227, 422]. At the permissive temperature 

(33°C) the cells proliferated and showed a small surface area and a low cytoplasmic : nuclear 

ratio [227, 422]. Therefore, cells behaved as expected on most polyacrylates. ESP 009 and 

ESP 010 were the only exceptions as cell number decreased over time and cells appeared to 

undergo cell death. 

ciPTCs were obtained from Masereeuw et al. [246, 423]. Also ciPTCs proliferated on all 

substrates with ESP 009 and ESP 010 being the only exceptions. As with ciPodocytes, ciPTCs 
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cell number decreased over time and cells appeared to undergo cell death on these 

substrates.  

The substrates used for mKSC culture, ESP 003, ESP 004, ESP 007 and BTL 15, allowed good 

cell attachment and proliferation of both conditionally immortalised cell types. However, 

three further substrates that were developed within this study, ESP 008, ESP 011 and ESP 

012, were also able to support the growth of the cell lines. ESP 011 and ESP 012 contained 

hydroxyl groups, which were also present in ESP 007 and BTL 15 and were assumed to be a 

potential feature to direct mKSC differentiation into PTCs. Considering that ESP 011 and ESP 

012 also allowed cell attachment and growth of mL929 and BAE cells it is assumed that the 

chemical and physical properties would also support further studies on human kidney 

derived progenitor cells. Both substrates were shown to allow the development of 

characteristic features, including morphology and protein expression of conditionally 

immortalised cell lines and were therefore classified as substrates with potential use in the 

field of biomaterial science to influence (progenitor / stem) cell fate.  

All substrates had different physicochemical properties with the main difference being the 

particular mimicked cell binding motif and the proportion and identity of surface functional 

groups. However, generally it was noted that all cell lines investigated on ESP 008, ESP 009 

and ESP 010 showed notably different behaviour compared to all other substrates. This 

included a small and rounded cell morphology, cell detachment from surfaces and 

presumable cell death. From a topographical point of view, surface hill features showed an 

intermediate height when compared to other substrates and surface root mean square 

(RMS) roughness of these three polyacrylates was also comparable to other substrates. 

Therefore, topography can be excluded as a cell growth inhibiting factor. However, all three 

substrates had in common that they (1) had the lowest degree of steric hindrance and (2) 

contained more primary amine groups compared to the remaining polyacrylates and had 
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therefore a significantly lower CA (sessile drop). It is well know that surface amines have a 

substantial influence on cell behaviour including improvement and prevention of cell 

attachment and this might be in turn related to the surfaces ability to adsorb proteins.  

Therefore, the identity or conformation of amine groups might have influenced the polymer 

ability to adsorb proteins and therefore cell adhesion. CB and DCA measurements have 

shown that all substrates had an equal CA after exposure to FBS, which indicated protein 

adsorption. However, this did not give information about protein identity, their molecular 

state nor accessibility of single functional groups. 

A number of studies has been focussed on studying such phenomenonas. For example, 

Broderick et al. has shown that the small hydrophobic n-decylamine promoted cell adhesion 

of fibroblasts, whereas the hydrophilic amine-containing carbohydrate D-glucamine 

inhibited it [424]. They suggested that this effect is partially caused by the ability of the 

substrates / molecules to promote or prevent protein adsorption [425]. Such an effect might 

have influenced the results presented within this study as well.  

Another potential cause for the cell response to biomaterial substrates in this study could be 

that neighbouring sterically hindering groups covered primary amines and therefore made 

them inaccessible for cells. The design of the polyacrylate structure was done manually and, 

so far, there is a possibility that the polymers were not behaving as expected due to 

unforeseen inter- and intramolecular interactions. Therefore, possible conformational 

changes could have arisen from and influenced cell behaviour. For instance, ESP 004 and ESP 

007 both mimicked the RGD motif with the difference being the composition and identity of 

the functional groups  (both contained primary amines, but ESP 004 contained –COOH groups 

whereas ESP 007 –OH groups). However, ESP 004 directed mKSC differentiation into 

podocytes and ESP 007 into PTCs.  
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4.3.4 Effect of polyacrylates on putative human kidney progenitor 

cells 

The kidney has a high potential to regenerate and repair itself to a certain extent after injury 

[426]. However, the origin of cells that contribute to renal repair has not been identified yet 

and the debate about whether there are in fact progenitor cells in the kidney has been going 

on for many years (chapter 1.3, p 15).  

In recent years a number of putative human kidney progenitor cells has been isolated that 

displayed stem cell properties, including self-renewal, clonogenicity, multidifferentiation 

potential and expression of specific markers with particular focus on CD133 and CD24 

(chapter 1.3.4, p 22) [5-7]. CD133 is a stem cell marker in normal and also cancerous tissues 

[427] and is already used to identify and isolate putative stem cells, sometimes in 

combination with other markers and from other tissues, such as bone marrow or brain [427-

429]. CD24 is a protein that is expressed within immature cells and generally absent from 

mature, fully differentiated cells and was shown to be present in putative renal progenitors 

[430, 431].  

Here we investigated the potential of polyacrylates to influence proliferation, spreading and 

differentiation of these CD24+/CD133+ putative human kidney-derived progenitor cells 

(KPCs). Two cell lines, fetal and infant KPCs (fKPCs / iKPCs) were sorted to be either 

CD24+/CD133+ (double positive, DP) or CD24-/CD133- (double negative, DN). Based on the 

obtained results on polyacrylates so far, three substrates were chosen: ESP 003, as is directed 

differentiation of mKSCs into podocytes, ESP 007, as it directed differentiation of mKSCs into 

PTCs and ESP 011, as it supported the growth and differentiation of conditionally 

immortalised cell lines and was moreover designed to mimic the promising features from ESP 

007 with little structural and chemical differences.  
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Both, fKPCs and iKPCs DN populations, showed similarities in that, they were stable in culture 

on polyacrylates and controls. Their proliferation rate was very similar with a PDT of about 

50-55 h on all substrates, including controls.  

Within the DN fKPC population about 25% were CD13+ (PTCs) with only 2% being functional, 

whereas iKPCs contained 90% CD13+ cells (PTCs) with about 40% being functional on 

polyacrylate substrates and 80% on controls. These results indicated that polyacrylates did 

not support the growth of PTCs that displayed characteristic marker expression and 

functionality. Particularly the DN iKPCs showed a significant decrease in functionality when 

cells were cultured on substrates (40%) compared to a glass control (80%). However, in 

general, iKPCs contained more functional PTCs (CD 13+) than the fKPCs population, which 

might be due to the fact that infant kidneys are more mature than fetal ones.  

If one considers the DP cells as kidney progenitor cells, than it could be that the DN 

population is a mixture of various kidney cells that might therefore contain differentiated 

and mature cells, including podocytes and PTCs [403].  However, a problem with such primary 

cells is that they often do not display characteristic biochemical and transport properties in 

vitro [232]. This could be contributing to the high number of non-functional PTCs (CD13+/F-

BSA-). In addition, recent research has indicated that also podocytes are able to uptake 

albumin, which might have contributed to the number of F-BSA+ / CD13- cells [432, 433].  

Compared to DN cells, DP KPCs did show different behaviour on substrates and controls. DP 

fKPC proliferation and viability was slow with a population doubling time (PDT) of about 100 

h. However, these cells showed increased cell spreading with time. On the other hand, the 

infant DP cells showed an increase in proliferation and a PDT of 60 h, which was significantly 

higher compared to fKPCs. iKPCs on the other hand did not increase  cell spreading over time. 

Both DP populations contained about 70-80% PTCs with 20% of these showing functionality 

on polyacrylates, and 40% functionality on controls. This indicated that polyacrylates did not 
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support the differentiation of putative KPCs into PTCs as no significant increase of CD13+ was 

detected. Particularly the DN iKPCs showed a decrease in functionality (the ability to uptake 

F-BSA) when cells were cultured on substrates (40%) compared to a glass control (80%).  

Lastly, KPCs were analysed for expression of CD133 and CD24 after the cell culture period. As 

expected, both DN populations remained DN over the cell culture period. However, DP cells 

were found to lose these markers during cell culture on substrates and controls. It has to be 

noted that the cells used in this study were only sorted to be DP or DN after isolation from 

tissues (passage 1) and then expanded. Therefore, cells analysed on substrates were 

considerably late passages (P7-P10) and were not repeatedly assessed for expression of 

these markers during expansion. However, as discussed before, there is still a debate 

whether CD24+ / CD133+ cells are in fact progenitor cells and the above data also do not 

support the progenitor cell potential. A number of recent studies have suggested isolating 

KPCs based on other markers including CD34, c-Kit, CD90, CD105 EpCAM (CD326) [267]. It 

would be worth investigating these cells on polyacrylates in the future, as the substrates had 

great potential in terms of directing the differentiation of mKSCs and MSCs [13, 345]. As the 

results on KPCs were not promising, no further experiments were performed.   

In summary, there were differences in the general behaviour of DP and DN KPCs with respect 

to proliferation and spreading. However, polyacrylates did not promote KPC differentiation. 

All KPCs populations contained a consistent number of PTCs with some of them being 

functional. However, polyacrylates appeared to inhibit the functionality of the differentiated 

cells significantly compared to glass and TCP control. 
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4.4 Conclusions 

This chapter comprised the analyses of polyacrylates in order to identify suitable substrates 

for cell culture and cell differentiation. A large number of polyacrylate substrates was found 

to support cell culture (ESP 003, ESP 004, ESP 007, ESP 011, ESP 012 and BTL 15). These 

showed biocompatibility and supported growth and differentiation of conditionally 

immortalised cell lines. Three substrates (ESP 008, ESP 009, ESP 010) were excluded from 

(progenitor / stem) cell analyses as they did not support cell growth and attachment.  

Moreover, two substrates were identified, that promoted the differentiation of mKSCs: ESP 

007 promoted differentiation into functional PTCs (40% 96 h post seeding) and ESP 003 

promoted differentiation into podocytes (40%, 96 h post seeding). Following these results, 

ESP 003, ESP 007 and its structural equivalent ESP 011 were analysed for their capability to 

promote the differentiation of putative human kidney progenitor cells (KPC). The results did 

not suggest KPC differentiation. It is not clear if the cells did not differentiate into committed 

cell lineages because of the inability of polyacrylates to influence their differentiation, or if 

the cells were actually not progenitors after all. However, polyacrylates did have an effect on 

mKSCs differentiation and were shown in the past to promote the differentiation of MSCs. 

Therefore, polyacrylates are certainly substrates that deserve attention in terms of stem cell 

culture and differentiation in the future. As ESP 003 and ESP 007 had a significant impact on 

mKSC differentiation these would be worth to be investigated in order to promote the 

differentiation of true human renal progenitor cells. Potential candidates are cells that have 

recently been isolated from pre-term neonates [434], but also pluripotent (embryonic and 

induced) stem cells [435-437].



 

The effect of polyacrylates on kidney progenitor / stem cells – Supplement| 149  
 

4.5 Supplementary information 

 

Figure 4.37: ciPodocytes analyses on polyacrylate substrates. (A) Cell proliferation (B) cell viability and (C) cell 
spread followed over 11 days. ciPodocytes were seeded at 1 x 103 cells / polymer coated 13 mm coverslip and 
cultured for 6 days at 33°C and subsequently 5 days at 37°C. Data were fitted with an exponential growth 
equation. Results represent the mean of three biological replicates ± SEM. 
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Figure 4.38: ciPTC analyses on polyacrylate substrates. (A) Cell proliferation (B) cell viability and (C) cell spread 
followed over 11 days. ciPTCs were seeded at 1 x 103 cells / polymer coated 13 mm coverslip and cultured for 6 
days at 33°C and subsequently 5 days at 37°C. Data were fitted with an exponential growth equation. Results 
represent the mean of three biological replicates ± SEM. 
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5 Physicochemical characterisation of 

plasma polymer coatings 

5.1 Introduction 

Plasma polymerisation is based on the ionisation of a monomeric compound under high 

pressure, resulting in the development of chemically reactive species that combine to form 

solid polymers [438, 439]. During ionisation, atoms or molecules acquire a positive or 

negative charge due to the gain or loss of electrons, which causes the formation of ions. Free 

electrons gain energy from the surrounding electric field and loose it through collisions with 

other molecules. The dynamic within the gas is determined by Coulomb (electrostatic) 

interactions between charged particles [440]. The developing gases can be weakly (small 

fractions of charged particles) or strongly ionised. Ideally, the sum of all positive and negative 

charges would be neutral (quasineutral state) [441]. Therefore a plasma can be described as 

an ionised, quasi-neutral gas and is composed of different particles / molecules, such as 

electrons, ions or photons [442]. The resulting polymer layers can be very complex with some 

fragments being short whereas others might form large, crosslinked and highly branched 

chains [443]. Although it was proposed that modification of plasma deposition parameters, 

such as temperature, monomer flow rate and input power can influence its composition 

[444-446], the films remain heterogeneous, not well defined layers and the underlying inter- 

and intramolecular processes are complex. However, the exact processes of plasma polymer 

formation are complex process and are not fully understood yet [438, 447-449].  

