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Abstract  18 

It is increasingly evident that cryptic stages of many parasites cause asymptomatic infections 19 

in a diversity of hosts. This review examines what may cause these infectious agents to 20 

persist as asymptomatic infections in invertebrates and how environmental change is linked 21 

with the subsequent development of overt infection and disease. In many systems disease 22 

dynamics are closely associated with host condition which, in turn, is linked with 23 

environmental change. Symbionts (commensals and mutualists) display similar dynamics 24 

when environmental change causes them to exert negative effects on their hosts. Although 25 

such asymptomatic infections are demonstrated in a range of invertebrate hosts they are 26 

greatly undersampled because most invertebrate diseases are uninvestigated, infections are 27 

difficult to detect, and many parasite groups are poorly characterised. A better understanding 28 

of the diversity and distribution of parasites that cause asymptomatic infections and of their 29 

complex relationships with invertebrate hosts will enable a fuller appreciation of context-30 

dependent host-parasite interactions and will address the biased focus on diseases of 31 

invertebrates of practical importance. The existence of such infections could underlie novel 32 

disease outbreaks that might otherwise be attributed to invasives while altered disease 33 

dynamics may provide an additional and complementary indicator of ecosystem change. 34 
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Introduction  40 

Many parasites and pathogens can persist as cryptic stages that exert little to no effects on 41 

their hosts. When conditions are appropriate, such hidden enemies proliferate and may 42 

transform into distinct stages that result in disease and obvious infection. Well-known 43 

examples of disease agents associated with asymptomatic infections are Mycobacterium 44 

tuberculosis and species of Plasmodium, causing tuberculosis and malaria, respectively. 45 

Disease ensues when parasite proliferation follows immunosuppression (tuberculosis) or 46 

when dormant stages are reactivated and develop into new forms (malaria). In keeping with 47 

the real world continuum between parasitism and mutualism (Combes 2001) similar 48 

dynamics are revealed when, under certain conditions, symbionts proliferate and exert 49 

negative effects on their hosts. For example, enhanced nitrate levels can increase the 50 

growth of ‘mutualistic’ zooxanthellae thereby causing a decrease in calcification and, by 51 

extension, coral growth (Marubini and Davies 1996).  52 

This review describes how such hidden infectious agents persist as asymptomatic infections 53 

in invertebrates and the implications of environmental change for infection dynamics. I 54 

largely focus on a system that provides an unusually comprehensive understanding of these 55 

issues – myxozoans that cycle between covert and overt infections in bryozoan hosts. 56 

Similarities with other systems are also evaluated in order to explore common context-57 

dependent aspects of disease dynamics, to demonstrate how poorly we understand the 58 

diversity of agents causing hidden infections and to highlight how changing disease profiles 59 

may act as indicators of ecosystem change. I begin by reviewing different  types of 60 

asymptomatic infections and describing their detection. 61 

Characterising asymptomatic infections 62 

Asymptomatic infections that cause little or no disease but are nevertheless transmissible 63 

are often referred to as ‘silent’ or ‘latent’ in the medical literature. For example, during the 64 
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‘clinical latency phase’ HIV infection can still be transmitted to new hosts even though 65 

infected individuals may show no symptoms. Persistent asymptomatic infections that are not 66 

horizontally transmitted have been defined as covert infections (Sorrell et al. 2009). Covert 67 

infections may be caused by particular developmental stages of parasites and pathogens 68 

(henceforth referred to collectively as parasites) that impose little costs on host fitness during 69 

extended periods of persistence - for example, specialised bacterial cells with arrested or 70 

reduced growth (Balaban et al. 2004). In other cases, early developmental stages may be 71 

sustained, an example being single cell stages of some myxozoans located beneath the 72 

basal lamina (Fig. 1A) (Canning et al. 2008). Covert infection stages may be dormant or they 73 

may slowly replicate as indicated, for instance, by the continuous low-level expression of 74 

viral proteins in e.g. insect hosts (Hughes et al. 1997; Vilaplana et al. 2010).  75 

Cryptic stages causing asymptomatic infections may be located in immunoprivileged sites. 76 

Alternatively, they may be tolerated to avoid the damaging effects of an inflammatory 77 

immune response or they may be undetected. For example, slowly replicating hypnozooites 78 

of Plasmodium vivax in the liver (Wells et al. 2010) may not be apparent to immune cells 79 

because of low signal production (e.g. peptides) (Janeway et al. 2001).  80 

Asymptomatic infections are inherently difficult to assess because disease is not evident. 81 

