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Abstract

We have incorporated next-to-leading logarithmic corrections into the High

Energy Jets (HEJ) formalism and parton-level Monte Carlo generator for W

plus inclusive dijet production. This has involved an analytic demonstration of

factorisation for the relevant configurations, an extraction of the effective current

and proof of its gauge invariance. We have thoroughly validated our numerical

implementation and matching of the cross section to leading order accuracy. We have

studied the impact of these corrections upon transverse momentum distributions

and found a significant improvement in the description of data.

We also present a new merging algorithm, inspired by the CKKW-L method, for

combining high energy and soft-collinear logarithms. This has been implemented

for HEJ+Pythia. Multiple parton interactions and hadronisation effects are also

accounted for, allowing for an accurate description of jets shapes. We find good

agreement with data for observables such as the average number of jets and gap

fractions which are relevant for understanding the impact of jet vetoes.
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Preface

The goal of particle physics is to classify the most fundamental constituents of the

universe, and determine how their interactions give rise to physical laws. One of the

primary methods for gleaning information in this subject is still to accelerate beams

of particles to very high energies and by colliding them convert their energy into

new particles. Since different particles leave different signatures in the detectors, in

this manner we can determine the particle content of the universe. By measuring

how frequently we produce certain particles, we can infer the strength of their

interactions.

Our current best description of elementary particle physics is known as the

Standard Model of Particle Physics, which was completed with the momentous

discovery of the Higgs boson by the ATLAS and CMS collaborations [1, 2] in 2012.

The Standard Model is an interacting quantum field theory, locally invariant under

the gauge group SU(3)×SU(2)×U(1). This symmetry results in the wonderfully

rich phenomenology which we observe in nature. From the SU(3) gauge group

emerges the physics of the strong force which is responsible for the confinement of

quarks and gluons into hadrons (such as protons and neutrons which form chemical

nuclei). The gauge group SU(2) ×U(1) describes the electroweak sector which,

through the mechanism of electroweak symmetry breaking mediated by the Higgs

(H) boson, determines the interactions of the W± and Z bosons and photons (γ).

From this arises the more familiar forces of electromagnetism and radioactive decay.

The Standard Model is one of the most predictive and well-tested theories in the

history of physics. At the LHC alone, hundreds of measurements have been made,

spanning more than ten orders of magnitude and so far there have been no deviations

from the Standard Model observed which surpass the to 5σ golden standard required
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Preface

to constitute a discovery (see for example the summary plots shown in fig. 1 produced

by the ATLAS and CMS collaborations [3,4]). The Standard Model however cannot

be the final story. The observation of neutrino oscillations [5, 6] and implication of

non-zero neutrino masses cannot be accommodated into the picture without some

extension [7]. Furthermore, astrophysical observations of galaxies and structure

formation continue to indicate the presence of matter which couples weakly to

regular matter but which is visible through its gravitational effects [8]. Identifying

the particle content of this so-called dark matter is one of the major goals of the

Large Hadron Collider (LHC).

The enormous discovery potential of the LHC is due to the fact that the protons

which are collided are not fundamental particles, but composite objects. The

protons’ energy is shared amongst their constituents, entailing that the centre of

mass energy of a given collision is not fixed. This enables a huge spectrum of

energies to be explored (and ultimately led to the discovery of the aforementioned

Higgs boson). This enticing feature, however, comes at a cost. The fragments of

the protons, being charged under the strong force, emit vast amounts of radiation

giving rise to streams of particles known as jets. These jets often contribute to

large backgrounds which are difficult to reduce.

Given that the Standard Model continues to withstand an onslaught of tests, it

is likely that any evidence of new physics will be manifest only as small discrepancies

in measurements of couplings or production rates of Standard Model particles. If

such signals are to be extracted it is necessary to have precise theoretical modelling

of the expected Standard Model backgrounds, in particular those arising from jets

which are usually dominant. It is with this objective in mind that this thesis is

presented.

This thesis has been written from a phenomenological standpoint. By this we

mean that although the topics encountered are inherently theoretical, it is intended

the connection with and relevance for experiments is emphasised throughout.

There will be a focus on improving the accuracy of predictions for quantities

that are experimentally interesting and informative. In chapter 1 we provide

an introduction to the quantum field theory of the strong interaction and how

9
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perturbative calculations are performed. We discuss some key concepts such as

infrared safety, factorisation and what observables can be measured in collider

experiments. Chapter 2 is another introductory chapter, in which we discuss the

need for more advanced computational techniques than those of chapter 1. In

particular, we introduce the formalisms on which the majority of work in later

chapters is based. After a brief detour on numerical methods in chapter 3, we

discuss two separate areas in chapters 4 and 5 where tools for improving the

precision of calculations involving jets have been developed. In these two chapters

we present the main results of the thesis. Finally in chapter 6 we summarise the

thesis, and provide some overall conclusions and an outlook on future work.

It is hoped that the most relevant background material has been reviewed

sufficiently in chapters 1 and 2. Of course, in a field as diverse as particle physics

it is impossible to cover everything, and we comment now on some of the more

notable omissions. We do not provide a general introduction to quantum field

theories. We also do not discuss electroweak symmetry breaking. Finally, although

we sometimes mention the relevance of measurements to searches for new physics,

we remain agnostic as to what this might be. For these and many other interesting

topics, we refer the reader to any of the many existing texts on the subject, such

as [9–13].

10



Preface

pp

total (x2)

inelastic

Jets
R=0.4

dijets

incl .

γ

fid.

pT > 125 GeV

pT > 25 GeV

nj ≥ 1

nj ≥ 2

nj ≥ 3

pT > 100 GeV

W

fid.

nj ≥ 0

nj ≥ 1

nj ≥ 2

nj ≥ 3

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

Z

fid.

nj ≥ 1

nj ≥ 2

nj ≥ 3

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

nj ≥ 0

nj ≥ 1

nj ≥ 2

nj ≥ 3

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

t̄t
fid.

total

nj ≥ 4

nj ≥ 5

nj ≥ 6

nj ≥ 7

nj ≥ 8

t

tot.

Zt

s-chan

t-chan

Wt

VV
tot.

ZZ

WZ

WW

ZZ

WZ

WW

ZZ

WZ

WW

γγ

fid.

H

fid.

H→γγ

VBF
H→WW

ggF
H→WW

H→ZZ→4ℓ

H→ττ

total

WV

fid.

Vγ

fid.

Zγ

W γ

t̄tW

tot.

t̄tZ

tot.

t̄tγ

fid.

Wjj
EWK

fid.

Zjj
EWK

fid.

WW
Excl.

tot.

Zγγ

fid.

Wγγ

fid.

WWγ

fid.

Zγjj
EWK
fid.

VVjj
EWK
fid.

W ±W ±

WZ

σ
[p

b]

10−3

10−2

10−1

1

101

102

103

104

105

106

1011 Theory

LHC pp
√
s = 7 TeV

Data 4.5 − 4.9 fb−1

LHC pp
√
s = 8 TeV

Data 20.3 fb−1

LHC pp
√
s = 13 TeV

Data 0.08 − 36.1 fb−1

Standard Model Production Cross Section Measurements Status: July 2017

ATLAS Preliminary

Run 1,2
√
s = 7, 8, 13 TeV

(a)

 [p
b]

σ
P

ro
du

ct
io

n 
C

ro
ss

 S
ec

tio
n,

  

4−10

3−10

2−10

1−10

1

10

210

310

410

510

CMS PreliminaryJuly 2017

All results at: http://cern.ch/go/pNj7

W

n jet(s)≥

Z

n jet(s)≥

γW γZ WW WZ ZZ
µll, l=e,→, Zνl→EW: W

qqW
EW 

qqZ
EW

WW
→γγ

γqqW
EW

ssWW
 EW

γqqZ
EW

qqZZ
EW γWV γγZ γγW tt

=n jet(s)

t-cht tW s-cht γtt tZq ttW ttZ tttt
σ∆ in exp. Hσ∆Th. 

ggH qqH
VBF VH ttH HH

CMS 95%CL limits at 7, 8 and 13 TeV

)-1 5.0 fb≤7 TeV CMS measurement (L 
)-1 19.6 fb≤8 TeV CMS measurement (L 
)-1 35.9 fb≤13 TeV CMS measurement (L 

Theory prediction

(b)
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by the (a) ATLAS [3] and (b) CMS [4] collaborations, as of July 2017.
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Chapter 1

Foundations

In this chapter we explore some of the core concepts that underpin the rest of

the thesis. We review what are the minimal steps required for making predictions

for observables that can be measured in hadron collider experiments. We begin

in sections 1.1 and 1.2 with an introduction to the theory of the strong force. In

principle, this is a theory that permits a perturbative expansion in the coupling

strength, allowing the use of Feynman rules for calculating scattering amplitudes

(see section 1.3). However, in attempting to define this theory down to arbitrarily

small distance scales, we are faced by the appearance of unphysical divergences.

The procedure for removing such divergences, discussed in section 1.4, results in

a coupling strength that not only varies with scale, but also is only defined with

respect to an arbitrary reference value, leading to potentially large systematic

uncertainties.

One characteristic behaviour that results from the varying coupling is con-

finement at small scales. This has the consequence that the asymptotic states

which formally should be used in calculations are different from those at scales

where perturbation theory becomes applicable and at which the calculation is

feasible. Fortunately, the factorisation theorem discussed in section 1.5 allows

us to circumvent this problem. Nevertheless, there remain restrictions on which

observables it is meaningful to calculate. Furthermore we find in section 1.6 that

there are some observables whose computation requires methods that go beyond

those presented in this chapter.
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1.1. Colourful Beginnings

1.1 Colourful Beginnings

During the 1960s it was observed that the spectrum of baryons and mesons being

produced in cloud chamber experiments possessed an approximate SU(3) symmetry

[14]. This feature could be explained if these objects were not fundamental, but

were instead composed of other particles. Quarks (and antiquarks, their antimatter

counterparts) - particles with spin-1
2

and fractional electric charge - were proposed

to explain the apparent substructure [15–17]: mesons were expected to be bound

states of a quark and an antiquark, and baryons (antibaryons) bound states of three

quarks (antiquarks). The light quarks, known as up (u), down (d) and strange (s),

and those responsible for the approximate symmetry observed were the first to be

discovered. Later followed the discoveries of the heavier charm (c) [18, 19], bottom

(b) [20] and top (t) [21,22] quarks. The u, c and t (‘up-type’) quarks possess charge

+2
3
e, while the d, s and b (‘down-type’) quarks have charge −1

3
e. These six species

of quarks (plus the six antiquarks with opposite charge) are known as flavours.

This was not enough, however. Two spin-3
2

baryons composed of identical

flavour quarks with their spins aligned, the ∆++ (uuu) and Ω− (sss), were known.

As each of these baryons also have zero orbital angular momentum, to obtain the

totally anti-symmetric wave-function required by Fermi-Dirac statistics, another

degree of freedom was needed. The solution was provided by the proposal that

quarks carry an additional quantum number [23], named colour.

This implied the existence of a new fundamental symmetry of nature, the

simplest being the non-Abelian group SU(Nc). Each quark would be associated

with a multiplet of Dirac fields ψi in the fundamental representation of SU(Nc),

where the index i runs from 1 to Nc = 3, representing the possible number ‘colours’

a quark could be, often labelled as red, green and blue. Similarly, antiquarks would

be associated with Dirac fields ψ̄i in the anti-fundamental representation of SU(Nc).

The quark fields then transform according to:

ψi(x)→ Uijψj(x) , (1.1.1)

where U = eiα
aTa is an element of SU(Nc); T

a are generators of SU(Nc) in the

13



1.1. Colourful Beginnings

fundamental representation and obey the Lie algebra:

[T a, T b] = ifabcT
c , (1.1.2)

where fabc are known as structure constants. By convention, Tr(T aT b) = 1
2
δab in

the fundamental representation, fixing the quadratic Casimir operators1 for all

irreducible representations of SU(Nc). In the fundamental representation we obtain

CF = N2
c−1

2Nc
= 4

3
and in the adjoint representation CA = Nc = 3 [9].

Since we do not see colour on macroscopic scales in nature, hadrons must

be singlet representations of this transformation. Such singlet states can be

constructed as ψiψ̄
i, εijkψiψjψk, and εijkψ̄iψ̄jψ̄k, giving a natural representation

for meson, baryons and antibaryons respectively. The totally anti-symmetric tensor

εijk automatically ensures the anti-symmetry of baryons under colour exchange

that is needed to explain the observations of ∆++ and Ω−.

Yet the addition of this new symmetry seemed somewhat arbitrary, and neglected

to provide an explanation of why quarks should only exist in bound colour-singlet

states. This picture also seemed inconsistent with deep inelastic scattering experi-

ments, where it had been observed that the point-like components of hadrons were

loosely bound [24]. The resolution came by requiring invariance under eq. (1.1.1)

for the general class of continuous functions α(x) depending on the spacetime point

x, thereby promoting our SU(3) invariance to a local gauge symmetry:

ψi(x)→ Uij(x)ψj(x) , (1.1.3)

with elements U(x) = eiα
a(x)Ta . It was realised that non-Abelian gauge theories

naturally give rise to the phenomenon of asymptotic freedom in which fields behave

freely at high energies, and interact strongly at low energies leading to confinement

(which we discuss further in section 1.4) [25, 26]. Thus both the observations of

hadron spectroscopy and deep inelastic scattering could explained simultaneously.

Invariance of nature under a local U(1) phase transformation of the electron

field had already been seen to imply the existence of the vector potential Aµ

1 For a general representation r of SU(N) the quadratic Casimir operator is defined as

T ar T
a
r = C2(r)1r, with 1r a unit matrix in the dimension of the representation r.

14



1.2. The QCD Lagrangian

corresponding to the photon, and gave rise to the theory of quantum electrodynamics

(QED). The generalisation of this idea to invariance under any continuous symmetry

transformation, which is manifest as a fundamental property of nature, is known

as the gauge principle.

In the next section we construct a model invariant under the gauge transforma-

tion in eq. (1.1.3). The resulting theory of colour and the strong force, Quantum

Chromodynamics (or QCD) has a rich phenomenology which we proceed to expose

in the rest of this chapter.

1.2 The QCD Lagrangian

The starting point in any quantum field theory is the Lagrangian density L (which

hereafter is simply referred to as the Lagrangian). It provides a way of specifying

the degrees of freedom in a system, which are determined by the symmetries which

exist in nature. In a quantum field theory, the degrees of freedom are manifest

as operator-valued functions of space and time, or fields φ(x); the Lagrangian is

a function of these fields and their derivatives ∂µφ(x), and relates to the action

functional through

S =

∫
d4xL(φ(x), ∂µφ(x)) . (1.2.1)

All particle content, interactions and coupling strengths of a given model are

specified in the Lagrangian, the usefulness of which ultimately arises through its

connection to observable quantities. For example, in the context of perturbative

field theories, the Lagrangian can be used to derive Feynman rules, from which it

is possible to compute the cross section, which in turn can be measured in collider

experiments. This is discussed in greater detail in section 1.3.

The Lagrangian of QCD must be a function of the spin-1
2

quark fields ψ(x), ψ̄(x)

described in the preceding section, and must be invariant under the transformation

1.1.3 (known as gauge invariance). It must be Lorentz invariant and also satisfy

renormalisability which is a property we discuss further in section 1.4. The result

is the Yang-Mills Lagrangian, given by [9]:

LYang-Mills = −1

4
F a
µνF

aµν + ψ̄(x)(i /D −m)ψ(x) . (1.2.2)

15



1.2. The QCD Lagrangian

Here we have suppressed flavour indices for convenience, and summation over

repeated indices is implied. The parameter m is the quark mass. The field strength

tensor F a
µν is given by:

F a
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν , (1.2.3)

where gs is the strong coupling, and Aaµ is the gauge field whose quanta correspond

to the gauge bosons of QCD, gluons. The gluon field transforms in the adjoint

representation, according to [9]:

Aaµ(x)T a → U(x)

(
Aaµ(x)T a +

i

gs
∂µ

)
U †(x) (1.2.4)

In eq. (1.2.2) we have used the ‘slashed’ notation to denote:

/D = γµDµ , (1.2.5)

where the four γ-matrices satisfy the Clifford algebra:

{γµ, γν} = 2ηµν . (1.2.6)

The covariant derivative is given by:

Dµψ(x) = γµ
(
∂µ − igsAaµT a

)
ψ(x) . (1.2.7)

Equation (1.2.2) is sometimes referred to as the classical QCD Lagrangian. If

we want to quantise the theory and derive the Feynman rules, some additional

terms need to be included. Using the Faddeev-Popov method of gauge fixing we

obtain the following contribution to the Lagrangian [9]:

Lgauge-fixing = − 1

2ξ

(
∂µAaµ

)2
, (1.2.8)

where ξ may be any finite constant. Two frequently used choices are:

ξ → 0 Landau gauge,

ξ → 1 Feynman gauge,

where it is understood that the limit is taken after quantisation. A term of this

kind is needed to quantise any locally invariant theory. It is needed to prevent

16



1.2. The QCD Lagrangian

the integration over a continuously infinite set of physically equivalent degrees of

freedom in the functional integral that is used to compute correlation functions

(needed to derive the Feynman rules). In addition, in non-Abelian gauge theories,

negative degrees of freedom must be added to cancel the non-physical timelike

and longitudinal polarisation states of the gauge bosons: these are manifest as

anticommuting complex scalar fields, c and c̄, known as Faddeev-Popov ghosts2.

These ghosts give rise to their own set of Feynman rules, and the corresponding

diagrams must be included in loop diagram calculations. The corresponding

Lagrangian is given by [9]:

Lghost = c̄a
(
−∂2δac − gs∂µfabcAbµ

)
cc , (1.2.9)

where δac is the Kronecker delta. The full Lagrangian of QCD is then given by the

sum all terms:

LQCD = LYang-Mills + Lgauge-fixing + Lghost . (1.2.10)

Although we have explicitly broken gauge invariance at the level of the Lagrangian

by fixing the gauge, it may be shown that the Faddeev-Popov method nevertheless

gives rise to gauge invariant S-matrix elements (a quantity we discuss in the next

section), and hence physically measurable quantities such as the cross section do

not depend on the choice of gauge. It should be noted however that intermediate

steps of a given calculation do depend on the gauge choice; a particular example of

this is the precise form of the gluon propagator.

We conclude this section by noting that although eq. (1.2.2) is consistent with

the conditions of gauge invariance and renormalisability, it is not the most general

Lagrangian which we could have written down. In particular, we could have

included the so-called ‘theta term’ [9]:

Lθ =
θg2

s

64π2
εµνλσF a

µνF
a
λσ . (1.2.11)

This CP-violating term can be written as a total divergence, contributing only a

surface term to the action, and is thus not relevant for perturbation theory and

2In fact, this is only true if we have used a covariant gauge as the gauge choice. There exist

certain non-covariant gauge choices for which ghosts are not required.
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1.3. Feynman Rules and the Cross Section

the derivation of Feynman rules. However, a non-perturbative analysis of this

term suggests it would give rise to an electric dipole moment in the neutron, a

phenomenon that has been searched for with very high precision and not seen;

the coefficient θ is therefore constrained to be very close to zero [27]. Yet a priori

there is no reason or symmetry which would suggest that this term should be

suppressed; its unexplained smallness is known as the strong CP problem. One

possible solution is to convert θ to a parameter which may be dynamically driven

to be small. This may be achieved in the Peccei-Quinn mechanism [28], which

also predicts the existence of pseudo-scalar fermions known as axions, though such

particles have not yet been observed.

1.3 Feynman Rules and the Cross Section

In order to test whether our theory of fundamental particles and interactions

encoded by the Lagrangian is correct, we must connect it to a quantity which is

measurable in experiments. The modern approach to probing such interactions is

through scattering experiments in which two beams of particles may collide. The

number of scattering events per unit time N is related to the to number of incoming

beam particles per unit area per unit time, or flux F , by the cross section σ:

σ =
N

F
. (1.3.1)

The cross section, which is an effective area, may be connected to the probability for

a given scattering to occur. This in turn can be related to the transition amplitude

between a set of asymptotically defined ‘in’ and ‘out’ states of definite momentum,

given by:

out〈p1p2 . . . |kAkB〉in = lim
T→∞
〈p1p2 . . .︸ ︷︷ ︸

T

|kAkB︸ ︷︷ ︸
−T

〉

= lim
T→∞
〈p1p2 . . . |e−iH(2T )|kAkB〉

= lim
T→∞
〈p1p2 . . . |S|kAkB〉 . (1.3.2)

In the last two lines the states are defined at some common reference time. The

unitary operator in the last line is known as the S-matrix. Typically we isolate the
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1.3. Feynman Rules and the Cross Section

part of the S-matrix that corresponds to interactions as follows:

S = 1 + iT . (1.3.3)

The matrix elements for the T operator should encode four momentum conservation,

and we therefore anticipate it will contain the factor δ4(kA + kB −
∑
pf); by

extracting this factor we can define the Lorentz invariant matrix element M:

〈p1p2 . . . |iT |kAkB〉 = (2π)4δ4(kA + kB −
∑

pf )iM(kAkB → {pf}) . (1.3.4)

The cross section then relates to the matrix element through:

σ =

∫ (∏
f

d3pf
(2π)3

1

2Ef

)
|M(kAkB → {pf})|2

2EAEB|vA − vB|
(2π)4δ4(kA + kB −

∑
pf ) . (1.3.5)

The matrix elementsM may be computed directly using the Feynman rules. These

state that the quantity iM is equal to the sum of all connected, amputated Feynman

diagrams. By connected we mean that there are no vacuum bubbles, and that

all external lines are all connected with each other; diagrams which violate this

condition only give rise to an overall phase shift of the vacuum energy and are not

relevant to the S-matrix. By amputated we mean that there should exist no loops

whose internal propagators have both ends connecting to the same external leg.

The importance of this condition will become apparent in section 1.4.

Each diagram is evaluated by making the replacements summarised in table 1.1

(for the case of QCD), noting that Dirac indices should be contracted along fermion

lines, and additionally one must:

• Impose momentum conservation at each vertex.

• Integrate over each undetermined loop momentum pl with the measure d4pl
(2π)4

.

• Multiply by a factor of -1 for each odd permutation of fermions relative to a

reference order.

• Multiply by a factor of -1 for each fermion or ghost loop.

• Divide by the symmetry factor.
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1.3. Feynman Rules and the Cross Section

External lines

p
= us(p)

p
= ūs(p)

p
= ν̄s(p)

p
= νs(p)

k

= εµ(k)

k

= ε∗µ(k)

Internal lines

p
ji

=
iδij(/p+m)

p2 −m2 + iε

k

b, νa, µ
=
−iδab
k2 + iε

(
gµν − (1− ξ)kµkν

k2

)

k
ba

=
iδab

k2
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1.3. Feynman Rules and the Cross Section

Vertices

i j

a, µ

= igsγ
µT aij

k
c b

a, µ

= −gsfabckµ

k q

p

a, µ c, ρ

b, ν

=

gsf
abc [ gµν(k − p)ρ

+gνρ(p− q)µ

+gρµ(q − k)ν ]

c, ρ

a, µ

d, σ

b, ν

=

−ig2
s

[
fabcf cde(gµρgνσ − gµσgνρ)

+facef bde(gµνgρσ − gµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)
]

Table 1.1: The momentum space Feynman rules of QCD for the general class of

Lorentz (covariant) gauges [9].
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1.3. Feynman Rules and the Cross Section

In principle there are an infinite number of Feynman diagrams to write down for a

given process; however, it is understood that the coupling strength gs is small and

thus we can expand the cross section to a given order in gs to which only a finite

number of diagrams contribute.

External quark and antiquark lines in Feynman diagrams correspond to the four

component spinors us(p) and νs(p) which respectively are the positive frequency

(ψ(x) = us(p)e−ip.x) and negative frequency (ψ(x) = νs(p)e+ip.x) solutions to the

Dirac equation:

(i/∂ −m)ψ(x) = 0 . (1.3.6)

The general solution to the Dirac equation can be written as a linear combination

of these plane wave solutions. The spinors satisfy the spin sums:

∑
s

us(p)ūs(p) = /p+m , (1.3.7)

∑
s

νs(p)ν̄s(p) = /p−m . (1.3.8)

Here we use the notation ψ̄ = ψ†γ0. In the chiral basis, in which the gamma

matrices have the representation3:

γµ =

 0 σµ

σ̄µ 0

 (1.3.9)

and the spinors can be explicitly represented by:

us(p) =

√p · σξs√
p · σ̄ξs

 νs(p) =

 √p · σηs
−√p · σ̄ηs

 s = 1, 2 (1.3.10)

where ξs and ηs each correspond to a basis of two component spinors. The choice

ξ1 = ( 1
0 ) and ξ2 = ( 0

1 ) corresponds to spin-up and spin-down aligned along the

z-axis. The same choice for ηs leads to spins aligned in the opposite direction.

At this point it is convenient to introduce the concept of helicity, which is defined

as the projection of spin angular momentum along the direction of momentum.

3Here σµ = (1,σ), σ̄µ = (1,−σ) and σ = (σ1, σ2, σ3) are the conventional Pauli-Dirac

matrices.
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1.3. Feynman Rules and the Cross Section

Spin-1
2

particles whose spin is aligned with their momentum have helicity +1
2

and

are said to be right-handed, whilst those with anti-aligned spin have helicity −1
2

and are said to be left-handed. Thus the choice of basis ξ1 = ( 1
0 ) and ξ2 = ( 0

1 )

corresponds to right- and left-handed spinors respectively. Similarly, the same

choice for ηs leads to left- and right-handed spinors respectively.

We can project out the left- and right-handed components from a general spinor:

u±(p) = PR
L
u(p) =

(
1± γ5

2

)
u(p) (1.3.11)

ν∓(p) = PR
L
ν(p) =

(
1± γ5

2

)
ν(p) , (1.3.12)

where γ5 = −iγ0γ1γ2γ3. This is useful because the only term which couples the left

and right handed spinors is the mass term. As quark masses are typically small4

they can usually be neglected, and the Dirac equation decouples into two separate

Weyl equations. Furthermore, in the massless limit we find that:

u±(p) = ν∓(p) . (1.3.13)

Thus we can use the more compact spinor-helicity notation:

u±(p) = ν∓(p) = |p±〉 (1.3.14)

ū±(p) = ν̄∓(p) = 〈p±| . (1.3.15)

External gluons are denoted by the polarisation vector εµ(k). Massless gluons

of definite helicity λ = ±1 may be represented in spinor-helicity formalism by [29]:

ε±µ (k) = ±〈q
∓|γµ|k∓〉√
2〈q∓|k±〉

, (1.3.16)

where k is the gluon momentum, and q is any massless reference vector not

proportional to k. The polarisation vectors then satisfy the sum rule:

∑
λ=±1

ελµ(ελν)
∗ = −gµν +

kµqν + kνqµ
k · q . (1.3.17)

4The exception to this is the top mass; however we do not consider the top quark to be ‘free’.
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1.4. Renormalisation and the Running Coupling

1.4 Renormalisation and the Running Coupling

In principle we now have the tools to calculate any partonic scattering process.

In practice, this is not the case, and as soon as we attempt to calculate beyond

leading order we encounter infinities. Let us suppose we want to compute the

next-to-leading order correction to the quark propagator, known as the quark

self-energy Σ(/p,m), or a correction to the quark-gluon vertex, Γµ(p, q,m), as shown

in figs. 1.1a and 1.1b respectively.

Each of these diagrams contains a loop, and according to the Feynman rules

discussed in the previous section we must integrate over any unconstrained momenta.

Omitting factors for external legs, the Feynman rules give us:

Σ(/p,m) = −g2
s (T aT a)ij

∫
d4k

(2π)4i

γµ(/p+ /k +m)γµ

[(p+ k)2 −m2]
(1.4.1)

Γµ(p, q,m) = g3
s

(
T bT aT b

)
ij

∫
d4k

(2π)4

γν(/p+ /q + /k +m)γµ(/q + /k +m)γν

[(p+ q + k)2 −m2][(q + k)2 −m2]k2
.