A schematic set up of a plasma polymerisation unit is shown in Figure 5.1 A. Substrates in this 

study were coated using a custom build gradientiser (Figure 5.1 C). The entire polymerisation 

process occurs within a reaction chamber, in which any solid support can be entirely coated 

with a plasma polymer [450]. An advantage of plasma polymerisation is that very thin films 
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can be deposited on a large number of materials using a fast, solvent free and simple one-

step coating procedure [451]. Moreover, a high variety of surface treatments is now available 

that allow modification of plasma physicochemical properties, such as wettability, 

topography or even functionalisation of the plasma with chemical groups or biological 

molecules [452-454]. This has led to novel developments in different scientific areas, 

including composite materials, membranes, protective coatings, dielectric films as well as 

biomaterials and biomedical applications [455-464].  

 

Figure 5.1: (A) Simplified schematic diagram of the Bell plasma reactor (static type). The monomeric substance 
(liquid or gas) is led through the system and is cooled down with liquid nitrogen before it enters the reaction 
chamber, a cylindrical tube. Internal electrodes put the monomer into a plasma state that is composed of a variety 
of chemical species. The developing polymers then form crosslinked and branched chains and attach to solid 
surfaces (including substrates). The temperature and pressure inside can be precisely regulated (B) Schematic of 
the plasma polymerisation process. Plasma polymerisation can occur plasma induced (free-radical induced 
polymerisation of molecule with C-C double bonds) or through plasma state polymerisation (depends on presence 
of other reactive species in the plasma). The result is a polymer layer on solid surfaces. (C) Gradientiser. 

Nitrogen rich precursors are of great interest in the field of plasma polymerisation as they 

lead to the formation of a number of nitrogen based functional groups, including primary 

amines [465-467]. These films can be deposited using (1) a nitrogen based gas, i.e. allylamine 

or propyl amine [459, 468-470] or (2) a gaseous mixture of an amine containing gas and 

hydrocarbons i.e. ammonia [466, 468, 471]. For example, allylamine (AA) that is used in this 

study, is a frequently used plasma precursor as it contains besides an amine also a vinyl group 
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which is advantageous for the initiation of the polymerisation [302, 456, 468, 472, 473]. The 

plasma films are stable under different conditions, including high salt concentration and 

temperature [470].  

Here we investigated the physicochemical properties of glass cover slips coated either with 

100% AA or 100% OD (homopolymers) or with  copolymers (1) 75% AA / 25% OD (2) 50% AA 

/ 50% OD and (3) 25% AA / 75% OD. These will be referred to as 0% AA, 25% AA, 50% AA, 

75% AA and 100% AA through the course of this study (Figure 5.2)1 [474]. The stability of AA 

films in aqueous solution can be increased through crosslinking with octadiene (OD) in which 

functional groups will be retained [473, 475, 476]. Additionally, substrates that showed a 

gradual increase of AA concentration across the substrate1, were investigated (Figure 5.2) 

[58, 277, 477]. Such gradients allow high-throughput screening of cells on a large variety of 

physicochemical data points which may allow the optimal surface properties for a particular 

cell type to be identified. This would also circumvent the need for testing large numbers of 

different, homogeneous substrates in order to find the optimal properties in the future [478]. 

All substrates used in this study were coated under employment of a custom-built 

gradientiser (Figure 5.1 C). 

 

Figure 5.2: List of plasma polymers analysed during the course of this study. 

Aims of this chapter 

To perform a thorough physicochemical analyses of plasma polymer layers.

                                                           
1 All plasma polymer coated substrates were provided by collaborators of the University of South 
Australia, Adelaide. 



 

Physicochemical characterisation of plasma polymer coatings – Results| 154  
 

5.2 Results 

5.2.1 Characterisation of surface chemistry 

5.2.1.1 Surface characterisation using X-Ray Photoelectron Spectroscopy 

Plasma polymer coated glass cover slips were analysed using X-Ray photoelectron 

spectroscopy (XPS) in order to determine the surface elemental composition and the binding 

states of these elements within the surface. As the substrates were composed of allylamine 

(AA) and 1.7-octadiene (OD), carbon and nitrogen were expected. However, as the substrates 

have undergone surface oxidation once in contact with air, oxygen was present on the 

surfaces and therefore included in the analyses [479]. Figure 5.3 shows the elemental 

composition of homo- (100% AA, 100% OD) and copolymers (75% AA, 50% AA, 25% AA) and 

Figure 5.4 the gradient substrates. The 100% AA plasma coated substrates contained about 

30% oxygen components on the substrate surface. This percentage was slightly decreasing 

with increasing OD concentration. The O/C ratio showed a linear correlation of an increased 

amount of oxygen species with increasing AA concentration for homo and copolymers (R2 = 

0.8898, p < 0.001) as well as for gradients (R2 = 0.7591, p < 0.001). A further analyses (binding 

states) of oxygen species was not performed.  

As expected, all substrates showed an increase of surface nitrogen species with increasing 

AA concentration. This was confirmed by survey spectra and high resolution nitrogen spectra 

(Figure 5.3 and Figure 5.4) that showed an increase of nitrogen with increasing AA 

concentration. Also here a linear correlation was found for homo- and copolymers (R2 = 

0.8898, p < 0.001) and for gradients (R2 = 0.9672, p < 0.001). The corresponding values are 

listed in Table 5.1 (homo- and copolymers) and Table 5.2 (gradient).   
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Figure 5.3: (A) Quantification of the elemental composition of plasma polymer coated homo- and copolymers (B) 
Ratio of oxygen/carbon (O/C) and nitrogen/carbon (N/C). Survey (C) and (D) high resolution N1s peak spectra 
show changes of the elemental composition with increasing AA content. 

 

 

Figure 5.4: (A) Quantification of the elemental composition of plasma polymer gradients (B) Ratio of 
oxygen/carbon (O/C) and nitrogen/carbon (N/C). Survey (C) and (D) high resolution N1s peak spectra show 
changes of the elemental composition with increasing AA content. 
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Table 5.1: Elemental surface composition of homo- and copolymers. Shown is the elemental percentage of 
carbon, oxygen and nitrogen as well as the O/C and N/C ratios to allow a compare between substrates. All data 
were obtained via analyses of the survey spectra. 

   Element                              Ratio 
 Carbon (%) Nitrogen (%) Oxygen (%)  N (%) / C (%) O (%) / C (%) 

100% AA 52.61 17.83 29.56  0.34 0.56 

75% AA 65.29 13.26 21.45  0.20 0.33 

50% AA 72.46 8.427 19.11  0.12 0.26 

25% AA 76.91 3.716 19.38  0.05 0.25 

100% OD 80.88  19.12   0.68 

 

Table 5.2: Elemental surface composition of plasma polymer gradients. Shown is the elemental percentage of 
carbon, oxygen and nitrogen as well as the O/C and N/C ratios to allow a compare between substrates. All data 
were obtained via analyses of the survey spectra. 

   Element                              Ratio 
 Carbon (%) Nitrogen (%) Oxygen (%)  N (%) / C (%) O (%) / C (%) 

1 mm (AA) 62.67 19.72 17.61  0.31 0.28 

2 mm 64.34 19.98 15.68  0.31 0.24 

3 mm 64.78 19.34 15.88  0.30 0.25 

4 mm 69.39 17.98 12.63  0.26 0.18 

5 mm 76.10 14.53 9.37  0.19 0.12 

6 mm  76.20 12.67 11.13  0.17 0.15 

7 mm 73.19 11.46 15.35  0.16 0.21 

8 mm 80.40 10.93 8.66  0.14 0.11 

9 mm 82.35 8.61 9.04  0.10 0.11 

10 mm 80.94 8.02 11.04  0.10 0.14 

11 mm (OD) 90.64 3.84 5.52  0.04 0.06 

 

Further analyses of the high resolution C1s peaks allowed quantification of the elemental 

binding states within the plasma layers. Figure 5.5 shows the C1s peak composition of homo- 

and copolymers and Figure 5.6 of the gradient. The corresponding values can be found in 

Table 5.3 and Table 5.4. The results showed an increasing amount of C-N, C-O bonds with 

increasing AA concentration. The determination of the (C-N, C-O) / (C-C, C-H) bond ratio 

allowed a compare of the nitrogen concentration between substrates and confirmed an 

increase of nitrogen (C-N bonds) with an increase of AA (Figure 5.5 and Figure 5.6). As 

expected, a linear correlation was found showing R2 of 0.833 for homo- and copolymer and 
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0.9928 for gradients (p < 0.001). High resolution O1s and N1s peaks were not further 

analysed.  

 

Figure 5.5: (A) C1s peak composition of homo- and copolymers. The proportion of binding states was quantified.  
All data were obtained by curve fitting analyses of C1s high resolution peaks. (B) Ratio of C-O, C-N / C-C, C-H. 

 

Figure 5.6: C1s peak composition of the gradient. The proportion of binding states was quantified.  All data were 
obtained by curve fitting analyses of C1s high resolution peaks. (B) Ratio of C-O, C-N / C-C, C-H. 

Table 5.3: C1s peak composition of homo- and copolymers. All data were obtained by curve fitting analyses of 
C1s high resolution peaks.  

          Carbon C1s            Ratio 

   C-C, C-H (%) C-O, C-N (%) 
 

C-O, C-N / C-C, C-H 

100% AA  50.08 49.92  0.99 

75% AA  48.23 51.77  1.07 

50% AA  62.27 37.63  0.60 

25% AA  68.96 31.04  0.45 

100% OD  70.02 29.98  0.43 
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Table 5.4: C1s peak composition on gradients. All data were obtained by curve fitting analyses of C1s high 
resolution peak.  

                Carbon C1s          Ratio 

   C-C, C-H (%) C-O, C-N (%) 
 

C-O, C-N / C-C, C-H 

1 mm (AA)  
71.28 28.72 

 
0.40 

2 mm  
72.90 27.10 

 
0.37 

3 mm  
74.30 25.70 

 
0.35 

4 mm  
76.08 23.92 

 
0.31 

5 mm  
78.53 21.47 

 
0.27 

6 mm  
80.54 19.46 

 
0.24 

7 mm  
83.15 16.85 

 
0.20 

8 mm  
85.28 14.72 

 
0.17 

9 mm  
87.89 12.11 

 
0.14 

10 mm  
89.09 10.91 

 
0.12 

11 mm (OD) 
 

92.13 7.87 
 

0.09 

 

5.2.1.2 Colorimetric quantification of primary amine groups 

The primary amine density was quantified via colorimetry using two commonly used dyes: 

the large, bivalent Coomassie Brilliant Blue (CBB) and the small, monovalent Orange 2 

(chapter 2.2.3.1, p 37). The results showed about 1.5 x 104 ± 0.5 x 104 primary amine groups 

/ pm2 on 100% AA coated substrates which was decreasing with increasing OD content. A 

25% increase of OD concentration caused a decrease of about 0.5 x 104 primary amine groups 

/ pm2. This trend was consistent regardless of the dye used (Figure 5.7). Interestingly the 

Orange 2 method showed, compared to the CBB method, a lower amount of primary amines 

on the 100% OD samples, whereas the CBB method did not show the presence of any amine 

groups. However, the presence of such small primary amine groups on the OD samples can 

be treated as a random error which can occur due to inherently unpredictable fluctuations 

during measurement / instrumental readings.  

As expected, the results showed a linear correlation of primary amine increase with an 

increase of AA concentration. The linear regression (Figure 5.7) showed a Pearson coefficient 

of R2 = 0.8168 (p < 0.001) for the CBB method and was slightly lower for the Orange 2 method 
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(R2 = 0.6471, p < 0.001). As for quantification the entire substrate has to be measured, it was 

not possible to quantify primary amines/pm2 on gradients. 

 

Figure 5.7: Surface primary amine quantification. (A) Coomassie Blue (CBB) method (B) Orange 2 method and (C) 
Correlation between CBB and Orange 2 method.  

The amount of primary amines detected by the CBB and Orange 2 method was then 

correlated by plotting the amine densities against one another (Figure 5.7 C). Both methods 

revealed a similar amount of primary amines with a nearly ideal (R2 = 1) Pearson coefficient 

(R2 = 0.9796, p < 0.001).  
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The colorimetrically determined primary amine densities were also correlated with the 

amine content that was obtained from XPS analyses (nitrogen / carbon ratio) (Figure 5.8). 

Both showed a correlation in that, with increasing AA concentration there was an increase in 

primary amine density (R2 = 0.72, CBB and R2 = 0.58, Orange 2).   

 

Figure 5.8: Correlation between XPS (N/C ratio) amine group quantification and (A) amine group quantification 
obtained by CBB method and (B) amine group quantification obtained by Orange 2 method. The XPS error bars 
correspond to its general 10% error. 

Repeated measurements on each sample were not possible as it caused a decrease of 

primary amine density (Figure 5.9). Although the employed colorimetric approach is a 

reversible process [287], the rapid change of pH and the high number of washing steps 

caused a decrease of primary amines, most likely due the loss of plasma coating. 
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Figure 5.9: Change of primary amine density after repeating the CBB method on the same substrate.  