Their detection thus requires molecular, histological or other approaches. For wild animals 82 

this is typically done using PCR and RT-PCR. They may also be inferred, for example, by 83 

emergence of disease in insects held under parasite-free laboratory conditions (Bonsall et al. 84 

2005) or when asymptomatic individuals are challenged with other infections (e.g. Hughes et 85 

al. 1993).  86 

Dynamics of asymptomatic covert infections: insights from 87 

myxozoans  88 
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Myxozoans are a radiation of endoparasitic cnidarians that exploit invertebrates and 89 

vertebrates as primary and secondary hosts, respectively, and cause several devastating 90 

fish diseases, including whirling disease, proliferative kidney disease (PKD) and 91 

enteronecrosis (Jones et al. 2015). PKD causes substantial economic loss to rainbow trout 92 

aquaculture in Europe, has contributed to declines of brown trout populations in Swiss rivers 93 

and impacts North American hatcheries (Hedrick et al. 1986; Okamura et al. 2011). The 94 

disease is caused by the malacosporean myxozoan, Tetracapsuloides bryosalmonae, which 95 

uses freshwater bryozoans as primary hosts. Interactions between Fredericella sultana (the 96 

most common bryozoan host) and T. bryosalmonae have therefore been extensively 97 

investigated in order to understand patterns of PKD outbreaks and spread because spores 98 

released from bryozoans infect fish. As described below, this body of work demonstrates 99 

that covert infections enable persistent infection of highly clonal invertebrate hosts, creating 100 

a substantial disease reservoir for fish. Insights on covert infections in another myxozoan-101 

bryozoan system are included to illustrate common patterns. 102 

Developmental cycling in freshwater bryozoan hosts 103 

Early single cell stages of malacosporeans (myxozoans that exploit freshwater bryozoan 104 

hosts) are associated with the body wall (Fig. 1A) and cause covert infection. These cryptic 105 

stages develop into multicellular, spore-filled sacs (or worms, in the case of some species of 106 

Buddenbrockia; Hartikainen et al. 2014a) that proliferate in the body cavity during overt 107 

infection (Fig. 1B). Spores are infectious to fish. Covert infections of T. bryosalmonae are 108 

generally retained after overt infections disappear (e.g. in some 63% of F. sultana colonies; 109 

Tops et al. 2009). 110 

Tops et al. (2006) showed that as temperatures increase a greater proportion of F. sultana 111 

colonies sustain overt infections of T. bryosalmonae and that the time for overt infection to 112 

develop (latency) decreases. Monitoring of host responses demonstrated that overt infection 113 

development occurs when warmer temperatures promote bryozoan growth (Tops et al. 114 
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2009). Overt infections reduce host growth at higher temperatures whereas the growth of 115 

covertly infected and uninfected bryozoans is similar regardless of temperature (unless 116 

bryozoans invest in statoblast production). Greater nutrients and hence food levels for 117 

bryozoan hosts similarly promote the development of overt infections of T. bryosalmonae 118 

and the growth of F. sultana (Hartikainen et al. 2009; Hartikainen and Okamura 2012). In this 119 

case, overt infections reduce bryozoan growth as nutrient levels decrease. These studies 120 

demonstrate that T. bryosalmonae exhibits host condition-dependent developmental cycling 121 

(Fig. 2A). When F. sultana is in good condition and growing rapidly (high temperatures and 122 

food levels) overt infections are triggered to develop from cryptic stages; however, when the 123 

host environment is sub-optimal and host condition is depressed covert infections are 124 

maintained. The retention of covert infections enables developmental cycling of parasites 125 

between covert and overt infections and explains the waxing and waning of overt infections 126 

that are observed in laboratory-maintained bryozoan hosts, including infections of both 127 

Buddenbrockia allmani in Lophopus crystallinus (Hill and Okamura 2007) and of T. 128 

bryosalmonae in F. sultana (Fig.  2B) (Tops 2004; Tops et al. 2009).  129 

Covert and overt infections over space and time 130 

The ability to regulate demands on bryozoan hosts contingent on their condition would 131 

suggest that infections could be highly persistent over space and time. Indeed, covert 132 

infection prevalences of T. bryosalmonae characterised by PCR every 45 days over a 12 133 

month period in F. sultana populations in each of three rivers in southern England ranged 134 

from 35-92% (mean = 65.6%; SD = 22.8%; n = 8) in one river, 0-76% (mean = 42.7%; SD = 135 