(1.4.2)

Performing naive dimensional analysis tells us that the integrand in eq. (1.4.1) for

Σ(/p,m) has mass dimension -3, whilst the integration measure has mass dimension

+4, so the integral itself has mass dimension 1 and scales as the loop momentum

k. Since we integrate over k ∈ [0,∞] we therefore expect this term to diverge

as k → ∞; a more careful analysis (for example, using the method of Feynman

parameters [9]) tells us this is indeed the case. In eq. (1.4.2) the mass dimension of

the integral is zero; a careful analysis tell us that this diagram has a logarithmic

divergence as k →∞. In both cases, since they occur at large momentum scales,

these are known as ultraviolet (UV) divergences.

These diagrams are examples of higher order corrections that we might insert

into a given tree-level diagram. Since these corrections diverge, this could signify the

break-down of perturbation theory and the Feynman diagram formalism. However,

as we discuss in this section, UV divergences do not affect physical observables and

can be safely removed in a procedure known as renormalisation. We start with

an example of renormalisation, after which we will justify the steps taken, before

finally stating the formal rules. The notation used follows that of [9], to which the
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1.4. Renormalisation and the Running Coupling

p p+ k p

k

i j
a
µ

b
ν

(a) 1-loop correction to the

quark self-energy, Σ(/p,m)

p

q

p+ q + k

p+ q

k

q + k

a
µ

i

j

b
ν

c
ρ

(b) 1-loop correction to the

quark/gluon vertex correction,

Γµ(p, q,m)

Figure 1.1: Examples of divergent 1-loop corrections in QCD.

reader is referred for further details, or alternatively see [10].

The expression in eq. (1.4.1) is the next-to-leading order correction to the Dirac

propagator, which can be derived from the two-point function of Dirac fields. A

non-perturbative examination of this object utilising complex analysis tells us that

it has the structure:∫
d4x eip·x〈Ω|Tψ(x)ψ̄(y)|Ω〉 =

iZ2(/p+m)

p2 −m2 + iε
+ . . . (1.4.3)

where we have omitted terms corresponding to multi-particle bound states. This

expression differs from that given for the propagator in the Feynman rules in

multiple ways. Firstly, the denominator has a pole at p2 = m2 corresponding to

the physical mass m, as opposed to the bare mass parameter which appears in

the Lagrangian, which we hereafter denote as m0 (and similarly for other bare

parameters in the Lagrangian). Secondly there is the appearance of the constant Z2,

which gives the probability to create or annihilate an exact one-particle eigenstate

of the Hamiltonian:

Z2 = |〈Ω|ψ(0)|p, s〉|2 . (1.4.4)

The goal now is to compare eq. (1.4.3) to the expression we would obtain from

using the Feynman rules to all orders. Let us define −iΣ(p) as the sum of all

one-particle irreducible diagrams with two external quark lines, for which eq. (1.4.1)

is the leading order term. With this notation we can express the two-point function
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1.4. Renormalisation and the Running Coupling

as ∫
d4x eip·x〈Ω|Tψ(x)ψ̄(y)|Ω〉 =

i(/p+m0)

p2 −m2
0

+
i(/p+m0)

p2 −m2
0

(−iΣ)
i(/p+m0)

p2 −m2
0

+ . . .

=
i

/p−m0

(
1 +

Σ

/p−m0

+

(
Σ

/p−m0

)2

+ . . .

)
=

i

/p−m0 − Σ
, (1.4.5)

where the final expression is obtained by noting the previous line is a geometric

series. The location of the physical pole mass m is given by the solution to the

equation:

[/p−m0 − Σ(/p)]|/p=m = 0 . (1.4.6)

The pole mass and the bare mass are related by:

m−m0 = Σ(/p)|/p=m . (1.4.7)

This appears to suggest that our original bare mass was formally divergent. Ex-

panding eq. (1.4.6) around the pole mass and comparing to eq. (1.4.3) we find

that:

Z−1
2 = 1− dΣ

d/p

∣∣∣∣
/p=m

. (1.4.8)

This exercise demonstrates that were we to perform a renormalisation of the

bare fields in the Lagrangian, such as

ψ0 =
√
Z2ψ , (1.4.9)

we could have used the physical pole mass in our Feynman rules. The LSZ reduction

formula tells us that such factors always cancel out in the calculation of S-matrix

elements, provided that we only sum over fully amputated diagrams [30]. We

should view Z2 as a book-keeping device. The operation of multiplying by Z2 or

Z−1
2 should be interpreted as the adding or subtracting of a divergent term derived

to a given order in perturbation theory. There will be further consequences from

making the replacement (1.4.9), which we discuss later in the section.

Performing an infinite shift in the field strength and quark mass at first sight

seems like an unsettling and unjustified manoeuvre. However, we shall shortly see
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1.4. Renormalisation and the Running Coupling

how such shifts can arise naturally. To begin, we examine why the divergences

appeared in the first place. Both divergences in eqs. (1.4.1) and (1.4.2) arise because

we allow the exchange of a virtual particle whose momentum can fluctuate up

to arbitrarily high values, which is equivalent to saying fluctuations can occur

over arbitrarily small distances. This is where the flaw arises: it is unreasonable

to expect that our theory is valid down to arbitrarily small length scales. We

could have regulated the divergence by introducing a cutoff Λ, at which scale we

expect some new physics to become important. Adding a cutoff however simply

reformulates the problem: since we do not know the scale of new physics, it is not

at all obvious where such a cutoff should be placed. Somewhat miraculously, we

can avoid this problem, as there exist a class of renormalisable Lagrangians which

may be transformed such that they exhibit no dependence on the cutoff Λ.

In a quantum field theory the degrees of freedom are encapsulated by the

generating functional Z[J ], which may be used in the derivation of correlation

functions (and hence Feynman rules). It is given by:

Z[J ] =

∫
Dφ ei

∫
[L+Jφ] =

(∏
k

∫
dφ(k)

)
ei

∫
[L+Jφ] , (1.4.10)

where we have used φ to schematically denote some collection of fields. Imposing

a cutoff Λ is then equivalent to integrating only over φ(k) for |k| ≤ Λ. If now we

want to determine the impact of the high momentum modes, we could perform the

integral over a shell of momentum by introducing the field:

φ̂(k) =

φ(k) for bΛ ≤ |k| < Λ

0 otherwise.

(1.4.11)

Redefining φ(k) as identical for the low momentum modes, |k| < bΛ, and zero

otherwise, we can replace φ by φ+ φ̂ in eq. (1.4.10):

Z[0] =

∫
Dφ

∫
Dφ̂ exp

(
i

∫
L(φ+ φ̂)

)
, (1.4.12)

where we have set J = 0 for simplicity. Performing the integral over φ̂ we obtain

an expression of the form:

Z[0] =

∫
[Dφ]bΛ exp

(
−
∫

ddxLeff(φ)

)
, (1.4.13)
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where now we have replaced our original Lagrangian with an effective Lagrangian,

Leff . If L is renormalisable, then we can recover our original Lagrangian by

performing a change of variables k′ = k/b, x′ = xb, and performing a suitable

transformation of the fields and redefinitions of the parameters. Let us suppose that

we now perform multiple iterations of integrating out a momentum shell. If we make

the shell of momentum over which we integrate infinitesimal, the transformation

becomes continuous, and the Lagrangian will flow along a trajectory in the space

of all possible Lagrangians. The set of continuously generated transformations is

known as the renormalisation group.

In general, the coefficient of an operator in the Lagrangian with N powers of a

field φ (having dimension dφ) and M derivatives to leading order will transform as:

C ′N,M = bdM,N−dCN,M , (1.4.14)

where dM,N = Ndφ + M is the mass dimension of the operator. Since b < 1,

operators for which dM,N − d is negative will have coefficients which grow, and the

operator is known as relevant. If dM,N − d is positive, the coefficient will vanish,

and the operator is known as irrelevant. Finally, if dM,N − d = 0, the operator

is known as marginal and one must retain higher order terms to determine its

behaviour. Thus, if our original Lagrangian was only composed of relevant and

marginal operators, its form will be preserved after integrating out high momentum

modes; this is the condition for renormalisability. The caveat is that the masses

and couplings will experience potentially very large shifts with respect to the

original bare parameters; however, it is understood that this occurs only after a

large number of iterations of the renormalisation group transformation. For this

condition to be met it is sufficient that the trajectory pass arbitrarily close to a

point that is unchanged by the transformation, known as a fixed point. Typically

the free-field Lagrangian L0 is a fixed point of the transformation. To determine

the precisely which trajectory we are on, we must specify some renormalisation

conditions which are satisfied at a specific scale µR known as the renormalisation

scale.

With the above understanding, we now proceed to outline the procedure for
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1.4. Renormalisation and the Running Coupling

renormalisation in QCD. We start by rescaling the quark, gluon and ghost fields:

ψ0 =
√
Z2ψ ,

Aa0µ =
√
Z3A

a
µ ,

c0 =
√
Zc

2c . (1.4.15)

We insert these expressions into the Lagrangian eq. (1.2.10), and then remove the

dependence by defining the following set of counterterms :

δ2 = Z2 − 1 , δ3 = Z3 − 1 ,

δc2 = Z2
2 − 1 , δm = Z2m0 −m ,

δ1 =
g0

gs
Z2(Z3)1/2 − 1 , δ3g

1 =
g0

gs
(Z3)1/2 − 1 ,

δ4g
1 =

g2
0

g2
s

(Z3)2 − 1 , δc1 =
g0

gs
Zc

2(Z3)1/2 − 1 . (1.4.16)

Each term absorbs the divergent but physically unobservable shifts in the parameters

of the Lagrangian, which may then be split into two pieces:

L = Lren + Lc.t. . (1.4.17)

The first term is simply of the form eq. (1.2.10), but where the fields, masses and

couplings have been renormalised; the second term is given by:

Lc.t. = −1

4
δ3(∂µA

a
ν − ∂νAaµ) + ψ̄(iδ2/∂ − δm)ψ − δc2c̄a∂2ca

= +gsδ1A
a
µψ̄γ

µψ − gsδ3g
1 f

abc(∂µA
a
ν)A

bµAcν

=
1

4
g2
sδ

4g
1 (f eabAaµA

b
ν)(f

edcAcµAd
ν
)− gsδc1c̄afabc∂µAbµcc . (1.4.18)

We may now use the Feynman rules shown before using the renormalised values for

m and gs to compute any amputated tree-level diagram. To compute loop diagrams,

we must also include contributions from the counterterms in eq. (1.4.18), for which

the Feynman rules are listed in table 1.2. In this manner all UV divergences will

safely cancel. Although we list eight counterterms in eq. (1.4.16), there are only 5

independent ones, and we can make the following three relations:

δ1 − δ2 = δ3g
1 − δ3 =

1

2
(δ4g

1 − δ3) = δc1 − δc2 . (1.4.19)
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Internal lines

p

i j = i(/pδ2 − δm)δij

k

a, µ b, ν = −iδ3δ
ab(k2gµν − kµkν)

k

a b = iδc2δabk
2

Vertices

i j

a, µ

= iδ1gsγ
µT aij

k
c b

a, µ

= δc1gsf
abckµ

k

p

q
a, µ c, ρ

b, ν

=

gsδ
3g
1 f

abc [ gµν(k − p)ρ

+gνρ(p− q)µ

+gρµ(q − k)ν ]

c, ρ

a, µ

d, σ

b, ν

=

−ig2
sδ

4g
1

[
fabcf cde(gµρgνσ − gµσgνρ)

+facef bde(gµνgρσ − gµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)
]

Table 1.2: The momentum space Feynman rules for QCD counterterms [9].
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The remaining five independent counterterms must be fixed to satisfy five renor-

malisation conditions.

Before we conclude this section, we now take a moment to consider the notion

that the renormalised coupling strength and masses depend on the scale µR, a

behaviour known as running. Calculations of physical observables should not

depend on the choice of the renormalisation scale µR: a shift in the renormalisation

scale can be compensated for by shifts in the field strengths, masses and couplings.

This implies that the renormalised n-point Green’s functions (containing nq quark

fields and nA gluon fields respectively) must satisfy the following Callan-Symanzik

equation [10]:[
µR

∂

∂µR
+ β

∂

∂gs
+ nqγ2 + nAγ3 +

∑
j

mjγmj
∂

∂mj

]
G(n)(x1, . . . , xn) = 0 ,

(1.4.20)

where β is known as the beta function; γi (i = 2, 3) is the anomalous dimension of

the quark and gluon fields; γmj is the mass anomalous dimension for quark field j

with renormalised mass mj. Each term has the following definition:

β(gs) ≡ µR
∂gs
∂µR

, γi ≡ −
µR
2Zi

∂Zi
∂µR

, γmj ≡
µR
mj

∂mj

∂µR
. (1.4.21)

The beta function gives the rate of change of the renormalised coupling as the

renormalisation scale µR is increased. It may be calculated by applying the Callan-

Symanzik equation to the three-point quark-gluon Green’s function, and thereby

related to counterterms. To lowest order we obtain [9]:

β(gs) = gsµR
∂

∂µR
(−δ1 + δ2 +

1

2
δ3) . (1.4.22)

This is evaluated by choosing a renormalisation scheme to fix the counter terms,

although there is no scheme dependence at the lowest order, and we obtain:

β(gs) = − g3
s

(4π)2
β0 , (1.4.23)

where β0 = (11CA − 2nf )/3. This has the solution [11]:

αs(µ
2
R) ≡ g2

s(µ
2
R)

4π
=

αs(µ
2
0)

1 + αs(µ2
0)β0/(4π) ln(µ2

R/µ
2
0)
, (1.4.24)

thereby defining the running of the strong coupling with respect to some reference

scale µ0 at which it may be measured. Typically this is taken to be the mass of the

31



1.5. Infrared Safety and Factorisation

Z boson, mZ . The world average is currently found to be αs(mZ) = 0.1181±0.0011

[31].

For small enough numbers of quarks nf , the sign of the beta function is negative.

This signifies that the coupling strength decreases as the scale is increased, that

is, the coupling strength is weak at large scales and strong at low scales. This

behaviour leads to the phenomena of asymptotic freedom at high energies, and

confinement of partons into hadrons at low energies [25,26].

1.5 Infrared Safety and Factorisation

In the previous section we discussed the procedure for the removal of large momen-

tum UV divergences. However the loop integrals of eqs. (1.4.1) and (1.4.2) also

suffer from another kind of divergence. For example, if we allow the virtual gluon

exchanged in fig. 1.1b to go on-shell, that is, let k2 → 0, its propagator will diverge

and so will the corresponding integral eq. (1.4.2). Since it is associated with low

momentum modes, this is known as an infrared (IR) divergence.

These virtual corrections (that is, those which correspond to loop diagrams

and contain a virtual particle) are just one class of higher order correction in

which such IR divergences arise. Let us consider the process of electron-positron

annihilation into hadrons. The timescale over which hadronisation occurs is much

longer than that of the hard process, and thus it does not affect the probability for

the annihilation to occur (an idea we revisit in the next section). At leading order

we can therefore simply consider the annihilation process into a quark antiquark

pair: e+e− → qq̄. At next-to-leading order (NLO), we would need to include the

diagrams shown in fig. 1.2 where a gluon is radiated from one of the quark or

antiquark lines. Such corrections are referred to as real since they correspond to

the emission of on-shell final state partons. If we define energy fractions of the

quark and antiquark to be x1 = 2Eq/
√
s and x2 = 2Eq̄/

√
s respectively (for

√
s the

centre-of-mass energy), and neglect the masses of the quarks, then the contribution

to the cross section from these real emissions is given by [11]:

σqq̄g = σ0

∫ 1

0

dx1

∫ 1

0

dx2CF
αs
2π

x2
1 + x2

2

(1− x1)(1− x2)
, (1.5.1)
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Figure 1.2: Examples of O(αs) (NLO) real emission corrections to the process

e+e− → qq̄.

where σ0 = 4πα2
EM/(3s) ·Nc

∑
f Q

2
f is the Born level cross section (where the sum is

over quark flavours f with charge e ·Qf , and αEM is the electromagnetic coupling).

The integrand will diverge when xi = 1. Conservation of momentum implies that:

1− x1 = x2Eg(1− cos θq̄g)/
√
s , (1.5.2)

1− x2 = x1Eg(1− cos θqg)/
√
s , (1.5.3)

where θfg (f = q, q̄) is the angle between the gluon and quark or antiquark. Infrared

divergences will thus occur for vanishing gluon energy (Eg → 0), in which case the

gluon is referred to as a soft, or when the gluon becomes collinear with either the

quark or antiquark (θfg → 0) 5.

In order to understand why such divergences arise, we must recall that the

S-matrix was defined as the transition amplitude between a set of asymptotic

‘in’ and ‘out’ states. While it might be possible for a massless quark to radiate

any number of soft or collinear gluons, since any detector has a finite resolution

we would not be able to experimentally distinguish between states with different

numbers; in other words, these states are degenerate. It would be impossible to

measure isolated partons that have gone on-shell; when the virtualities of the

partons are low enough, hadronisation occurs. What we can measure is the energy

5It is worth noting collinear divergences are regularised by a non-zero quark mass since the

denominator arises from the propagator term which for massive quarks is given by s(1− x1,2) =

(pq̄,q+pg)
2+m2 = 2EgEq̄,q(1−

√
E2

q̄,q−m2

Eq̄,q
cos θgq̄,gq). However there will still be a single logarithmic

divergence for vanishing gluon momentum, where x1 = x2.
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1.5. Infrared Safety and Factorisation

deposit from a cascade of hadrons, where any number of splittings could have

occurred. The cross section for an exclusive process in which the number of final

state partons is fixed will diverge. However if we compute the inclusive cross section

for e+e− → hadrons, whereby we sum over all possible real and virtual diagrams

to a given order in αs the infrared divergences cancel, and we obtain a finite result.

In practice this must be done by regularising the real and virtual contributions,

either by giving the gluon a small mass, or more commonly, by performing the

integrals in d = 4 + 2ε dimensions and isolating the divergences in the limit ε→ 0,

a procedure known as dimensional regularisation. It was shown, first by Bloch and

Nordsieck for QED [32], and by Kinoshita [33], Lee and Nauenberg [34] for QCD,

that the cancellation of infrared divergences holds to all orders in perturbation

theory for any sufficiently inclusive quantity.

The seemingly innocuous statement ‘sufficiently inclusive’ has some important

implications. The need sum over all degenerate configurations which give rise

to the same asymptotic states applies not only to outgoing, but also incoming

particles. In the previous example, there was conveniently no disparity between

the asymptotic ‘in’ states and the incoming particles of the hard process. In

hadron collider experiments however the hard scattering process involves incoming

partons, and it is abundantly clear that these are quite different from the asymptotic

incoming hadrons. To ensure that hadronic cross sections are sufficiently inclusive,

we therefore need to sum over all incoming partons, which requires a knowledge of

the structure of the colliding hadrons, which are normally protons (or antiprotons).

The proton may be understood in terms of structure functions, F1,2, which

parameterise the structure of the proton as seen by a photon of virtuality Q2.

The structure functions may be extracted through deep inelastic scattering (DIS)

experiments from the cross section for charged lepton-proton scattering (`(k)P (p)→
`(k′)X) [11]:

d2σ

dxdy
=

8πα2
EMME

Q4

[(
1 + (1− y)2

2

)
2xF1(x,Q2)

+ (1− y)(F2(x,Q2)− 2xF1(x,Q2))−M/(2E)xyF2(x,Q2)

]
, (1.5.4)
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where q = k − k′ and the standard DIS variables are given by:

Q2 = −q2 ,

M2 = p2 ,

ν = p · q = M(E ′ − E) ,

x =
Q2

2ν
=

Q2

2M(E ′ − E)
,

y =
q · p
k · p = 1− E ′

E
. (1.5.5)

In the Bjorken limit Q2 → ∞ with x fixed, it is experimentally observed

[24,35–37] that the structure functions exhibit no dependence on the scale Q2,

F1,2(x,Q2)→ F1,2(x) , (1.5.6)

an effect called Bjorken scaling [38]. It implies that for large Q2, the proton appears

as a loosely bound assemblage of point particles. Bjorken scaling arises because the

timescales over which the struck quark interacts with the spectator quarks are much

larger than the timescale of the hard interaction with the virtual photon. Using

this feature and neglecting the proton mass M in eq. (1.5.4), and by comparing to

the partonic cross section for e−q → e−q we find that the structure functions are

related by

F2(x) = 2xF1(x) , (1.5.7)

which is known as the Callan-Gross relation, and is a direct consequence of the

fact that the partons seen by the photon are spin-1
2

particles. Furthermore, we

find the structure functions may be written in terms of the probability distribution

fi(x) to find a parton of type i with momentum fraction x:

F2(x) = x
∑
i

e2
i fi(x) . (1.5.8)

with ei the electric charge of quark i.

Beyond leading order, Bjorken scaling is violated by logarithms of Q2 arising

from gluon interactions between struck and spectator quarks. Furthermore if we

attempt to calculate the structure function from perturbative field theory, we

discover it will contain a collinear divergence which cannot be cancelled due to the
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fact a virtual photon cannot distinguish between a pair of collinear partons and a

single parton of the same overall momentum. Although this sounds catastrophic,

it is linked to unphysically taking the limit beyond a scale at which hadronisation

would occur. Fortunately we can absorb the divergences into unmeasurable ‘bare’

distributions, fi,0(x), and introduce a factorisation scale µF which separates the long

and short distance physics, such that we obtain the parton distribution functions

(PDFs) fi(x, µ
2
F ). For example, at next-to-leading order the structure function

F2(x,Q2) would then be given by [11]:

F2(x,Q2) = x
∑
i

e2
i

∫ 1

x

dξ

ξ
fi(ξ, µ

2
F )

{
δ

(
1− x

ξ

)
+
αs
2π
P

(
x

ξ

)
ln

(
Q2

µ2
F

)}
.

(1.5.9)

Just as in renormalisation the finite part which is included in the definition of

counter terms is determined by the renormalisation scheme, the finite part absorbed

into the definition of the PDFs is determined by the factorisation scheme. The

above expression has been derived in the DIS scheme; a more commonly used

alternative is known as the MS scheme. The functions P which appear are the

regulated Altarelli-Parisi splitting functions, which can be found in [11]; we shall

meet the unregulated form of these functions in section 2.1.

The ability to factorise the long and short distance interactions in not just the

structure functions but also in cross sections is a general principle known as the

factorisation theorem and has been shown to hold to all orders in αs by Collins,

Soper and Sterman [39–41]. The implication of this procedure is that the PDFs

fi(x, µ
2
F ) depend upon non-perturbative physics beyond the hadronisation scale

and cannot be calculated from first principles - they must be derived empirically

from data. They are however universal, meaning that the PDFs measured in DIS

can also be employed in hadron-hadron collisions. The hadronic cross section (to

leading twist6) for AB → X may therefore be given by the formula:

σAB→X =
∑
a,b

∫
dxadxbfa/A(xa, µ

2
F )fb/B(xb, µ

2
F )σ̂ab→X(xapA, xbpB, µ

2
F , µ

2
R) .

(1.5.10)

6Higher twist terms are those suppressed by powers of Q2; for details see the discussion on

the operator product expansion in [9].
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The total cross section is often not the most useful quantity we could measure

in a collider experiment. For performing precision tests of QCD, it is usually more

informative to measure the differential cross section with respect to some observable

T , evaluated as a function t that depends on the momenta of the n final state

particles:

tn(p1, · · · , pn) = T ∀ n . (1.5.11)

The differential cross section is defined as:

dσ

dT
=
∑
n

∫ {
dσ(n)(p1, · · · , pn)

dΦn

δ(tn(p1, · · · , pn)− T )

}
dΦn , (1.5.12)

where dΦn is the n particle phase space integration measure, and σ(n) is the cross

section for producing exactly n final state particles. Each individual term in

eq. (1.5.12) depends upon the number of final state particles and can be expected

to contain infrared divergences, but their sum should be free of divergences if the

quantity t is infrared safe. For this to be true, the value of T that we measure

should be unchanged if any of the momenta goes soft, or any pair of momenta

become collinear. Formally, this may be expressed as the condition:

tn(p1, · · · , pi, pj, · · · , pn)
(pi+pj)

2→0−−−−−−−→ tn−1(p1, · · · , (pi + pj), · · · , pn) . (1.5.13)

1.6 Observables for Collider Experiments

Theoretically we should now be able to calculate any inclusive differential cross

section to any arbitrary fixed order in perturbation theory. Of course in reality,

the multi-loop integrals required may be unavailable, and the organisation of the

cancellation between virtual and real infrared singularities is not straightforward.

Although general subtraction schemes (Catani-Seymour dipole [42], FKS [43],

and antenna [44–46] subtraction) have been devised and even automated for

NLO [47–50], there is currently no general solution for next-to-next-to-leading

order (NNLO) calculations despite many recent developments in the field (for a

recent overview, see [31] and references therein). However, we do not discuss these

matters further here.
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1.6. Observables for Collider Experiments

Supposing we now wish to understand the distribution of hadrons in the final

state following some scattering process, we would need to construct an infrared

safe observable which is sensitive to this distribution, but which is calculable from

a finite number of parton momenta. This poses a challenge since (as we alluded

to previously) the scale of the hard process is usually much higher than that of

the hadronisation scale; thus before hadronisation can occur, the partons which

participate in the hard interaction must evolve down to lower scales. A given parton

is likely to undergo many soft and collinear splittings, resulting in a collimated

stream of partons, each carrying a small fraction of the original parton momentum.

(We discuss the equations which govern this evolution in the following chapter.)

These partons subsequently hadronise and deposit a cone-like structure of energy in

the detector, which we call a jet. These objects provide a meaningful discriminant

between different event topologies since the number of jets may only be increased

by hard, wide-angle splittings. We can make the correspondence both between

partons and jets, and between jets and clusters of calorimeter cells in a detector,

thus they also provide an invaluable link between theory and experiment. To

quantify a jet in a consistent manner, however, requires a clustering algorithm.

For example, in the (inclusive) generalised kT jet algorithm for hadron collisions

[51], we define the following distance measure between particles (or calorimeter

cells) i and j:

dij = min(pT
2p
i , pT

2p
j )

∆R2
ij

R2
, (1.6.1)

where pT i is transverse momentum of particle i; ∆R2
ij =

√
(φi − φj)2 + (yi − yj)2 is

the angular distance between i and j, with azimuth φi and rapidity yi = 1
2

ln(Ei+pzi
Ei−pzi )

for beam axis defined along z; R is the jet radius parameter. The beam distance of

particle i is defined as:

diB = pT
2p
i . (1.6.2)

The algorithm then proceeds as follows:

1. Calculate the measure dij for all possible pair of particles i and j. For every

particle i calculate diB.

2. Find the minimum of all dij and diB. If the minimum is in the set of dij,
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merge particles i and j with some recombination scheme. (For example,

summing their four-momenta is known as E-scheme recombination). If the

minimum is in the set of diB, declare particle i a jet and remove it from the

list of particles.

3. Return to step 1 and repeat until there are no particles remaining in the list.

In the above general algorithm, setting p = 1 corresponds to the (longitudinally

invariant) kT algorithm [52,53], p = 0 to the Cambridge-Aachen algorithm [54, 55],

and p = −1 to the anti-kT algorithm [56]. Each of these provide infrared safe

procedures to define jets. The differences stem from the order in which clustering

occurs; in the kT algorithm, the softest and most collinear particles are clustered

first, effectively undoing the most recent splittings which might have occurred. The

Cambridge-Aachen algorithm clusters the most collinear particles first. In the anti-

kT algorithm, the hardest particles are clustered first, and attract all neighbouring

particles. Anti-kT jets therefore usually appear more cone-like than those of other

algorithms; for this reason it is a popular choice amongst experimentalists.

We can now define the cross section for n-jet production, σnj. Assuming that

Oenj({pi}) returns one if there are exactly n jets and zero otherwise, then:

σnj =
∑
m

∫ {
dσ(m)(p1, . . . , pm)

dΦm

Oenj({pi})
}
dΦm . (1.6.3)

We can also define the inclusive n-jet cross section, where here inclusive means the

cross section for n or more jets. Defining Onj =
∑

kOekj({pi}), we have:

σ≥nj =
∑
m

∫ {
dσ(m)(p1, . . . , pm)

dΦm

Onj({pi})
}
dΦm . (1.6.4)

The quantity in brackets may be difficult to compute analytically, and such integrals

are normally performed numerically. We discuss such numerical methods further

in chapter 3.