5.2.2 Surface wettability analyses 

5.2.2.1 Sessile drop method 

Substrate wettability was assessed using the sessile drop technique, in which a droplet of 

water was placed on the surface. OD rich substrates had high CAs (hydrophobic, 100% OD: 

~80°), whereas an increasing AA concentration caused lower CAs (more hydrophilic, 100% 

AA: ~60°) (Figure 5.10). This trend was confirmed throughout the measurements on the 

gradients, although here only small, insignificant differences were obtained on the AA richer 

side (position 6 mm to 12 mm). The results also showed a linear correlation of an increase in 

CA with increasing OD concentration (R2 = 0.9447, p < 0.001 for homo- and copolymers and 

R2 = 0.8247, p < 0.001 for gradients). In order to compare homo- and copolymers with 

corresponding portions of the gradients, the latter ones were divided into 5 sections and the 

average CA was determined (Table 5.5).  
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Figure 5.10: Plasma polymer CAs. (A) Homo- and copolymers and (B) CA values obtained across the gradient in 
steps of 0.5 mm. * Significant difference compared to a glass control. # Significant difference compared to 100% 
AA. All substrates were significantly different from glass (Tukey model, p < 0.05).  

Table 5.5: Plasma polymer CAs. 

   
Contact Angle  / °  

(homo- and copolymers)  

Contact Angle / °   
(equivalent area on gradient)  

100% AA  
57.67 ± 1.38 

 
57.01 ± 2.06 

75% AA / 25% OD  
65.42 ± 2.78 

 
64.15 ± 1.34 

50% AA / 50% OD  
73.33 ± 2.78 

 
71.28 ± 1.72 

25% AA / 75% OD  
81.04 ± 1.48 

 
81.99 ± 2.92 

100% OD  
84.29 ± 1.19 

 
90.60 ± 3.07 

 

In order to investigate whether there were prominent wettability changes throughout the 

substrate surface, such as surface contamination or particular patterns caused by an uneven 

distribution of functional groups, CA maps were collected (Figure 5.11). All CA maps showed 

an even distribution of CAs across the surfaces with very little variations. The OD substrates 

were hydrophobic throughout (here indicated by green colour) and with increasing AA 

concentration the surfaces became more hydrophilic (here indicated by orange colour). A 

glass substrate was measured as a control and was the most hydrophilic substrate. The 

gradient substrates showed an even transition (colour change) from the hydrophobic to the 

hydrophilic side. These maps gave no indication about surface topography, they only 

represent changes in wettability. 
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Figure 5.11: 2D (top view) and 3D contact angle maps of plasma polymer coated substrates. 2D maps show the 
wettability profile across the surface whereas 3D maps show wettability from one point perspective. These maps 
do not represent topographical features.  
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5.2.2.2 Captive bubble method 

The surface wettability was also investigated using the captive bubble (CB) method where an 

air bubble was placed on a substrate that was immersed in water. As the air bubble was 

considerably larger than a water droplet, it was not possible to specify the exact area of 

measurement for which reason gradient surfaces were not measured. Figure 5.12 shows the 

CAs obtained for the homo- and copolymers when the substrates were directly immersed 

and measured in water or 2 h post exposure in FBS.  

The CA trend resembled the one observed with the sessile drop method. OD rich substrates 

were the most hydrophobic (100% OD about 80°) and the CA significantly decreased with 

increasing AA concentration (100% AA about 40°). Interestingly, the glass CA was higher 

compared to the one obtained by the sessile drop method. As expected from the results 

above, a linear correlation was found between increasing AA concentration and a CA 

decrease (R2 = 0.8623, p < 0.001). When substrates were exposed to FBS prior to 

measurements, the CA of all substrates decreased. This reduction was inconsistent between 

substrates in that, the higher the AA concentration, the smaller the decrease (delta, white 

bars). After exposure to FBS all CAs were consistently 36.95 ± 1.7° regardless of the substrate 

(Table 5.6) and therefore no linear correlation was detected for delta. 

 

Figure 5.12: CAs obtained by the CB method for plasma homo- and copolymers either directly in water or 2 h post 
incubation in FBS. Asterisks indicate significant difference compared to a glass control and number signs 
compared to 100% AA. All substrates were significantly different from glass (Tukey model, p < 0.05).  
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Table 5.6: CB values obtained for homo- and copolymers in distilled water. Samples were either directly in water 
or 2 h post incubation in FBS. 

   Contact Angle (water) / °  Contact Angle (2 h post incubation in FBS) / ° 

100% AA  36.95 ± 1.62  35.32 ± 0.75 

75% AA / 25% OD  41.46 ± 1.87  36.23 ± 1.82 

50% AA / 50% OD  53.30 ± 6.36  39.65 ± 2.22 

25% AA / 75% OD  61.56 ± 2.72  36.06 ± 0.89 

100% OD  80.72 ± 3.83  37.48 ± 1.96 

 

5.2.3 Substrate characterisation using Atomic Force Microscopy 

5.2.3.1 Surface topography and roughness 

The thickness of the plasma polymers coated on glass coverslips was consistently about 10-

15 nm with insignificant variation (p < 0.05, Tukey model) (Figure 5.13).  

 

Figure 5.13: (A) Plasma polymer layer thickness after application on glass cover slips. No significant difference 
was detected (p < 0.05, Tukey model). (B) Analyses of the RMS roughness of all homo- and copolymer coated 
substrates. No significant difference was found (p < 0.05, Tukey model). 

Figure 5.14 shows 5 µm2 2D AFM images. All plasma layers were very smooth and showed 

little topographical differences between substrates (± 2nm). Surface root mean square (RMS) 

roughness quantification did not reveal significant differences between substrates.  
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Figure 5.14: 2D AFM 5 µm2 topographical surface images of homo- and copolymer coated substrates. Brighter 
colours represent higher areas and darker colours represent lower areas. 

5.2.3.2 Surface mechanical properties 

Also surface mechanical properties were analysed by AFM using force measurements. Figure 

5.15 shows the Young’s modulus (elastic modulus) that was obtained for plasma coated 

homo- and copolymers. All substrates had an elastic modulus of about 1 ± 0.3 GPa with no 

significant difference between the different plasma coatings. 

 

Figure 5.15: Analyses of the Young’s modulus (Elastic modulus) of homo- and copolymer plasma coated 
substrates.  No significant difference was found (p < 0.05, Tukey model). All substrates show an elastic modulus 
of about 1 ± 0.3 GPa. 
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The above analyses did not reveal any significant differences in surface topography, RMS 

roughness and elasticity between homo- and copolymers. Therefore gradient substrates 

were assumed to have similar properties and potential changes across the surface with 

respect to these properties were excluded.  

5.3 Discussion 

5.3.1 Characterisation of surface chemistry 

5.3.1.1 X-Ray Photoelectron Spectroscopy 

The XPS analyses from the survey scans showed a high concentration of carbons in all 

substrates, which originated from the hydrocarbon that AA and OD were composed of. It was 

also found that an increasing AA concentration caused an increase in surface amines and 

oxygen functional groups as shown by determination of the N/C and O/C ratio. This trend 

was maintained on gradients. Interestingly the N/C ratio between the 75% AA and 100% AA 

substrates was equal which may be related to a maximum possible ratio reached above which 

the polymer layer would be unstable. Another explanation could be possible surface damage 

as a result of the transport of substrates which may have caused a decrease of nitrogen [474].  

XPS analyses showed that about 20% oxygen species were present on the surface of the 100% 

OD coated substrates and increased with increasing AA concentration. Surface oxygenation 

might have been caused by the presence of H2O and excess oxygen in the reactor during 

polymerisation, or through exposure to atmospheric air [480-483]. XPS analyses were 

performed in dry ultra-high vacuum state, which did not reflect a physiological state.  

Tarasova et al. recently investigated the stability of AA and heptylamine films in water and 

found that already after 24 h a strong ageing occurred that resulted in a high surface oxygen 

content [470]. They also found, that the AA films were more stable when copolymerised with 

OD [470]. This could also explain why the AA rich films investigated here have undergone 
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oxidation rather quickly, whereas copolymerisation with OD lead to an increased stability and 

decreased surface oxidation.  

Although no nitrogen was detected on the 100% OD, a C-N, C-O signal was detected. It has 

to be noted that the C-N and C-O peak areas were fitted together as their peaks are generally 

very close (C-N: 285.7 – 286 eV and C-O: 286.2 – 286.7 eV) [468, 484, 485]. The increase of 

C-O, C-N bonds with increasing AA concentration was probably related to the presence of 

hydroxyl groups through surface oxidation. However, the C-N, C-O / C-C, C-H ratio increased 

with increasing AA concentration could be due to an increase of nitrogen functional groups 

and therefore also primary amines [95].  

The AA plasma layer is composed of several different nitrogen based chemical groups, 

including amines, imines, amides and nitrile groups, whose concentration depends on the 

experimental conditions [479, 486]. The composition of the AA plasma layer alone, and 

copolymerised with OD, is highly complex [472, 475, 480, 486-488]. Therefore no further 

analyses of the oxygen and nitrogen species were performed within this study.  

5.3.1.2 Colorimetric quantification of primary amine groups 

Several methods have been described to quantify the density of primary amine groups on 

surfaces including fluorometry [489], spectrometry [490] and chemical derivatisation of 

functional groups in combination with XPS [491, 492], all of which can be very time 

consuming, expensive and may lack accuracy.  

Here a colorimetric approach was chosen. Two commonly used dyes, Coomassie Brilliant Blue 

(CBB) and Orange 2, were compared about their ability to support the quantification of 

primary amines. Their reaction is based on the electrostatic interactions between the 

negatively charged dye and the positively charged amine groups (protonated in acidic 

solution) [291, 493]. When exchanging the acidic by an alkaline solution, the dye is released 
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and its absorbance can be measured and allows the quantification of primary amine groups 

(chapter 2.2.3.2, p 39) [287, 290].  

An increase of primary amine groups with increasing AA concentration was observed using 

both dyes. However, a comparison of these methods revealed differences in the amount of 

adsorbed dye onto surfaces. Quantification of primary amines using Orange 2 showed only 

¾ of the amount detected by the CBB method. The error bars of all measurements were on 

average 0.4 ± 0.1 x 104 N+ / pm2 regardless of the dye used. When comparing both methods 

a linear correlation was found (R2 = 0.98, p < 0.0001) and indicated that both methods gave 

a satisfying (and in one another’s range) indication of surface primary amine density. 

Noel et al. used both methods to quantify the amount of primary amines on aminated 

polyethylene terephthalate (PET) films. They found that the CBB method gave higher values 

than the Orange 2 method on pristine (not aminated) films, suggesting non-specific 

adsorption of CBB [290]. This would also explain the higher amount of CBB detected on 

plasma polymers compared to the Orange 2 method. Other experimental conditions, such as 

pH, temperature and time, were optimised previously by other groups and can therefore be 

excluded [494, 495]. However, after Noel et al. aminated the PET films they found that the 

CBB method revealed lower values than the Orange 2 method. They suggested that CBB 

molecules were sterically hindering other CBB molecules and therefore did not reach all 

amine groups of the surface, whereas the small monovalent Orange 2 would reach the 

majority [290]. They also suggested that CBB reacts to primary amines stoichiometrically 2:1. 

However, it has been demonstrated before that one single CBB molecule interacts with only 

one protonated amine group and binding only occurs to protonated amine groups that are 

spatially available [287, 289, 291]. These findings demonstrated that primary amine 

quantification with CBB can be challenging. The argument whether it binds to primary amines 

2:1 or 1:1 stoichiometrically can cause large difference when analysing data. Moreover, it is 
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a large molecule and its steric hindrance towards other CBB molecules as well as the 

hindrance caused by surfaces itself can easily lead to underestimation of primary amines. 

Therefore, Orange 2 might be a more suitable for primary amine quantification [290]. 

However, in contrast to many other methods colorimetry has been found cost efficient, fast 

and quantitative with the most influential drawback being non-specific adsorption [288, 290]. 

Also the correlation of primary amine densities obtained by colorimetry and those obtained 

by XPS (N / C ratio) confirmed the increase of amine groups with increasing AA concentration.  

In conclusion, both methods were suitable to quantify the amount of primary amine groups 

on biomaterial surfaces and allowed the detection of primary amine groups sufficiently. 

Alongside XPS, this colorimetric approach highlighted an increasing presence of primary 

amine groups with increasing AA concentration. However, due to its characteristic 

monovalent structure the Orange 2 dye may be the better choice compared to the large 

bivalent CBB dye for the detection of primary amine groups as it can bind to sterically 

hindered groups to a higher extent.  

5.3.2 Surface wettability analyses 

Both, the sessile drop and CB analyses showed a decreasing CA with increasing AA 

concentration. This can be attributed to the fact that AA contained a large number of 

hydrophilic nitrogen functional groups such as primary amines, amides and imines [466, 471]. 