24.1%; n = 8) in a second river, and 27-72% (mean = 45.6%; SD = 14.2%; n = 8) in a third 136 

river (pooled data for bryozoan populations established on three tree root systems per river 137 

on eight sampling dates; Fontes 2015; Fontes et al. submitted). Such persistent covert 138 

infections represent a reservoir of disease for fish and contribute to annual outbreaks of PKD 139 

on fish farms (see below) (Fig. 2B). Overt infections can develop rapidly (e.g. within three 140 

days of laboratory culture; Canning and Okamura 2004) and are expressed in the field at 141 
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high prevalences over a relatively brief window of time in the UK (for weeks; Tops 2004). 142 

Sampling every three weeks from spring to autumn revealed mean overt infection 143 

prevalences that ranged from 0.2 to 22% (peak infection in early June) (n = 150 per 144 

sampling date) in a fourth river system in southern England (Tops 2004).  145 

Covert infections of B. allmani in L. crystallinus (Fig. 1A) appear to be common, having been 146 

detected in all bryozoan populations sampled in the UK (n=3), Switzerland (n=1) and Italy 147 

(n=1) (Hill and Okamura 2007). Prevalences of covert infection ranged from 9-59% and of 148 

overt infections from 0-13% (sampling a UK population every 90 days from October 2003 to 149 

January 2005, n > 29 per sampling date; Hill and Okamura 2007).  150 

Transmission of infections in clonal hosts 151 

Freshwater bryozoans undergo extensive clonal reproduction via: the iteration of zooids 152 

which increases colony size, colony fission or fragmentation, and the production of seed-like 153 

propagules (statoblasts) that typically serve as dormant stages. Infection transmission during 154 

colony replication is effectively vertical as it generates new colonies that carry infection. As 155 

outlined below, such transmission can be substantial and is thus likely to amplify covert 156 

infection prevalence. It also enables parasites to exploit the same host genotypes over time 157 

and space. 158 

Infection of statoblasts has been demonstrated by PCR of colonies newly hatched from 159 

statoblasts. Thus, T. bryosalmonae infections were detected in 39% (n=54) and 30% 160 

(n=164) of young colonies hatched from statoblasts deriving from parental colonies of F. 161 

sultana in two river systems (Abd-Elfattah et al. 2013). Similarly, infections of B. allmani were 162 

inferred for nine out of 10 L. crystallinus statoblasts assayed from bryozoans in a single site 163 

(Hill and Okamura 2007). Infection of statoblasts must generally be achieved by cryptic 164 

stages during covert infection because overt infections inhibit statoblast production (Tops 165 

2004; Hill and Okamura 2007; Hartikainen and Okamura 2012). In addition, the few 166 
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malformed statoblasts that are produced during overt infection exhibit greatly reduced 167 

hatching success (Hartikainen et al. 2013).  168 

Infections are also passed to colonies created by fission and fragmentation. Currents and 169 

other forms of disturbance cause branches of F. sultana to detach and these can reattach in 170 

new microhabitats (Wood 1973). Detached fragments of F. sultana were sampled from 171 

bryozoan populations on three submerged tree root systems in three rivers and at two time 172 

periods (Fontes 2015; Fontes et al. submitted). Overall some 49% of fragments (n=414) 173 

carried covert infections and infection status varied across roots, rivers and times. Covert 174 

infection prevalences of fragments collected in June and September were, respectively, 175 

25.3% (n=95) and 79.5% (n=44) in one river, 42.1% (n=95) and 39.4% (n=66) in a second 176 

river, and 38.5% (n=13) and 73.3% (n=101) in the third river (pooled data for fragments 177 

detached from three root systems per river). In L. crystallinus, overt infections (sacs of B. 178 

allmani; Fig. 1b) were observed in both daughter colonies produced by 64 of 65 colony 179 

fission events (Hill and Okamura 2007) implying very high levels of infection transmission. 180 