The formalism explored during this chapter has proved highly successful. It has

been applied to numerous processes, and through comparisons to experimental data

it has provided many precision tests of perturbative QCD. For example, in fig. 1.3

(reproduced from [57]) NNLO QCD predictions [59–61] of the cross section for
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Figure 1.3: Cross section measurements for inclusive (a) W and (b) Z production

over a range of centre-of-mass energies (
√
s) compared to NNLO QCD predictions,

reproduced from [57].
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Figure 1.4: Comparison of fixed order calculations to data for the thrust distribution,

reproduced from [58].

inclusive W and Z boson production are compared to data collected from multiple

experiments, covering a range of centre-of-mass energies (
√
s). We see excellent

agreement between the predictions and data.

However, there exist regions of phase space in which discrepancies between

fixed order predictions and data arise. For example the thrust distribution for

e+e− → hadrons, produced by the ALEPH experiment at LEP [62,63] is shown in

fig. 1.4. The thrust variable T has the following definition [64,65]:

T = max
~n

(∑
i |~pi · ~n|∑
i |~pi|

)
. (1.6.5)

Thrust is an example of an event shape variable, meaning that it provides a way

of classifying the overall topology of an event; the limit T → 1 would correspond

to two collimated back-to-back jets, while small values of T would correspond to

events with a spherically homogeneous distribution of hadrons. Despite the fact

that thrust is an infrared safe observable, we see that the fixed order predictions

diverge as T → 1. This cannot however, be a physical divergence, because the data

remain under control.

In order to have T = 1 and hence completely back-to-back jets would require

that the outgoing quark-antiquark pair from the hard process e+e− → qq̄ emit

extremely little radiation (which would act to decorrelate the jets). However, since
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in reality the probability to emit soft and collinear radiation is very high, the

probability to emit no radiation is very low, and so there is a suppression in the

number of events having T = 1. It perhaps then comes as a surprise that the

fixed order predictions diverge. In order to understand why this happens, we must

examine the perturbative expansion of the differential cross section, where the first

few orders are given by [11,66]:

1

σ

dσ

dT
= δ(1−T ) +αs(µ

2
R)A1(T ) + [αs(µ

2
R)]2A2(T ) + [αs(µ

2
R)]3A3(T ) + . . . (1.6.6)

where:

An(T ) ∼
T→1

ln2n−1(1− T )

1− T . (1.6.7)

Every power of the coupling in eq. (1.6.6) is accompanied by a double logarithm

L2 = ln2(1− T ) which becomes large in the region T → 1, invalidating the use of a

fixed order expansion of the cross section. To obtain a finite result, it would be

necessary to sum terms of the form αnsL
2n−1 to all orders n in the coupling. The

appearance of large logarithms in certain regions of phase space is not restricted

to the above example. In the next chapter we shall discuss some common themes

which cause large logarithms to arise, and methods for summing them to all orders.

In this chapter we have introduced the essential ingredients for making theoretical

predictions with QCD for hadron collider experiments. In particular we discussed

the necessity of calculating sufficiently inclusive, infrared safe quantities to ensure

the cancellation of real and virtual infrared divergences. For hadron collisions

this has the consequence that the asymptotic incoming states which are needed

in the definition of cross sections differ from the partonic states which appear in

calculations of the amplitude. The factorisation theorem however enables us to

compute hadronic cross sections from partonic cross sections with the use of PDFs.

We encountered an important example of infrared safe final states when we

introduced jets. Although these are not fundamental objects, the number of jets

is intimately related the number of hard partonic branchings and therefore cross

sections for jet production are suitable quantities to compute using perturbative

methods. Furthermore, since jets have a topology which can be reconstructed within
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a detector, they help bridge the gap between theory and experiment. Measurements

of jets allow us not just to test the Standard Model but also to constrain many

Beyond the Standard Model (BSM) extensions. The remainder of this thesis will

be dedicated to the development of techniques which improve the accuracy of

calculations of multi-jet observables.
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Chapter 2

Going Beyond Fixed Order QCD

As we saw in the last chapter the feature of asymptotic freedom in QCD entails

that in computations of inclusive quantities, it is normally sufficient to perform

a fixed order perturbative expansion in the strong coupling strength. We expect

that higher order corrections, being accompanied by more powers of the coupling,

should be suppressed. However, as we shall learn in this chapter, there are regions

of phase space in which perturbative corrections are enhanced by large logarithms

that compensate for the smallness of αs, rendering a fixed order expansion in this

parameter invalid.

In this chapter we will discuss two important scenarios in which large logarithms

arise, and methods which allow the computation of inclusive quantities to all orders.

To elucidate our discussion on this topic, we shall first revisit the example of

thrust presented at the end of the previous chapter and introduce some common

terminology. Rather than working with the distribution itself we define the event

shape fraction:

f(τ) =

∫ 1

1−τ
dT

1

σ

dσ

dT
, (2.0.1)

where we have introduced the quantity τ = 1− T . A common way to collect the

large logarithms which accompany factors of αs at each order is to demonstrate

that such terms exponentiate. Using a slightly different notation to the previous

section, L = ln(1/τ), it is possible to write [11]:

f(τ) = C(αs) exp [G(αs, L)] +D(αs, τ) , (2.0.2)
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where

C(αs) = 1 +
∞∑
n=1

Cn

(αs
2π

)n
, (2.0.3)

G(αs, L) =
∞∑
n=1

n+1∑
m=1

Gn,m

(αs
2π

)n
Lm

=
∞∑
n=1

{
Gn,n+1

(αs
2π

)n
Ln+1 +Gn,n

(αs
2π

)n
Ln +Gn,n−1

(αs
2π

)n
Ln−1 + . . .

}
≡ Lg1(αsL) + g2(αsL) + αsg3(αsL) + . . . (2.0.4)

The function D(αs, τ) is a remainder which vanishes as τ → 0 (T → 1). In

the expansion of G(αs, L) in eq. (2.0.4), terms of the form αnsL
n+1 for which the

power m is maximal are known as the leading logarithms, and are collected in the

function g1(αsL). Similarly, g2(αsL) collects terms of the form αnsL
n, which are

the next-to-leading logarithms. The function g3 and those terms omitted in the last

line of eq. (2.0.4) sum the subdominant logarithms αnsL
m for which 0 < m < n.

By expressing G(αs, L) in this manner we have performed a reorganisation of the

perturbative expansion of f , which may be calculated to leading (if g1 is derived)

or next-to-leading (if g2 is derived) logarithmic accuracy. Furthermore, it is worth

noting that the maximal power of L in G(αs, L) is at most one higher than that

of αs (m = n + 1), which enables an accurate description of ln f in the region

αsL . 1, which is a much less restrictive condition than that required of a fixed

order expansion, namely αsL � 1. By expanding the exponential in eq. (2.0.2)

to fixed order accuracy we may recover the double logarithms (m = 2n) seen in

eq. (1.6.7).

The exponentiation of logarithms is a common feature in the computation of

inclusive quantities to all-orders. The argument of the exponential, G(αs, L), is

often derived as the solution to integral equations; in the case where these may be

cast as renormalisation group equations, this method is known as resummation. The

derivation of these equations usually requires the application of an approximation;

this entails that the solution will naturally become inaccurate away from the limit

in which the approximation was designed to apply. This predicament is typically

solved by combining all order and fixed order treatments; as we shall shortly see,
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how to do this in a consistent way has been the subject of much consideration in

the literature (for a review see [67]).

There are numerous cases where large logarithms arise, but many are typified

by two disparate scales, the ratio of which is large. In sections 2.1 and 2.3 we

discuss two examples of regions of phase space, the soft-collinear limit and the high

energy limit, in which large logarithms arise. The phenomenology of these limits

may be understood in terms of evolution equations, namely the DGLAP equation

and the BFKL equation respectively, whose solutions sum the leading logarithmic

contributions to all orders. In the first case, the solution can be interpreted as a

no-emission probability that has a natural numerical implementation known as a

parton shower. The challenge of how to combine parton showers with fixed order

calculations is reviewed in section 2.2, with a focus on methods that will later be

relevant for chapter 5. The BFKL equation has two solutions, one of which gives us

the leading logarithmic amplitude for colour-octet exchange in the high-energy limit.

The extension of these ideas in section 2.4 leads to the High Energy Jets formalism

which forms the basis of the work in chapters 4 and 5. Finally, in section 2.5 we

discuss a method for combining these two all order schemes with each other.

2.1 The Soft-Collinear Limit

As highlighted at the end of section 1.6, the reason that an all order treatment is

required for the thrust observable relates to the fact that a fixed order computation

of the cross section does not take into account the vanishingly small probability

to emit zero soft or collinear radiation. Ultimately divergences arise because a

parton surrounded by a cloud of soft and collinear gluons is indistinguishable from

a single parton. For an accurate description of any observable which probes the

soft-collinear limit will also require an all order treatment. In this section we will

therefore explore this limit further, and describe a numerical formulation of the

resulting all order prescription.

In section 1.5 we remarked that although matrix elements for soft and collinear

real emissions diverge, we claimed such divergences were unphysical, since the

46



2.1. The Soft-Collinear Limit

Pq→qg(z) = CF
1+z2

1−z

Pq→gq(z) = CF
1+(1−z)2

z

Pg→gg(z) = CA
(1−z)2+z2+z2(1−z)2

z(1−z)

Pg→qq̄(z) = TR(z2 + (1− z)2)

Table 2.1: The unregulated Altarelli-Parisi splitting functions taken from [11].

incoming and outgoing partons would hadronise at at sufficiently low virtualities.

In order to further probe the soft-collinear limit, it is therefore reasonable to

suppose that the partons which participate in the hard scattering have some finite

virtuality q2. We could then compute the correction to the cross section caused

by the additional splitting of one parton a → bc, characterised by the energy

fraction z = Eb/Ea = 1−Ec/Ea and opening angle θ. (These variables are related

by q2 = z(1 − z)E2
aθ

2.) It has been shown that in this limit matrix elements

factorise and their universal behaviour is encapsulated by the Altarelli-Parisi

splitting functions Pba(z) listed in table 2.1 [11]. The differential cross section for

one additional emission in the soft-collinear limit is then given by:

dσn+1 = dσn
dq2

q2
dz
αs
2π
Pba(z) . (2.1.1)

If we were to perform the integral over the virtuality q2 between the scale of the

hard scattering Q2 and some finite resolution parameter Q2
0 we would expose the

large double logarithms of the ratio of these two disparate scales, [αsL
2]n with

L = ln(Q2/Q2
0). Instead, we can exploit the factorisation of eq. (2.1.1), and use this

to state the probability of parton i having virtuality in the interval q2 to q2 + dq2

and branching:

dPi =
dq2

q2

∫ 1−Q2
0/q

2

Q2
0/q

2

dz
αs
2π
Pji(z) . (2.1.2)

This can be used to obtain the probability that there are no branchings between

the hard scale Q2 and q2, denoted ∆i(Q
2, q2), called a Sudakov factor. It is given

by the differential equation [11]:

d∆i(Q
2, q2)

dq2
= ∆i(Q

2, q2)
dPi
dq2

. (2.1.3)
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2.1. The Soft-Collinear Limit

This is known as the DGLAP evolution equation, and has the solution:

∆i(Q
2, q2) = exp

{
−
∫ Q2

q2

dk2

k2

∫ 1−Q2
0/k

2

Q2
0/k

2

dz
αs
2π
Pji(z)

}
. (2.1.4)

In solving eq. (2.1.3) we have resummed the leading double logarithms in the soft-

collinear limit to all orders in αs. In an expansion of the exponential in eq. (2.1.4)

each term may be interpreted as the probability for an exact number of resolvable

real emissions. Invoking unitarity to construct the no emission probability as one

minus the probability of any number of resolvable emissions, virtual corrections

have therefore been implicitly included to all orders.

We briefly note that this is not the only context in which DGLAP evolution

arises. The DGLAP equation also determines the running of the PDFs fi(x, µ
2
F )

which we met in section 1.5, and may be viewed as an analogue to the QCD

β-function equation. However in this context, its form is slightly different, and

contains the regulated form of the splitting functions P . This has the consequence

that the leading logarithms are instead single logarithms. To distinguish the two

cases, the resummation performed in eq. (2.1.4) is known as Sudakov resummation

whilst the resummation performed in the context of PDF evolution is known as

DGLAP resummation.

Sudakov factors may be applied numerically to evolve the hard process down

from large virtualities to the resolution scale Q2
0 (typically around 1 GeV) as follows:

1. Choose a random number r ∈ [0, 1].

2. Solve ∆i(Q
2, q2) = r to obtain the scale of the branching q2.

3. If q2 > Q2
0, generate an emission and return to step 1, and otherwise stop the

evolution.

Such a procedure is known as a parton shower. The variable q2 used to evolve

down is scale is known as the ordering variable. Although in the above discussion

it was introduced as the virtuality of the branching parton there are other valid

choices, such as transverse momentum ordering, as implemented in Pythia [68,69],

or angular ordering as implemented in Herwig [70]. These different choices are
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2.1. The Soft-Collinear Limit

equivalent in the soft-collinear limit, but give rise to different additional finite terms.

For example, angular ordered showers account for some degree of interference known

as colour coherence [71].

The branchings considered so far correspond to timelike branchings of final

state partons down to the hadronisation scale. However, it is relatively simple to

modify eq. (2.1.4) to account for the spacelike branchings of the incoming partons

and evolve backwards to lower momentum fractions x [11]:

∆i(Q
2, q2;x) = exp

{
−
∫ Q2

q2

dk2

k2

∫ 1−Q2
0/k

2

Q2
0/k

2

dz
αs
2π
Pji(z)

x/zfj(x/z, k
2)

xfi(x, k2)

}
. (2.1.5)

We have so far reviewed the traditional approach to parton showers in which

one parton is considered to split into two. However many modern showers use

the dipole approximation [72–74], in which there exists a colour-anticolour dipole

between every pair colour-connected partons (one for each colour index), each of

which can radiate independently. Emissions arise as two to three splittings, and

therefore naturally provide a framework for momentum conservation (by the recoil

of the spectator in the dipole) at each step of evolution. This procedure is known

as a dipole shower, and has been implemented in Ariadne [75], Sherpa [76],

Pythia [68, 77] and Herwig 7 [78]. We now briefly outline the approach used in

Ariadne since it will be relevant for section 2.5.

The differential cross sections for gluon emission from a dipole between two

colour-connected partons, ab→ 123, where the two original partons retain momen-

tum fractions x1 and x3 are given by [73]:

gg dipole :
1

σ

dσ

dx1dx3

=
3αs
4π

x3
1 + x3

3

(1− x1)(1− x3)
≡ Dgg(x1, x3) , (2.1.6)

qg dipole :
1

σ

dσ

dx1dx3

=
3αs
4π

x2
1 + x3

3

(1− x1)(1− x3)
≡ Dqg(x1, x3) , (2.1.7)

qq̄ dipole :
1

σ

dσ

dx1dx3

=
2αs
3π

x2
1 + x2

3

(1− x1)(1− x3)
≡ Dqq̄(x1, x3) , (2.1.8)

where Dab are the dipole splitting functions. In the limit x3 → 1 and with the

variable substitution p2
⊥ = sdip(1− x1)(1− x3) (with sdip the dipole invariant mass

squared) we recover the standard Altarelli-Parisi splitting functions, for example:

Dgg(z, x3 → 1)dzdx3 +Dgg(1− z, x3 → 1)dzdx3 =
dp2

T

p2
T

dz
αs
2π
Pgg(z) . (2.1.9)
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In this case two dipoles contribute to the g → gg splitting. It is therefore natural

to define new ordering and splitting variables in terms of Lorentz invariants as

follows [74]:

p2
⊥ = sdip(1− x1)(1− x3) =

ŝ12ŝ23

sdip

(2.1.10)

y =
1

2
ln

(
1− x1

1− x3

)
=

1

2
ln

(
ŝ23

ŝ12

)
, (2.1.11)

where ŝij = (pi + pj)
2 is the square of the invariant mass of the pair of partons

i, j. The cross section for emission from a gg dipole for example is then given by

(assuming x1, x3 ∼ 1) [72,73]:

dσ ∼ αs
dp2
⊥

p2
⊥
dy . (2.1.12)

This leads to a gg dipole splitting function given by

Dgg(p
2
⊥, y) ∼ αs

p2
⊥
, (2.1.13)

and the corresponding Sudakov factor is given by:

∆gg(p
2
1⊥, p

2
2⊥) = exp

(
−
∫ p21⊥

p22⊥

dp2
⊥

∫
dyDgg(p

2
⊥, y)

)
. (2.1.14)

2.2 Methods for Matching and Merging

Away from the soft-collinear limit, the parton shower approach described in the

previous section becomes inaccurate, and as a result describes hard wide-angle

emissions poorly. On the other hand, fixed order calculations perform better at

describing such hard emissions, but fail to capture the logarithms present in the

soft-collinear limit to all orders. Is is clearly desirable to address such deficiencies

by combining the parton shower with a fixed order calculation. (Note however, that

the number of hard emissions that are accurately described is implicitly limited by

accuracy of the fixed order calculation, an issue which we will return to later).

This is not, however, a completely straightforward task. Firstly, to simply

perform a parton shower on events generated in some fixed order computation in

general would result in double counting. The parton shower already includes the
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2.2. Methods for Matching and Merging

leading logarithmic contribution at each order in αs, which therefore overlaps with

the (exact) contributions added at that order by the fixed order calculation. What

is needed is an approach that corrects the first n orders of the parton shower, where

n is the accuracy of the fixed order calculation. Secondly, parton showers calculate

the probability of having an exact number of emissions above some resolution scale

in the final state, whereas fixed order calculations are necessarily inclusive (as we

discussed in section 1.5). Thus before a parton shower may be applied to some

fixed order calculation, it is first necessary to render it exclusive.

There are two classes of method for combining parton showers and fixed order

calculations: matching and merging. Matching methods typically correct the

distribution of the first parton shower emission such that it is accurate to NLO, and

fall into two main categories, namely multiplicative and subtractive. The POWHEG

method [79] is an example of a multiplicative method. This corrects the splitting

kernel of the parton shower using the singular part of the NLO real emission matrix

elements. The overall normalisation of the shower is then corrected to the NLO

cross section using a local K-factor1. This method has the advantage that all

weights are positive definite; however it has the downside that the parton shower

may not appropriately sample the full phase space for the first emission.

In the subtractive approach of MC@NLO [80,81] the splitting kernels are not

corrected; instead the real emission subtraction terms are taken to be identical to

the Altarelli-Parisi splitting functions. The normalisation of the shower is corrected

to the sum of the contributions to the cross section from the Born and regularised

virtual matrix elements. The contribution to the cross section from integration of

the subtracted real matrix elements over the full real emission phase space is then

added to recover the NLO accurate cross section. This approach should reproduce

the correct NLO cross section. However, if the splitting functions overestimate the

full real emission matrix elements, this leads to negative weights that can harm

the convergence of the numerical integration.

The alternative approach of merging recognises that the shape of distributions

1A (local) K-factor is simply the ratio of the NLO to LO (differential) cross section.
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2.2. Methods for Matching and Merging

is primarily affected by corrections from real emissions, with virtual contributions

typically only affecting the normalisation. Therefore, one could partially correct

the distributions of not just the first but of many emissions by generating tree-

level samples of differing multiplicities (limited only by the availability of the

corresponding matrix elements) and combining them. In order to apply a parton

shower, such samples must first be made exclusive. This is achieved firstly by

partitioning the phase space by introducing a merging scale tms = Q2
ms that acts

as a cut-off to the matrix elements. Secondly by clustering with some jet measure

and at each step reconstructing the shower variables, a Sudakov factor used to

weight each event is calculated. Each event in the sample may then be subsequently

showered as normal. In chapter 5 an algorithm inspired by such methods shall be

presented, and it is therefore pertinent to review them in greater detail now.

The first example of merging, coined the CKKW method, was pioneered in [82]

for e+e− → jets and later extended to include hadronic initial states [83]. In this

method partons in each sample are required to exceed some resolution criterion,

dij > dres, where dij may be the distance measure (1.6.1) in the kT clustering

algorithm and the resolution parameter is given by the ratio of the merging scale

to the scale of the hard process, dres = tms/Q
2 . Partons in the sample may then

be identified as jets. We assume that tree-level matrix elements are available for

n ≤ N additional jets with respect to the Born configuration. The algorithm then

proceeds as follows:

1. Select the jet multiplicity n ≤ N and parton identities i with probability

according to the relative size of the tree-level cross sections σn,i(dres), using a

fixed renormalisation scale choice µ2
R = tms.

2. Select the parton momenta according to the n-parton tree-level matrix el-

ements squared |M2
n,i|, also evaluated with a fixed scale choice µ2

R = tms.

3. Cluster sequentially using the kT jet algorithm (that is, merge partons i, j

with the smallest dij) until a Born-level process is reached, determining the

sequence of resolution values d0 = 1 > d1 > ... > dn > dn+1 = dres, and
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2.2. Methods for Matching and Merging

thereby obtain the corresponding set of scales ti = Q2/di (with t0 = Q2).

4. Calculate the weight:

w =
αs(t1)αs(t2) . . . αs(tn)

αs(tms)n

n∏
j=0

∆i(tj, tms)

∆i(tj+1, tms)
.

If w > r × [∆i(t0, tms)]
2, with r ∈ [0, 1] a random number, accept the

configuration; otherwise veto the event and return to 2.

5. Assign a colour structure; if this is not unique, select one according to the

relative contribution to the matrix element squared.

6. Continue the parton shower2 from the scale tms.

A modified approach to the above method was presented in [84] and is known as

the CKKW-L method. The first difference involves the clustering for reconstructing

the intermediate scales ti; instead of applying a jet-finding algorithm, all possible

clusterings are performed, leading to a set of intermediate states known as a history,

with each state having a reconstructed scale. A sequence of states of decreasing

multiplicity starting from the original event is known as a path. If a state can be

clustered back to the minimal process requested, a path is said to be complete. If

the sequence of scales associated with the corresponding states in a path increase

with decreasing multiplicity, then a path is said to be ordered. Where possible, an

ordered, complete path is selected; in addition the path is selected according to its

relative weight (calculated using the splitting functions for the branching at each

reconstructed scale).

The parton shower is then started from the scale of the most clustered state

and an emission is generated; if the scale of the branching is above that of the

next reconstructed scale in the path the event is rejected. Otherwise, the same

procedure is repeated for each reconstructed state; this is known as a trial shower.

If at each step no emission is generated between consecutive scales the event passes.

The final stage is to generate an emission from the original event, and veto if it

2If the parton shower is not ordered in hardness it is necessary to perform a truncated, vetoed

shower. For details see [82].
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2.3. The High Energy Limit

has a scale above the merging scale and the multiplicity is less than the maximum

multiplicity available in the tree-level samples. This probabilistic interpretation is

logarithmically equivalent to vetoing according to analytic Sudakov factors, but

has the advantage of using the full phase space, rather than using the approximate

limits derived using a jet algorithm. A disadvantage is that it is computationally

more intensive.

The CKKW method has been implemented in the general-purpose event gen-

erators Sherpa [85] and Herwig [86], whilst CKKW-L has been implemented

in Pythia 8 [87]. The two methods we have outlined thus far are those most

relevant to work done in chapter 5, however other variants of merging exist, for

example the MLM method [88, 89] which approximates the Sudakov factors by

rejecting events for which the showered jets do not overlap with the partonic jets,

and UMEPS [90] which provides a modification to CKKW-L that recovers the

unitarity of the parton shower. There have also been many developments on NLO

merging which are beyond the scope of this thesis [91–93].

2.3 The High Energy Limit

In this section we consider a limit which in contrast to section 2.1 is related to the

region of semi-hard, wide-angle emissions. To render our discussion on this topic

more transparent it is pertinent to first introduce the Lorentz invariant Mandelstam

variables, which in two-to-two scattering a b→ 1 2 are given by:

s = (pa + pb)
2 , (2.3.1)

t = (pa − p1)2 , (2.3.2)

u = (pa − p2)2 . (2.3.3)

These variables correspond the scales of particles exchanged in s, t and u channel

processes, of which examples are shown in fig. 2.1. The variable s is simply the

centre-of-mass-energy squared; in proton-proton collisions we typically distinguish

the partonic centre-of-mass energy squared as ŝ; it relates to the total by ŝ = xaxbs.

Although we have listed three, there are only two independent variables as they
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Figure 2.1: Feynman diagrams of two-to-two gluon scattering illustrating s (a), t

(b) and u channel (c) processes.

are related by:

s+ t+ u = m2
a +m2

b +m2
1 +m2

2 . (2.3.4)

In 2 to n parton scattering (ab → 1 . . . n) we can define the invariant mass

squared between any pair of final state particles i, j as:

sij = (pi + pj)
2 . (2.3.5)

We can also define:

tai = (pa − pi)2 , (2.3.6)

tbi = (pb − pi)2 . (2.3.7)

Again, not all of these invariants are independent; in 2 to n scattering processes

there are only 3n− 4 independent invariants.

The behaviour of the cross section for large invariant masses is an interesting

observable to study in collider experiments for numerous reasons. Firstly, since

exotic coloured particles could be expected to show up as resonances in the dijet

invariant mass spectrum, this can provide a handle for BSM physics searches (see

for example [94] and references therein, the recent analyses from CMS [95] and

ATLAS [96], or for a review see [97]). Moreover, assuming that such exotic particles

are heavy, they will likely decay into cascades of quarks and gluons, leading to the

production of not just dijets, but multiple jets at large invariant masses.

Secondly, large cuts on the invariant mass of the dijet pair in Higgs plus dijet

production may be used to suppress the gluon fusion channel with respect to the

vector boson fusion (VBF) channel, thereby allowing for a cleaner extraction of the

Higgs’ couplings to vector bosons [98]. In addition, at large invariant dijet masses,
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it may be possible to extract the CP structure of the Higgs’ couplings from the

azimuthal correlations of the dijets in the gluon fusion channel [99,100]. Both of

these tests are necessary tests for verifying whether the Higgs boson is consistent

with Standard Model predictions. Finally, probing this region of phase space can

also provide precision tests of QCD itself.

The aim of this section therefore is to understand the behaviour of multi-jet

cross sections in the limit of large invariant mass. Historically, this field of study was

known as Regge theory [101] (for a modern review, see [102]). To proceed, we must

to quantify what is meant by ‘large’. Starting with two-to-two parton scattering,

since the cross section can only depend on ŝ and t̂ the relevant kinematics may be

specified as:

ŝ� t̂ . (2.3.8)

This is known as the Regge limit ; sometimes this is referred to as the semi-hard

region of phase space. To understand this limit further it is convenient to introduce

light-cone co-ordinates:

p± = E ± pz . (2.3.9)

A general momentum may then be parameterised as [103]:

p = (p+, p−; ~p⊥)

= (m⊥e
y,m⊥e

−y; ~p⊥) , (2.3.10)

where the transverse mass is given by

m⊥ =
√
m2 + p2

⊥ (2.3.11)

and the rapidity is defined as

y =
1

2
ln

(
E + pz
E − pz

)
. (2.3.12)

Note that in these co-ordinates, the scalar product of two four vectors is given by:

p · q =
1

2
(p+q− + p−q+)− ~p⊥ · ~q⊥ . (2.3.13)
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For two to two scattering of massless partons (ab→ 12), the momenta are given

by:

pa = (xa
√
s, 0;~0) ,

pb = (0, xb
√
s;~0) ,

p1 = (|~k⊥|ey1 , |~k⊥|e−y1 ;~k⊥) ,

p2 = (|~k⊥|ey2 , |~k⊥|e−y2 ;−~k⊥) . (2.3.14)

Noting that rapidity differences are invariant to boosts along the beam axis, we

evaluate the Mandelstam variables in the zero momentum frame (for which xa = xb

and y1 = −y2 = ∆y
2

):

ŝ = 2|~k⊥|2(cosh ∆y + 1) , (2.3.15)

t̂ = −
√
ŝ|~k⊥|e−∆y/2 . (2.3.16)

In order to satisfy eq. (2.3.8) we must have ∆y →∞ for fixed k⊥ = |~k⊥|, and:

ŝ ∼ k2
⊥e

∆y ,

t̂ ∼ −k2
⊥ ,

∆y ∼ ln

(
ŝ

|t̂|

)
. (2.3.17)

Thus the limit eq. (2.3.8) may also be considered equivalent to the limit of large

rapidity separation (for fixed transverse momenta). Generalising now to 2 → n

scattering, the appropriate limit may be specified as [103]:

y1 � y2 � · · · � yn; |~ki⊥| ∼ k⊥ ∀ i . (2.3.18)

This is known as the Multi-Regge Kinematic (MRK) limit. The Mandelstam

variables are given by [103]:

ŝ ∼ k1⊥kn⊥e
y1−yn ,

ŝij ∼ ki⊥kj⊥e
|yi−yj | ,

t̂ai ∼ −k1⊥ki⊥e
y1−yi ,

t̂bi ∼ −kn⊥ki⊥eyi−yn . (2.3.19)
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Defining:

q1 = pa − p1, qi+1 = qi − pi, ti = q2
i , (2.3.20)

and using eq. (2.3.19) we find that ti ∼ −ki2⊥. Therefore:

∆yij ≡ |yi − yj| ∼ ln

(
ŝij

|t̂i|

)
. (2.3.21)

Furthermore, we see that the MRK limit is equivalent to:

ŝ� ŝij � t̂i . (2.3.22)

The limit is therefore alternatively known as the high energy limit, since the

centre-of-mass energy is much larger than any other scale.