In addition, as discussed above, a higher AA content led to an increased presence of surface 

oxygen species (surface oxidation) that will contribute to a CA decrease.  

As for the CB method it has to be noted that AA films are composed of a complex and flexible 

network that can rearrange itself and the surface amine groups [496]. Such a rearrangement 

may occur in a short time and lead to hydrophilic groups sticking out of the surface and 

therefore making it more hydrophilic.  
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The interactions between proteins and surfaces of varying wettability are of great interest. 

In order to investigate whether the substrates differed in their ability to adsorb proteins, they 

were immersed in FBS for 2 h prior to measurements. Interestingly, the CA decreased on all 

substrates and reached a value of about 40°, regardless of the coating. This indicated that 

proteins adsorbed onto all surfaces. An initial protein adsorption occurs within seconds with 

the main driving force being the cumulative effect of non-covalent interactions, such as 

electrostatic interactions and van der Waals forces [378, 497]. Proteins in solution will disturb 

the water molecule organisation on hydrophobic surfaces, which causes an increase in 

entropy and drives protein adsorption [497]. On the other hand polar groups of proteins and 

water will compete for interaction with hydrophilic surfaces (repulsive solvation forces) [80, 

81, 378]. Although protein adsorption onto hydrophilic surfaces is energetically unfavourable 

and research has shown that generally more proteins adsorb to hydrophobic surfaces, the 

CA measurements did not reveal any significant difference between the substrates [82, 498]. 

However, the CA measurements did not give information about protein identity and 

conformation and therefore did not allow a direct comparison of substrates with respect to 

protein adsorption. Moreover, it has to be taken into account that the interactions between 

proteins themselves, their chemical properties and concentration but also substrate 

properties influence protein adsorption [497]. Gradient substrates were not analysed using 

the CB method as the applied air bubbles were too large to be attributed to a particular area 

of the coverslips. However, protein adsorption on plasma polymer gradients has been 

studied in the past [32, 474].  

Finally it has to be noted that the CAs for the glass control differed between both methods. 

When analysed by the sessile drop method, the CA was hydrophilic (~35°) as expected 

whereas determination using the CB approach revealed a rather hydrophobic value (~68°). 

The CA increase most likely occurred due to surface damage, such as small scratches or was 

caused by contamination, such as dust particles or air-born lipids. The glass has not been 
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specially treated with detergent / surfactant solution, neither has it undergone velocity jet 

cleaning or any kind of plasma or acid treatment prior measurements [365, 366]. 

5.3.3 Substrate characterisation using Atomic Force Microscopy 

5.3.3.1 Surface thickness and topography 

Plasma thickness was found to be in the order of 10 ± 5 nm and this was consistent for all 

layers. This was expected as plasma films are generally ultrathin films [499]. 

Surface topographical images were taken from homo- and copolymers and roughness 

analysis showed that all surfaces were very smooth with an overall distance between lowest 

points and highest points of about 4 nm. Although no images were collected from gradient 

surfaces, these results suggested a rather smooth transition from the hydrocarbon rich side 

to the amine rich side without the formation of particular surface structures or artefacts. 

Plasma polymer films are generally flat and show only little roughness variations of few 

nanometres, sometimes even blow 1 nm [499].  

5.3.3.2 Surface mechanical properties 

All coatings had a Young’s modulus of 1 ± 0. 2 GPa. Therefore it can be assumed that on 

gradients no significant elasticity changes occurred across the surface. However, the plasma 

polymer layers were very thin (~ 10- 15 nm) and therefore a contribution of the underlying 

glass cover slip cannot be excluded. Depending on the method used, the Young’s modulus of 

a glass cover slip was found to be about ~72.4 GPa by biaxial flexure [500], 85 GPa using the 

ultrasonic pulse-echo method [500] and ~ 67–85.5  by nanoindentation [501, 502].    

5.4 Conclusions 

The above data showed that the gradients displayed changes in physicochemical properties 

that resembled, depending on the area, the homo-and copolymers. An increase in AA 

concentration caused an increase of nitrogen-containing functional groups, but also oxygen 



 

Physicochemical characterisation of plasma polymer coatings – Conclusions| 173  
 

species due to surface oxidation. As both of these functional groups are hydrophilic, this 

contributed to an increase of wettability with increasing AA concentration. On the other 

hand, the plasma polymer composition did not influence elasticity, topography and 

roughness. However, it has to be noted that the latter measurements were employed in air 

and did not fully reflect a physiological (cell culture conditions, in vivo) state. These data also 

demonstrated that there was no phase separation due to the chemical differences between 

these two monomers in that no signs of surface formation with amine-rich or hydrocarbon 

rich areas were found. Although no analyses of topography and elasticity were performed on 

gradients it was assumed that no such differences would occur across the surfaces. 
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6 Effect of plasma polymer coatings on 

mouse kidney-derived stem cells 

6.1 Introduction 

It is well known that surface physicochemical properties can influence cell behaviour greatly. 

This has led to the development of a large variety of biomaterials in recent years for various 

applications, including cell culture, tissues engineering and drug delivery. In this respect, 

particularly plasma polymer coatings have gained interest as they have many advantages. 

For instance, they allow the modification of any material, including the chemical 

functionalisation of surfaces for designing substrates with tailored properties that can 

improve substrate biocompatibility [457-459, 503-505]. A large range of plasma polymers, 

including ethanol, hexane, acrylic acid and 1,7-octadiene (OD), have been explored for their 

effect on cellular behaviour in the past [302, 506]. Also allylamine (AA) is a well-studied 

plasma precursor. It contains a primary amine group which allows the deposition of a large 

number of nitrogen-based functional groups on surfaces, particularly primary amine groups. 

These have been linked to cellular regulation, including enhanced proliferation, adhesion, 

spreading and differentiation in the past [302, 459, 472, 487, 492, 507].  

In addition, plasma polymer coatings can be applied in multilayers or as gradients that allows 

to develop substrates with changing properties across the length of a substrate and therefore 

allows high throughput screening of cells on a single substrate [95, 112, 277, 474, 508, 509]. 

In vivo processes are highly complex. Many of these are guided through the presence of 

gradients, i.e. chemotaxis, a phenomenon that characterises cell movement in response to 

chemical stimuli and is responsible for a number of processes in the body, including the  

immune response to cytokine gradients [510, 511] and cell migration during nervous system 

development in response to protein gradients [512-516].  
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Surface gradients have been shown to influence cell behaviour and differentiation in the past 

[56, 112, 517]. For example, Wang et al. studied adhesion, growth and differentiation of 

MSCs on surface chemical plasma gradients and showed the influence of changing surface 

chemistry on cell density and osteogenic differentiation [56].  

Here, plasma-coated substrates composed of 100% allylamine (AA), 100% 1.7-octadiene (OD) 

(homopolymers) and copolymers composed of 75% AA / 25% OD, 50% AA / 50% OD and 25% 

AA / 75% OD (referred to as 75% AA, 50% AA and 25% AA) as well as AA-OD gradients were 

compared for their effects on cell growth, spreading and differentiation of mouse kidney 

stem cells (mKSCs) with particular interest in cell differentiation into proximal tubule cells 

(PTCs) and podocytes, two cell types that are commonly involved in kidney disease. 

As plasma polymers can be applied on any type of surface, regardless of its shape, 

composition and topography, plasma polymerisation is also a useful method to analyse 

surface topography under exclusion of other physicochemical properties. As part of this 

study, a range of substrates with different topographies has been additionally investigated2. 

16 nm and 68 nm gold nanoparticles (AuNPs) have been applied on a AA coated glass 

substrate (via covalent binding) either with homogeneous density or in form of a density 

gradient, as previously described [95]. The AuNP density on homogeneous coatings equalled 

the density of nanoparticles on the densest portion of the gradient substrates. Based on the 

above introduced (chapter 5) plasma polymer coatings and their influence on mKSC 

behaviour and differentiation, these AuNP coated substrates were over coated with one of 

four plasma coatings: 100% AA, 75%AA, 25%AA or 100% OD (Figure 6.1). This allowed an 

analyses of surface topography on mKSC differentiation in combination with different surface 

chemistries. 

                                                           
2 This work has been part of a collaboration with Ass. Prof. Krasimir Vasilev and Dr. Melanie Ramiasa, 
University of South Australia. 
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Figure 6.1: Representation of substrates that were investigated for their ability to direct the differentiation of 
mKSCs during the course of this study. (A) Homo- and copolymer coated substrates (physicochemically analysed 
in chapter 5). (B) Substrates, coated with a homogeneous layer of 16 nm or 68 nm diameter AuNPs, over-coated 
with plasma polymers and (C) Substrates, coated with a 16 nm or 68 nm diameter AuNP density gradient layer 
and coated with plasma polymers.  

Aims of this chapter 

(1) Explore the ability of AA and OD composed plasma polymer-coated substrates to 

influence cell behaviour and promote differentiation of mKSCs.  

(2) Explore the influence of nanotopography size and density in combination with 

plasma polymer coatings to promote differentiation of mKSCs.  

6.2 Results 

6.2.1 Effect of surface chemistry on mouse kidney-derived stem cells 

6.2.1.1 Effect of surface chemistry on the behaviour of mouse kidney-derived stem cells 

Plasma polymer coatings composed of AA and OD were investigated for their influence on 

mKSC behaviour. mKSCs were seeded on plasma coated substrates and on a glass control at 
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a density of 1000 cells / well (24 well plate containing a polymer coated 13 mm coverslip). 

Cell number and viability were analysed at five different time points post seeding and 

population doubling time (PDT) was determined. Figure 6.2 shows mKSC proliferation over a 

course of 96 h in culture. At 6 h post seeding about 10 cells / mm2 were attached on all 

substrates and all areas across the gradient. The number of cells on homo- and copolymers 

increased by a similar extent regardless of the surface. On gradient substrates there was a 

trend of an increasing cell number 72 and 96 h post seeding towards the middle portion, 

which was not significant. PDT showed no significant difference between homo- and 

copolymers as well as when comparing different areas of the gradient (Figure 6.3). In both 

cases cells needed on average about 30 ± 5 h to double their population. The cell viability on 

substrates confirmed an exponential cell growth of viable cells on homo- and copolymers 

(Figure 6.4). For viability measurements, mKSCs cultured on the entire substrate were 

analysed. Therefore, it was not possible to assess cell viability on gradients. 

 

Figure 6.2: mKSC cell proliferation. mKSCs were seeded at a density of 1 x 103 cells / well. Cell number was 
determined at 5 different time points post seeding on (A) homo- and copolymers and (B) gradient. Results 
represent the mean of three biological replicates ± SEM. Black asterisks indicate significant difference compared 
to a glass control. Blue asterisks indicate significant difference compared to the middle portion at the same time 
point (Tukey model, p < 0.05). 
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Figure 6.3: Population doubling time. mKSCs were seeded at a density of 1 x 103 cells / well. PDT was quantified 
from cell proliferation over 96 h in culture on (A) homo- and copolymers and (B) gradients. Results represent the 
mean of three biological replicates ± SEM. No significant difference was found (Tukey model, p < 0.05). 

 

Figure 6.4: mKSC cell viability. mKSCs were seeded at a density of 1 x 103 cells / well. Cell viability was determined 
at 5 different time points post seeding on homo- and copolymers and a glass. Results represent the mean of three 
biological replicates ± SEM. Asterisks indicate significant difference compared to a glass control (Tukey model, p 
< 0.05).  

6.2.1.2 Effect of surface chemistry on the differentiation of mouse kidney-derived stem 

cells into podocytes 

Figure 6.5 and Figure 6.6 show phase contrast images and phalloidin labelled mKSCs seeded 

onto plasma polymers and gradients 24 h and 96 h post seeding. The images show that the 

cells were homogeneously distributed across the surfaces and the gradients 24 h post 

seeding with cells displaying a similar morphology on all substrates and portions of the 

gradients. However, 96 h post seeding cells on AA richer substrates / regions appeared more 

spread with a podocyte-like morphology, in that, they were large and rounded with a 

pronounced cytoskeleton at the cell periphery (white arrows).  
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Figure 6.5: mKSCs cultured on homo- and copolymers. The images show phase contrast images and, correspondingly, F-actin and DAPI labelled cells at a higher resolution at two different time 
points post seeding. mKSCs were seeded at a density of 1 x 103 cells / well. White arrows indicate podocyte-like cells. Scale bar is 100 µm. 
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Figure 6.6: mKSCs cultured on gradient surfaces. The images show phase contrast images and, correspondingly, F-actin and DAPI labelled cells at a higher resolution at two different time points 
post seeding. mKSCs were seeded at a density of 1 x 103 cells / well. White arrows indicate podocyte-like cells. Scale bar is 100 µm.
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Following these observations, mKSC spread was quantified (Figure 6.7). The results showed, 

that 6 h post seeding the cell spread a very similar on all substrates (about 2000 ± 500 µm2) 

with no significant difference between homo- and copolymers and between different 

portions across the gradient. However, with increasing cell culture time the cell spread area 

on AA richer surfaces / regions increased significantly up to 3500 – 4000 µm2 after 72 to 96 h 

culture. On the contrary, cells on OD richer surfaces were only about 2500 - 3000 µm in size.  