Hidden infections in invertebrates: the great unknown 181 

There is growing evidence that a range of aquatic and terrestrial invertebrates are infected 182 

by parasites capable of persisting as covert infections and associated research identifies 183 

some common features. Covert viral infections of insect pests have long been recognised 184 

and have been referred to as ‘latent’, ‘occult’ or ‘non-apparent’ infections (see Anderson and 185 

May 1981 and references therein). More recent studies provide further evidence for covert 186 

infections in wild populations of insects, crustaceans, and bivalves as well as freshwater 187 

bryozoans, with molecular diagnostics (PCR, qPCR) demonstrating covert infection 188 

prevalences that are frequently > 50% (Table 1). Vertical transmission characterises many of 189 

these invertebrate host-parasite systems, although it has not been explicitly examined in 190 

some (Table 1). Persistent infections within populations, high infection prevalences and 191 

dispersal of infectious agents are all likely to be facilitated by such vertical transmission. 192 
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Collectively, this evidence suggests that substantial proportions of susceptible invertebrates 193 

may sustain asymptomatic infections that are likely to be widespread and to persist over 194 

time. 195 

The diversity of agents causing such hidden infections remains poorly known. This is partly 196 

because many invertebrates are small and overlooked, there are relatively few invertebrate 197 

pathologists, and infections may be highly patchy and exhibit no external gross pathology 198 

until late in infection or host death. Detection thus requires appropriate expertise and 199 

destructive host sampling to characterise disease agents. Furthermore, there is a general 200 

bias for detection of parasites in invertebrates that are of particular significance to 201 

agriculture, forestry and fisheries or to ecosystem function (e.g. grazing by Daphnia, 202 

pollination by bees). Finally, the potential for symbionts (commensals and mutualists) to 203 

cause negative effects on hosts is generally disregarded. However, with the advent of the 204 

Anthropocene, overlooking cryptic stages and asymptomatic infections poses particular risks 205 

in view of growing evidence that disease dynamics may be influenced by environmental 206 

change.  207 

Molecular detection is revealing substantial novel diversity in various endoparasitic taxa that 208 

exploit invertebrate hosts, including haplosporidians (Hartikainen et al. 2014b), mikrocytids 209 

(Hartikainen et al. 2014c) and microsporidians (Stentiford et al. 2013). For example, 210 

amplicon sequencing of environmental samples has increased the number of microsporidian 211 

lineages by >100% and has revealed several highly distinct novel lineages (Hartikainen et al. 212 

2014b). This approach has also provided substantial insights into radiations of unique 213 

mikrocytid lineages while targeted screening provides evidence that Paramikrocytis canceri 214 

exploits an exceptionally wide range of invertebrates, including molluscs, decapods and 215 

annelids (Hartikainen et al. 2014c). Finally, many parasite taxa once regarded as single 216 

species based on morphological criteria, are being shown to comprise multiple species 217 

according to sequence data (e.g. in myxozoans; Atkinson et al. 2015). These discoveries of 218 

novel and hidden diversity suggest a huge and largely unknown diversity of endoparasites 219 
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that exploit invertebrate hosts. Many of these may persist causing asymptomatic infections 220 

for long periods of time. 221 

Persistence and dispersal of infectious agents 222 

Covert infections are particularly linked with traits enabling persistence of infectious agents 223 

within hosts. Low demands exerted by dormant or slowly replicating cryptic stages effect low 224 

virulence and should promote persistence. Covert infections also commonly undergo vertical 225 

transmission (Table 1) that will promote persistence and may amplify infection prevalences 226 

locally. Such persistent infections may be actively maintained by parasites or result from 227 

host suppression of overt infection. Host suppression is unlikely to explain patterns of host 228 

condition-dependent development in bryozoans because this would require hosts in poor 229 

condition to suppress overt infection – an unlikely scenario in view of the costs of 230 

continuously mounting an immune response during long periods of sub-optimal conditions. 231 

Other evidence that persistent infections are controlled by parasites includes demonstration 232 

of specialised bacterial persistor cells (Balaban et al. 2004) and of transcription factors (e.g. 233 

DosR in Mycobacterium tuberculosis; reviewed by Boon and Dick 2012) that regulate 234 

development – both suggesting specific parasite adaptations for arrested or reduced growth 235 

during covert infection. The retention of covert infection stages following bouts of overt 236 

infection may represent a form of bet hedging to cope with environmental stochasticity, for 237 

example in herpes viruses (Stumpf et al. 2002) and in myxozoans in bryozoans. 238 