Now that we have stated the kinematics we may compute the cross section

for dijet production, retaining only those terms relevant in the MRK limit. The

tree-level matrix elements which contribute to dijet production may be readily

calculated using the techniques of the previous section. Only those which may

occur through t-channel gluon exchange are relevant in the large-y limit and are

given by [11]:

|Mqq′→qq′ |2 = |Mqq̄′→qq̄′|2 = 16π2α2
s

[
4

9

ŝ2 + û2

t̂2

]
, (2.3.23)

|Mqq→qq|2 = 16π2α2
s

[
4

9

(
ŝ2 + û2

t̂2
+
ŝ2 + t̂2

û2

)
− 8

27

ŝ2

t̂û

]
, (2.3.24)

|Mqq̄→qq̄|2 = 16π2α2
s

[
4

9

(
ŝ2 + û2

t̂2
+
t̂2 + û2

ŝ2

)
− 8

27

û2

t̂ŝ

]
, (2.3.25)

|Mqg→qg|2 = 16π2α2
s

[
ŝ2 + û2

t̂2
− 4

9

ŝ2 + û2

ŝû

]
, (2.3.26)

|Mgg→gg|2 = 16π2α2
s

[
9

2

(
3− t̂û

ŝ2
− ŝû

t̂2
− t̂ŝ

û2

)]
. (2.3.27)

In the ŝ� t̂ limit (and noting that ŝ→ −û) these simplify to:

|Mgg→gg|2 = 16π2α2
s

9

2

ŝ2

t̂2
,

|Mqg→qg|2 =

(
CF
CA

)
|Mgg→gg|2 ,

|Mqq′→qq′ |2 = |Mqq→qq|2 = |Mqq̄→qq̄|2 =

(
CF
CA

)2

|Mgg→gg|2 . (2.3.28)
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Figure 2.2: The tree-level diagrams which contribute in the MRK limit to gg → ggg.

In the MRK limit all dominant partonic channels are related simply and it is

therefore only necessary to consider a single channel, which we take here to be

gg → gg. This is a general feature which arises because (as we shall shortly see) the

amplitude factorises, with the scattering of the incoming partons being captured

by impact factors that differ only by colour factors.

To obtain the partonic cross section, σ̂gg→gg, we must integrate over the phase

space of the final state partons. The two particle phase space measure is given

by [103]:

P2 =

∫
dy1d

2~k1⊥
4π(2π)2

dy2d
2~k2⊥

4π(2π)2
(2π)4δ4(pa + pb − p1 − p2)

∼
∫

1

2ŝ

d2~k1⊥
(2π)2

d2~k2⊥
(2π)2

(2π)2δ2(~k1⊥ + ~k2⊥) , (2.3.29)

where in the second line we have anticipated that the integrand will be independent

of the rapidities, and we have thus performed the integrals over y1, y2 in the MRK

limit. Therefore we obtain [103]:

dσgg→gg
dk2
⊥

=
|Mgg→gg|2

16πŝ2
=

9

2
πα2

s

1

k4
⊥
. (2.3.30)

We could then obtain the leading order dijet cross section by invoking eq. (1.5.10)

(though we do not do so here as it is not necessary for our discussion).

Let us now consider the O(αs) corrections to the Born level cross section for

gg → gg. We simply state the matrix element for gg → ggg in the MRK limit (for
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which the contributing diagrams are shown in fig. 2.2 and whose derivation may be

found in [103]):

iMµaµbµ1µ2µ3
abd1d2d3

∼ 2iŝ(igsf
ad1c1gµaµ1)

1

t̂1

· (igsf c1d2c2Cµ2(q1, q2))
1

t̂2

· (igsf bd3c2gµbµ3) , (2.3.31)

where for simplicity the gluon polarisation vectors were omitted:

Mabd1d2d3 =Mµaµbµ1µ2µ3
abd1d2d3

εµaεµbεµ1εµ2εµ3 . (2.3.32)

The non-local, gauge invariant Lipatov vertex is given by [104]:

Cµ(q1, q2) = (q1 + q2)µ⊥ −
(
t̂a2

ŝ
+ 2

t̂2

t̂b2

)
pµb +

(
t̂b2
ŝ

+ 2
t̂1

t̂a2

)
pµa . (2.3.33)

Gauge invariance allows us to use the polarisation sum 1.3.17, such that

Cµ(q1, q2)Cµ(q1, q2) = 4
q2

1⊥q
2
2⊥

k2
1⊥

. (2.3.34)

Summing and averaging over external gluon polarisations and colours, we therefore

obtain:

|Mgg→ggg|2 =
16N2

c g
6
s

N2
c − 1

ŝ2

k2
2⊥k

2
1⊥k

2
3⊥

. (2.3.35)

The three-parton phase space measure is given by [103]:

P3 ∼
∫

1

2ŝ

d2~k1⊥
(2π)2

dy2d
2~k2⊥

4π(2π)2

d2~k3⊥
(2π)2

(2π)2δ2

(
3∑
i=1

~ki⊥

)
. (2.3.36)

As in eq. (2.3.29), integration over the extremal parton rapidities contributes one

factor of invariant mass in the denominator, and the flux factor contributes another,

and therefore the phase space integrand is independent of the internal rapidity y2.

Thus performing the integral over y2 ∈ [y1, y3], we obtain

dσ̂gg→ggg
dk2

1⊥dk
2
3⊥dφ

=
N3
c α

3
s

4π

∆y13

k2
1⊥k

2
3⊥(k2

1⊥ + k2
3⊥ + 2k1⊥k3⊥ cosφ)

(2.3.37)

for the differential cross section [103]. Since ∆y13 = ln(ŝ13/k
2
⊥), we see that the

O(αs) correction to Born level cross section in eq. (2.3.30) arising from real gluon

emission is logarithmically enhanced.
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Figure 2.3: The 1-loop diagrams which contribute in the MRK limit to gg → gg.

We now consider the virtual corrections for gg → gg, for which the only diagrams

that contribute are shown in fig. 2.3. The matrix element is given by [103]:

iMµaµbµcµd
abcd ∼ −i8παsgµaµbgµbµcf cdefabe

ŝ

t̂
ln

(
ŝ

|t̂|

)
α̂(t̂) (2.3.38)

where

α̂(t̂) = αsNct̂

∫
dD−2~k⊥
(2π)2

1

|~k⊥|2|(~q − ~k)⊥|2
(2.3.39)

is the Regge trajectory3 [103], with D the number of dimensions. This integral

has an infrared divergence that may be regulated either by introducing a cutoff or

by using dimensional regularisation (the latter being the method used in the next

section). In either case it transpires that α̂(0) = 0. Comparing eq. (2.3.38) to the

matrix element for gg → gg given by [103]:

iMµaµbµcµd
abcd ∼ −i8παsgµaµbgµbµcf cdefabe

ŝ

t̂
, (2.3.40)

we see that the O(αs) virtual correction to Born level cross section is also log-

arithmically enhanced. Note however in contrast to the Sudakov logarithms of

section 2.1, these high energy logarithms are single logarithms, meaning that the

leading logarithmic terms are of the form [αs ln(ŝij/k
2
⊥)]N .

The appearance of large logarithms in eqs. (2.3.37) and (2.3.38) signals that

a proper computation of the cross section in the (Multi-)Regge limit requires an

all order treatment. We start by considering the elastic scattering of two partons

with momentum transfer t̂ = q2, and outline the steps for computing the all order

corrections to this process (for a detailed treatment see [102,103]). This will rely

on three important postulates:

3In [102] the Regge trajectory is defined as 1 + α̂(t̂).
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2 Im + = + - + + -

+ . . .

Figure 2.4: A schematic representation of the Cutosky rules [102] for the case of

the case of two particle scattering is shown. Each circle labelled with a plus (+)

sign represents an amplitude for a set of incoming and outgoing legs. The minus

(-) sign denotes that the hermitian conjugate of this amplitude should be taken.

Each vertical dashed line denotes a ‘cut’, signifying the intermediate particle for

each cut propagator must be made on-shell.

1. The S-matrix is Lorentz invariant.

2. The S-matrix is unitary.

3. The S-matrix is an analytic function of Lorentz invariants.

The first postulate means that we can can write the S-matrix, and hence the

amplitude entirely in terms of the Mandelstam variables defined above. The second

postulate gives us the Cutosky rules, which may be formally stated as [102]:

2 ImAab = (2π)4δ4

(∑
a

pa −
∑
b

pb

)∑
c

AacA†cb . (2.3.41)

This equation tells us that we may calculate the imaginary part of the elastic

amplitude by considering the amplitudes of the incoming and outgoing states into

all possible intermediate states. For each intermediate state, the matrix element

for the incoming particles is multiplied by the hermitian conjugate of the matrix

element for the outgoing states. This is equivalent to evaluating a loop diagram

where the propagator for the intermediate particle is ‘cut’, namely it is replaced by

a delta function such that the particle is made on-shell. For two to two scattering,

this may be summarised in fig. 2.4.

The postulate of analyticity has two important consequences. Firstly it allows

us to relate the imaginary part of the amplitude, and hence eq. (2.3.41) to the
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s-channel discontinuity:

ImA(ŝ, t̂) =
A(ŝ+ iε, t̂)−A(ŝ− iε, t̂)

2i
=

DiscA(ŝ, t̂)

2i
. (2.3.42)

Secondly, analyticity enables us to use dispersion relations and partial wave expan-

sions to derive the full amplitude from the s-channel discontinuity:

AT (ŝ, t̂) = − 1

4π

∫ δ+i∞

δ−i∞
dl

(−1)l + (−1)T

sinπl

(
ŝ

|t̂|

)l
FT (l, t̂) (2.3.43)

where the suffix T is used to denote that the scalar part of the amplitude is taken,

and (−1)T = ±1. FT (l, t̂) is the Mellin transform of the discontinuity of the

amplitude:

FT (l, t̂) =

∫ ∞
1

d

(
ŝ

|t̂|

)(
ŝ

|t̂|

)−l−1

DiscAT
(
ŝ, t̂
)
. (2.3.44)

We can obtain the elastic amplitude for gg → gg by applying the Cutosky rules

to all n parton intermediate states that are dominant in the MRK limit, namely the

crossed and uncrossed ladder exchange diagram (as shown in fig. 2.5a), and cut the

horizontal gluon propagators such that they are on-shell. This therefore requires

the evaluation of the amplitude for Multi-Regge exchange, shown in fig. 2.5b, which

corresponds to the exchange of n− 1 t-channel gluons. We make ansatz that the

gluon reggeises, namely that the i-th vertical gluon propagator, which previously

in eq. (2.3.31) had the form 1/t̂i, can be obtained by making the replacement:

1

t̂i
→ 1

t̂i

(
− ŝi+1,i

t̂i

)α̂(t̂i)

=
1

t̂i
eα̂(t̂i)(yi+1−yi) , (2.3.45)

where α̂(t̂i) is the Regge trajectory of eq. (2.3.39). This is known as the Lipatov

ansatz [104], and is denoted in fig. 2.5b by replacing the conventional gluon

propagator by a zig-zag line. The bold square vertices indicate that we should use

the Lipatov vertex from eq. (2.3.33). The amplitude for Multi-Regge exchange is
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(a) (b)

Figure 2.5: The (un-crossed) ladder diagram which contributes to the imaginary

part of the elastic gg → gg scattering amplitude is shown in fig. 2.5a. The dashed

line represents a cut, which indicates that the diagram may be evaluated using the

Cutosky rules, and put the particles with cut propagators on-shell. The ladder

diagram therefore may be evaluated in terms of the amplitude for Multi-Regge

exchange, shown in fig. 2.5b. In both cases the dark squares represent Lipatov

vertices, whilst the vertical zig-zag lines represent t-channel exchange of a reggeised

gluon that may be evaluated using the Lipatov ansatz.

then given by [105,106]:

iMµaµbµ1...µn
abd1...dn

∼ 2iŝ(igsf
ad1c1gµaµ1)

1

t̂1
eα̂(t̂1)(y1−y2)

· (igsf c1d2c2Cµ2(q1, q2))
1

t̂2
eα̂(t̂2)(y2−y3)

· . . .

· (igsf cn−2dn−1cn−1Cµn−1(q1, q2))
1

t̂n−1

eα̂(t̂n−1)(yn−1−yn)

· (igsf bdncn−1gµbµn) . (2.3.46)

We can use eq. (2.3.46) to evaluate the discontinuity of the full amplitude.
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By transforming to Mellin space4, we find that the discontinuity of the (scalar

part of the) elastic amplitude obeys a recursion relation, known as the BFKL

equation [107–110]:

FT (l, t̂) = −2it̂(4παs)
2C2

T

∫
d2q1⊥
(2π)2

1

q2
1⊥(q − q1)2

⊥
fT (l, q1, t̂) , (2.3.47)

where CT is a colour factor, and f(l, q1, t̂) obeys the integral equation:

[l − 1− α̂(t̂
′

i)− α̂(t̂
′′

i )]fT (l, q1, t̂) = 1− 2αsCT

∫
d2q2⊥
(2π)2

K(q1, q2)

q2
2⊥(q − q2)2

⊥
fT (l, q2, t̂)

(2.3.48)

with t̂
′
i = q2

i⊥, t̂
′′
i = (q − qi)2

i⊥ and K(qi, qi+1) = −1
2
Cµ(qi, qi+1)Cµ(q − qi, q − qi+1).

The BFKL equation admits two possible solutions, one corresponding to colour-

singlet exchange of a particle known as the pomeron (CT = Nc), and another

corresponding to colour-octet exchange (CT = Nc/2). The latter is given by:

Aoctet(ŝ, t̂) = 4πNcαs
πα̂(t̂)

sin(πα̂(t̂))

(
1 + eiπα̂(t̂)

)( ŝ

−t̂

)1+α̂(t̂)

. (2.3.49)

We note that since α̂(0) = 0, this implies that Aoctet(ŝ, t̂ → 0) ∝ ŝJ , with J = 1

the spin of gluon. This is precisely the behaviour predicted by Regge theory, and

we say that the gluon lies on the Regge trajectory J(t̂) = α̂(t) + 1, which we can

now interpret as the effective spin of the particle (or reggeon) exchanged in the

t-channel, whose propagator should be given by eq. (2.3.45). The existence of the

solution eq. (2.3.49) demonstrates the self-consistency of the original ansatz, which

in fact has been found to hold to next-to-leading logarithmic accuracy5 [113–116].

As a consequence, the amplitude for Multi-Regge exchange eq. (2.3.46) can be

taken as a corollary [108]. Equations (2.3.45) and (2.3.46) are two very important

results which shall be used in the next section.

Having verified the self-consistency of the Lipatov ansatz, one could obtain the

total partonic cross section for the inclusive production of two gluons by performing

the phase space integration over n final state gluons numerically, and explicitly

4In [103] the change of variables z = −2ŝ/t̂ is made, and instead the Laplace transform is

taken.
5At next-to-next-to-leading logarithmic accuracy however, two-loop contributions to the Regge

trajectory have been found to violate high-energy factorisation [111,112].
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summing over all n. This can be done provided the cancellation of real and virtual

divergences has been performed to all orders; this will be the approach in the next

section. Alternatively, the total partonic cross section may be extracted analytically

using the optical theorem from the discontinuity of the elastic scattering amplitude

for colour singlet exchange. This is the approach taken in [103]; the result to

leading logarithmic accuracy is:

dσ̂gg
dk2

1⊥dk
2
2⊥

=

[
CAαs
k2

1⊥

]
f(k1⊥, k2⊥,∆y12)

[
CAαs
k2

2⊥

]
, (2.3.50)

where f(k1⊥, k2⊥, y) is the inverse Laplace transform of the singlet solution to the

BFKL equation:

f(k1⊥, k2⊥, y) =

∫
dω

2πi
eωyf(l, k1⊥, k2⊥) , (2.3.51)

and ω = l − 1. Implicitly, ω accounts for the virtual corrections to all orders. It

may be shown that for ∆y12 →∞ this corresponds to an asymptotic behaviour of

the cross section of σ̂gg ∼ exp(A∆y12), with A = 4 ln(2)αsCA/π.

We conclude this section by making some observations. According to Regge

theory the amplitude for 2→ n partonic scattering should be asymptotically pro-

portional to ŝ
J(t̂1)
12 ŝ

J(t̂2)
23 . . . ŝ

J(t̂n−1)
n−1,n , with J(t̂i) the spin of the i-th particle exchanged

in the t-channel. This is consistent with the result for Multi-Regge exchange in

eq. (2.3.46), namely:

Aab→1g...gn ∝ ŝ12ŝ23 . . . ŝn−1,n , (2.3.52)

which corresponds to the exchange of n − 1 spin-1 colour octets (or reggeised

gluons). The partonic channels which give rise to the dominant contributions to

the cross section for 2→ n partonic scattering must therefore be those which at

tree-level may proceed through gluon exchange in the t-channel. These are known

as FKL configurations. Also note that the amplitude for the process where one or

both initial state gluons are replaced with quarks is identical to eq. (2.3.46) up to

an overall colour factor. We already saw this behaviour in eq. (2.3.28). This is a

consequence of high energy factorisation, with extremal partons being captured by

impact factors that differ only by colour factors. FKL configurations are therefore

those in which the most forwards and backwards outgoing partons have the same
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flavour as the incoming partons, and all additional n − 2 final state partons are

gluon emissions. This definition explicitly fixes the rapidity ordering of all final

state partons.

The phase space integrand behaves as |Aab→1g...gn|2/ŝ2 since the integral over

extremal rapidities contributes one factor of invariant mass and the flux factor

contributes another. Noting that

ŝ ∼ k2
⊥ exp(y1 − yn) = k2

⊥ exp(y1 − y2 + y2 − · · ·+ yn−1 − yn)

= k2
⊥

n−1∏
i=1

exp(yi − yi+1)

= k2
⊥

n−1∏
i=1

(
ŝi,i+1

k2
⊥

)
, (2.3.53)

it should be clear that for FKL configurations |Aab→1g...gn|2/ŝ2 is independent of

invariant mass and hence from internal rapidities. Therefore, by performing the

phase integral over each of the rapidity-ordered final state partons, the Born level

cross section for FKL configurations must behave as:

σ̂ab→1g...gn ∝ σab→12

n−1∏
i=2

αs∆yi−1,i+1 ∼ σab→12

n−1∏
i=2

αs ln

(
ŝi−1,i+1

k2
⊥

)
, (2.3.54)

and hence we see that FKL configurations give rise to the leading logarithmic

[αs ln(ŝij/k
2
⊥)]N contributions to the cross section.

Channels which proceed by fewer than n− 1 t-channel gluon exchanges give

rise to contributions to the amplitude that are systematically suppressed by powers

of invariant mass. For example, if a quark were exchanged in the t-channel in

place of a gluon, the amplitude would instead be proportional to ŝ
1/2
i,i+1, and hence

the amplitude squared would be suppressed by ŝi,i+1 relative to an FKL channel.

This suppression implies that |Aab→1g...gn|2/ŝ2 is not completely independent of the

internal rapidities and results in one fewer logarithm at the level of the cross section.

Such channels, known as non-FKL configurations, therefore only contribute at

subleading logarithm, αNs lnM(ŝij/k
2
⊥) with M < N . In chapter 4 we will see how

such subleading logarithmic terms can arise from rapidity orderings which differ

from the strict ordering of FKL configurations.
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2.4 The High Energy Jets Formalism

In the previous section we considered the asymptotic behaviour of the amplitude

and cross section for 2→ n partonic scattering in the high energy limit. We now

address the question of whether this limit is relevant for collider studies, and in

particular whether an all order treatment is appropriate for multi-jet phenomenology

at the LHC.

We review the approach of [117], in which the O(αs) contribution to the

amplitude in the MRK limit for (1) 2 → 2, (2) 2 → 3 and (3) 2 → 4 partonic

processes was compared to tree-level matrix elements. A phase space point with

fixed transverse momenta (k⊥i), and rapidities that depend on a parameter ∆ was

chosen for each case as follows:

1. y1 = −y2 = ∆; φ1 = 0, φ2 = π,

2. y1 = −y3 = ∆, y2 = 0 ; φ1 = 0, φ2 = −φ3 = 2π/3,

3. y1 = −y4 = ∆ y2 = −y3 = ∆/3; φ1 = 0, φ2 = −φ3 = π/2, φ4 = π.

The parameter ∆, which represents half of the maximal rapidity separation, was

then increased incrementally, and the matrix elements squared (normalised by

the flux factor) was evaluated at each point. The results obtained in [117] are

reproduced and shown in fig. 2.6.

In all cases, the MRK limit is independent of ∆ and corresponds to a flat line;

the tree level matrix elements approach this limit for large enough values of ∆.

The point at which the limit is reached occurs between 6 and 16 units of rapidity

separation between the most forward and backward partons. By comparison, the

pseudorapidity6 coverage of the calorimeters in the CMS and ATLAS detectors is

|η| . 5.0 and |η| . 4.9 [118,119] respectively. It is appears that for the majority of

the phase space explored at these two detectors at the LHC, the strict MRK limit

is not relevant.

6 The pseudorapidity η is defined as − ln(tan θ
2 ), and is equivalent to rapidity for massless

particles.
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Figure 2.6: Plots are shown of leading order matrix elements squared

|M|2/(24(n−1)π3n−4ŝ2) · (CF/CA)m for the 2 → n partonic scattering processes,

where m is the number of quarks in the initial/final state, evaluated for a phase

space point parameterised in terms of ∆, half the rapidity separation between

the rapidity separation between the most forward and backward partons. The

configuration is chosen such that MRK kinematics are satisfied in the large ∆ limit.

The analytic MRK limit which is independent of ∆ is shown as a flat line on the

plots, which the matrix elements are seen to approach at large ∆. The plots are

reproduced from [117].
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If the strict MRK limit only becomes important at the edges of the phase space

available at the LHC, this raises the question of whether such an all order treatment

is necessary for LHC phenomenology. However, the only alternative formalism

available for describing for hard jet production are schemes for combining a parton

shower with a fixed order calculation. The logarithms handled by the parton shower

are known not to describe hard jets (see for example [120–122]) thus the number of

hard jets which may be accurately described is inherently limited by the accuracy

of the fixed order calculation.

This is not necessarily a problem if one is only interested in studying sufficiently

inclusive processes. However, it is a quite common practice to enhance the signal of

a process with respect to the QCD background by placing a veto on jets appearing

in a given rapidity interval; for example to suppress the gluon fusion channel with

respect to the VBF channel in Higgs plus dijets production [98]. To understand

the effect of such vetoes on the residual QCD backgrounds (which is necessary

if they are to be safely applied in experiments), it is crucial to have an accurate

description of more exclusive quantities such as the average number of hard jets in

a rapidity interval, for which an all order approach should be necessary. This is

the motivation for extending the BFKL model presented in the previous section,

and leads to the High Energy Jets (HEJ) formalism [117,123–127].

As we explore in the remainder of this section, the factorisation of the matrix

element squared into impact factors, Lipatov vertices and t-channel poles in the

MRK limit may be exposed away from the limit using spinor helicity formalism.

The terms which violate factorisation necessarily vanish in the MRK limit and

are neglected, however the remainder of the expression is less coarsely simplified.

Although retaining more information, the factorised form of the matrix element is

nevertheless sufficiently simple to permit a numerical Monte Carlo integration (for

details, see section 3.1) in the entire phase space for obtaining the cross section.

This is in contrast to the previous section, where regions of phase space in which

the amplitude was subdominant were excluded. Such a procedure allows for the

development of a formalism that is valid to all orders, and which despite reproducing

the MRK limit is valid in a larger region of phase space and may therefore be used
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(a) (b) (c)

(d) (e) (f)

Figure 2.7: Diagrams used in the construction of the basic building blocks for the

general factorised form of the 2→ n matrix elements in the HEJ formalism: (a)

is used for the derivation of the partonic currents, whilst (b-f) are used in the

derivation of the modified Lipatov vertex.

for LHC phenomenology.

In the factorised form of the amplitude which will be derived, the dominance of

the t-channel poles must be explicit, such that by application of the Lipatov ansatz

from eq. (2.3.45) its form may be naturally extended to all orders, and moreover

capture the defining property of Regge exchange. We start by considering the

scattering of two partons ab→ 12 of helicities ha, hb, h1, h2 respectively, and later

extend this to 2→ n processes. Anticipating that the dominant partonic channels

will be related by overall colour factors in the MRK limit, we first analyse the

structure of the amplitude for the scattering of two non-identical quarks, qQ→ qQ.

The only diagram which contributes to the process is shown in fig. 2.7a. Using the

notation of section 1.3 we define the spinor string7:

Shahb→h1h2qQ→qQ = 〈1h1|µ|aha〉gµν〈2h2|ν|bhb〉 . (2.4.55)

The sum and average over final and initial helicities of the absolute square of this

7We also make use of the commonly used shorthand 〈i±|µ|j±〉 = 〈p±i |γµ|p±j 〉.
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quantity is denoted as:

||SqQ→qQ||2 =
∑

ha,hb,h1,h2

|Shahb→h1h2qQ→qQ |2 . (2.4.56)

The exact matrix elements for qQ→ qQ, summed and averaged over helicities and

colours may be written in the form [117]:

|MqQ→qQ|
2

=
1

4(N2
c − 1)

||SqQ→qQ||2

·
(
g2
sCF

1

t̂1

)
·
(
g2
sCF

1

t̂2

)
. (2.4.57)

In this case t̂1 = t̂2, however this suggestive notation is used for later generalisation.

It was shown in [123] that for all non-vanishing helicity configurations in qg → qg,

the tree-level matrix elements squared factorise. In this case, the form of the matrix

element squared may be obtained from eq. (2.4.57) by making the replacement:

CF → Kg ≡
1

2

(
CA −

1

CA

)(
1 + z2

z

)
+

1

CA
. (2.4.58)

In the MRK limit z = p−n
p−b
→ 1, and this expression tends to CA; we therefore

recover the behaviour seen in eq. (2.3.28).

Equation (2.4.57) already gives us two of the building blocks required for the

factorised amplitude: a contraction of currents describing the scattering of the

incoming partons, and as before, a t-channel pole for each effective t-channel ex-

change. Crucially, the current factor ||SqQ→qQ||2 retains more of the full kinematics

than the impact factors of the BFKL formalism presented in the previous section.

We now require the counterpart to the Lipatov vertex eq. (2.3.33). This may be

derived by considering the process qQ→ qgQ, for which the diagrams are shown

in figs. 2.7b to 2.7f. The diagram containing the three-gluon vertex is already in

factorised form, and is given by:

A3g =
−g3

sf
abcT ci1iaT

b
i3ib

t̂1t̂2
〈1|µ|a〉〈3|ν|b〉ε∗ρ

· ((q1 + q2)ρgµν + (p2 − q2)µgνρ − (q1 + p2)νgµρ) . (2.4.59)

In the MRK limit this becomes:

A3g ∼ g3
sf

abcT ci1iaT
b
i3ib

SqQ→qQ
t̂1t̂2

ε∗ρ

(
2pρa

ŝ23

ŝ
− 2pρb

ŝ12

ŝ
− (q1 + q2)ρ

)
. (2.4.60)
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The other diagrams may be constructed from fig. 2.7a from gluon insertions on

each external quark leg. Such gluons may be accounted for by treating them as

soft and using the eikonal approximation to obtain:

Aq = AqQ→qQ × i(igs)ε∗ρ
(

(T aT b)i1iaT
b
i3ib

pρ1
p1 · p2

− (T bT a)i1iaT
b
i3ib

pρa
pa · p2

+T ci1ia(T
aT c)i3ib

pρ3
p3 · p2

− T ci1ia(T cT a)i3ib
pρb

pb · p2

)
.