 

Figure 6.7: mKSCs spread analyses. mKSCs were seeded at a density of 1 x 103 cells / 13 mm polymer coated 
coverslip. Cell spread was quantified at five different time points post seeding. Asterisks indicate significant 
difference compared to a glass control (Tukey test, p < 0.05). Results represent the mean of three biological 
replicates ± SEM. 

Subsequently, the number of podocyte-like cells was quantified at two time points: 24 and 

96 h post seeding (Figure 6.8). On all substrates, including the gradients, 24 h post seeding 

about 10-15% of the cells were displaying a podocyte-like morphology, which can be 
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attributed to spontaneous differentiation. 96 h post seeding a significantly larger number of 

podocyte-like cells was detected on AA rich surfaces / regions compared to a glass control 

and OD richer surfaces / regions.  

 

Figure 6.8: Podocyte like cells. mKSCs were seeded at a density of 1 x 103 cells well. The number of podocyte like 
cells was quantified. Asterisks indicate significant difference compared to a glass control (Tukey model, p < 0.05). 
Results represent the mean of three biological replicates ± SEM. 

These findings were supported by immunostaining. Figure 6.9 shows the staining of mKSC for 

the podocyte marker nephrin. Towards AA richer surfaces, areas on the gradient respectively, 

the cells became larger with podocyte-like morphology and were often binuclear (arrows). 

Finally, mKSCs were analysed for the expression of three podocyte characteristic genes: 

Synaptopodin (Synpo), Podocalyxin (Pdx) and Wilms Tumor Gene (WT1) (Figure 6.10). The 

results indicated a trend for higher podocyte gene expression, particularly for Synpo and 

WT1, on AA richer surfaces. However, no significant difference was detected. Gradients were 
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not analysed, as it was not possible to determine which particular area the cells were isolated 

from. 

 

Figure 6.9: Nephrin staining. mKSCs were seeded at a density of 1 x 103 cells / well and cultured on polyacrylates 
for 96 h. White arrows indicate podocytes. Blue: DAPI. Scale bar: 100 µm. 

 

Figure 6.10: qRT-PCR analyses of mKSCs for podocyte characteristic genes as relative expression to mKSCs on a 
glass control 96 h post seeding on substrates. Seeding density: 1 x 103 cells / well. Gapdh and beta Actin (ACTB) 
were used as housekeeping genes. No significant difference was detected. Results represent the mean of three 
biological replicates ± SEM. 

6.2.1.3 Effect of surface chemistry on the differentiation of mouse kidney-derived stem 

cells into proximal tubule cells 

In order to explore whether mKSCs were differentiating into proximal tubule cells (PTCs), the 

cells were stained for the presence of megalin. Figure 6.11 shows mKSCs stained for megalin 
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96 h post seeding on the plasma coated substrates (here co-stained with the glycoprotein 

marker laminin for improved visualisation of the cells). On homo- and copolymers a larger 

number of megalin expressing cells were detected on OD richer surfaces / regions. On 

gradients a higher number of cells were found to be expressing megalin on OD richer regions, 

but also towards the middle portion of the substrates.  Cells on the glass control showed only 

a small number of megalin expressing cells (spontaneous differentiation).  

 

Figure 6.11: Megalin staining 96 h post seeding on polyacrylates. Blue: DAPI and green: Laminin. mKSCs were 
seeded at a density of 1 x 103 cells / well. Scale bar: 100 µm. 

In order to confirm that the megalin expression in fact resulted from the influence of the 

plasma substrates, the cell number of megalin expressing cells was quantified at three 

different time points: 6, 48 and 96 h post seeding. Glass was used as a control (Figure 6.12). 

The results showed that 6 h post seeding an equal amount of cells (about 10%) were megalin 

positive on all substrates and areas across the gradient (spontaneous differentiation). The 

number of positive cells increased over time on all substrates with a trend of higher number 

of these cells towards OD richer surfaces / regions. In addition, on gradients a larger number 

of megalin positive cells (about 30%) was detected on the middle portion of the gradient 

(ideally equivalent in surface chemistry to the 50% AA sample), which confirms above 

findings.  
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Moreover, the ability of the mKSCs to endocytotically uptake albumin through the in vivo 

functionality of the transmembrane receptor megalin was assessed. For that, cells were 

cultured on substrates and 24 h before the end of cell culture, incubated in serum-free 

medium and subsequently incubated in serum-free medium supplemented with 

fluorescently labelled albumin (F-BSA) (chapter 2.4.8.3, p 50). The F-BSA uptake of mKSC was 

then quantified using flow cytometry (Figure 6.13) [236]. The results showed that the number 

of cells that did uptake F-BSA was highest on OD rich surfaces and reached values of about 

45% on these. The cell number that did uptake F-BSA was decreasing with increasing AA 

concentration.  

 

Figure 6.12: Quantification of the number of megalin expressing cells. mKSC were seeded at a density of 1 x 103 
cells / well. The number of megalin expressing cells was quantified at 3 different time points post seeding on (A) 
homo- and copolymers and (B) gradients. Asterisks indicate statistical difference compared to a glass control. 
Results represent the mean of three biological replicates ± SEM. 
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Figure 6.13: Albumin uptake assay. (A) Spectra and (B) Flow cytometric analyses of mKSCs after starvation in 
serum free medium and subsequent incubation in serum-free medium supplemented with F-BSA. Cells were 
seeded at a density of 1 x 103 cells/well. Asterisks indicate significant difference compared to a glass control (Tukey 
model p < 0.05). Results represent the mean of three biological replicates ± SEM. 

The gene expression of mKSCs was then analysed for the expression of three PTC 

characteristic genes: megalin (Meg), alkaline phosphatase (AlkPhos) and aquaporin 1 (Aqp1) 

(Figure 6.14). The results showed a trend of higher expression for all PTC markers on the OD 

rich surfaces, however, no significant difference was detected. Gradients were not analysed, 

as it was not possible to determine which substrate portion the cells were isolated from. 
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Figure 6.14: qRT-PCR analyses of mKSCs for PTC characteristic genes as relative expression to mKSCs on a glass 
control. Seeding density: 1 x 103 cells / polymer coated coverslip. Gapdh and beta actin (ACTB) were used as 
housekeeping genes. No statistical differences were detected. Results represent the mean of three biological 
replicates ± SEM. 

6.2.2 Effect of surface nanotopography on mouse kidney-derived 

stem cells 

6.2.2.1 Effect of homogeneous nanotopography on the behaviour and differentiation of 

mouse kidney-derived stem cells 

After evaluation of mKSC behaviour and differentiation on the above described plasma 

polymer substrates, it was investigated whether changes in topography would have an 

additional effect on mKSCs behaviour and differentiation 3. For that, glass cover slips were 

coated with gold nanoparticles (AuNPs) of 16 and 68 nm diameter either homogeneously or 

in form of a density gradient. Four plasma polymer coatings were chosen to overcoat these 

AuNPs: 100% AA, 75% AA, 25% AA or 100% OD (Figure 6.1, p 176).  

Firstly, the effect of AuNPs on mKSC proliferation was analysed. mKSC number was 

determined 24 and 96 h post seeding on substrates that were homogeneously coated with 

16 or 68 nm AuNPs (Figure 6.15). The homogeneity of these AuNP coatings was shown in 

                                                           
3 The following data were obtained as part of a short term collaboration with Ass. Prof. Krasimir Vasilev 
and Dr. Melanie Ramiasa, University of South Australia. 
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previous work (unpublished work)4. The cell number was similar on all substrates at each 

time point with no significant differences with respect to AuNP size.  

Also the PDT did not reveal any significant difference between substrates and showed that 

cells took about 25 h to double their population on all substrates.  

 

Figure 6.15: mKSC proliferation and PDT on AuNP and plasma coated substrates. Cells were seeded at a density 
of 1 x 103 cells / well and cultured for 96 h. (A) Cell proliferation and (B) PDT was determined. A glass and a no-
topography sample (NTC, 100% AA without AuNPs) were used as controls. No significant differences were found 
(Tukey model, p > 0.05). Results represent the mean of three biological replicates ± SEM. 

Subsequently, mKSC morphology was investigated. Figure 6.16 shows phase contrast images 

of mKSCs seeded onto substrates homogeneously coated with either 16 nm or 68 nm AuNPs 

and over coated with plasma polymers. The images showed a higher number of podocyte-

like cells on substrates with higher AA content (white arrows), which confirmed previous 

findings (chapter 6.2.1.2, pp 176-183). However, AuNP size did not appear to have an effect 

on mKSC differentiation into podocytes.   

                                                           
4 Unpublished work by M. Ramiasa et al (2016) 
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These results were reaffirmed by immunostaining. Figure 6.18 shows mKSCs stained for the 

podocyte marker nephrin 96 h post seeding on substrates that were homogeneously coated 

with AuNPs. The images showed a higher number of nephrin expressing cells on substrates 

with a higher AA concentration on both, 16 nm and 68 nm AuNPs.    

 

Figure 6.16: Phase contrast of mKSC seeded onto AuNP and AA and OD plasma coated substrates. Cells were 
seeded at a density of 1 x 103 cells / well and imaged 24 and 96 h post seeding.  White arrows and circles indicate 
podocyte-like cells. (A) 16 nm and (B) 68 nm AuNPs.   
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Figure 6.17: Quantification of podocyte-like cells. mKSC were seeded at a density of 1 x 103 cells / well. A glass 
and a no-topography sample (NTC, 100% AA without AuNPs) were used as controls. Asterisks indicate significant 
difference compared to a glass control (Tukey model, p < 0.05). Results represent the mean of three biological 
replicates ± SEM. 

 

Figure 6.18: Nephrin staining on mKSCs cultured on AuNP and plasma coated substrates for a period of 96 h. Blue: 
DAPI. mKSCs were seeded at a density of 1 x 103 cells / well. Scale bar: 100 µm. 

Moreover, it was confirmed that mKSCs differentiated into PTCs on OD rich surfaces. Figure 

6.19 shows images of mKSCs, seeded on substrates that were homogeneously coated with 

16 or 68 nm AuNPs. Cells were stained for the PTC marker megalin. The results showed a 

higher number of megalin positive cells on OD rich surfaces and a lower number on AA rich 

surfaces.  
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Figure 6.19: Megalin staining staining on mKSCs cultured on AuNP and plasma coated substrates for a period of 
96 h. Blue: DAPI. mKSCs were seeded at a density of 1 x 103 cells / coverslip. Scale bar: 100 µm.  

6.2.2.2 Effect of nanotopographic gradients on behaviour and differentiation of mouse 

kidney-derived stem cells 

To further explore the influence of AuNPs on mKSC behaviour and differentiation, mKSCs 

were seeded on substrates that displayed an AuNP density gradient that was overcoated with 

either 100% AA, 75% AA, 25% AA or 0% AA plasma (Figure 6.1, p 176 ). mKSC number was 

determined 24 and 96 h post seeding on five separate portions of the substrates (Figure 

6.20). mKSC number was similar on all substrates 24 h post seeding and cells were 

proliferating to a similar extent on all substrates. Therefore, AuNP density did not have a 

significant impact on cell proliferation.  

Figure 6.21 shows phase contrast images of mKSCs cultured on 16 or 68 nm AuNP density 

gradients that were overcoated with either 100% AA (representative for 75% AA) and 0% AA 

(100% OD, representative for 25% AA). The images show that mKSCs had the characteristic 

morphology and proliferated on all substrates. As expected, mKSCs cultured on AA richer 

substrates (100% AA and 75% AA) showed a podocyte-like morphology (chapter 6.2.1.2, p 

178). Moreover, it was observed that with increasing AuNP density a higher number of 

podocyte-like cells was present (white arrows). This trend was maintained on all substrates, 

regardless of the AuNP size and plasma coating. The number of podocyte-like cells was then 
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quantified (Figure 6.22). As expected, substrates coated with AA rich plasma films showed, 

compared to OD richer coatings, higher numbers of podocyte-like cells. Moreover, the 

quantification confirmed that the number of podocyte-like cells was highest at substrate 

portions with highest AuNP density, regardless of the AuNP size.  

As expected, mKSCs cultured on OD rich plasma coatings differentiated into PTCs as indicated 

by megalin staining (Figure 6.23). However, mKSC differentiation into PTCs appeared to be 

independent of nanotopography density gradients.  
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Figure 6.20: mKSC proliferation on AuNP density gradients over coated with plasma. Cells were seeded at a 
density of 1 x 103 cells / well. Cell number was determined at 24 and 96 h post seeding. Results represent the 
mean of three biological replicates ± SEM. A glass and a no-topography sample (NTC, 100% AA without AuNPs) 
were used as controls. Asterisks indicate significant difference between cells cultured on 68 nm AuNPs compared 
to the equivalent portion of the gradient coated with 16 nm AuNPs (Tukey model, p < 0.05).  
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Figure 6.21: Representative phase contrast images of mKSCs cultured for 96 h on AuNP density gradients that were over coated with either 100% AA (representative for 75% AA) and 0% AA 
(representative for 25% AA) plasma. Cells were seeded at a density of 1 x 103 cells / coverslip. Scale bar is 100 µm.