Dispersal of infected hosts may enable infection persistence over time and space. For 239 

example, dispersive statoblasts carry cryptic stages (see above) and there is substantial 240 

evidence that waterfowl act as vectors of statoblast dispersal (Freeland et al. 2000a, 241 

Figerola et al. 2004, 2005), including from North America to Europe (Freeland et al. 2000b, 242 

Henderson and Okamura 2004). The relationship between vertical transmission, dispersal 243 

and persistence of infectious agents is worthy of further investigation in view of range 244 

extensions in response to climate change.  245 
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Environmental change and disease dynamics 246 

Context-dependent disease dynamics and their implications 247 

Activation of microscopic, persistent quiescent stages to cause disease in invertebrates is 248 

generally associated with changing environments and often these are linked to changes in 249 

host condition. For example, overt viral infections of insects develop when hosts experience 250 

stressful conditions, including infections of other parasites, high temperatures, and 251 

overcrowding (Table 1; see also Anderson and May 1981 for review of early studies). Viral 252 

diseases of oysters and shrimp are similarly noted to develop when hosts are exposed to 253 

stressors (Table 1). In contrast, overt infections of T. bryosalmonae develop when hosts are 254 

in peak form as a result of sustained warm temperatures and high food levels that promote 255 

host growth.  256 

Context-dependent dynamics may also be expressed if changing conditions alter host-257 

symbiont interactions as exemplified in the earlier cited example of nitrate levels increasing 258 

the growth of zooxanthellae to the detriment of coral host growth (Marubini and Davies 259 

1996). If such symbionts are only detected when disease is observed they are likely to be 260 

regarded as parasites even though negative effects on hosts may be confined to unusual 261 

circumstances. Increased understanding of the complexities of host-symbiont interactions in 262 

their broadest sense (e.g. those involving organisms traditionally regarded as parasites, 263 

commensals and mutualists) will enable better prediction of how environmental change may 264 

influence invertebrate health and disease development.  265 

The association of disease development with environmental change has implications in view 266 

of accelerated changes that now characterise environments globally. In particular, the 267 

dynamics of invertebrate diseases may be altered as changing environments influence host 268 

and parasite responses. Such altered dynamics may include:   269 

 shifts in the timing of disease outbreaks (due to e.g. warming temperatures)  270 
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 prolonged or diminished periods of disease (as a consequence of parasite- and host-271 

specific responses to environmental variation) 272 

 the apparent disappearance of disease (e.g. if conditions are unsuitable for overt 273 

infection development) 274 

 the appearance of a previously undetected disease (if asymptomatic infections are 275 

widespread)  276 

Warning of ecosystem change 277 

The strong link between disease and environmental change suggests that changes in 278 

invertebrate disease dynamics or distributions may provide generically useful indicators of 279 

ecosystem change. Thus, indicators based on altered disease profiles could complement 280 

indicators arising from special understanding of specific systems (Pace et al. 2015) or from 281 

long term monitoring to identify the behaviour of state variables (Batt et al. 2013). 282 

Furthermore, because disease is contingent on the intimate interactions of at least two 283 

organisms, disease indicators will reflect integrated responses and may provide insights on 284 

the underlying mechanisms of change as outlined below in the case of PKD.  285 

Outbreaks of PKD in sites in Norway (Sterud et al. 2007) and Iceland (Kristmundsson et al. 286 

2010) in regions where previously the disease was undetected are suggestive of 287 

environmental change and associated altered dynamics of covert infections. Unusually warm 288 

conditions at these sites may have caused PKD outbreaks by instigating overt infection and 289 

prolonged spore production in bryozoan hosts (Tops et al. 2006). Alternatively or 290 

additionally, warmer conditions may have stressed fish harbouring previously chronic 291 

undetected infections, causing clinical PKD and mortality. These northerly PKD outbreaks 292 

thus demonstrate that novel diseases need not be attributed to invasive parasites but can 293 

result from endoparasites that remain hidden within ecosystems as endemic asymptomatic 294 

infections. The possibility that emerging diseases may be explained by endemic but 295 
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inapparent causative agents is rarely considered because research tends to focus on 296 

invasive disease agents and ecosystem change (e.g. Crowl et al. 2008). 297 

Conclusion 298 

There are many unknowns regarding the diversity and dynamics of asymptomatic, hidden 299 

infections in invertebrates. An important question is whether and when environmental 300 

change may, for example, constrain host resistance evolution because resistance-conferring 301 

traits are costly and require trading off against other aspects of fitness (e.g. fecundity, 302 

growth). Consideration of such issues is beyond the scope of this paper but see Altizer and 303 