(2.4.61)

In the MRK limit we have pa ∼ p1 and pb ∼ p3, so we make these replacements in

order to combine the colour factors, and obtain:

Aq =
SqQ→qQ
q2

1q
2
2

× (g3
s)f

abcT ci1iaT
b
i3ib
ε∗ρ

(
q2

1

pρ1
p1 · p2

− q2
2

pρ3
p3 · p2

)
. (2.4.62)

We can combine expressions eq. (2.4.61) and eq. (2.4.62), before reinstating the

symmetry between pa, p1 and pb, p3, to obtain the factorised amplitude:

AqQ→qgQ = g3
sf

abcT ci1iaT
b
i3ib

SqQ→qQ
q2

1q
2
2

ε∗ρV
ρ(q1, q2) (2.4.63)

where

V µ(qi, qi+1) =− (qi + qi+1)µ

+
pµa
2

(
q2
i

pi+1 · pa
+
pi+1 · pb
pa · pb

+
pi+1 · pn
pa · pn

)
+ pa ↔ p1

− pµb
2

(
q2
i+1

pi+1 · pb
+
pi+1 · pa
pb · pa

+
pi+1 · p1

pb · p1

)
− pb ↔ pn (2.4.64)

is the modified Lipatov vertex and extension of eq. (2.3.33); we have written it in

the most general form here, but in eq. (2.4.63) we have n = 3. It may be verified

that eq. (2.4.64) is also gauge invariant. We thus propose the following general

form of the factorised matrix element for the process qQ→ qg . . . gQ (with n− 2

final state gluons):

|MqQ→qg...gQ|
2

=
1

4(N2
C − 1)

‖SqQ→qQ‖2

·
(
g2 CF

1

t̂1

)
·
(
g2 CF

1

t̂n−1

)
·
n−2∏
i=1

(−g2CA

t̂it̂i+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)
. (2.4.65)
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To obtain the equivalent expression for qg or gg initial states, one need simply

make the replacement eq. (2.4.58) for each initial state quark replaced by a gluon.

We therefore now have the amplitude for all possible 2→ n FKL configurations.

This expression reproduces the MRK limit, and its form has an analogous structure,

and yet retains a greater degree of the full kinematics.

The Lipatov ansatz (2.3.45) may now be applied to obtain an expression which

reproduces the leading logarithmic terms to all orders in the coupling:∣∣MHEJ
f1f2→f1g···gf2

∣∣2 =
1

4(N2
C − 1)

‖SqQ→qQ‖2

·
(
g2
s Kf1

1

t̂1

)
·
(
g2
s Kfn

1

t̂n−1

)
·
n−2∏
i=1

(−g2CA

t̂it̂i+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)

·
n−1∏
j=1

exp
[
2α̂(q2

i )∆yj−1,j+1

]
, (2.4.66)

where Kq = CF and Kg is given by eq. (2.4.58). This expression contains im-

plicit infrared divergences corresponding to the i-th gluon becoming soft, which

necessarily must cancel with the explicit divergences which appear in the Regge

trajectory. However, in order to perform numerical integration, it is necessary to

apply a regularisation procedure such that these divergences cancel explicitly. The

divergence in the Regge trajectory may be regulated by evaluating the integral in

eq. (2.3.39) in D = 4 + 2ε dimensions [128]:

α̂(q2
i ) = −g2

sCA
Γ(1− ε)
(4π)2+ε

2

ε

(
q2
i

µ2

)ε
, (2.4.67)

where µ is the mass scale acquired by the coupling.

In the limit that the transverse momentum of the ith internal gluon becomes

soft, the matrix element eq. (2.4.65) has the following behaviour:

|Mab→1...n|
2 |~pi⊥|2→0−−−−−→

(
4g2

sCA
|~pi⊥|2

) ∣∣Mab→1...(n−1)

∣∣2 . (2.4.68)

Performing the phase space integral in the region |~pi⊥|2 < λ2 (also in D = 4 + 2ε

dimensions) we obtain:∫
dyid

2+2ε~pi⊥
4π(2π)2+2ε

(
4g2

sCA
|~pi⊥|2

)
µ−2ε =

4g2
sCA∆yi−1,i+1

(4π)2+ε

1

Γ(1 + ε)

1

ε

(
λ2

µ2

)ε
. (2.4.69)
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Just as the matrix element for n partons has n − 2 internal gluons, the matrix

element for n−1 partons has n−2 propagators. Expanding the exponential for the

ith propagator in
∣∣Mab→1...(n−1)

∣∣2 at each order in αs and ε leads to the necessary

cancellation with the finite remainder

ω0(q2
i , λ

2)∆yi−1,i+1 (2.4.70)

where

ω0(q2
i , λ

2) = −αsCA
π

ln

(
q2
i

λ2

)
. (2.4.71)

We can re-exponentiate this remainder (order by order in αs), and obtain the

following regularised matrix element8:∣∣∣MHEJ, reg
f1f2→f1g···gf2

∣∣∣2 =
1

4(N2
C − 1)

‖SqQ→qQ‖2

·
(
g2
s Kf1

1

t̂1

)
·
(
g2
s Kfn

1

t̂n−1

)
·
n−2∏
i=1

(−g2CA

t̂it̂i+1

(
V µ(qi, qi+1)Vµ(qi, qi+1)− 4

|~pi⊥|2
θ(|~pi⊥|2 + λ2)

))

·
n−1∏
j=1

exp
[
ω0(q2

j , λ
2)∆yj−1,j+1

]
. (2.4.72)

The additional factor modifying the contraction of Lipatov vertices accounts for

the fact that eq. (2.4.68) is not exact. The only remaining unregulated infrared

divergences in eq. (2.4.72) correspond to one of the extremal partons in rapidity

becoming soft or collinear with another emission. The former may be removed by

simply requiring that the extremal parton must be a member of the extremal jet.

The latter is removed by using an expression for the modified Lipatov vertex in

which the final step of re-symmetrisation of pa, p1 and pb, pn has been undone.

By integrating the n-parton matrix elements over the phase space for n real

emissions that gives rise to at least N jets (and summing over n ≥ N) we could

in principle now obtain the inclusive N -jet cross section to leading logarithmic

8There is a weak dependence of the cross section upon the regularisation parameter λ that was

investigated in the appendix of [124]; the dijet and trijet cross sections were stable to 2 significant

figures for λ in the range 0.2-2.0 GeV. The default value for λ is taken to be 0.5 GeV.
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accuracy in the MRK limit. However, the expression eq. (2.4.68) will become

inaccurate away from the limit. For this reason, prior to performing the phase

space integral, the matrix elements are reweighted using leading order matrix

elements (provided by MadGraph 4 [129]). This proceeds by first clustering into m

jets to obtain the jet momenta {pJ}. The sum of unclustered momenta q is then

redistributed between the jets according to their relative contribution to the scalar

sum of transverse momentum, and such that their rapidities remain fixed. Finally

the energies are adjusted to conserve momentum, and we obtain the following set

of m massless momenta {pJ ′}:

~pJ ′⊥ = ~pJ⊥ + ~q⊥
|~pJ⊥|∑
J |~pJ⊥|

,

EJ ′ = |~pJ ′⊥| cosh yJ ,

pzJ ′ = |~pJ ′⊥| sinh yJ . (2.4.73)

The weight factor is then given by the ratio of leading order and HEJ matrix

elements evaluated for the m shuffled momenta:

wm =
|MLO|2 ({pJ ′})
|MHEJ|2 ({pJ ′})

. (2.4.74)

The inclusive N -jet cross section at leading logarithmic accuracy in the MRK limit,

matched to LO accuracy away from the limit is thus given by [124]:

σFKL+matching
Nj =

∑
f1,f2

∞∑
n=N

n∏
i=1

(∫ pi⊥=∞

pi⊥=λ

d2~pi⊥
(2π)3

∫
dyi
2

)

·
|MHEJ, reg

f1f2→f1g···gf2({pi})|
2

ŝ2

∑
m≥N

[
Oemj({pi}) wm

]
ONj({pi})

· xafA,f1(xa, µF )x2fB,f2(xb, µF ) (2π)4 δ2

(
n∑
i=1

~pi⊥

)
, (2.4.75)

where Oemj is an exclusive jet measure which is unity if there are exactly m jets, and

zero otherwise; ONj =
∑

m≥N Oemj is the inclusive N -jet measure. This expression

does not take into account the non-FKL partonic channels that we neglected to

include in the all order treatment. To recover full LO accuracy away from the limit,

these channels must be added in to obtain the inclusive N -jet cross section:

σHEJ
Nj = σFKL+matching

Nj +
∑
m≥N

σNFKL
mj (2.4.76)
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= +

Figure 2.8: Schematic illustration of the effective current for W emission off a

quark leg, reproduced from [125].

where σNFKL
mj are the exclusive leading order cross sections for m jets corresponding

to non-FKL partonic channels, for which the matrix elements are again provided

by MadGraph. The maximum multiplicity of the number of jets matched is only

limited by the availability of the tree-level matrix elements.

So far we have only described the HEJ formalism for pure QCD processes;

however it is possible for modify this prescription to include other processes. For

example, the emission of a W± boson may be included by viewing this as an

electroweak correction to the current factor in eq. (2.4.56), and defining:

||Sud→dν` ¯̀d||2 =
g4
W

4

∣∣∣∣ 1

(p` + p¯̀)2 −m2
W + iΓWmW

∣∣∣∣2 ∑
hb,h2

|S−hb→−h2−−
ud→dν` ¯̀d |2 , (2.4.77)

where mW is W boson mass, ΓW is the decay width, gW is the weak coupling

strength, and we define:

S−hb→−h2−−
ud→ddν` ¯̀ = JµW (pa, p`, p¯̀, p1)〈2h2|µ|bhb〉 . (2.4.78)

The effective current JµW for W± emission off a quark leg, shown schematically in

fig. 2.8, is given by [125]:

JµW (pa, p`, p¯̀, p1) =〈1−|
(
γν(/p` + /p¯̀ + /p1

)γµ

(p` + p¯̀ + p1)2
+
γµ(/pa − /p` − /p¯̀)γ

ν

(pa − (p` + p¯̀))2

)
|a−〉

· 〈`−|ν|¯̀−〉 . (2.4.79)

Here it should be understood that p` denotes the momentum of the lepton (e−, ν)

whilst p¯̀ denotes the momentum of the antilepton (ν̄, e+). Equation (2.4.77) may

then be inserted into eq. (2.4.65) and one may proceed as before. This approach

does not take into account the scenario where there is interference between W
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(a) (b)

Figure 2.9: Plots reproduced from [130] showing the average number of jets in

inclusive W plus dijet production from the Tevatron at
√
s = 1.96 TeV. This is

shown as a function of the rapidity separation between (a) the two hardest jets,

and (b) the most forwards and backwards jets. Predictions provided by HEJ give

a good description of both distributions, whilst predictions for parton showers

matched to LO and NLO notably underestimate the data.

emission from two identical quark legs, this effect however is found to be negligible

in the high energy limit [125].

In figs. 2.9 and 2.10 we show a comparison of the HEJ formalism with data

collected by the D0 [130] and ATLAS [131] collaborations respectively for inclusive

W plus multi-jet production. The D0 analysis was performed at the Tevatron at
√
s = 1.96 TeV. In this analysis comparisons were made between the predictions

from several parton showers matched to leading order (Pythia, Herwig and

Sherpa), one parton shower matched to NLO (Blackhat + Sherpa), and HEJ.

In fig. 2.9 the average number of jets in inclusive dijet events is shown as a function

of the rapidity separation between (a) the two hardest jets and (b) the most forward

and backwards jet. In the first case, the average number of jets is independent
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Figure 2.10: A plot of differential cross section with respect to the invariant mass

between the two hardest jets in inclusive W plus dijet production from the LHC at
√
s = 7 TeV, reproduced from [131]. All predictions for parton shower matched

and merged to fixed order show significant deviations from the data for large dijet

invariant masses; only predictions from HEJ give a good description of the entire

spectrum.

of the rapidity separation, whilst in the latter case there is linear growth as the

rapidity separation increases; this is precisely the behaviour anticipated in the high

energy limit. Notably the second distribution is only described well by HEJ, whilst

other approaches (in which high numbers of jets may only be produced by the

parton shower) underestimate the observed rate.

The ATLAS analysis was performed at the LHC at
√
s = 7 TeV. This analysis

compared predictions for two LO merging methods (MLM in Alpgen + Herwig

and CKKW in Sherpa), NLO merging (MEPS@NLO), NLO matching (Blackhat

+ Sherpa), and HEJ. In fig. 2.10 the differential cross section as a function of the

invariant mass between the two hardest jets ∆m12 in inclusive dijet events is shown.

In the limit where ∆m12 becomes large, the logarithms included to all orders in

the HEJ formalism become important, and again HEJ gives the best description of
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this observable, whereas other approaches that match or merge a parton shower to

fixed order diverge from data in the limit of large invariant mass.

These experimental studies support the idea that an all order prescription at

sufficiently high dijet invariant masses and large rapidity separations is required,

and moreover that this region of phase space is accessible at the LHC (and even at

the Tevatron). This further suggests that the formalism can indeed be relevant for

analyses which utilise VBF cuts. Nevertheless, there are also numerous regions in

phase space where the HEJ formalism does not provide an adequate description;

in chapter 4 we shall extend the HEJ formalism, allowing it to be relevant for a

broader range of experimental studies.

2.5 Adding a Parton Shower to HEJ

We have so far discussed two different regions of phase space, the soft-collinear

limit and the high energy limit, where having an accurate description of QCD

may only be achieved through an all order formalism. In both cases, this was

achieved by only retaining the leading logarithmic terms; however away from the

limit in which such logarithms dominate, these formalisms become increasingly less

accurate. To some extent such inaccuracies can be corrected to fixed order accuracy

through matching or merging methods; however these approaches are insufficient

for variables that are sensitive to both types of logarithm (of which examples are

presented later in the section; see also the review [132]). Furthermore, a parton

shower is required to evolve the partonic final states produced by HEJ to a point at

which a hadronisation model may be applied, and thereby obtain a more realistic

picture of a given event. It is clearly worthwhile to combine the two schemes, and

we therefore now review a method for matching HEJ to a parton shower that was

presented in [133]. The dipole shower Ariadne was chosen since although it does

not itself describe BFKL-like dynamics, it is better than standard DGLAP-based

parton showers at probing the region of small x and semi-hard emissions relevant

in the high energy limit [134]. The method, however, is independent of the shower

model selected.
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The challenge of combining two all order prescriptions is quite different to those

issues addressed in section 2.2; the singularities associated with a parton becoming

soft are included already to all orders in HEJ, and thus it is necessary to prevent not

just the double counting of a single term but infinitely many. An elegant solution

exists however; what is required is the modification of the splitting kernels that

are exponentiated in Sudakov factors, which may be achieved through subtraction

terms.

In order to derive the appropriate subtraction term we first recall that the

standard Altarelli-Parisi splitting functions may be related to the ratio of matrix

elements squared in the soft-collinear limit:

|Mn+1|2
|Mn|2

dp2
⊥

16π2
dz ∼ dp2

⊥
p2
⊥
dz
αs
2π
Pgg(z) . (2.5.80)

By comparing the form of the dipole splitting functions in the soft-collinear limit

in eq. (2.1.9) with the right-hand side of eq. (2.5.80), it is possible to obtain the

relation:

D(p2
⊥, y) ∼ z

16π2

|Mn+1|2
|Mn|2

. (2.5.81)

Therefore we can define a subtraction kernel in terms of a ratio of HEJ matrix

elements:

DHEJ(p2
⊥, y) =

z

16π2

|MHEJ
n+1|2

|MHEJ
n |2 . (2.5.82)

In the parton shower evolution we wish to calculate the modified Sudakov factor

∆̃(p2
1⊥, p

2
2⊥) = exp

{
−
∫ p21⊥

p22⊥

dp2
⊥

∫
dy Dsubtracted(p2

⊥, y)

}
(2.5.83)

where

Dsubtracted(p2
⊥, y) = D(p2

⊥, y)−DHEJ(p2
⊥, y) . (2.5.84)

This can be achieved using the Sudakov veto algorithm (see section 3.2) by gener-

ating emissions as usual but vetoing events with a probability:

Pveto =
DHEJ(p2

⊥, y)

D(p2
⊥, y)

=
rHEJ

rAriadne

, (2.5.85)

and we define:

rHEJ =
|MHEJ

n+1|2
|MHEJ

n |2 rAriadne =
16π2

z
D(p2

⊥, y) . (2.5.86)
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In this way the double counting of soft emissions is avoided, but the kernel for

collinear splittings is still properly accounted for to all orders.

The full algorithm for matching HEJ with Ariadne proceeds as follows:

1. Generate a partonic state with HEJ with a cutoff on the transverse momentum

of the partons.

2. Pass this event to Ariadne in Les Houches format [135]. This requires

choosing colour connections at random that give rise to non-crossing ladders

of rapidity-ordered, colour-connected ladders (which dominate in the MRK

limit [136,137]).

3. Set up the internal dipole event record in Ariadne and evolve the dipole

cascade starting from the largest transverse momentum of any parton in the

event.

4. For each potential emission, check if this emission could have been produced

by HEJ, namely, it must be a gluon emission between the two jets extremal

in rapidity. If the emission could not have been produced in HEJ:

(a) Reject any gluon emission that is extremal in rapidity and is above the

minimum scale of transverse momentum for extremal jets.

(b) Otherwise, accept the emission.

If the emission could have been produced in HEJ:

(a) Calculate the ratio rHEJ/rAriadne.

(b) Generate a random number r ∈ [0, 1]; if r < rHEJ/rAriadne veto the

emission, and otherwise accept it.

5. After the dipole cascade has evolved down to the hadronisation scale, pass

the event to Pythia after which hadronisation and the decays of unstable

particles is performed.

An ATLAS analysis which measured additional jet activity in dijet events in

pp collisions at
√
s = 7 TeV at the LHC [138] was found to discriminate between
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NLO matching to two parton showers (Pythia and Herwig) using the POWHEG

method, partonic HEJ, and HEJ matched to Aridane using the method described

above. In this analysis, events were required to have at least two jets, the hardest

having a transverse momentum pT > 60 GeV and the second hardest having

pT > 50 GeV. The minimum jet transverse momentum for additional jets was

set at either 20 or 30 GeV (corresponding to data collected in 2010 and 2011).

Jets were defined using the anti-kT algorithm with R = 0.6. In addition jets were

required to have rapidity |yj| < 4.4 or |yj| < 2.4 for data collected in 2010 and 2011

respectively. We now review some of the more pertinent results from this study.

In fig. 2.11 we show the average number of jets in the rapidity interval defined

between the two hardest jets, which in fig. 2.11a is shown as a function of increasing

rapidity separation (∆y) between the tagging jets. The trend for an increasing

number of jets as the separation increases that is expected from multi-Regge

exchange is seen in the data; the plateau that is seen at large rapidities may

arise from the combined effect of steeply falling PDFs and the increasing relative

importance of colour singlet (pomeron) exchange. Both parton shower predictions

with matching to NLO overestimate the number of jets for the largest rapidity

separations. Partonic HEJ, while giving a better description of the data in this

region, underestimates the data for lower rapidities. One might näıvely have

expected HEJ to perform extremely well in such an observable. However, by

requiring that the two tagging jets be harder than those counted in the interval,

the event selection induces a hierarchy of jet transverse momenta, which cannot

be accommodated for in the MRK limit. (This issue was investigated in [139].)

It is found that the addition of a parton shower to HEJ leads to an improved

description at lower rapidities, and furthermore qualitatively reproduces the shape

of the spectrum much better than partonic HEJ.

Figure 2.11b instead shows the average number of jets in the rapidity interval

as a function of the average transverse momentum of the tagging dijet system, p̄T ,

where the tagging jets were required to have a rapidity separation of greater than 1

unit (∆y > 1). As p̄T increases, there is an enhanced probability for soft emissions;

again at very large values of p̄T the effect of PDF suppression becomes important.
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Figure 2.11: Plots reproduced from [138] showing the average number of jets in

the rapidity interval between the two hardest jets, for dijet events at
√
s = 7 TeV

at the LHC, as a function of (a) the rapidity difference ∆y, and (b) the average

transverse momentum of the dijet system p̄T .

It is unsurprising that parton shower plus fixed order predictions which account

for soft emissions to all orders describe this observable well, whilst partonic HEJ

underestimates the data. The improvement seen from adding a parton shower to

HEJ is very apparent for this observable.

In figs. 2.12a and 2.12b the average azimuthal correlation of the dijet system

〈cos(π − ∆φ)〉 is investigated. This observable is sensitive to the amount of

additional radiation in the event; exclusive dijets must balance in azimuth, and the

observable approaches one. Additional hard emissions shift the jets away from a

back-to-back topology and the average correlation approaches zero.

The average correlation of the dijets as a function of ∆y is shown in fig. 2.12a.

The data behave qualitatively as expected; as the rapidity separation increases, the

average number of hard emissions increases, which act to decorrelate the dijets. All

theoretical predictions capture the shape of this observable, though partonic HEJ

overestimates the correlation, while both shower predictions and HEJ+Ariadne

underestimate the correlation.
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The average correlation as a function of p̄T is shown in fig. 2.12b. As the

transverse momentum of the dijet system increases, there is less phase space

available for hard emissions; since soft emissions typically have little effect on the

azimuthal distribution of the jets, the correlation is seen to increase for increasing

p̄T . This effect is qualitatively captured by all theoretical distributions, however at

small p̄T , the correlation is overestimated by HEJ, underestimated by the parton

shower plus fixed order, while HEJ+Ariadne gives a fairly good description of

the entire distribution.

The second moment of azimuthal correlation 〈cos 2(π −∆φ)〉 = 〈cos(2∆φ)〉 is

expected to fall faster than the first moment for increasing hard radiation. Thus the

ratio of the two, which is shown in figs. 2.12c and 2.12d is sensitive to the amount

of radiation, but does not suffer from systematic errors in normalisation that might

be present in the distributions in figs. 2.12a and 2.12b. This observable emphasises

that both as function of ∆y and p̄T partonic HEJ typically overestimates the level

of correlation and fixed order plus parton shower approaches underestimate the

correlation; however, HEJ+Ariadne gives a good description in both cases.

The results presented in this analysis demonstrate that certain variables which

are sensitive to the amount, angular distribution and hardness of additional radiation

in inclusive dijet production cannot be fully described either by either parton shower

or HEJ approaches alone. Similar conclusions could also be drawn from an earlier

analysis that made a comparable set of measurements [140]. This suggests that

in such observables, both soft-collinear and high energy logarithms can become

important, and that combining these schemes is well-motivated. However, in the

method presented above, there is still room for improvement. It was observed

in [133] that certain events produced by HEJ contained soft emissions that in

the dipole cascade of Ariadne would only have been produced at a late stage

of evolution. This has the effect that the phase space available to the shower for

such events is limited, which is not corrected for by the modified Sudakov factor.

It was proposed that this limitation could be corrected by a modified merging

algorithm that would reduce the impact of such events. The implementation of

such an algorithm will be the subject of chapter 5.
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Figure 2.12: Plots reproduced from [138] showing moments of the azimuthal

correlation of the dijet system for dijet events in pp collisions at
√
s = 7 TeV at

the LHC. This is shown as a function of (a,c) the rapidity interval between the

tagging jets, and (b,d) the average transverse momentum of the dijet system p̄T .

In (a,b) the first moment 〈cos(π −∆φ)〉 is shown, whilst in (c,d) the ratio of the

second to the first moment 〈cos(2∆φ)〉/〈cos(π −∆φ)〉 is shown.
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Chapter 3

Numerical Methods

In this chapter we briefly take a detour to discuss some of the practicalities involved

in obtaining quantitative predictions from theory which may be compared with data

from experiments. The quantities we typically wish to compute require performing

integrals of distributions that are too cumbersome to perform analytically; it is

therefore standard practice to rely on numerical tools to obtain a result. It is

necessary that such tools produce stable results (they must converge to the correct

values) and are efficient (otherwise it would be impossible to obtain results in finite

amount of time). In the sections which follow we discuss some commonly used

methods which satisfy these requirements.

3.1 The Monte Carlo Method

Let us assume we wish to compute some multi-dimensional integral; a common

example might be the phase space integral for calculating the cross section; for

m massless final state particles, there are n = 3m − 4 independent components

of momentum, which we simply denote by the vector x. The integrand, which

would be the matrix element squared normalised by the flux factor, we simply

denote as f(x). We wish to compute the following integral over the volume V in

an n-dimensional vector space:

I[f ] =

∫
V

dnx f(x) . (3.1.1)
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For low numbers of dimensions there are many techniques to numerically evaluate

an integral (for example, Simpson’s rule or Gaussian integration [141]), however

since there are usually many final state particles, the dimension n of the phase

space is typically very large. One of the most efficient methods for many dimensions

is known as the Monte Carlo method [142]. This involves randomly selecting N

points xi in the volume V , and estimating the integral as the average of f on those

points:

I[f ] ∼ V 〈f〉 , (3.1.2)

where

〈f〉 =
1

N

N∑
i=1

f(xi) . (3.1.3)

The central limit theorem predicts that for large enough N this will be an unbiased

estimate of the integral, for which an estimate of the error, or difference between

the calculated and true value, is given by [142]:

E[f ] =

√
Var(f)

N − 1
(3.1.4)

in which the variance of f is:

Var(f) = 〈f 2〉 − 〈f〉2 . (3.1.5)

The error should therefore decrease as 1/
√
N as the number of points is increased.

Fundamentally however, the error is proportional to the standard deviation of f

(σ(f) =
√

Var(f)). If the function f is strongly peaked in certain locations in V ,

then flatly selecting points

x
(j)
i = ri(x

(j)
max − x(j)

min) (3.1.6)

with r1 ∈ [0, 1] a random number, will lead to a large variance and the result will

be slow to converge.

Let us now suppose that we have a function g(x) which captures the main

features of f(x) in V , then h(x) = f(x)/g(x) will be more slowly varying in V

than the original function. We perform a change of variables x→ y = G(x), such

that the Jacobian is given by:

det

(
∂y

∂x

)
= g(x) . (3.1.7)
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The integral is then given by:

I[h] =

∫
V

dnx g(x)h(x) =

∫
V ′
dny h(y) . (3.1.8)

Flatly selecting points in the new volume V ′,

y
(j)
i = ri(y

(j)
max − y(j)

min) (3.1.9)

should now lead to a smaller variance, and faster convergence of the Monte Carlo

estimate of I. However, transforming the integrand f(x), which may be a very

complicated function, to the function h(y) in the new variables may not be straight-

forward. Moreover, due to the modular nature of many generators, the calculation

of the matrix element may not be easily accessed. Furthermore, we are usually

not just interested in the single numerical value of the integral, but rather the

differential cross section as function of our variables x. Thus while we wish to

sample the phase space according to the transformed variable y, we evaluate the

integrand f in terms of x using the inverse of the Jacobian in eq. (3.1.7):

I[f ] =

∫
V ′
dny det

(
∂G−1(y)

∂y

)
f(G−1(y)) . (3.1.10)

Evaluating I using the Monte Carlo method then yields:

I[f ] ∼ V ′

N

N∑
i=1

wif(xi) (3.1.11)

where:

xi = G−1(yi) , (3.1.12)

wi = det

(
∂G−1

∂y

)∣∣∣∣
yi

. (3.1.13)

Thus we see the integral is simply calculated as a weighted average, where the

weight is the Jacobian for the transformation and compensates for the fact that

we select points flatly in the transformed volume V ′. This procedure is known as

importance sampling [142].

3.2 The Sudakov Veto Method

The Sudakov Veto method [67, 69] is a means of numerically generating a sequence

of ordered values according to some probability distribution, for example the values
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of the ordering variable corresponding to the emissions in a parton shower.