 

The effect of plasma polymer coatings on mKSCs – Results| 195  
  

 

Figure 6.22: Quantification of podocyte-like cells on AuNP density gradient substrates over coated with plasma. 
mKSCs were seeded at a density of 1 x 103 cells / well. A glass and a no-topography sample (NTC, 100% AA without 
AuNPs) were used as controls. Asterisks indicate significant difference compared to the portion of the substrates 
with the lowest AuNP density (Tukey model, p < 0.05). Results represent the mean of three biological replicates 
± SEM.
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Figure 6.23: Megalin staining. Blue: DAPI. mKSCs were seeded at a density of 1 x 103 cells / coverslip on a 16 nm 
AuNP density gradient (representative for 68 nm AuNPs). Images display mKSCs that were seeded on 0% AA 
coated gradients (representative for 25% AA) and 100% AA coated gradients (representative for 75% AA). Scale 
bar: 100 µm. 

6.3 Discussion  

6.3.1 Effect of surface chemistry on mouse kidney-derived stem cells 

Firstly isolated from a neonatal mouse kidney, the mKSC line was shown to spontaneously 

generate podocyte-, mesangial – and proximal tubule like cells in vitro [249, 251]. These cells 

were also capable of differentiating into non-renal cells, such as adipocytes, osteocytes or 

chondrocytes under appropriate cell culture conditions [7, 13, 250, 271, 345, 408]. This study 

was aimed on identifying plasma polymer coatings, composed of AA and OD that direct the 

differentiation of mKSCs into specialised renal cell lines, podocytes or PTCs.  

The mKSCs proliferated and showed the characteristic mKSC morphology on all substrates 

and across the gradient. As the cell number was similar on all substrates 24 h post seeding, 

an initial homogeneous distribution of cells across the substrates was assumed. However, on 

gradients the cell number showed a trend to increase towards the middle portion.  A reason 

could be that cells were proliferating faster in this region. However, such a trend was not 

observed on 50% AA copolymers which should be approximately equal in terms of 

physicochemical properties. On the other hand, this phenomenon could also be explained 

with cell migration in response to gradual changes of substrate properties. Cell migration is 
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a common process in in vivo that takes part in a number of physiological and pathological 

processes, including angiogenesis, tumour metastasis and wound healing [518-522]. 

Therefore, cells respond to external physicochemical properties and stimuli often with 

migration that is generally accompanied by cytoskeletal changes, extension of membranes 

(such as lamellipodia and filopodia) and the formation of protrusions [523]. The resulting 

counter-forces between cells and substrates allow cell attachment to the surfaces and can 

promote cell migration [524].   

Cells often respond to stimuli gradients in vivo, such as biophysical cues that include 

durotaxis (cell migration in response to surface rigidity gradients), mechanotaxis (the 

directed cellular movement in response to mechanical cues) and chemotaxis (cell movement 

in response to chemical stimuli) [514, 525-528]. These processes are often difficult to explore 

in vitro and therefore increase interest in developing biomaterials that mimic gradual 

changes of surface physicochemical properties for high throughput screening of cells. 

Particularly substrate stiffness gradients have been increasingly recognised in terms of 

supporting cell migration and differentiation [529, 530]. However, the physicochemical 

analyses of plasma substrates did not show any significant differences in terms of elasticity 

nor topography, which is why this trend of migration was correlated to changes in surface 

chemistry. Surface chemistry can have striking effects on cellular behaviour. For example, it 

was shown that human lung cancer cells change their metastatic behaviour and migration in 

response to different functional groups with preference to migrate towards -COOH and -NH2 

rich areas [531]. Neural stem cells were shown to migrate on -OH rich surfaces [532] and 

adipose-derived stromal cells migrate reinforced in the presence of -CH3 functional groups 

in which their identity also influences the migration speed [533]. These data show that 

changes in surface chemistry may allow cells to migrate towards a favoured position [534].  

https://en.wikipedia.org/wiki/Cell_migration
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Within this study it was also found that mKSCs showed larger spread and a podocyte-like 

morphology when cultured on AA richer substrates / regions. These cells were often 

binuclear and voluminous with an arborised well-developed cytoskeleton and large foot 

processes [214, 215, 250]. This trend was also observed on gradients. This was confirmed by 

analysing the cellular morphology and quantification of these podocyte-like cells that 

showed an average of about 30% differentiated cells on AA rich substrates / regions 96 h 

post seeding compared to about 15% on OD richer substrates. These podocyte-like cells also 

expressed the characteristic marker nephrin. 

On substrates with higher OD content a larger number of proximal tubule cells (PTCs) were 

identified. About 30% of mKSCs cultured on OD rich substrates were megalin positive, 

compared to about 10% on the control. These cells were also functional as confirmed by an 

albumin uptake assay. Although also on gradients significantly more megalin expressing cells 

were present on the OD rich side there was also a high number of PTCs found towards the 

middle portions, where about 35% of the cells expressed megalin. This could be related to 

the cell density.  

It has recently been shown that MSC attachment to plasma gradients was highly dependent 

on surface chemistry and caused the formation of a cell density gradient along the substrate  

[56]. This effect became negligible during long term cell culture as a result of cell migration 

and proliferation. It was also found that the cells differentiated into adipocytes and 

osteocytes, although it was emphasised that this could be a result of increased cell density. 

Particularly osteogenic differentiation was found in areas with high cell densities [56]. Similar 

effects have been shown on other cell types before [56, 535-538]. Similar results were 

obtained within this study. mKSCs showed higher cell density in the middle portion of the 

gradient. This increased cell density have influenced cell differentiation towards PTCs on 

gradients, whereas podocyte differentiation was independent of it. During the course of this 
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study it was generally noticed that the cell density was a contributing factor for mKSC 

differentiating into PTCs, for which reason mKSCs were initially seeded at low densities and 

the cell culture period was kept short.  

However, surface chemistry that is generally accompanied by changes in wettability, had the 

largest impact on cell differentiation. A number of groups have shown enhanced cell 

adhesion on hydrophilic surfaces [65, 66]. For example, fibroblasts were found to display 

rounded, largely spread morphology, highly organised actin stress fibers and a large number 

of focal adhesions on hydrophilic surfaces, whereas they were smaller with bipolar 

morphology, minimal actin fibers and only little focal adhesions on hydrophobic surface 

[539]. Adipose derived stromal cells spread largely on positively charged amine groups and 

neutral hydroxyl groups, whereas they were displayed a smaller phenotype and 

differentiated towards adipocytes on -CH3 functional groups [533]. This resembles the results 

found in this study. AA rich, hydrophilic surfaces showed a larger number of cells with a 

voluminous body that displayed increased cell spread and a podocyte-like morphology, 

whereas cells on the more hydrophobic, carbon rich substrates were rather maintaining their 

initial phenotype, did not spread as much and expressed PTC markers.  

Also protein adsorption to substrates might have had an impact on cell differentiation [539]. 

The presence of surface functional groups can influence conformation of adsorbed proteins 

and therefore cell attachment, differentiation and also migration [77, 533, 540, 541].  

Gene expression analyses showed a trend for higher podocyte gene expression on AA rich 

surfaces and, vice versa, PTC gene expression on hydrocarbon richer surfaces. A possible 

explanation is that, in order to gain enough cDNA for subsequent analyses, we combined cell 

material from 3 coverslips for each replicate. This could have caused an error and therefore 

covered significant differences as all protein analyses were accomplished on single coverslip 

replicates. In addition, it has to be noted that gene expression is controlled by a number of 
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factors, including transcriptional and post-transcriptional regulation [409-411]. The half-life 

of various proteins can range from minutes to days and is therefore often larger than the 

degradation rate of mRNAs. Moreover, the rate of mRNA transcription is lower than the rate 

of protein translation [412]. Furthermore, protein concentration itself is influenced by 

various parameters, such as synthesis and cleavage. Therefore it is possible to have low 

mRNA expression but high concentration of protein, i.e. if a protein directly influences its 

own expression [413]. 

6.3.2 Effect of surface topography on mouse kidney-derived stem 

cells  

The above described results have shown that surface chemistry directed mKSC 

differentiation into specialised renal cell types, namely podocytes and PTCs.  

However, it is well-known that cellular response can also be effected by surface topography 

[86, 542]. In order to investigate whether surface topographical cues have effects on mKSCs 

behaviour and the extent of differentiation, glass coverslips were coated with gold 

nanoparticles (AuNPs), 16 or 68 nm in size, either with homogeneous density or in form of 

density gradients, and overcoated with plasma polymers that were shown to effect mKSC 

differentiation: AA rich coatings, as these directed mKSC differentiation into podocytes 

(100% AA and 75% AA / 25% OD) and hydrocarbon rich coatings (100% OD and 75% OD / 

25% AA) as these coatings directed mKSC differentiation into PTCs5. The AuNP density on the 

densest portion of the gradients equalled the density on homogeneous coatings.  

The results showed that surface topography did not have a significant impact on cell 

proliferation. In terms of cell differentiation, hydrocarbon rich surfaces were confirmed to 

direct mKSC differentiation into PTCs, but neither AuNP size nor density had a significant 

                                                           
5 This work was part of a collaborative project with Ass. Prof. Krasimir Vasilev and Dr. Melanie Ramiasa, 
University of South Australia. The physicochemical characterisation of these surface has been 
accomplished by the collaborators.   
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effect on mKSC differentiation into PTC. The results also confirmed that AA rich substrates 

directed mKSC differentiation into podocytes. Nanoparticle size did not appear to influence 

cell differentiation, as a similar amount of podocyte-like cells was found on 16 nm and 68 nm 

AuNPs coated substrates. However, it was found that a change in surface topography (AuNP 

density gradients) resulted in the presence of significantly more podocyte-like cells towards 

the AuNP denser portions of these gradients. This trend was observed regardless of the 

plasma overcoating. It has to be noted that the AuNP density on homogeneous substrates 

equalled the density on the densest portions of the gradients. Therefore we can correlate 

this increased amount of podocyte-like cells on gradients with the presence of a gradient 

itself. Nanotopography was shown to effect gene expression and cell differentiation of 

various cell types in the past [44, 99, 543, 544]. Cells can respond to local variations in 

topography with morphological and cytoskeletal changes [534]. For example, embryonic 

stem cells (ESCs) and MSCs differentiated into neuronal lineages when cultured on substrates 

with nanogratings [99, 545]. MSCs were also shown to differentiate into osteocytes when 

cultured on topographically irregular substrates, whereas no differentiation was observed 

on fully ordered nanopits [544]. As discussed before (chapter 4.3.2, p 137) with polyacryales, 

also here there might have been an effect of the spatial distribution of these AuNPs and the 

degree of disorder. However, this will not be further discussed as all surface analyses were 

accomplished by collaborators (unpublished work, Ramiasa et al., 2016).   

However, it is interesting that the AuNP density gradients had an impact on mKSC 

differentiation into podocyte-like cells, whereas homogenous AuNP density did not have a 

significant impact.  This suggests that the presence of a AuNP density gradient was the driving 

factor for cell differentiation into podocytes in this study. Cells recognise their environment 

and will responds to the presented features as shown here by introducing topographical 

cues. For example, fibroblast explore a substrate with filopodia on their cell laminae and, 
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once a suitable area is found, the cell-substrate contact is stabilised through the recruitment 

of microtubules and formation of focal adhesions and mature actin fibres [546]. Therefore, 

the presence of a gradient may allow mKSCs to adapt their morphology in response to these 

changes, the increase of AuNP density (and therefore topographical cues) and promote the 

development of the podocyte characteristic morphology. 

Lastly, also protein adsorption might have effected these results. Surface topography can 

critically influence substrate-protein interactions and therefore cell response [547]. This is 

supported by recent research that has shown that the nanotopography does not necessarily  

influence cell behaviour in serum free medium [93]. However, this effect was not further 

investigated.  