Pederson (2008) for review of how environmental change may influence the evolutionary 304 

dynamics of hosts and parasites and the consequent disease risks for wild populations. 305 

What does appear to be predictable is that environmental change will exacerbate some 306 

invertebrate diseases. Such diseases may be caused by endemic endoparasites that have 307 

been overlooked and lurk as covert infections. In other cases, infectious agents may be 308 

released from inhibition by host immune responses or competitive interactions with other 309 

parasites or symbionts. Invertebrate diseases may also develop when parasites are 310 

introduced to new environments by human activities or when vertical transmission 311 

establishes infection in dispersal stages that colonise new habitats. Similarly, environmental 312 

change may cause disease or impact the health of invertebrates hosting commensal or 313 

mutualistic symbionts if compromised host defences enable opportunistic exploitation of host 314 

resources. These changing disease dynamics may provide warning of further biotic change 315 

that doesn’t require extensive knowledge and long term monitoring of ecosystems. A better 316 

understanding of the diversity and complex relationships of endoparasites with their 317 

invertebrate hosts will enable a fuller appreciation of parasite biodiversity and of how our 318 

changing world may impact organismal interactions.  319 
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Fig. 1 Infection stages of the sac-forming malacosporean myxozoan, Buddenbrockia 

allmani, in the freshwater bryozoan host, Lophopus crystallinus. (A) Single cells of B. allmani 

beneath the peritoneum associated with covert infection. Scale bar = 3 m. (B) Spore-filled 

sacs of B. allmani are readily observed by stereomicroscopy in the bryozoan body cavity 

causing overt infections. Scale bar = 500 m. 

Fig. 2  Contingent dynamics of myxozoan parasite, Tetracapsuloides bryosalmonae, and its 

freshwater bryozoan host, Fredericella sultana.  (A) Host-condition dependent cycling 

between avirulent covert (single cells associated with the body wall) and virulent overt 

infection (numerous spore-filled sacs in the body cavity) resulting in the release of spores 

infectious to fish. (B) The effects of host-condition dependent cycling through time, 

illustrating initial infection of F.  sultana colony and the subsequent iterated impacts of covert 

and overt infection dynamics on propagule production and periodic castration (during overt 

infection) as mediated by the persistence of cryptic stages of T. bryosalmonae. Note that 

infections may eventually be lost (as illustrated) but reinfection may occur.  
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Table 1. Asymptomatic covert infections in insects and aquatic invertebrates studied in recent years, including insights on prevalences, drivers of overt 

infection and capacity for vertical transmission. Numerical superscripts link results with specific references when required. Covert infections of 

myxozoans in bryozoan hosts are elaborated more fully in the text but relevant data are included for comparative purposes. 

Parasite Host Covert infection 

prevalence 

Overt infection drivers Vertical transmission References 

MbNPV 

(nucleopolyhedro

virus in 

Baculoviridae) 

Mamestra 

brassicae larvae 

(cabbage moth) 

50-100% (PCR: 10 

populations collected 

variously over 2 yrs; n<10 

in 7 populations) 

Challenge with 

heterologous 

baculoviruses 

PCR shows infection in 

75% and 80% of 1st  

generation larvae and in 

100% of 5th generation 

larvae deriving from mated 

adults from 2 populations [ 

n<5] 

Burden et al. 2003  

PiGV  

(granulovirus in 

Baculoviridae) 

Plodia 

interpunctella 

larvae (Indian 

meal moth) 

100% larvae, 100% 

pupae, 30% adults after 

challenge with PiGV at 5th 

instar (PCR: 10 individuals 

per life history stage)  

unknown PCR shows infection 

passed by both sexes to 

progeny and 80-90%, 

[n=10] of 2nd generation 

progeny are infected 

Burden et al. 2002 

SpexNPV 

(nucleopolyhedro

virus in 

Baculoviridae) 

Spodoptera 

exempta larvae 

(African 

armyworm) 

97% (PCR: 33 adult moths 

derived from field-

collected larvae and 

pupae); 60% (RT-PCR: 10 

adult moths derived from 

field-collected material)  

Long term persistence in 

relatively stress-free 

laboratory conditions 

implies stressful host 

conditions trigger overt 

infection 

78-100% of 2nd and 7th 

generation larvae and 

adults by PCR; 25-50% by 

RT-PCR [relatively low n-

values] 

Vilaplana et al. 