Let us suppose that we wish to generate q1 ∈ (0, Q) where the probability

that q1 < q is given by F (q)/F (Q) with F (q) a monotonically increasing function

with F (0) = 0. Recall that ∆(Q2, q2) from eq. (2.1.4) represents the probability

that there are no emissions between the hard scale Q2 and q2. As q2 → 0,

∆(Q2, q2)→ 0, that is, the probability of there being no emissions vanishes. Note

also that ∆(Q2, Q2) is normalised to 1, meaning that there is a vanishingly small

probability for an emission in a vanishingly small interval. Clearly F (q) = ∆(Q2, q2)

satisfies the necessary requirements.

As discussed in section 2.1, in principle a value for q1 can be selected by

generating a random number r ∈ [0, 1] and solving

F (q1) = rF (Q) (3.2.1)

for q1. However, if F (q) is too complicated for eq. (3.2.1) to be easily solvable, but

we know f(q) = dF/dq, then if we can find another monotonic function G(q) ≥ 0

with derivative g(q) = dG/dq such that

f(q)

F (q)
<

g(q)

G(q)
(3.2.2)

is satisfied for q < Q we can instead use the following veto method for generating

the values of {qi}.

1. Solve G(q′) = r1G(Q), with r1 ∈ [0, 1] a random number.

2. If f(q)/F (q) > r2g(q)/G(q), with r2 ∈ [0, 1] another random number, set

q1 = q′ to be the generated value of the ordering variable.

3. Otherwise veto this choice for q1, and set Q = q′ and return to step 1 and

generate a new q′′ < q′.

We now prove that this method generates the correct probability distribution

for q1, namely P(q1 < q) = F (q)/F (Q), as stated above. We define

Pn(q1 < q; q1 ∈ [0, Q]) (3.2.3)
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as the probability of finding q1 < q after n vetoes for q1 ∈ [0, Q], and in the following

we will calculate:

P(q1 < q) =
∞∑
n=0

Pn(q1 < q; q1 ∈ [0, Q]) . (3.2.4)

Since G(q) is a monotonic function, for no vetoes we have:

P0(q1 < q; q1 ∈ [0, Q]) =
G(q)

G(Q)
. (3.2.5)

The probability that having generated q′ it is then vetoed is given by:

Pveto(q′) = 1− f(q′)/F (q′)

g(q′)/G(q′)
. (3.2.6)

The probability that having first generated q′, we have q1 < q after one veto is

given by:

dP1(q1 < q; q1 ∈ [0, Q]) = dq′
g(q′)

G(Q)
· Pveto(q′) · P0(q1 < q; q1 ∈ [0, q′])

= dq′
g(q′)

G(Q)
· Pveto(q′) · G(q)

G(q′)
, (3.2.7)

where we have used the fact that the probability of finding q1 in the interval

[q′, q′ + dq′] is g(q′)dq′. Thus integrating over q′ we obtain:

P1(q1 < q; q1 ∈ [0, Q]) =

∫ Q

q

dq′
g(q′)

G(Q)
Pveto(q′)

G(q)

G(q′)

=
G(q)

G(Q)

∫ Q

q

dq′
[
g(q′)

G(q′)
− f(q′)

F (q′)

]
=

G(q)

G(Q)

[
ln

(
G(Q)

G(q)

)
− ln

(
f(Q)

F (q)

)]
. (3.2.8)

Similarly, after two vetoes we have:

P2(q1 < q; q1 ∈ [0, Q]) =
1

2!

G(q)

G(Q)

[
ln

(
G(Q)

G(q)

)
− ln

(
f(Q)

F (q)

)]2

. (3.2.9)

Generalising this to n vetoes, we have:

Pn(q1 < q; q1 ∈ [0, Q]) =
1

n!

G(q)

G(Q)

[
ln

(
G(Q)

G(q)

)
− ln

(
f(Q)

F (q)

)]n
. (3.2.10)

92



3.2. The Sudakov Veto Method

Therefore

P(q1 < q) =
∞∑
n=0

Pn(q1 < q; q1 ∈ [0, Q])

=
∞∑
n=0

1

n!

G(q)

G(Q)

[
ln

(
G(Q)

G(q)

)
− ln

(
f(Q)

F (q)

)]n
=

G(q)

G(Q)
exp

[
ln

(
G(Q)

G(q)

)
− ln

(
f(Q)

F (q)

)]
=

F (q)

F (Q)
(3.2.11)

as required. Although we have neglected the additional splitting variables associated

with the emission, it can also be shown that a similar procedure will work for

functions of two variables [143].

An example of the application of this method is in the generation of the parton

shower with modified splitting kernel in the matching of HEJ with Ariadne

described in section 2.5, or in the merging algorithm that we shall present in

chapter 5. In both cases, we wish to generate some emissions according to a

modified Sudakov factor ∆̃(Q2, q2), with a subtracted splitting kernel which we

denote schematically by Psubtracted(q2). Then we would have (using the DGLAP

equation 2.1.3):

f(q2)

F (q2)
=

1

∆̃(Q2, q2)

d∆̃(Q2, q2)

dq
= Psubtracted(q2)

= P (q2)− PHEJ(q2)

= P (q2)

(
1− PHEJ(q2)

P (q2)

)
, (3.2.12)

where P (q2) is assumed to be the standard Altarelli-Parisi splitting function. In

this case, we would take G(q2) to be the normal Sudakov factor, assuming the

generation of ordering variables in the normal shower is a solved problem. Then

we have:
g(q2)

G(q2)
= P (q2) . (3.2.13)

This choice should satisfy eq. (3.2.2) for a reasonable choice of PHEJ(q2). The

probability to veto an emission is then given by:

Pveto =
PHEJ(q2)

P (q2)
. (3.2.14)
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Chapter 4

Subleading Logarithms in HEJ

for W plus jets

In section 2.4 we presented the HEJ formalism, a prescription for calculating

multi-jet cross sections valid in the (MRK) limit of large invariant dijet masses

compared to t-channel momenta:

ŝ� ŝij � |t̂i| ∼ |~ki⊥|2 . (4.0.1)

This hierarchy of scales leads to the large logarithms that necessitate the all order

treatment provided by HEJ; imposing the limit at the level of the amplitude allows

an extraction of the leading logarithmic contributions. FKL configurations (having

non-vanishing contributions in this limit) are included to all orders at leading

logarithmic accuracy, whilst non-FKL configurations are included only at leading

order via matching. This procedure has the consequence that in regions of phase

space in which eq. (4.0.1) is no longer satisfied, FKL configurations may not provide

the dominant contribution to cross section, and the accuracy of the prediction

is limited to leading order. Leading order predictions are usually not sufficient

to obtain an accurate description of data, so this behaviour leads to deviations

between the predictions for HEJ and data.

This effect becomes visible in distributions of transverse momentum, for example

the scalar sum of transverse momenta HT in inclusive W plus dijets production as

shown in fig. 4.1 (reproduced from [131]) . As the transverse momentum of the jets
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Figure 4.1: A plot of differential cross section with respect to the scalar sum of

transverse momentum HT in inclusive W plus dijet production from the LHC at
√
s = 7 TeV, reproduced from [131]. Large discrepancies for large HT are seen

between HEJ and data as the MRK limit is no longer satisfied in this region.

increases, it becomes increasingly difficult to satisfy the requirement that ŝij � |t̂i|.
The predictions are therefore increasingly dominated by non-FKL configurations

in the large transverse momentum tail, and accordingly large deviations between

HEJ and data are seen.

The purpose of this chapter is to discuss improvements which have been made to

reduce the contributions to the cross section from fixed order and thereby improve

the overall description of data. This has been achieved by including terms in the

HEJ all order formalism that are associated with subleading logarithms in the

MRK limit. Alternatively, this may be understood as extending the region of phase

space in which the HEJ formalism is applicable. This work was performed in the

W plus jets channel, which has been so precisely measured at the Tevatron and the

LHC [130,131,144–147] that it may be used as a standard candle against which

theoretical developments are tested.
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4.1 Unordered Emissions in HEJ

In this section we now consider a type of emission which first contributes at

next-to-leading logarithm (NLL) in the MRK limit. Let us consider the process

qQ→ qg . . . gQ. We recall from section 2.3 that for FKL configurations the 2→ n

amplitude squared is asymptotically proportional to the product of the invariant

masses between each pair of rapidity-ordered partons:

|Aab→1g...gn|2 ∝ ŝ2
12ŝ

2
23 . . . ŝ

2
n−1,n . (4.1.1)

This behaviour corresponds to n−1 colour-octet exchanges in the t-channel between

two quarks extremal in rapidity. Let us now consider the configuration in fig. 4.2. It

has been shown [136,137] that in the MRK limit the only diagrams which contribute

are those for which rapidity ordered partons have uncrossed colour connections.

Therefore the vertical ordering of the final state particles in fig. 4.2 denotes their

ordering in rapidity. It should be apparent that such a t-channel quark exchange

occurs by allowing one final state gluon to be emitted more forwards than the

most forwards outgoing quark. We refer to such a gluon as an unordered emission.

By the arguments of section 2.3, the amplitude squared for such a configuration

must be suppressed by ŝ12 relative to eq. (4.1.1) and is no longer be independent

of ∆y12 and contributes to the cross section at NLL (corresponding to terms of the

form αs[αs ln(ŝij/k
2
⊥)]N relative to Born level). Therefore, while imposing strict

MRK kinematics results in capturing the leading logarithmic behaviour of the cross

section, relaxing the kinematics to:

y1 ∼ y2 � y3 � · · · � yn−1 � yn; |~ki⊥| ∼ k⊥ ∀ i . (4.1.2)

allows the inclusion of certain NLL contributions. The same arguments apply for a

gluon to be emitted more backward than the most backward outgoing quark, or:

y1 � y2 � · · · � yn−2 � yn−1 ∼ yn; |~ki⊥| ∼ k⊥ ∀i . (4.1.3)

We therefore also include such backward emissions in our definition of unordered

emissions.

Due to the factorisation of the amplitude in the high energy limit, it is con-

ceptually straightforward to extend the HEJ formalism to this class of correction.
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Figure 4.2: A tree-level diagram for the partonic process qQ→ qg . . . gQ in which

there is a t-channel quark exchange. The vertical ordering of final state particles

denotes their ordering in rapidity. Such a configuration, containing one ‘unordered’

gluon emission, would only contribute to the cross section at NLL.

Since the hierarchy of all n− 3 remaining internal gluon emissions is preserved, this

will still correspond to a product of Lipatov vertices. Only the external legs are

modified, and hence only the current factors need be rederived. This may be done

in a fashion similar to that presented in section 2.4 but where instead all diagrams

contributing to q(pa)Q(pb) → q(p1)g(pg)Q(p2) must be included, with the single

requirement that y1, yg � y2 for forwards unordered (or y1 � yg, y2 for backwards

unordered). It may be shown [127] that the amplitude in this case is given by:

Auno = −g3
s

〈2|γµ|b〉
t̂b2

jµuno(pa, p1, pg) (4.1.4)

where the unordered current is given by

jµuno(pa, p1, pg) = εgνT
d
2b(iT

c
1iT

d
iaU

µν
1 + iT d1iT

c
iaU

µν
2 + f cdeT e1aL

µν) , (4.1.5)

with

Uµν
1 =

1

ŝ1g

(〈1|ν|g〉〈g|µ|a〉+ 2pν1〈1|µ|a〉) , (4.1.6)

Uµν
2 =

1

t̂ag
(2〈1|µ|a〉pνa − 〈1|µ|g〉〈g|ν|a〉) , (4.1.7)
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Lµν =
1

t̂a1

(
−2pµg 〈1|ν|a〉+ 2gµν〈1|/pg|a〉

+〈1|µ|a〉
[
(q1 + q2)ν +

t̂b2
2

(
pν2
pg.p2

+
pνb
pg.pb

)])
. (4.1.8)

The counterpart to eq. (2.4.56) may then be found by contracting the currents,

SqQ→qgQ = jµuno〈2|γµ|b〉 , (4.1.9)

and computing the sum/average over final/initial state colours, helicities and

polarisations. Inserting this into eq. (2.4.72) and performing the phase space

integration as in eq. (2.4.75) (and summing over all numbers of final state particles)

one obtains the NLL contribution to the cross section from unordered emissions.

In order to extend this framework to include the emission of a W boson there

are two cases to consider. In the first case, the unordered emission and the W

emission originate from opposite quark legs. In this case, we simply need to contract

the unordered current jµuno in eq. (4.1.9) with JµW from eq. (2.4.79). In the second

case, both the unordered and W emissions are associated with the same leg, which

requires the derivation of a new effective current. This shall be performed in

the following section. We note that while both cases represent NLL corrections,

the latter is likely to have a greater impact. The reason for this is that the first

configuration only arises for qQ initial states, whereas in the second case qg initial

states are also allowed. This is significant because the gluon PDF usually exceeds

the PDF for quarks at the energies of the LHC [31], and thus qg channels will

contribute more to the cross section.

Before continuing with our discussion of unordered emissions in inclusive W

plus dijet production, it is worth noting that these only constitute one class of

NLL correction. Any configuration which arises from the replacement of one gluon

t-channel exchange with a quark t-channel exchange will contribute at NLL. In

particular this includes the insertion of a quark-antiquark pair in the final state. If

this pair are the most forwards two partons or the most backwards two partons,

then similarly to unordered emissions this will constitute a rederivation of the

current factors. In section 4.1.6 we will demonstrate that such a current may be

obtained through crossing symmetry from the current for unordered emissions. If
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the quark-antiquark pair are emitted in between the most extremal partons in

rapidity, this will constitute a correction to the Lipatov vertex. In this thesis such

configurations will not be considered, although we expect them to give rise to a

similar size of correction to the cross section. Nevertheless, it is justified to just

consider unordered emissions here because they constitute a well-defined final state

and therefore no interference between the different classes of NLL configurations is

expected.

4.1.1 Derivation of the Current for W plus Unordered

Emissions

In this section we demonstrate that the matrix element for q(pa)Q(pb)→
q(p1)g(pg)W (pW )Q(p2) has a structure equivalent to eq. (4.1.4), and thereby extract

the current corresponding to q(pa) → q(p1)g(pg)W (pW ), where the W boson is

emitted either from parton a or 1. This will be done by assuming the kinematics

stated in eq. (4.1.3), which is equivalent to requiring pb ∼ p2 = p−. We further

assume that the W boson is emitted in the same direction as the quark with which

it is associated (in this case forwards) since the matrix element is suppressed away

from this limit.

We start by considering the diagrams in figs. 4.3 and 4.4 in which the gluon

is emitted from the same partonic leg as the W boson. The sum of diagrams in

fig. 4.3, in which the gluon is emitted from the outgoing parton, is given by:

A1 + A2 + A3 =i(igs)
3

(
igW√

2

) 〈2|µ|b〉
t̂b2

εgνεWρT
d
2bT

g
1iT

d
ia

·
[〈1|ν(/p1

+ /pg)µ(/pa − /pW )ρPL|a〉
ŝ1g t̂aW

+
〈1|ν(/p1

+ /pg)ρPL(/p1
+ /pg + /pW )µ|a〉

ŝ1gŝ1gW

+
〈1|ρPL(/p1

+ /pW )ν(/p1
+ /pg + /pW )µ|a〉

ŝ1W ŝ1gW

]
(4.1.10)

=(igs)
3

(
igW√

2

) 〈2|µ|b〉
t̂b2

εgνεWρT
d
2b

(
iT g1iT

d
iaU

νµρ
1

)
, (4.1.11)

where PL denotes the projection operator defined in eqs. (1.3.11) and (1.3.12), and
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µ
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Figure 4.3: Feynman diagrams for the process q(pa)Q(pb)→ q(p1)g(pg)W (pW )Q(p2)

which contribute towards the Uνµρ
1 tensor component of the W plus unordered

current.

εWρ should be replaced by the lepton current from the decay of the W boson. We

also use the notation ŝijk = (pi + pj + pk)
2 and t̂ijk = (pi − pj − pk)2.

The sum of diagrams in fig. 4.4, in which the gluon is emitted from the incoming

parton, is given by:

B1 +B2 +B3 =i(igs)
3

(
igW√

2

) 〈2|µ|b〉
t̂b2

εgνεWρT
d
2bT

d
1iT

g
ia

·
[〈1|µ(/pa − /pW − /pg)ν(/pa − /pW )ρPL|a〉

t̂aWg t̂aW

+
〈1|µ(/pa − /pW − /pg)ρPL(/pa − /pg)ν|a〉

t̂aWg t̂ag

+
〈1|ρPL(/p1

+ /pW )µ(/pa − /pg)ν|a〉
ŝ1W t̂ag

]
(4.1.12)

=(igs)
3

(
igW√

2

) 〈2|µ|b〉
t̂b2

εgνεWρT
d
2b

(
iT d1iT

g
iaU

νµρ
2

)
. (4.1.13)

In analogy with eqs. (4.1.6) and (4.1.7) we have defined:

Uνµρ
1 =

〈1|ν(/p1
+ /pg)µ(/pa − /pW )ρPL|a〉

ŝ1g t̂aW
+
〈1|ν(/p1

+ /pg)ρPL(/p1
+ /pg + /pW )µ|a〉

ŝ1gŝ1gW

+
〈1|ρPL(/p1

+ /pW )ν(/p1
+ /pg + /pW )µ|a〉

ŝ1W ŝ1gW

(4.1.14)

Uνµρ
2 =

〈1|µ(/pa − /pW − /pg)ν(/pa − /pW )ρPL|a〉
t̂aWg t̂aW

+
〈1|µ(/pa − /pW − /pg)ρPL(/pa − /pg)ν|a〉

t̂aWg t̂ag

+
〈1|ρPL(/p1

+ /pW )µ(/pa − /pg)ν|a〉
ŝ1W t̂ag

. (4.1.15)
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Figure 4.4: Feynman diagrams for the process q(pa)Q(pb)→ q(p1)g(pg)W (pW )Q(p2)

which contribute towards the Uνµρ
2 tensor component of the W plus unordered

current.

These diagrams already have the structure we desire, therefore we make no approx-

imation at this stage.

We now consider the diagrams shown in figs. 4.5a and 4.5b, in which the gluon

is emitted off the t-channel gluon. The sum of the diagrams is given by:

C1 + C2 =− i(igs)2(gs)

(
igW√

2

)(
f edgT e1aT

d
2b

) 〈2|µ|b〉
t̂b2t̂aW1

·
[〈1|σ(/pa − /pW )ρPL|a〉

t̂aW
+
〈1|ρPL(/p1

+ /pW )σ|a〉
ŝ1W

]
· (gσµ(q1 + q2)ν + gµν(−q2 + pg)

σ + gνσ(−pg − q1)µ) εgνεWρ , (4.1.16)

where q1, q2 are the t-channel momenta flowing into the 3-gluon vertex, given by:

q1 = pa − p1 − pW ,

q2 = p2 − pb . (4.1.17)

Again, these diagrams are already factorised.

Finally we consider the remainder of the diagrams shown in fig. 4.5, in which the

gluon and W are emitted from different partonic legs. We neglect terms of form
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Figure 4.5: Feynman diagrams for the process q(pa)Q(pb)→ q(p1)g(pg)W (pW )Q(p2)

in which contribute towards the Lνµρ tensor component of the W plus unordered

current.

〈2|µ/pgν|b〉 which are suppressed in the MRK limit, and obtain:

C3 = i(igs)
3

(
igW√

2

)
T d1aT

d
2iT

g
ibεgνεWρ

〈1|µ(/pa − /pW )ρPL|a〉〈2|µ|b〉2pνb
t̂aW t̂bg t̂b2g

, (4.1.18)

C4 = i(igs)
3

(
igW√

2

)
T d1aT

d
2iT

g
ibεgνεWρ

〈1|ρPL(/p1
+ /pW )µ|a〉〈2|µ|b〉2pνb
ŝ1W t̂bg t̂b2g

, (4.1.19)

C5 = i(igs)
3

(
igW√

2

)
T d1aT

g
2iT

d
ibεgνεWρ

〈1|µ(/pa − /pW )ρPL|a〉〈2|µ|b〉2pν2
t̂aW ŝ2g t̂b2g

, (4.1.20)

C6 = i(igs)
3

(
igW√

2

)
T d1aT

g
2iT

d
ibεgνεWρ

〈1|ρPL(/p1
+ /pW )µ|a〉〈2|µ|b〉2pν2
ŝ1W ŝ2g t̂b2g

. (4.1.21)

We collect terms with the same colour factor to obtain:

C3 + C4 + C5 + C6 =i(igs)
3

(
igW√

2

)
εgνεWρ

〈2|µ|b〉
t̂b2g

[
T d1aT

d
2iT

g
ib

2pνb
t̂bg

+ T d1aT
g
2iT

d
ib

2pν2
ŝ2g

]
·
[〈1|µ(/pa − /pW )ρPL|a〉

t̂aW
+
〈1|ρPL(/p1

+ /pW )µ|a〉
ŝ1W

]
.

(4.1.22)
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Using pb ∼ p2 = p−, we can combine the colour factors (before reinstating their

original symmetry):

C3 + C4 + C5 + C6 =i(igs)
3

(
igW√

2

)(
−if gdeT d2bT e1a

)
εgνεWρ

· 〈2|µ|b〉
t̂b2g

1

2

(
pνb

pb · pg
+

pν2
p2 · pg

)
·
[〈1|µ(/pa − /pW )ρPL|a〉

t̂aW
+
〈1|ρPL(/p1

+ /pW )µ|a〉
ŝ1W

]
.

(4.1.23)

The sum of diagrams in fig. 4.5 is therefore given by:

C =(igs)
3

(
igW√

2

) 〈2|µ|b〉
t̂b2

εgνεWρ

(
T d2bf

gdeT e1a
)

{
t̂b2

2t̂b2g

[〈1|µ(/pa − /pW )ρPL|a〉
t̂aW

+
〈1|ρPL(/p1

+ /pW )µ|a〉
ŝ1W

]
·
(

pνb
pb · pg

+
pν2

p2 · pg

)
+

1

t̂aW1

[〈1|σ(/pa − /pW )ρPL|a〉
t̂aW

+
〈1|ρPL(/p1

+ /pW )σ|a〉
ŝ1W

]
· (gσµ(q1 + q2)ν + gµν(−q2 + pg)

σ + gνσ(−pg − q1)µ)

}
(4.1.24)

=(igs)
3

(
igW√

2

) 〈2|µ|b〉
t̂b2

εgνεWρT
d
2b

(
f gdeT e1aL

νµρ
)
, (4.1.25)

where in analogy with eq. (4.1.8) we define:

Lνµρ =
t̂b2

2t̂b2g

[〈1|µ(/pa − /pW )ρPL|a〉
t̂aW

+
〈1|ρPL(/p1

+ /pW )µ|a〉
ŝ1W

]
·
(

pνb
pb · pg

+
pν2

p2 · pg

)
+

1

t̂aW1

[〈1|σ(/pa − /pW )ρPL|a〉
t̂aW

+
〈1|ρPL(/p1

+ /pW )σ|a〉
ŝ1W

]
· (gσµ(q1 + q2)ν + gµν(−q2 + pg)

σ + gνσ(−pg − q1)µ) . (4.1.26)

The full amplitude is given by sum of all diagrams A+B + C:

AW,uno =(igs)
3

(
igW√

2

) 〈2|µ|b〉
t̂b2

· εgνεWρT
d
2b

(
iT c1iT

d
iaU

νµρ
1 + iT d1iT

c
iaU

νµρ
2 + f cdeT e1aL

νµρ
)
. (4.1.27)

This is precisely the factorized form we are looking to obtain. From this we can

extract the current for a W boson plus one unordered emission:

jµ,cW,uno = εgνεWρT
d
2b

(
iT c1iT

d
iaU

νµρ
1 + iT d1iT

c
iaU

νµρ
2 + f cdeT e1aL

νµρ
)
. (4.1.28)
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This expression has a very similar structure to eq. (4.1.5). This should not be

surprising since the diagrams used in the derivation are only changed by the

insertion of a W boson which does not affect the colour flow along the fermion

lines.

4.1.2 Proof of Gauge Invariance

To test whether the matrix element obtained in the previous section is gauge

invariant, it is necessary to show that the replacement of εgν by pgν in eq. (4.1.27)

yields identically zero. Noting that

f cdeT e1a = −i(T c1iT dia − iT d1iT cia) , (4.1.29)

it is sufficient to show

pgνL
νµρ = pgνU

νµρ
1 = −pgνUνµρ

2 (4.1.30)

to demonstrate gauge invariance. We start by considering Uνµρ
1 and Uνµρ

2 from

eqs. (4.1.14) and (4.1.15). We will need to use the following properties of massless

spinors [29]:

/p|p〉 = 0 , 〈p|/p = 0 , (4.1.31)

〈p|µ|p〉 = 2pµ , (4.1.32)

〈p|/k|p〉 = 2p · k , (4.1.33)

/p = |p−〉〈p−|+ |p+〉〈p+| . (4.1.34)

From the anti-commutation relations of the gamma matrices, {γµ, γν} = 2gµν we

also have that:

/p/k = −/k/p+ 2p · k (4.1.35)

/p/p = p2 . (4.1.36)

We also note that:

〈p|γµ1γµ2γµ3γµ4γµ5PL|k〉 = 〈p|γµ1γµ2γµ3PLγµ4γµ5|k〉 = 〈p|γµ1PLγµ2γµ3γµ4γµ5|k〉

= 〈p−|γµ1γµ2γµ3γµ4γµ5|k−〉 . (4.1.37)
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From hereon we drop PL, but with the helicity of the spinors understood to be

fixed. Contracting eq. (4.1.14) with pg, and using eq. (4.1.36) with p2
g = 0, we

obtain:

pgνU
νµρ
1 =

1

ŝ1g t̂aW
〈1|/pg/p1

µ(/pa − /pW )ρ|a〉+
1

ŝ1gŝ1gW

〈1|/pg/p1
ρ(/p1

+ /pg + /pW )µ|a〉

+
1

ŝ1W ŝ1gW

〈1|ρ(/p1
+ /pW )/pg(/p1

+ /pW )µ|a〉 . (4.1.38)

We then apply eqs. (4.1.33) and (4.1.34) to /p1
in the first two terms, whilst in the

third term we use eq. (4.1.35) to evaluate /pg(/p1
+ /pW ) and obtain:

pgνU
νµρ
1 =

1

t̂aW
〈1|µ(/pa − /pW )ρ|a〉+

1

ŝ1gW

〈1|ρ(/p1
+ /pg + /pW )µ|a〉

+
1

ŝ1W ŝ1gW

[
2pg · (p1 + pW )〈1|ρ(/p1

+ /pW )µ|a〉

−(p1 + pW )2〈1|ρ(/pg)µ|a〉
]
. (4.1.39)

We again apply eq. (4.1.34) followed by eq. (4.1.32) to /pa and /p1
in the first and

second terms respectively, and rewrite the third by noting ŝ1gW = 2pg · (p1 + pW ) +

ŝ1W , so adding and subtracting 〈1|ρ(/p1
+ /pW )µ|a〉/ŝ1gW we obtain:

pgνU
νµρ
1 =

1

t̂aW

[
2pρa〈1|µ|a〉 − 〈1|µ/pWρ|a〉

]
+

1

ŝ1gW

[
2pρ1〈1|µ|a〉+ 〈1|ρ(/pg + /pW )µ|a〉

]
+

1

ŝ1W

〈1|ρ(/p1
+ /pW )µ|a〉 − 1

ŝ1gW

[
2pρ1〈1|µ|a〉+ 〈1|ρ(/pg + /pW )µ|a〉

]
=

1

t̂aW

[
2pρa〈1|µ|a〉 − 〈1|µ/pWρ|a〉

]
+

1

ŝ1W

[
2pρ1〈1|µ|a〉+ 〈1|ρ/pWµ|a〉

]
. (4.1.40)

Finally for convenience we introduce the shorthand notation jµ1a = 〈1|µ|a〉 and

Jµρ1Wa = 〈1|µ/pWρ|a〉, so the final result is:

pgνU
νµρ
1 =

1

t̂aW
[2pρaj

µ
1a − Jµρ1Wa] +

1

ŝ1W

[2pρ1j
µ
1a + Jρµ1Wa] . (4.1.41)

We now wish to calculate pgνU
νµρ
2 , and contract pg with eq. (4.1.15). Applying
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eq. (4.1.36) we immediately obtain:

pgνU
νµρ
2 =

1

t̂aWg t̂aW
〈1|µ(/pa − /pW )/pg(/pa − /pW )ρ|a〉

+
1

t̂aWg t̂ag
〈1|µ(/pa − /pW − /pg)ρ/pa/pg|a〉

+
1

ŝ1W t̂ag
〈1|ρ(/p1

+ /pW )µ/pa/pg|a〉 . (4.1.42)

We apply eq. (4.1.35) to /pg(/pa − /pW ) in the first term and /pa/pg in the last two,

then utilising eqs. (4.1.31) and (4.1.36) obtain:

pgνU
νµρ
2 =

1

t̂aWg t̂aW

[
2pg · (pa − pW )〈1|µ(/pa − /pW )ρ|a〉 − (pa − pW )2〈1|µ/pgρ|a〉

]
+

1

t̂aWg t̂ag

[
2pa · pg〈1|µ(/pa − /pW − /pg)ρ|a〉

]
+

1

ŝ1W t̂ag

[
2pa · pg〈1|ρ(/p1

+ /pW )µ|a〉
]
. (4.1.43)

Again using eqs. (4.1.32) and (4.1.34) to evaluate /pa and /p1
in all three terms we

get:

pgνU
νµρ
2 =

1

t̂aWg t̂aW

[
2pg · (pa − pW )(2pρa〈1|µ|a〉 − 〈1|µ/pWρ|a〉)

]
− 1

t̂aWg

〈1|µ/pgρ|a〉

− 1

t̂aWg

[
2pρa〈1|µ|a〉 − 〈1|µ(/pW + /pg)ρ|a〉

]
− 1

ŝ1W

[
2pρ1〈1|µ|a〉+ 〈1|ρ/pWµ|a〉

]
. (4.1.44)

Noting that t̂aWg = t̂aW − 2pg · (pa − pW ) we now add and subtract the term

−(2pρa〈1|µ|a〉 − 〈1|µ/pWρ|a〉)/t̂aWg to the first term and obtain:

pgνU
νµρ
2 = − 1

t̂aW

[
2pρa〈1|µ|a〉 − 〈1|µ/pWρ|a〉

]
+

1

t̂aWg

[
2pρa〈1|µ|a〉 − 〈1|µ/pWρ|a〉 − 〈1|µ/pgρ|a〉

]
− 1

t̂aWg

[
2pρa〈1|µ|a〉 − 〈1|µ(/pW + /pg)ρ|a〉

]
− 1

ŝ1W

[
2pρ1〈1|µ|a〉+ 〈1|ρ/pWµ|a〉

]
. (4.1.45)

So finally we have

pgνU
νµρ
2 =−

{
1

t̂aW
[2pρaj

µ
1a − Jµρ1Wa] +

1

ŝ1W

[2pρ1j
µ
1a + Jρµ1Wa]

}
= −pgνUνµρ

1 (4.1.46)
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as required.