6.4 Conclusions 

In this study plasma polymer coated surfaces composed of AA and OD were investigated for 

their ability to influence behaviour and differentiation of mKSCs. The results showed that 

mKSCs cultured on AA richer surfaces were to a high extent largely spread, voluminous, 

displayed a podocyte-like morphology and expressed characteristic markers. mKSCs on OD 

differentiated to a higher extent into PTCs as was evidenced by the expression of 

characteristic PTC markers and in vitro functionality. As substrate elasticity and topography 

did not differ between substrates it was concluded that mKSC differentiation was a result of 

the surface chemical composition and the accompanied differences in wettability,  

The incorporation of gold nanoparticles (AuNPs) underneath promising plasma coatings 

allowed us to explore whether nanotopographic c ues would inhibit or enhance mKSC 

differentiation additionally. Homogeneous density AuNP coating did not have a significant 

effect on cell differentiation. However, on AuNP density gradients a higher number of 

podocyte-like cells was found on substrate portions with higher AuNP density. This trend was 

consistent for 16 and 68 nm and all plasma coatings. However, the final number of podocyte-
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like cells was highest on AA richer substrates. Nanotopography did not have an effect on 

PTCs differentiation, as we did not find significant evidence of increased differentiation into 

PTC in response to AuNP size nor density. 
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7 Concluding remarks and future work 

Proximal tubule cells (PTC) and podocytes play a key role in the pathogenesis of kidney 

glomerular and tubular dysfunction leading to kidney diseases [234, 548, 549]. Currently the 

only treatment options are dialyses or organ replacement. In addition, present drug 

therapies cannot prevent further damage but only delay disease progress. A limitation is also 

that patients often respond to these drugs by developing side effects. Therefore there is a 

high demand for novel therapeutic options to improve the outcome of patients suffering 

from renal disease.  

Some promising concepts to treat renal pathologies include direct treatment with stem cells 

[550]. In this respects, therapies using pluripotent stem cells (embryonic stem cells and 

induced pluripotent stem cells) are encouraging [168].  

On the other hand, employing kidney (progenitor) cells derived from kidney tissue may offer 

an alternative for the treatment of renal disorders [551]. The development of conditionally 

immortalised cell lines has been a great progress in terms of developing suitable cellular 

models to study renal disease processes. However, such genetically modified cell lines often 

do not represent the characteristics that are expected from specialised cells in vivo. 

Moreover, cells that were isolated from kidney tissue have limitations, including limited 

availability of these mature cells and the difficulty of expanding them in culture. Recently 

also the potential of urine-derived kidney cells has been highlighted as urine contains various 

renal cells including specialised and progenitor cells that can be harvested [552]. If tissue or 

urine derived kidney stem/progenitor cells could be expanded and differentiated in vitro into 

mature and functional kidney cells, many of these impediments could be overcome. This 

would offer great advances as it would allow the study of renal (patho) physiological 
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processes, but also assist in the discovery of better drugs to treat renal pathologies and 

would therefore also be advantageous for the development of personalised medicine.  

In this respect biomaterial cell culture substrates can provide further assistance, as their – 

often tuneable – physiochemical properties are well now to influence cell response [38]. 

Biomaterials could offer a solution to allow not only long-term culture of renal cells, but also 

the generation of differentiated cells in vitro from kidney-derived progenitor cells. In 

addition, such advances would assist in the development of novel drug therapies, provide 

scale-up opportunities for drug screening to predict eventual drug toxicity and, in the future, 

may support the ex vivo treatment of cells for subsequent transplantation. 

The wide range of biomaterials and the ease of modifying their physicochemical properties 

led to a rapid evolvement of novel biomaterials in recent years. In the current work, two 

different types of biomaterials were investigated for their use in overcoming the 

aforementioned problems: (1) polyacrylates, polymeric substrates that mimic common in 

vivo cell binding motifs stereochemically and (2) plasma polymer substrates composed of 

allylamine (AA) and octadiene (OD). These substrates were then compared about their ability 

to influence cell culture and differentiation of kidney-derived stem cells in vitro.  

7.1 Polyacrylates 

7.1.1 Key findings 

(1) Polyacrylates differed in chemical / surface functional group composition. The 

wettability analyses showed that substrates were generally hydrophobic with 

exception of ESP 008, ESP 009 ad ESP 010 which were rather hydrophilic. 

Topographical analyses showed that all substrates differed in micro roughness (hill 

height) and nano RMS roughness, but not in elasticity.  
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(2) Non- direct and direct contact studies using mouse fibroblasts (L929) and bovine 

endothelial cells (BAE) were performed to investigate substrate cytotoxicity. None 

of the polyacrylates were cytotoxic. However, cells cultured on ESP 008, ESP 009 and 

ESP 010 had a rounded morphology and appeared to decrease in cell number over 

time. 

(3) mKSC behaviour and differentiation was analysed on: ESP 003, ESP 004, ESP 007 and 

BTL15. All four substrates supported cell proliferation and viability. Moreover, two 

substrates showed a desirable response: ESP 003 directed mKSC differentiation into 

podocytes (40%), whereas ESP 007 directed mKSC differentiation into functional 

PTCs (40%). mKSCs on controls (glass and TCP) were differentiated to an extent of 

about 10%, which was attributed to spontaneous differentiation. The results 

suggested that both, surface chemistry and nanotopography, were key factors for 

mKSC differentiation. 

(4) The culture of conditionally immortalised podocytes (ciPodocytes) and PTCs (ciPTCs) 

showed similar results as cytotoxicity studies. All polyacrylates supported cell growth 

and the expression of characteristic markers with exception of ESP 008, ESP 009 and 

ESP 010, where cells were rounded and decreased in cell number over time.  

(5) Fetal and infant kidney-derived cells were sorted to be either double positive (DP) or 

double negative (DN) for two putative kidney stem cell markers: CD24 and CD133. 

Based on previous findings, three polyacrylates, ESP 003, ESP 007 and ESP 011, were 

investigated for their ability to influence behaviour and differentiation of these four 

cell types. The results showed that DN and DP cells differed in their cell response to 

biomaterial substrates. However, no indication of cell differentiation was found 

regardless of the substrate. 
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7.1.2 Applications and future work 

The use of these polyacrylates has been shown previously in a number of potential biological 

applications. They were shown to effect cell adhesion and proliferation of human aortic 

endothelial cells and coronary artery smooth muscle cells and therefore have potential 

applications for the company’s propriety coronary stent coatings  [305-307]. In another study 

a number of polyacrylates was shown to direct MSC differentiation into specialised cells [13, 

345]. The here propounded key findings also showed that polyacrylates were very suitable 

biomaterial substrates to direct mKSC differentiation.  

All polyacrylate substrates were individually designed to mimic stereochemically the 

structure of particular in vivo cell attachment motifs. For example, ESP 003, ESP 004, ESP 007 

and ESP 011 mimicked RGD, a three amino acid sequence (Arginine-Glycine-Aspartic acid) 

that is commonly found in proteins such as fibrinogen and laminin [312]. However, all 

substrates effected cell differentiation differently. For example, ESP 004 mimicked RGD using 

–COOH and –NH2 functional groups, whereas in ESP 007 mimicked RGD using –OH and –NH2 

functional groups, but both substrates had the exact same (theoretical) stereochemistry and 

only differed in the identity of a single acrylate monomeric unit. However, one promoted cell 

differentiation into podocytes and the other one into PTCs. This highlighted the importance 

of the biomaterial-cell interphase in terms of cell response. Therefore, polyacrylates can 

assist in developing synthetic substrates in high purity and that mimic the natural cellular 

environment closely in a novel way. In addition, the unique composition and synthesis of 

substrates can allow to develop substrates that mimic amino acid sequences of proteins that 

are particularly common in specific tissues and therefore may improve the outcome of 

further studies. The advantage of the here described polyacrylates is that their design is 

precisely tuned theoretically and therefore a large number of biological motifs can be 

imitated easily and inexpensively. For example, the glomerular basement membrane that 
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lies between glomerular endothelial cells and podocytes, is composed of four major protein 

components: laminin, type IV collagen, nidogen, and heparan sulfate proteoglycans (i.e. 

agrin and perlecan) [553, 554]. If the polyacrylates would be designed to mimic specific 

signalling sequences from these molecules, this might increase the rate of kidney 

progenitor/stem cell differentiation and – in the course – for further use in the field if 

pharmaceutical studies and in regenerative medicine.  

However, although the design of polyacrylates is theoretically quite accurate (choice of 

monomers, theoretical calculation of reaction parameters) it would still be of great interest 

to see which functional  groups are in fact present at the immediate substrate-cell interface 

as theory and practice may vary. During the course of this study also other surface analytical 

methods were applied in order to obtain more information about the substrate-cell 

interphase. These included scanning electron microscopy (further topographical analyses), 

solid state magnetic resonance spectroscopy (polymer structure, chemical environment of 

molecules) and Raman spectroscopy (analyses of vibrational, rotational, low-frequency 

modes). Although these methods were not suitable to give exact information of the 

substrate-air (or substrate-cell) interface, it would be worth investigating other methods for 

further and more precisely analyse this interface.  

Lastly, a number of studies have investigated the importance of biomaterial dimensions to 

influence cell behaviour. The use of more complex and in vivo – analogue 3D matrices has 

gained much recognition compared to the rather conventional 2D cell culture systems [555-

557]. As polyacrylates were shown to have very encouraging potential for influencing cell 

behaviour and differentiation in vitro, their application in 3D scaffoldings may be very 

promising and improve the outcome of future studies in terms of developing materials that 

allow high percentages of differentiated cells to be obtained to further our understanding of 

pathophysiology’s and for future use in drug discovery programmes  [558-561]. 

http://www.sciencedirect.com/science/article/pii/S0142961204011068
http://www.sciencedirect.com/science/article/pii/S0142961204011068
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7.2 Plasma polymer coatings 

7.2.1 Key findings 

(1) The physicochemical analyses of plasma polymer coatings composed of allylamine 

(AA) and octadiene (OD) showed differences in the chemical composition. An 

increase of AA concentration caused an increase in the presence of nitrogen and 

oxygen species (surface oxidation). The increasing number of these hydrophilic 

groups caused in turn an increased wettability. No differences in topography nor 

elasticity were detected. 

(2) mKSCs showed similar proliferation and viability on all substrates. However, AA 

richer surfaces directed mKSCs differentiation into podocytes (30%), whereas OD 

rich surfaces directed cell differentiation into PTCs (30%). mKSCs on controls (glass 

and TCP) showed about 10% differentiated cells which was attributed to 

spontaneous differentiation. This trend of differentiation was confirmed on AA-OD 

plasma gradients.  

(3) mKSC behaviour was additionally analysed on gold nanoparticle (AuNP) coated 

substrates (diameter 16 or 68 nm) overcoated with promising plasma polymers 

composed of AA and OD. This allowed to investigate the influence of 

nanotopography on mKSC behaviour [95]. Homogeneous AuNP density coatings 

(AuNP density equivalent to portions with highest density on the gradients) did not 

have significant effects on mKSC differentiation. However, an AuNP density gradient 

revealed a higher number of podocytes on denser portions of the substrates on both, 

16 and 68 nm AuNPs (30 to 40%). These findings suggested that AuNP density 

(topography) itself enhanced cell differentiation into podocytes, whereas it had no 

effect on PTC differentiation. 
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7.2.2 Applications and future work 

The use of the here investigated plasma polymers has been shown previously in a number of 

potential biological applications. In particular, the concept of physicochemical surface 

gradients has gone a long way, from simple surface modification to cost efficient biomaterial 

platforms that allow screening of cellular behaviour in large scale on a single substrate 

(gradients) [562].  

The promising results of this study open possibilities to explore systems with other plasma 

precursors. Within this study it was found that surface chemistry, particularly nitrogen 

functional groups can influence mKSC differentiation. It would be interesting to investigate 

whether this effect would be enhanced by using other nitrogen containing plasma polymers 

such as ethylenediamine, diaminocyclohexane or cyclopropylamine (CPA), an AA isomer that 

leads to the deposition of a higher  number of amine groups than for example AA and has 

the essential film stability [455, 563-567]. 

Another interesting approach would be the application of plasma polymers onto other 

structures, as shown within this study where AuNPs were employed to introduce 

topographical cues, but surface chemistry was maintained by overcoating these substrates 

with plasma. In the future, such promising plasma polymers could enable the chemical 

modification of 3D structures /scaffolds to influence cell behaviour [568-570].  

Of particular interest in this study was the cell behaviour on AA-OD gradients. We found that 

mKSC differentiation followed the same trend on homo- and copolymers as on gradients. 

Only little is known yet about cell response on surfaces with gradual changing chemistry. 

Such materials would enable the study of numerous cell types on a single substrate and 

therefore allow to circumvent the time consuming and expensive production and research 

on single substrates to find the desired surface properties for a single cell type. 
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Moreover, it would be interesting to compare the available data to another plasma pattern. 

i.e. radial or in form of distinct patterns [517, 571]. 

7.3 Final Remarks 

Within this study two constitutional different materials were investigated. Polyacrylates are 

solid and highly defined polymers that are specifically designed to mimic structurally cell 

binding motifs. Plasma polymers on the other hand are a different state of matter and display 

a rather uncontrolled and random occurrence of surface functional groups [505]. During this 

study both substrates were shown to influence cell behaviour and differentiation. However, 

it was challenging to relate a particular substrate property to mKSC differentiation. For 

example, the results of mKSC differentiation on polyacrylates suggested that a combination 

of surface chemistry and nanoroughness induced cell differentiation. On plasma polymers 

on the other hand no significant differences in topography were detected, but the density of 

nitrogen functional groups appeared to effect cellular differentiation into specialised cells.   

However, there is a scope of further analyses. The chemical surface investigation of (nano) 

topography, surface chemistry and elasticity were not performed in aqueous environment. 