2010 

Iridoviruses  

(possibly 3 

species2) 

Simulium larvae 

(blackfly) 

17%, 30% and 23%1 at a 

single time; 17-37% in 

spring, 0% in summer, 0-

20% in autumn2 (PCR on 

Host stress is suggested 

in keeping with 

baculoviruses1; 

Supported by elevated 

unknown 1Williams 1993; 
2Williams 1995 
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3 populations [n=30 or 50 

per population per time] in 

1 river in both studies) 

covert infection levels at 

low host densities, low 

temperatures and 

[presumably] slower host 

growth2 

DWV  

(deformed wing 

virus, a positive 

strand RNA 

virus) 

Apis mellifera 

(honeybee) 

100% (RT-PCR of 4 

German hives [n>40 

bees/hive]); 40% (24 bees 

from 3 Swedish hives)1; 

95% of pupae, 80% of 

larvae, 79% of adults (RT-

PCR of 2 hives in USA; 

n=24 for each stage)2 

Infestations of 

ectoparasitic mite, 

Varroa destructor, that 

causes varroosis in 

honeybees3 

Via infected sperm causing 

100% infection of eggs in 6 

out of 8 cases; Via gonad  

causing 100% infection of 

unfertilised eggs in 2 of 8 

cases and 9% in 1 of 8 

cases (n=24 eggs 

sampled)3 

1Yue and 

Genersch 2005; 
2Chen et al. 2005; 
3Yue et al. 2007 

OsHV-1 (Ostreid 

herpesvirus 1) 

Many bivalves, 

most studies on 

Crassostrea 

gigas; Ostrea 

edulis 

(oysters) 

46% (qPCR: n= 54) & 

47% (qPCR: n=46) in C. 

gigas populations in 2 

sites in northern 

California1; 79% in O. 

edulis population (qPCR: 

n=14) in northern 

California1 

Rapid increase in water 

temperature2; Adverse 

conditions for host3 

Viral DNA in the gonad 

suggests potential or 

vertical transmission4 

1Burge et al. 2011; 
2Renault et al. 

2014; 3See 

references in 

Burge et al. 2007; 
4Arzul et al. 2002  

White spot 

syndrome virus 

(WSSD) 

Wide range of 

crustaceans 

(devastating 

disease in shrimp  

aquaculture); 

other 

invertebrates may 

e.g. 6-77% & 40-88% of 

wild-caught asymptomatic 

shrimp and crabs, 

respectively (PCR: sample 

sizes>5)2 

Stressors to hosts 

(e.g.rapid change 

in salinity, drop in 

temperature)3 

 

Suspected3 1Stentiford et al. 

2009; 2Lo & Kou 

1998; 3See 

references in 

Stentiford et al. 

2009 
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act as vectors1 

Tetracapsuloides 

bryosalmonae 

(myxozoan) 

Fredericella 

sultana 

(freshwater 

bryozoan) 

0-92%1 (PCR:  

populations in 3 rivers 

sampled every 45 days 

over 2 yrs; n>25 with one 

exception) 

Good host condition2,3 39% [n=54] and 30% 

[n=164] of statoblasts from 

2 populations by PCR4; 25-

80% of colony fragments 

sampled over 2 time 

periods in 3 rivers, [n >44 

with one exception]5 

1Fontes 2015; 
2Tops et al. 2006; 
3Hartikainen & 

Okamura 2012; 
4Abd-Elfattah et al. 

2013; 5Fontes 

2015; 5Fontes et al. 

submitted  

Buddenbrockia 

allmani 

(myxozoan) 

Lophopus 

crystallinus 

(freshwater 

bryozoan) 

9-59% (PCR: in 5 

populations in the UK, 

Switzerland & Ireland 

n>29) 

Unknown 98% of daughter colonies 

produced by fission (n=65) 

Hill & Okamura 

2007 

 

 