Having satisfied the first requirement that pgνU
νµρ
2 = −pgνUνµρ

1 we now need to

show that pgνL
νµρ = pgνU

νµρ
1 . The first step is to note t̂b2g = t̂b2 − 2pg · (pb − p2),

so we rewrite eq. (4.1.26) as:

Lνµρ =
1

2

[〈1|µ(/pa − /pW )ρ|a〉
t̂aW

+
〈1|ρ(/p1

+ /pW )µ|a〉
ŝ1W

]
·
(

pνb
pb · pg

+
pν2

p2 · pg

)
+

2pg · (pb − p2)

2t̂b2g

[〈1|µ(/pa − /pW )ρ|a〉
t̂aW

+
〈1|ρ(/p1

+ /pW )µ|a〉
ŝ1W

]
·
(

pνb
pb · pg

+
pν2

p2 · pg

)
+

1

t̂aW1

[〈1|σ(/pa − /pW )ρ|a〉
t̂aW

+
〈1|ρ(/p1

+ /pW )σ|a〉
ŝ1W

]
· (gσµ(q1 + q2)ν + gµν(−q2 + pg)

σ + gνσ(−pg − q1)µ) . (4.1.47)

We now define:

Lνµρa =
1

2

[〈1|µ(/pa − /pW )ρ|a〉
t̂aW

+
〈1|ρ(/p1

+ /pW )µ|a〉
ŝ1W

]
·
(

pνb
pb · pg

+
pν2

p2 · pg

)
, (4.1.48)

Lνµρb =
2pg · (pb − p2)

2t̂b2g

[〈1|µ(/pa − /pW )ρ|a〉
t̂aW

+
〈1|ρ(/p1

+ /pW )µ|a〉
ŝ1W

]
·
(

pνb
pb · pg

+
pν2

p2 · pg

)
, (4.1.49)

Lνµρc =
1

t̂aW1

[〈1|σ(/pa − /pW )ρ|a〉
t̂aW

+
〈1|ρ(/p1

+ /pW )σ|a〉
ŝ1W

]
· (gµν(−q2 + pg)

σ + gνσ(−pg − q1)µ) , (4.1.50)

Lνµρd =
1

t̂aW1

[〈1|µ(/pa − /pW )ρ|a〉
t̂aW

+
〈1|ρ(/p1

+ /pW )µ|a〉
ŝ1W

]
· (q1 + q2)ν , (4.1.51)

such that Lνµρa + Lνµρb + Lνµρc + Lνµρd = Lνµρ. Contracting Lνµρa in eq. (4.1.48) with

pgν , and using eqs. (4.1.32) and (4.1.34), it is clear that:

pgνL
νµρ
a =

1

t̂aW
[2pρaj

µ
1a − Jµρ1Wa] +

1

ŝ1W

[2pρ1j
µ
1a + Jρµ1Wa]

= pgνU
νµρ
1 . (4.1.52)

Therefore, in order to satisfy the condition pgνL
νµρ = pgνU

νµρ
1 what remains to be

proved is:

pgνL
νµρ
b + pgνL

νµρ
c + pgνL

νµρ
d = 0 . (4.1.53)
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Contracting eq. (4.1.49) with pgν it is easy to see that:

pgνL
νµρ
b =

2pg · (pb − p2)

t̂b2g

{
1

t̂aW
[2pρaj

µ
1a − Jµρ1Wa] +

1

ŝ1W

[2pρ1j
µ
1a + Jρµ1Wa]

}
.

(4.1.54)

We now note that by conservation of momentum pa − pW − p1 = −(pb − p2 − pg)
and so t̂aW1 = t̂b2g. Furthermore, as q1 = pa − pW − p1 and q2 = p2 − pb, then we

have that q1 = q2 + pg. Therefore when we contract (q1 + q2)
ν in eq. (4.1.51) by

pgν we get a factor of 2q2 · pg = −2 · pg(pb − p2), hence:

pgνL
νµρ
d = −2pg · (pb − p2)

t̂b2g

{
1

t̂aW
[2pρaj

µ
1a − Jµρ1Wa] +

1

ŝ1W

[2pρ1j
µ
1a + Jρµ1Wa]

}
(4.1.55)

= −pgνLνµρb . (4.1.56)

Therefore the only thing remaining to be proved is that pgνL
νµρ
c = 0. Contracting

eq. (4.1.50) with pgν we obtain:

pgνL
νµρ
c =

1

t̂aW1

[〈1|σ(/pa − /pW )ρ|a〉
t̂aW

+
〈1|ρ(/p1

+ /pW )σ|a〉
ŝ1W

]
·
(
pµg (−q2 + pg)

σ + pσg (−pg − q1)µ
)
. (4.1.57)

The term in round brackets reduces as follows:

pµg (−q2 + pg)
σ + pσg (−pg − q1)µ = pµgp

σ
g − pµgpσg − pµg qσ2 − qµ1 pσg

= −pµg qσ2 − (q2 + pg)
µpσg

= −pµg (q2 + pg)
σ − qµ2 pσg

= −pµg qσ1 − qµ2 pσg . (4.1.58)

At this point, it is necessary to recall that in the full expression for the matrix

element in eq. (4.1.27) the µ index is contracted with the current 〈2|µ|b〉. Therefore

we can drop the second term in the final line of eq. (4.1.58) because 〈2|/q2
|b〉 =

〈2|/p2
− /pb|b〉 = 0 by eq. (4.1.31). Hence we have:

pgνL
νµρ
c =

−pµg
t̂aW1

[
−
〈1|(/pa − /pW )(/pa − /pW )ρ|a〉

t̂aW

+
〈1|ρ(/p1

+ /pW )(−/p1
− /pW )|a〉

ŝ1W

]
, (4.1.59)
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where we have written q1 = pa− pW − p1 and again used eq. (4.1.31). Finally using

eq. (4.1.36), with t̂aW = −(pa − pW )2 and ŝ1W = (p1 + pW )2 we obtain:

pgνL
νµρ
c =

−pµg
t̂aW1

[〈1|ρ|a〉 − 〈1|ρ|a〉]

= 0 (4.1.60)

as required. We have thus proved that

pgνL
νµρ = pgνU

νµρ
1 = −pgνUνµρ

2 (4.1.61)

and therefore that the amplitude in eq. (4.1.27) is gauge invariant.

4.1.3 Changing Initial Flavour Configurations

Everything computed thus far has been for the case of two non-identical quarks. We

must consider what happens if we replace one quark with an antiquark1, or the quark

which does not emit the W with a gluon. We recall that PLν(p) = ν+(p) = |p−〉,
and:

〈i−|µ|j−〉 = 〈j+|µ|i+〉 , (4.1.62)

〈i−|µ/pν|j−〉 = 〈j+|ν/pµ|i+〉 , (4.1.63)

〈i−|µ/pν/kρ|j−〉 = 〈j+|ρ/kν/pµ|i+〉 . (4.1.64)

Therefore if we replace the quarks b, 2 with antiquarks we need simply make the

replacement:

〈2±|µ|b±〉 → 〈2∓|µ|b∓〉 . (4.1.65)

However, since we perform a sum over helicities, this replacement makes no difference

to the total summed/averaged matrix element squared. If however, we replace the

quark which emits the W with an antiquark, we find this is equivalent to making

the replacements such as:

〈1−|µ/pν/kρ|a−〉 = 〈1|µ/pν/kρPL|a〉 → 〈a|ρPL/kν/pµ|1〉 = 〈1+|µ/pν/kρ|a+〉 . (4.1.66)

1Also, recall from section 2.3 that interference between quark legs is negligible in the high

energy limit.
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In other words, we must change the helicity in these currents from − to +. This

has an impact in the evaluation, but the arguments for gauge invariance of the

current presented in the previous section still hold as they were not dependent on

the helicity of the spinors.

If alternatively we replace the second quark with a gluon, we need simply make

the replacement given in eq. (2.4.58) at the level of the summed/averaged matrix

element squared.

4.1.4 Obtaining the Amplitude Squared

With a view to ultimately constructing the cross section the quantity we need is

the colour/ helicity/ polarisation summed and averaged amplitude squared. We

introduce the convenient shorthand:

L = Lνµρj2bµεWρεgν U1 = Uνµρ
1 j2bµεWρεgν U2 = Uνµρ

2 j2bµεWρεgν (4.1.67)

with j2b = 〈2|µ|b〉. Then using f gdeT e1a = i(T g1iT
d
ia − T d1iT gia) we have:

AW+uno =
i(igs)

3
(
igW√

2

)2

t̂b2

(
T d2bT

g
1iT

d
ia(U1 − L) + T d2bT

d
1iT

g
ia(U2 + L)

)
. (4.1.68)

Noting (T a)† = T a ⇒ (T a)ij
∗ = (T a)ji∑

pol

|AW+uno|2 =
|K|2
t̂2b2

{
T d2bT

g
1iT

d
iaT

d′

b2T
g
j1T

d′

ajXX
∗ + T d2bT

g
1iT

d
iaT

d′

b2T
d′

j1T
g
ajXY

∗

+ T d2bT
d
1iT

g
iaT

d′

b2T
g
j1T

d′

ajY X
∗ + T d2bT

g
1iT

d
iaT

d′

b2T
d′

j1T
g
ajY Y

∗
}
, (4.1.69)

where X = U1 − L and Y = U2 + L. We must now compute the colour sums:

C1 =
3∑

{a,...,j}=1

8∑
{d,d′,g}=1

(T d2bT
d
ia)(T

g
1iT

g
j1)(T d

′

b2T
d′

aj) ,

C2 =
3∑

{a,...,j}=1

8∑
{d,d′,g}=1

(T d2bT
d
ia)(T

g
1iT

g
aj)(T

d′

b2T
d′

j1) ,

C3 =
3∑

{a,...,j}=1

8∑
{d,d′,g}=1

(T d2bT
d
1i)(T

g
iaT

g
j1)(T d

′

b2T
d′

aj) ,

C4 =
3∑

{a,...,j}=1

8∑
{d,d′,g}=1

(T d2bT
d
1i)(T

g
iaT

g
aj)(T

d′

b2T
d′

j1) . (4.1.70)
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Using the Fierz identity,

T aijT
a
kl =

1

2

(
δilδkj −

1

NC

δijδkl

)
(4.1.71)

we find C1 = C4 = 1
2
CAC

2
F and C2 = C3 = −1

4
CF , such that:

|AW+uno|2 =
1

4C2
A

(g2
s)

3 g
4
W

4

t̂2b2

∑
helicities

{
1

2
CAC

2
F (XX∗ + Y Y ∗)− CF

4
(XY ∗ + Y X∗)

}
,

(4.1.72)

where the factor 1
4C2

A
comes from averaging over initial states.

To evaluate this expression we must now explicitly calculate the tensor con-

tractions L, U1 and U2, using the definitions in eqs. (4.1.14), (4.1.15) and (4.1.26).

Doing this by hand would be impractical; it is therefore done numerically. We note

at this point that as the W boson decays, we must make the replacement

εWρ → −
igρσ

(p` + p¯̀)2 −m2
W + imWΓ

〈p−` |σ|p−¯̀ 〉 (4.1.73)

with pW = p` + p¯̀. As the W propagator is common to all terms in eq. (4.1.74),

we pull it outside the sum over helicities:

|AW+uno|2 =

(
g2
s

t̂a,1g`¯̀

)(
g2
s

t̂b2

)
g2
s

g4
W

4

∣∣∣∣ 1

(p` + p¯̀)2 −m2
W + imWΓ

∣∣∣∣2
·
∑

helicities

{
1

8

C2
F

CA
(XX∗ + Y Y ∗)− 1

16

CF
C2
A

(XY ∗ + Y X∗)

}
. (4.1.74)

We define

‖SqQ→qg`¯̀Q‖2 = g2
s

g4
W

4

∣∣∣∣ 1

(p` + p¯̀)2 −m2
W + imWΓ

∣∣∣∣2 ∑
helicities

|SqQ→qg`¯̀Q|2 (4.1.75)

where

|SqQ→qg`¯̀Q|2 =
1

8

C2
F

CA
(XX∗ + Y Y ∗)− 1

16

CF
C2
A

(XY ∗ + Y X∗) (4.1.76)

such that

|AW+uno|2 =

(
g2
s

t̂a,1g`¯̀

)(
g2
s

t̂b2

)
‖SqQ→qg`¯̀Q‖2 . (4.1.77)

It is now straightforward to generalize this expression and obtain the amplitude

squared for 2→ n+ 1:

|AW+uno|2 =

(
g2
s

t̂a,1g`¯̀

)(
g2
s

t̂n−1

Kfb

CF

)
‖Sqfb→qg`¯̀fn‖2

·
n−2∏
i=1

{
g2
sCA

( −1

t̂it̂i+1

V µ(qi, qi+1)Vµ(qi, qi+1)

)}
(4.1.78)
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where

Kg =
1

2

(
CA −

1

CA

)(
p−b
p−2

+
p−2
p−b

)
+

1

CA
(4.1.79)

Kq = CF . (4.1.80)

4.1.5 Validation of the Matrix Element

In order to validate the implementation of the amplitude squared from the previous

section, in a manner similar to that of section 2.4 we evaluate |M|2/(256π2ŝ2) in a

slice of phase space. We compare between tree-level predictions (obtained using

MadGraph 5 [148]), the standard HEJ matrix element, and the result from the

previous section (which is denoted as ‘HEJ uno’ in the plots that follow). We

choose the following phase space point parameterised in terms of a rapidity ∆:

k1 = (kT cosh(∆), kT cos(φ1), kT sin(φ1), kT sinh(∆)) ,

k2 = (kT , kT , 0, 0) ,

k¯̀ = pe = (keT cosh(ye), keT cos(φe), keT sin(φe), keT sinh(ye)) ,

k` = pνe = (kνT cosh(yν), kνT cos(φν), kνT sin(φν), kνT sinh(yν)) ,

k3 = (|~k3T | cosh(−∆), |~k3T | cos(φ3), |~k3T | sin(φ3), |~k3T | sinh(−∆)) ,

pa = (xa
√
ŝ/2, 0, 0, xa

√
ŝ/2) ,

pb = (xb
√
ŝ/2, 0, 0,−xb

√
ŝ/2) , (4.1.81)

where kT = keT = 40 GeV, kνT =
m2
W

2keT (cosh(ye−yν)−cos(φe−φν))
, ye = yν = ∆, φ1 =

2π/3, φe = π/2, φν = −π/2, and where ~k3T = (|~k3T | cos(φ3), ~k3T sin(φ3)) is chosen

to conserve transverse momentum. Longitudinal momentum conservation is ensured

by:

xa =
∑
i

kiT√
ŝ
eyi ,

xb =
∑
i

kiT√
ŝ
e−yi , (4.1.82)

in which the sum is over all outgoing particles. (The notation for the momentum

of the outgoing partons ki is deliberately chosen to be different from that of the
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Figure 4.6: A comparison of HEJ and tree-level matrix elements |M|2/(256π2ŝ2)

evaluated at the phase space point (4.1.81) for increasing ∆, for the process

QX → eνQ′gX, where Q = q, q̄, Q′ = q′, q̄′,and X = q, q′, q′′, q̄, q̄′, q̄′′, g.
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previous section to reinforce that here the suffix denotes the rapidity ordering, as

opposed to the identity of parton in section 4.1.1.)

We initially consider the momentum assignment

Q(pa)X(pb)→ e(pe)ν(pν)Q
′(k1)g(k2)X(k3) , (4.1.83)

where here Q,Q′ may denote a quark or an antiquark, and X may denote any

partonic flavour. As the parameter ∆ is increased in the range 0 ≤ ∆ ≤ 10 such a

configuration will increasingly satisfy Multi-Regge kinematics. Thus as ∆ increases

we anticipate that performance of the HEJ matrix element should improve, and

qualitatively all three predictions should become independent of ∆. The is precisely

what we see in fig. 4.6, where the results for six different initial state configurations

are shown. Moreover, we observe that the new matrix element converges to the

MadGraph result much more quickly than the previous HEJ formalism.

In the MRK limit there is a degeneracy of processes such as uX → e+νedgX for

X = u, d, s, ū, d̄, s̄; in HEJ these are all computed with the same matrix elements,

whilst in MadGraph each case would need to be treated separately. For each unique

HEJ configuration, we therefore test using multiple identities for X. The full list of

processes tested and their respective momentum assignments is shown in table 4.1.

The convergence between the unordered matrix element and MadGraph is good

regardless of choice of the flavour of X.

We now change the momentum assignment to:

Q(pa)X(pb)→ e(pe)ν(pν)g(k1)Q′(k2)X(k3) . (4.1.84)

Now when ∆ is increased, this will correspond to a unordered configuration, which

we expect to be suppressed by a factor of ŝ1g relative to a configuration that

satisfies Multi-Regge kinematics. We can demonstate that the implementation

of the amplitude exhibits this behaviour by now plotting |M|2ŝ1g/(256π2ŝ2) as

a function of ∆, for which the results are shown in fig. 4.7. Again the correct

qualitative behaviour is observed, and the convergence of the predictions is excellent

independent of the choice of flavour for X. A list of the processes tested is shown in

table 4.1. The processes shown are for W+ emission, however the matrix elements
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for W− emission can be obtained by assigning p` = pe and p¯̀ = pν , and were tested

similarly.

The previous two tests were reproduced but with the rapidities reversed, namely

∆ → −∆, in order to test the case in which the W -emitting quark is produced

backwards. In particular, the matrix element for a backwards unordered emission

was tested. As expected, these tests produced identical results. In addition, the

assumption that the matrix element is suppressed when the W boson is produced

in a different direction to the quark from which it is emitted was verified to be

valid.

Figure Process MadGraph subprocesses

4.6a q(pa)X(pb)→ e(pe)ν(pν)q(k1)g(k2)X(k3) X = q,X = q′, X = q′′

4.6b q(pa)X̄(pb)→ e(pe)ν(pν)q(k1)g(k2)X̄(k3) X̄ = q̄, X̄ = q̄′, X̄ = q̄′′

4.6c q̄(pa)X(pb)→ e(pe)ν(pν)q̄(k1)g(k2)X(k3) X = q,X = q′, X = q′′

4.6d q̄(pa)X̄(pb)→ e(pe)ν(pν)q̄(k1)g(k2)X̄(k3) X̄ = q̄, X̄ = q̄′, X̄ = q̄′′

4.6e q(pa)g(pb)→ e(pe)ν(pν)q(k1)g(k2)g(k3) X = g

4.6f q̄(pa)g(pb)→ e(pe)ν(pν)q̄(k1)g(k2)g(k3) X = g

4.7a q(pa)X(pb)→ e(pe)ν(pν)g(k1)q(k2)X(k3) X = q,X = q′, X = q′′

4.7b q(pa)X̄(pb)→ e(pe)ν(pν)g(k1)q(k2)X̄(k3) X̄ = q̄, X̄ = q̄′, X̄ = q̄′′

4.7c q̄(pa)X(pb)→ e(pe)ν(pν)g(k1)q̄(k2)X(k3) X = q,X = q′, X = q′′

4.7d q̄(pa)X̄(pb)→ e(pe)ν(pν)g(k1)q̄(k2)X̄(k3) X̄ = q̄, X̄ = q̄′, X̄ = q̄′′

4.7e q(pa)g(pb)→ e(pe)ν(pν)g(k1)q(k2)g(k3) X = g

4.7f q̄(pa)g(pb)→ e(pe)ν(pν)g(k1)q̄(k2)g(k3) X = g

Table 4.1: A list of the processes and momentum assignments of the phase space

point in eq. (4.1.81) used to test the unordered HEJ matrix elements. Where there

are degenerate processes in the MRK limit, the different subprocesses tested with

MadGraph are shown.
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Figure 4.7: A comparison of HEJ and tree-level matrix elements |M|2ŝ1g/(256π2ŝ2)

evaluated at the phase space point (4.1.81) in an unordered configuration for increas-

ing ∆, for the process QX → eνgQX, where Q = q, q̄ and X = q, q′, q′′, q̄, q̄′, q̄′′, g.
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4.1. Unordered Emissions in HEJ

4.1.6 Extension to Final State Quark-Antiquark Pairs

The only distinction between the incoming and outgoing asymptotic states which

appear in the S-matrix is whether the spinors are associated with positive or negative

frequency; this however is also how particles and antiparticles are distinguished.

This has the consequence that it is possible to interchange an incoming particle

of momentum p with an outgoing antiparticle of momentum −p and the matrix

elements as evaluated using Feynman rules will be unchanged. This is known as

crossing symmetry, and may be formally stated as:

M(φ(p) + · · · → . . . ) =M(· · · → · · ·+ φ̄(−p)) . (4.1.85)

We may exploit this feature to obtain the amplitude for the process

g(pa)Q(pb)→ e(pe)νe(pν)q̄(k1)q′(k2)Q(k3) (4.1.86)

from the amplitude for

q(−k1)Q(pb)→ e(pe)νe(pν)g(−pa)q′(k2)Q(k3) . (4.1.87)

The second process is identical to that which was used to derive the current for W

plus unordered emissions. The only approximation that was used in this derivation

was the constraint that k3 ∼ pb, which has the important consequence that if we

repeated the steps to derive the current for g → Wqq̄ by crossing each diagram in

turn, we would obtain the same result as if we simply crossed the momenta in the

factorised current for W plus unordered emissions, namely:

jµ(g(pa)→ e(pe)νe(pν)q̄(k1)q′(k2)) = jµ(q(−k1)→ e(pe)νe(pν)g(−pa)q′(k2)) .

(4.1.88)

In other words we can obtain the current for g → Wqq̄ by evaluating the current

for W plus unordered emissions with the normal arguments ka ↔ −k1 interchanged.

This is a non-trivial statement: due to the minimality of the approximations made,

the crossing symmetry normally present in the full amplitude may be extended to

the factorised current. Similarly, we can obtain the current where the ordering of

the quark and antiquark is reversed as follows:

jµ(g(pa)→ e(pe)νe(pν)q(k1)q̄′(k2)) = jµ(q̄(−k1)→ e(pe)νe(pν)g(−pa)q̄′(k2)) .

(4.1.89)
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4.1. Unordered Emissions in HEJ

Before we can utilise eqs. (4.1.88) and (4.1.89), we must first discuss how

negative-energy spinors may be evaluated. This is a subtle problem, because

spinors are only well-defined for positive energy. The spinor products may be

analytically continued to negative energies as follows [149]:

〈−p−|q+〉 = i〈p−|q+〉 , (4.1.90)

〈q+| − p−〉 = i〈q+|p−〉 , (4.1.91)

where p0 > 0. In order to see how currents and higher rank tensors transform,

we note that each component of σµ|q+〉 = σµabλ
+
b = λ̃µa , is still a spinor (and

likewise for the negative helicity Weyl spinors), thus each component of the tensor

〈−p|σµ . . . σν |q〉 can be evaluated using 〈p|, with an overall factor of i. It transpires

that each term in the current for W plus unordered emissions has the same spinor

structure, and therefore receives the same number of factors of i; this is simply

manifest as an overall phase of the amplitude that is irrelevant at the level of the

amplitude squared. Thus the only place where the crossing has an impact is in

products of four momenta, for which there is no issue with evaluation.

In order to test that our procedure for employing crossing symmetry to obtain

the current for g → Wqq̄ has been implemented correctly we compare the colour-

and spin- summed/averaged matrix elements squared obtained using HEJ with

those at tree-level (again provided by MadGraph) for the processes gX → Wqq̄X,

where X may be either a quark, antiquark or gluon. This requires, in addition

to the interchange of momentum described above, that the colour-averaging of

the intial state quark be corrected. The initial state quark is averaged over NC

colours, whilst the gluon must be averaged over N2
C − 1. Thus the matrix elements

squared in addition receive the correction NC/(N
2
C − 1) = 3/8. The averaging from

helicities does not have to be corrected as there are the same number of degrees of

freedom in this case.

We again consider the phase space point given in eq. (4.1.81), and increase the

rapidity ∆ incrementally in the range 0 ≤ ∆ ≤ 10. For large ∆ we expect the

amplitude squared for eq. (4.1.86) to be suppressed by the invariant mass between

the quark-antiquark pair, ŝqq̄ relative to FKL configurations in the MRK limit.
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4.2. Performing Phase Space Integration for Unordered Emissions

We therefore plot |M|2ŝqq̄/(256π2ŝ2) as a function of ∆. The results are shown in

fig. 4.8.

We note that there is again a degeneracy in the MRK limit of processes such as

gX → Wud̄X for X = u, d, s, ū, d̄, s̄. For each unique HEJ configuration, we test

using multiple identities for X; the list of processes tested with their respective

momentum assignments is shown in table 4.2. Although we only present results

for which the gluon is incoming along positive z we also tested the case in which

the gluon is incoming along negative z. As in the previous section, the W boson

is assumed to be produced in the same direction as the quark from which it was

emitted. In all cases we find that the correct MRK limit is recovered, and moreover,

the agreement with the leading order matrix elements is excellent over nearly the

entire range of ∆.