The exposure to such an aqueous environment may have caused the reorganisation of the 

polymer bulk and surface functional groups at the direct solid-liquid interface. Moreover, the 

penetration of water molecules into the polymer bulk may have caused topographical and 

mechanical changes. For example, it has recently been shown that plasma layers composed 

of hexane and AA undergo topographical changes in aqueous solution which resulted in pore 

formation almost immediately after immersion in the liquid, which suggested segregation of 

the material through liquid penetration [96]. Other groups have observed similar surface 

changes [469, 499]. Such processes process could also occur within the here investigates 

substrates as well. 
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In addition, it would be interesting to investigate protein adsorption onto substrates further 

as a large number of these is present in serum and the interactions between proteins with 

surfaces and with each other are complex. The affinity of some proteins towards surfaces 

may vary between substrates which could influence protein conformation and – in turn – cell 

response [378]. Some proteins, such as fibronectin and fibrinogen have been shown to 

promote cell adhesion whereas others, such as albumin, rather inhibited it [30, 572]. 

However, the analyses of proteins and their conformation onto surfaces is challenging and 

was not investigated within this study [573-576].  

Finally it has to be mentioned that mKSCs were only cultured for 96 h on substrates. No 

experiments were conducted at longer periods of time, but may lead to a larger pool of 

differentiated cells.   

This study emphasised the potential of both, polyacrylates and plasma polymers, as potential 

platforms for kidney (stem) cell culture and differentiation. A number of substrates within 

the range of both materials had a significant impact on cell differentiation into specialised 

renal cells. Therefore they hole great promise for physiologic and pharmacological studies, 

but also in the field of regenerative medicine in the future.
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Appendix I         Cell culture 

 
Cell culture components Manufacturer, Catalogue No. 

Albumin from Bovine Serum Sigma, A2058 

Cell Counting Kit-8 Solution  Sigma, 96992 

Corning 15ml Centrifuge Tubes (sterile) Appleton Woods, BC031 

Corning 50ml tubes (sterile) Appleton Woods, BC034 

Counting Slides, TC 10 BioRAD, 145-0011 

Cell culture plates, 6 well, Corning®  Appleton Woods, BC010 

Cell culture plates, 12 well, Corning®   Appleton Woods, BC011 

Cell culture plates, 24 well, Corning®   Appleton Woods, BC012 

Cell culture plates, 96 well, Corning®   Appleton Woods, BC015 

Cell culture plates, 60 mm, Corning®   Greiner Bio-One, 628160 

Cell culture plates, 100 mm, Corning®   Greiner Bio-One, 664160 

Dexamethasone Sigma, D8893 

Dulbecco's Modified Eagle Medium (DMEM) Sigma, D6546 

DMEM: F12 (1:1) medium Lonza, 12-719 

Dulbecco’s Phosphate Buffered Saline Sigma, D8537 

Foetal Bovine Serum Albumin Sigma, 16000044 

Formaldehyde Solution Thermo Scientific, 28908 

Holo-Transferrin Sigma, T0665 

Hydrocortisone Sigma, H0135 

Insulin-Transferrin-Selenium (ITS) supplement Gibco, 41400-045 

L-glutamine 200mM Sigma, G7513 

MEM non-essential amino acids (100x) Life Technologies, 11140035 

Penicillin / Streptomycin Life Technologies, 15140122 

PES filter (0.22µm) MILLEX-GP, SLGP033RS 

Prostaglandin E1 Sigma, P8908 

Recovery™ Cell Culture Freezing Medium Invitrogen, 12648010 

RPMI-1640 Medium Sigma, R8758 

3,3',5'-triiodo-L-thyronine sodium salt (T3) Sigma, T5516 

Triton X-100 Sigma, T-8787 

Trypan Blue Solution Sigma, T8154 

Trypsin-EDTA solution Sigma, T3924 

Vacuum Filter System, bottle top, Corning®  Sigma, CLS430767 and CLS430769 

 

 

 

 

 

https://owa.liv.ac.uk/owa/redir.aspx?SURL=dvgK2w7Poi5Moeu-cfYwq6Qe0vqEmkOBb2ukTACXka51tKQj6gfTCGgAdAB0AHAAOgAvAC8AdwB3AHcALgBzAGkAZwBtAGEAYQBsAGQAcgBpAGMAaAAuAGMAbwBtAC8AYwBhAHQAYQBsAG8AZwAvAHAAcgBvAGQAdQBjAHQALwBzAGkAZwBtAGEALwBwADgAOQAwADgAPwBsAGEAbgBnAD0AZQBuACYAcgBlAGcAaQBvAG4APQBHAEIA&URL=http%3a%2f%2fwww.sigmaaldrich.com%2fcatalog%2fproduct%2fsigma%2fp8908%3flang%3den%26region%3dGB
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Cell culture medium composition   

  

Cell culture medium A   

DMEM  

foetal Bovine Serum  10% 

L-glutamine 1% 

Penicillin / Streptomycin 1% 

MEM non-essential amino acids 1% 

  

Cell culture medium B   

RPMI-1640  

foetal Bovine Serum  10% 

Penicillin / Streptomycin 1% 

  

Cell culture medium C   

DMEM/F12   

foetal Bovine Serum  10% 

ITS supplement 1% 

Penicillin / Streptomycin 1% 

Hydrocortisone 36 ng / mL  

Triiodthyronin (T3) 4 pg / mL 

hEGF 10 ng / mL  

  

Cell culture medium D   

DMEM/F12   

foetal Bovine Serum  5% 

ITS supplement 1% 

Penicillin / Streptomycin 1% 

Prostaglandin E1  100 ng / mL 

Dexamethasone  40 ng / mL 

Holo-Transferrin  20 ng / mL 

Triiodo-L-Thyronine  4 ng / mL 

Components filtered with Corning® bottle-top vacuum filter system 
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Appendix II Immunofluorescence and cell staining 

 

Immunofluorescence Analyses Host Isotype Concentration Manufacturer, Catalogue No. 
     

Primary Antibody         

Aquaporin 1 gt IgG 1 : 200 Santa Cruz, sc-9878 

Collagen IV rb IgG 1 : 200 Millipore, AB756P 

Laminin rb IgG 1 : 500 Abcam, ab11575 

LRP2 antibody (Megalin) m IgG1  1 : 200 Acris, DM3613P  

Nephrin rb IgG 1 : 200 Abcam, ab58968 

Podocin rb IgG 1 : 200 Abcam, ab50339 

Synaptopodin m IgG1 1 : 2 Progen, 65194 
     

Secondary Antibody         

Alexa Fluor® 594 gt anti m gt IgG1  1 :1000 Invitrogen, A-21125 

Alexa Fluor® 488 gt anti rb  gt IgG 1 : 1000 Invitrogen, A-11008 

Alexa Fluor® 594 gt anti rb  gt IgG 1 : 1000 Invitrogen, A-11012 

Alexa Fluor® 594 ck anti gt ck IgG1  1 : 1000 Invitrogen, A-21468 
     

Cytofluorimetric Analyses         

CD24-FITC, human (32D12) m IgG1  1 : 50 Miltenyibiotec, 130-095-952 

CD13-APC, human (REA263) h IgG1  1 : 50 Miltenyibiotec, 130-103-734 

CD133/2 (293C3)-APC, human  m IgG2b 1 : 50 Miltenyibiotec, 130-090-854 

 (m) mouse, (h) human, (gt) goat, (ck) chicken, (rb) rabbit 

Other fluorescent markers used Concentration Manufacturer, Catalogue No. 

Alexa Fluor® 488 Phalloidin 5 : 200 in PBS Life Technologies, A12379 

DAPI 1 : 1000 in PBS Sigma, D9542 

BSA, FITC conjugate 40 µg /mL  in medium Invitrogen, A23015 

 
 

 

Alkaline phosphatase staining solution Concentration Manufacturer, Catalogue No. 

Tris-HCl pH 9.2   

Naphtol AS-MX phosphate 0.2 mg / mL Sigma, 855 

Fast Red TR Salt hemi(zinc chloride) salt 1 mg / mL Sigma, F8764 

   

Others Concentration Manufacturer, Catalogue No. 

Dako Florescent Mounting Medium   Dako, S3023 

Glycerol  80% in dH2O Sigma, 536407 

Triton-X 100    Sigma, X100 
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Appendix III Buffers and solutions 

 

4% (v/v) Formaldehyde   

16% Formaldehyde Solution 4 mL 

10x PBS 26 mL 

dH2O 10 mL 

  

PBS (1x)   

NaCl  8 g 

KCl  0.2 g 

Na2HPO4 dibasic  1.15 g 

KH4PO4 monobasic 0.2 g 

dH2O 1 L 

adjust to pH 7.2 with NaOH   

    

FACS buffer   

PBS  
Foetal Bovine Serum 2% 

Penicillin / Streptomycin 2% 

    

10x TAE Buffer   

NaCl  48.4 g 

Glacial Acetic Acid (17.4M)  11.4 mL 

EDTA 3.7 g 

dH2O 1 L 

  

Tris-HCl (ph 9.2)   

dH2O 500 mL 

6 Trizma base 6 g 

adjust pH with conc. HCl 1% 
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Appendix IV Molecular biology 

 

Components for molecular biology Manufacturer, Catalogue No. 

2-propanol  Sigma, I9516 

Agarose Biosciences, 8201-07 

Chloroform Sigma, C2432 

dNTP Set Bioline, BIO-39025 

Counting Slides, TC 10 BioRAD, 145-0011 

Ethanol Sigma, E7023 

Ethidium bromide Sigma, 1239-45-8 

Glycogen Sigma, G1767 

Hard-Shell 96-Well PCR BioRAD, HSP-9645 

HyperLadder™ I  Bioline, BIO-33026 

HyperLadder™ IV Bioline, BIO-33030 

5x DNA Loading Buffer Blue Bioline, BIO-37045 

2.0ml Microcentrifuge Tube  Elkay, 021-4204-500  

Microseal adhesives for PCR HSPs BioRAD, MSB-1001 

Nuclease free water Promega, P1197 

Random hexamers QIAGEN, 79236 

RQ1 DNase 10x reaction buffer Promega, M198A 

RQ1 DNase Stop Solution Promega, M199A 

RQ1 RNase-Free DNase Promega, M6101A 

SuperScript™III Reverse Transcriptase Invitrogen, 18080-044 

SYBR® Green Jumpstart™ Sigma, S4438-500RXN 

TRIzol® Reagent Invitrogen, 15596-026 
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Primers    

Organism: mouse    

    

Denomination Oligo Name Sequence 5' to 3'  Product Length / bp 

Alkaline Phosphatase mF_AlkPhos CTGCAGGATCGGAACGTCAA 106 

  mR_AlkPhos GGTGTACCCTGAGATTCGTCC   

Aquaporin 1 mF_Aqp 1 ACAATTCACTTGGCCGCAAT  139 

  mR_Aqp 1 GAGCCACCTAAGTCTCGGC   

beta Actin mF_ACTB GTACCCAGGCATTGCTGACA 145 

  mF_ACTB CTGGAAGGTGGACAGTGAGG   

Glycerinaldehyd-3-phosphat mF_Gapdh TGAAGCAGGCATCTGAGGG 102 

Dehydrogenase mR_Gapdh CGAAGGTGGAAGAGTGGGAG   

Megalin mF_Meg AGTGCAGGGACCGTCAGTAA 140 

  mR_Meg TGCCCTGAGTTTCATCAGCTC   

Podocalyxyn mF_Pdx AAGCCCTGTGTAGAACAGCC 109 

  mR_Px AACAGAAAGGCCCCCACAAA   

Synaptopodin mF_Synpo GTACACTGCCCCAGTCCAAG 146 

  mR_Synpo CAGCATTCCGGGTGGAGAAG   

Wilms tumor 1 mF_WT1 CACGGCACAGGGTATGAGAG 128 

  mR_WT1 GTTGGGGCCACTCCAGATAC   

(m) mouse  
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Appendix V Polymer analyses 

 

Glass cover slips Manufacturer, Catalogue No. 

13 mm glass coverslips (rd) Appleton Woods, GWN041 

13 mm plastic cover slips (sq) Thermo Scientific, 174950 

19 mm glass cover slips (rd) Appleton Woods, GWN041 

22 mm2 glass cover slips (sq) VWR, 470019-004 

25 mm2 glass cover slips (rd) EMS, 72223-10 

(rd) round (sq) square  

  

Atomic Force Microscopy Manufacturer, Catalogue No. 

SCANASYST-AIR Cantilevers Bruker AFM Probe TAP150A, MPP-12120-10 

AFM mounting disk Bruker, SPM sample mounting disks,15mm, SD-102 

  

Plasma chemical components Manufacturer, Catalogue No. 

Allylamine Sigma, 145831 

1,7-Octadiene Sigma, O2501 

  

Colorimetry Manufacturer, Catalogue No. 

Coomassie Brilliant Blue Sigma, B0770 

Orange 2 sodium salt Sigma, 69143 
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