Figure Process MadGraph subprocesses

4.8a g(pa)X(pb)→ e(pe)ν(pν)q̄(k1)q′(k2)X(k3) X = q,X = q′, X = q′′

4.8b g(pa)X̄(pb)→ e(pe)ν(pν)q̄(k1)q′(k2)X̄(k3) X̄ = q̄, X̄ = q̄′, X̄ = q̄′′

4.8c g(pa)X(pb)→ e(pe)ν(pν)q(k1)q̄′(k2)X(k3) X = q,X = q′, X = q′′

4.8d g(pa)X̄(pb)→ e(pe)ν(pν)q(k1)q̄′(k2)X̄(k3) X̄ = q̄, X̄ = q̄′, X̄ = q̄′′

4.8e g(pa)g(pb)→ e(pe)ν(pν)q̄(k1)q′(k2)g(k3) X = g

4.8f g(pa)g(pb)→ e(pe)ν(pν)q(k1)q̄′(k2)g(k3) X = g

Table 4.2: A list of the processes and momentum assignments of the phase space

point in eq. (4.1.81) used to test the HEJ matrix elements that utilise the current

for g → W±q̄q′. Where there are degenerate processes in the MRK limit, the

different subprocesses tested with MadGraph are shown.

4.2 Performing Phase Space Integration for

Unordered Emissions

Finding the contribution to cross section from unordered emissions necessarily

requires computing a phase space integral (using the methods described in sec-
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ŝ2

)

1e 18

MadGraph gg→eνe q1 q̄2 g

HEJ gg→eνe q1 q̄2 g

(f) X = g; q forwards

Figure 4.8: A comparison of HEJ and tree-level matrix elements |M|2ŝqq̄/(256π2ŝ2)

evaluated at the phase space point (4.1.81) for increasing ∆, for the process

gX → eνqq̄′X, where X = q, q′, q′′, q̄, q̄′, q̄′′g.
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4.2. Performing Phase Space Integration for Unordered Emissions

tion 3.1). The numerical integration over the phase space for FKL emissions in

HEJ is optimised to describe the asymptotic behaviour at large rapidity separations.

However, as we demonstrated in the previous section, in this limit the matrix

element for an unordered configuration is suppressed by ŝ1g (or ŝng in the case of

an backwards unordered gluon) so the dominant contributions to the integral occur

in the region in which ŝ1g is small. A sampling of phase space that is optimised

for FKL configurations is therefore inappropriate for unordered configurations,

meaning that a large number of sample points would be needed for the integral to

converge. This is problematic because the implementation of the matrix element

4.1.78 is computationally intensive to evaluate. In this section we therefore discuss

how the importance sampling was optimised for unordered configurations.

4.2.1 Importance Sampling for Unordered Emissions

Without loss of generality we will only discuss forwards unordered emissions; we will

improve the importance sampling of the absolute angular distance of the unordered

gluon to the nearest quark parameterised in rapidity (∆y) and azimuthal angle

(∆φ), so by symmetry of z → −z this has the same behaviour as a backwards

unordered emission.

We start with the coarse assumption that the integrand behaves as 1/ŝ1g. To

find the Jacobian g of our change of variables, we must first express this in terms

of the integration variables, ∆y1g and ∆φ1g:

ŝ1g = 2k1⊥kg⊥(cosh ∆y1g − cos ∆φ1g) . (4.2.1)

Since we wish to capture the behaviour at small ŝ1g, we expand using the small

angle approximation:

ŝ1g

2k1⊥kg⊥
∼ (∆y1g)

2 + (∆φ1g)
2 = (∆R1g)

2 . (4.2.2)

We therefore propose the following change of variables:

∆y1g = ∆R1g sinα , (4.2.3)

∆φ1g = ∆R1g cosα . (4.2.4)
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4.2. Performing Phase Space Integration for Unordered Emissions

After this change of variables, the integrand will behave according to 1/∆R1g.

We can now take this as the Jacobian and starting point for a second change of

variables, and (using the notation of section 3.1) take

g(∆R) =
1

∆R
. (4.2.5)

This gives us the transformation:

r = G(∆R) =

∫ ∆R

∆Rmin
dR′g(R′)∫ ∆Rmax

∆Rmin
dR′′g(R′′)

=
ln(∆R/∆Rmin)

ln(∆Rmax/∆Rmin)
, (4.2.6)

where ∆Rmax =
√

∆y2
max + π2, and ∆Rmin is chosen to be the jet radius parameter

to ensure the unordered emission is in a separate jet. The integral has been

normalised such that r may be selected flatly in the range [0, 1]. The inverse

transformation is given by:

∆R = G−1(r) = ∆Rmine
ar , (4.2.7)

where a = ln(∆Rmax/∆Rmin). The weight for a phase space point i is then given

by:

w(ri) =
dG−1(ri)

dr
= aG−1(ri) . (4.2.8)

We must now discuss the integral over α. Näıvely one might think this should

be selected flatly in the range [0, π]. However, in cases where ∆R > ∆ymax or

∆R > ∆φmax this range could generate points outside the allowed phase space

region. In order to minimise how many phase space points are rejected we instead

select α according to:

αj = α1 + 2(α2 − α1)rj + (π − 2α2)Θ(rj − 0.5) , rj ∈ [0, 1] , (4.2.9)

and define the phase space slices:

α1 =

arccos( π
∆R

) if ∆R > π

0 otherwise,

(4.2.10)

α2 =

arcsin(∆ymax

∆R
) if ∆R > ∆ymax

π/2 otherwise.

(4.2.11)
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Figure 4.9: Distributions of the differential cross section as a function of the

rapidity ∆y1g and azimuthal angle ∆φ1g of the unordered gluon relative to the

central parton. The integral is evaluated using importance sampling assuming the

integrand behaves similarly to 1/ŝ1g. These distributions may be used to fit the

dependence of cross section upon ∆y1g and ∆φ1g, that may be used to improve the

importance sampling in a subsequent iteration.
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This prescription gives us the additional multiplicative weight 2(α2 − α1) in the

Jacobian.

Since our original approximation was fairly coarse, the procedure for importance

sampling may still not be optimal. However, we can iterate the procedure as follows.

We calculate the contribution to the cross section (without FKL matching) from

an unordered configuration of the partonic process ab→ W (→ `ν`)g12, evaluating

the phase space integral for the unordered gluon using the importance sampling

described above, assuming that this provides a reasonable estimate. We then

produce plots of dσ
d∆y1g

and dσ
d∆φ1g

, and identify functions which approximate the

∆φ1g and ∆y1g dependence of the cross section. The identified functions can then

be use to define a new g. The results are shown in fig. 4.9, and yield:

dσ

d∆y1g

∼ exp
(
a∆y1g + b(∆y1g)

2
)
, (4.2.12)

dσ

d∆φ1g

∼ exp (k(π −∆φ1g)) , (4.2.13)

where a = −0.46, b = −0.3, and k = −1.05. For the rapidity interval this yields

the transformation:

r = G(∆y) =
B − ea∆y+b(∆y)2

B − A , (4.2.14)

∆y = G−1(r) =
a

2b

[
−1 +

√
1 +

4b

a2
ln(B − (B − A)r)

]
, (4.2.15)

w(r) =
dG−1(r)

dr
=

− 1
a

B−A
B−(B−A)r[

−1 +
√

1 + 4b
a2

ln(B − (B − A)r)
] , (4.2.16)

where B = eaymin+by2min = 1 and A = eaymax+by2max . For the azimuthal interval we

obtain the transformation:

r = G(φ) =
exp (k(π − φ))−K

1−K , (4.2.17)

∆φ = G−1(r) = π − 1

k
ln((1−K)r +K) , (4.2.18)

w(r) =
dG−1(r)

dr
= −1

k

1−K
(1−K)r +K

, (4.2.19)

where K = ek(π−φmin).

To ensure that the change of variables used in the two importance sampling

procedures has been implemented correctly, we again evaluate the contribution
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to the cross section from an unordered partonic configuration. By comparing the

predictions of the different integration schemes for both the total and differential

cross section we can ensure that the Jacobian weights have been correctly assigned.

In particular, the first two methods (referred to as ‘importance sampling’ and

‘improved sampling’ respectively) are compared with the result of a flat sampling

of ∆y1g and ∆φ1g in the allowed ranges.

The result for the total cross section having evaluated 108 phase space points is

as follows:

σflat = 2.0667± 0.0071 pb,

σimportance = 2.0717± 0.0075 pb,

σimproved = 2.0804± 0.0068 pb.

The cross section for all three method agree within statistical error. This, in

conjunction with the observation that the differential distribution for the transverse

momentum for the W boson shown in fig. 4.10a agrees for all methods indicates

that the Jacobian has been correctly evaluated in the two importance sampling

schemes.

Although the statistical error increases with the first iteration of importance

sampling, the distribution of the invariant mass between the unordered gluon and

the W -emitting quark, m1g shown in fig. 4.10b reveals that the flat sampling is

far less stable than the first importance sampling method. This indicates that the

estimate of the error for the flat sampling is an underestimate of the true error.

The same effect to a lesser extent may also be seen in fig. 4.10c.

The statistical error does however decrease with the second iteration of impor-

tance sampling. The second method gives a 10% smaller error, which corresponds to

requiring 20% fewer events to yield the same precision in the cross section. A slight

improvement may also be seen in the distribution of the transverse momentum

of the central parton shown in fig. 4.10c. A small improvement between the two

methods of importance sampling is encouraging; a large difference between the two

would indicate that our initial approximation was poor. That the description is

nonetheless improved indicates that the second iteration was worthwhile.
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Figure 4.10: A comparison of differential distributions of the cross section between

three different methods for generating the rapidity and azimuthal angle of the

unordered emission.
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4.2.2 Validation of Importance Sampling

Although we have validated the self-consistency of the phase space generation

described in the previous section, it is still necessary to verify that the numerical

result is correct. It is sufficient to ensure that the cross section for a given partonic

process evaluated using the HEJ phase space generation agrees with the result at

leading order, providing we replace the internal HEJ matrix elements with exact

tree-level matrix elements. As in previous studies MadGraph 5 is used to generate

the leading order predictions and also to provide the tree-level matrix elements.

The partonic channel chosen was ug → e+νedgg, where the incoming partons

are ordered such that the up quark is incoming along the positive z axis. For this

channel there are three unique rapidity orderings for the three final state partons.

If the down quark is forwards, this is an FKL configuration; a central down quark

corresponds to an unordered configuration; finally a backwards down quark is a

non-FKL configuration. To extract the different channels from MadGraph, Les

Houches event files were generated and analysed to process each channel separately.

While it is only the integration of the unordered channel that we wish to validate,

comparing all three configurations ensures that the classification of MadGraph

events has been done properly.

Events contributing to the cross section were required to contain exactly three

jets defined using the anti-kT jet algorithm. In addition, the following cuts were

used:

pT j > 30 GeV, pT ` > 25 GeV, pT ν > 25 GeV,

|yj| < 4.5, |y`| < 2.5, ∆Rjj > 0.4, ∆R`j > 0.5,

75 GeV ≤ mW ≤ 85 GeV,

mjj ≤ 500 GeV. (4.2.20)

The last two cuts were chosen to improve the efficiency of the integration in

MadGraph. The centre mass energy used was
√
s = 7000 GeV. A fixed scale choice

was used, namely µF = µR = mZ = 91.188 GeV; this was chosen to eliminate the

coupling as a source of discrepancy. The PDF choice was MSTW2008nlo [150].

The total cross section for the three channels as given by MadGraph and HEJ
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Channel MadGraph HEJ

FKL 2.235 ± 0.001 pb 2.248 ± 0.001 pb

unordered 1.1098 ± 0.0009 pb 1.1093 ± 0.0001 pb

non-FKL 0.4965 ± 0.0006 pb 0.4957 ± 0.005 pb

Table 4.3: A comparison of the cross section in different channels for the process

ug → e+νedgg with the cuts shown in (4.2.20), used in the validation of the

importance sampling.

respectively are shown in table 4.3. For the unordered and non-FKL channels we

have agreement to 1‰ or better. There is a small discrepancy in the FKL channel,

which we discuss later; however it only represents a difference of 0.5%, and thus we

still have agreement at the percent level for this channel.

A breakdown of the differential cross section into FKL, unordered and non-FKL

configurations as a function of various observables is shown in fig. 4.11. From the

distributions of the azimuthal angle between the most forward and backward jets

∆φfb shown in fig. 4.11a we observe that the break down into the three components

appears to have been done correctly. From the distribution of the scalar sum of

transverse momentum HT shown in fig. 4.11b, although there is good agreement in

the peak region, there are increasingly large deviations in all channels for large HT .

The size of the statistical error bars for the MadGraph predictions also increase in

this region indicating that MadGraph undersamples the tail of this distribution.

However, since this distribution is steeply falling, this does not have an impact on

the total cross section.

In fig. 4.11c we show the invariant mass between the most forward and backwards

jets, mfb =
√
ŝfb. In this case, while the predictions for the unordered and non-FKL

channels agree well, MadGraph systematically undershoots HEJ at large invariant

masses in the FKL channel. The adaptive integration algorithm used in MadGraph

assumes that the peaks are well localised [151]; if this is not the case then the

integration is less efficient. The invariant mass distribution is less steeply falling for

FKL than for other channels, therefore the peak region is not as well localised as in
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Figure 4.11: A comparison between HEJ and MadGraph of the differential cross

section for the process ug → e+νedgg for the three unique rapidity orderings of the

final state partons.
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the other channels. We therefore speculate that the invariant mass distribution is

undersampled in the tail and that the statistical error bars give an underestimate

of the true error in this region. We assume that this is the cause of the small

discrepancy in the cross section observed above.

Finally, in fig. 4.12 we show differential distributions of the cross section in the

unordered channel as a function of the variables for which the phase space generation

was optimised, ∆yuno and ∆φuno (shown in figs. 4.12a and 4.12b respectively). The

agreement appears to be good in both distributions.

The case where the ordering of the intial state partons is reversed, which permits

the validation of a backwards unordered emission, was also investigated. The results

should be identical by the symmetry of z → −z, and this was found to be the

case. This in conjunction with the observations made above fully validates the

importance sampling of unordered emissions discussed in the previous section.
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Figure 4.12: A comparison between HEJ and MadGraph of the differential cross

section for the process ug → e+νedgg for an unordered configuration of the final

state partons. This is shown as a function of the variables ∆y1g and φy1g used in

the phase space generation of the unordered gluon.
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4.3 Matching

As discussed in section 2.4, until now unordered configurations were included only

through matching to leading order (see eq. (2.4.76)). This procedure entails first

generating a rapidity-ordered phase space point, and assigning momenta to the

final state partons by randomly selecting from the unique list of permutations

of rapidity orderings not already included in HEJ. Having extended the HEJ

formalism to include unordered configurations it is therefore necessary to remove

these permutations from the matching. The number of possible permutations is

flavour dependent, for example the process us→ e+νedgs has 6 possible orderings,

one of which is FKL and one which is unordered. The process ug → e+νedgg only

has 3 orderings: one FKL, one unordered and one non-FKL. The task of removing

unordered configurations from the matching must therefore be done case by case,

and as such is extremely laborious. It is thus necessary to validate that this has

been implemented correctly.

We shall demonstrate that the total cross section at leading order2 for W plus

exactly three or four jets is unchanged by the moving of unordered configurations

from the non-FKL matching into the all order framework. In what follows, the cuts

that were used are the same as those in the previous section; however to reduce

the problems experienced with MadGraph undersampling in the region of large

transverse momenta, the following additional cut was applied:

pT j < 300 GeV. (4.3.1)

We first ensure that the leading order predictions for HEJ are self-consistent. In

fig. 4.13 we show the differential cross section for W plus exactly three jets for not

just the total rate, but also for FKL and non-FKL components. Here ‘non-FKL

after’ corresponds to the sum of the unordered component and the remaining

channels included only via matching. The FKL component should in principle

be unaffected by the changes, however it is worthwhile to verify this. That all

2Again, as in the validation of importance sampling, to obtain the leading order cross section

internal HEJ matrix elements are replaced with those at leading order provided by MadGraph.
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components agree indicate that all unordered configurations have been properly

accounted for.

These conclusions may be strengthened by comparing directly with leading order

predictions. In fig. 4.14 we compare the differential cross section for W plus exactly

three jets between HEJ and MadGraph. In fig. 4.14b we see some discrepancies at

large rapidities, but again these appear to be due to to undersampling in the large

rapidity tail. Otherwise there is a good level of agreement, which is better than 1%

at the level of the total cross section.

For validating the four jet matching, the leading order predictions were instead

provided by Alpgen [152] since this was found to have a more efficient phase space

generation than MadGraph. In addition, to improve the convergence, the following

set of very tight cuts were used:

30 GeV < pT j < 100 GeV,

25 GeV < pT ` < 100 GeV, 25 GeV < pT ν < 100 GeV,

|yj| < 2.5 |y`| < 1.0, ∆Rjj > 0.4, ∆R`j > 0.5,

75 GeV ≤ mW ≤ 85 GeV,

mjj ≤ 300 GeV. (4.3.2)

A comparison of the differential cross section is shown is shown in fig. 4.15, and

good agreement was found in the total rate for all distributions. Using Alpgen

has the disadvantage that unweighted event files are produced only with a severe

reduction in efficiency, and thus a categorisation of events into the respective

components of FKL, unordered and non-FKL was not possible.

In order to indirectly test that the breakdown into components is correct, one

may check that the total cross section agrees for a variety of different cuts, as this

affects the relative proportions of the different components in the total rate. In the

six tests performed, the minimum jet transverse momentum pT j was varied, and in

some cases an additional cut was placed on the rapidity separation of the hardest

two jets: |∆y12| > 1.0. The set of cuts which were used is summarised in table 4.4.

All other cuts were reverted to those in eq. (4.2.20).

The results for the cross section are summarised in table 4.5. Overall there
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Figure 4.13: Plots showing the differential cross section at leading order for the

production of W plus exactly three jets. A comparison is made between HEJ before

and after unordered configurations has been moved from non-FKL matching into

the all order framework.
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Figure 4.14: A comparison of the differential cross section between HEJ and

MadGraph at leading order for the production of W plus exactly three jets.
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is agreement for all cut sets; any small discrepancies are not deemed statistically

significant. We can therefore conclude that the breakdown of the total four jet rate

into FKL, unordered and non-FKL is correct, thereby completing the necessary

validation of the matching.

Cut set pT jmin / GeV |∆y12| > 1.0 ?

1 30 No

2 60 No

3 100 No

4 30 Yes

5 60 Yes

6 100 Yes

Table 4.4: A summary of the cut sets used to test that the breakdown of the cross

section into FKL, unordered and non-FKL components for W plus four jets.

Cut set σAlpgen/pb σHEJ,before/pb σHEJ,after/pb

1 14.18± (3.9× 10−1) 14.19± (1.1× 10−2) 14.18± (6.7× 10−3)

2 1.445± (2.5× 10−3) 1.448± (9.6× 10−4) 1.447± (1.5× 10−3)

3 0.1845± (2.6× 10−4) 0.1862± (3.5× 10−4) 0.1859± (2.0× 10−4)

4 8.884± (1.5× 10−2) 8.94± (9.6× 10−3) 8.93± (5.9× 10−3)

5 0.851± (1.4× 10−3) 0.857± (1.2× 10−3) 0.857± (8.2× 10−4)

6 0.1019± (1.5× 10−4) 0.1024± (2.6× 10−4) 0.1024± (1.6× 10−4)

Table 4.5: A summary of the leading order cross section for W plus exactly four

jets as predicted by Alpgen and HEJ before and after the inclusion of unordered

configurations into the all order framework.
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Figure 4.15: A comparison of the differential cross section between HEJ and

Alpgen at leading order for the production of W plus exactly four jets.
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4.4 Results

In this section we present results for the extension of the HEJ formalism to

unordered configurations in W plus jets. Our study is based on the 7 TeV ATLAS

analysis originally presented in [131]. All distributions from this analysis were

reproduced, and a comparison between the data and HEJ, with and without the

inclusion of unordered configurations in the all order formalism, was made. The

PDF set chosen was CT10nlo [153, 154], which was used to provide the original

predictions in the aforementioned analysis. In addition two different choices for

the central scale µR = µF were investigated, namely the maximum jet transverse

momentum, pTmax, and HT/2.

In order to quantitatively evaluate the level of improvement seen by including

unordered configurations, the χ2 statistic was calculated for each distribution. This

is given by:

χ2 =

Nbins∑
i

(Oi − Ei)2

σ2
i

, (4.4.1)

where Oi is the measured value in bin i, Ei is the expected theoretical value, and

σi is the experimental error on the measurement Oi. The results are summarised

in table 4.6, and the sum of χ2 over all the distributions is given in the final line.

We observe that for both scale choices there is a reduction in the total χ2 from the

inclusion of unordered emissions, signifying a global improvement in the agreement

with data. Furthermore, this simple calculation reveals that HT/2 is the best

overall scale choice. We now present a selection of plots for which HT/2 was taken

as the central scale choice.

As can be seen from table 4.6, in nearly all distributions that are related to

the jet transverse momentum the HEJ predictions are brought closer to data

by the inclusion of unordered emissions. In particular, we show the differential

cross section with respect to HT in fig. 4.16. The bands around the central line

correspond to independently varying the scales µR and µF between twice and half

of the central scale choice 3. The shape of this distribution is notably improved;

3Only combinations of µR and µF are allowed for which the ratio does not exceed 2.
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µ = pTmax µ = HT/2

Distribution Standard Unordered Standard Unordered

Nj (inclusive) 12.46 5.691 0.6426 0.8459

pT 1, Nj ≥ 2 219.4 131.6 124.3 72.19

pT 2, Nj ≥ 2 426.9 250.2 218.7 114.8

y2, Nj ≥ 2 11.29 5.582 8.119 13.52

HT , Nj ≥ 2 232.9 135.9 77.59 45.61

ST , Nj ≥ 2 248.9 134.2 76.11 34.15

m12, Nj ≥ 2 7.785 4.084 17.72 37.11

∆y12, Nj ≥ 2 21.89 21.98 29.07 36.90

∆φ12, Nj ≥ 2 21.94 17.44 8.967 13.75

∆R12, Nj ≥ 2 57.32 53.47 34.93 43.19

pT 1, Nj ≥ 3 116.6 49.62 12.30 2.240

pT 3, Nj ≥ 3 190.7 96.44 35.30 11.65

y3, Nj ≥ 3 113.4 59.58 11.33 4.219

HT , Nj ≥ 3 194.7 78.92 20.69 8.533

ST , Nj ≥ 3 225.6 94.08 22.80 3.802

pT 4, Nj ≥ 4 20.55 12.20 1.722 3.515

y4, Nj ≥ 4 36.63 22.38 2.289 2.633

HT , Nj ≥ 4 75.10 40.19 2.249 8.337

ST , Nj ≥ 4 86.54 50.63 3.832 9.808

Sum 2320 1264 708.6 466.8

Table 4.6: Comparison of χ2 statistic for a range of distributions for standard HEJ

versus HEJ plus unordered for different scale choices.
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Figure 4.16: A comparison of HEJ, with and without unordered configurations

included in the all order formalism, and ATLAS data for the differential cross

section for W plus inclusive dijets as a function of HT

the central line in HEJ is brought significantly closer to the data in nearly all bins.

A similar effect was seen in the distributions of jet transverse momenta, and the

scalar sum of jet transverse momenta ST .

In fig. 4.17 we show the differential cross section as a function of the invariant

mass between the two hardest jets, m12. Previously this distribution agreed well with

data for the standard leading logarithmic predictions of HEJ. We would therefore

hope that this distribution is not significantly affected by the latest corrections. We

see that although the shape is not strongly altered, the normalisation is reduced,

such that the overall agreement in this distribution is slightly worse. To understand

this, there are numerous points we should take into consideration. Firstly, the

predictions for m12 are still mostly within one standard deviation of the data. The

increase in χ2 here is also smaller than the reduction in χ2 for many of the other

distributions. The variable m12 is defined between the two hardest jets (as opposed

to rapidity ordered jets) so it is not the most optimal to be described by the HEJ

formalism. We might anticipate a better description for the invariant mass between
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Figure 4.17: A comparison of HEJ, with and without unordered configurations

included in the all order formalism, and ATLAS data for the differential cross

section for W plus inclusive dijets as a function of m12.

the most forward and backward jets mfb (but this observable was not measured in

the aforementioned analysis).

Furthermore, it is significant that the shape is not strongly affected. Typically

we find that differences in scale choice only change the normalisation of distributions

rather than their shape. While the scale choice HT/2 leads to a slightly worse

description, the choice µ = pTmax actually gives a reduction in χ2 when unordered

emissions are included, and the value is also lower both with and without unordered

emissions. It is apparent that there is some inherent arbitrariness in selecting a scale

choice. The uncertainty associated with unphysical scale choices may be reduced

by including higher orders, highlighting the necessity to match our description to

beyond leading order. Finally the current predictions are not the final story; other

NLL corrections have yet to be included in W plus jets.

The impact of including unordered configurations on the size of the scale

uncertainty band was also investigated, and this was found to be very small. This

is not surprising as the scale uncertainties in HEJ are not dominated by the relative
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proportion of non-FKL, but by the reweighting with leading order matrix elements

that is performed on the all order predictions.

It is illuminating to analyse not just the change in the total cross section, but

also the differences in its decomposition into fixed order and all order components.

The contributions of the all order and fixed order components to the differential

cross section as a function of HT before and after the inclusion of unordered

emissions are shown in figs. 4.18a and 4.18b respectively. The bottom panel in

each plot shows the relative contribution to the total of the fixed order component.

When unordered emissions are included only at leading order, the fixed order

component for large HT saturates at around 60%. When the unordered emissions

are included to all orders, the fixed order component is dramatically reduced to just

above 30%. In fig. 4.18c we show the relative change in each component. Although

the fixed order component is reduced by nearly 50%, the change in the total rate

is more modest. This is important as it demonstrates that a large reduction in

the fixed order component is nonetheless a perturbative correction within the HEJ

formalism.

An equivalent set of plots to those in fig. 4.18 for the rapidity interval between

the most forward and backward jets ∆yfb is shown in fig. 4.19. In the limit of large

∆yfb, the fixed order contribution should be sub-dominant, which is indeed the

case. However with the inclusion of unordered configurations in fig. 4.19b the fixed

order component falls more quickly. Figure 4.19c reveals that the decrease in the

fixed order component is linearly proportional to ∆yfb ∼ ln(ŝ/t̂) while the change

in the total rate is consistent with zero for large rapidity separations, as we would

expect for this type of subleading logarithmic contributions.
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Figure 4.18: The breakdown into all order and fixed order components of the

differential cross section for W plus inclusive dijet production as a function of HT

is shown for HEJ before (a) and after (b) the inclusion of unordered emissions in

the all order formalism. In these plots the relative contribution to the total from

fixed order is shown in the bottom panel. In c the relative difference of the fixed

order and all order components, and the total differential cross section is shown

also as a function of HT .
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Figure 4.19: The breakdown into all order and fixed order components of the

differential cross section for W plus inclusive dijet production as a function of ∆yfb

is shown for HEJ before (a) and after (b) the inclusion of unordered emissions in

the all order formalism. In these plots the relative contribution to the total from

fixed order is shown in the bottom panel. In c the relative difference of the fixed

order and all order components, and the total differential cross section is shown

also as a function of ∆yfb.
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4.5 Summary and Outlook

At the beginning of this chapter we highlighted the fact that although distributions

such as the invariant mass are captured well by HEJ, distributions related to the

transverse momentum of the jets such as HT expose large deviations between the

leading logarithmic predictions of HEJ and data. This problem may be ameliorated

by extending the HEJ formalism to NLL accuracy. The first class of subleading

logarithm, known as unordered emissions, has been implemented for W plus

jets and has been extensively validated. The contribution to the cross section

from configurations that are only included to leading order accuracy has been

systematically reduced, which has lead to an overall improvement in the description

of data, particularly in transverse momentum distributions as desired.

Although this work represents a significant development, we can anticipate

further corrections of a similar order. The remaining NLL configurations involve

the inclusion of quark-antiquark pairs in the final state, either as a correction to

the Lipatov vertex or the current factors. These developments have been recently

implemented for pure multi-jet production; it should be possible to integrate these

corrections into W plus jets production without too much difficulty. The only

additional correction for W plus jets relates to the effective current for g → eνqq̄′;

however in section 4.1.6 it was demonstrated that this correction can be obtained

from the current for W plus an unordered emission by crossing symmetry. The

computation of the full NLL correction to W plus jets is therefore already accessible.

The only additional task involves removing these configurations from the fixed

order matching, which is in principle straightforward, albeit somewhat laborious.

This study has also underlined the importance of reducing the size of scale

uncertainties, the dominant source of which is the reweighting with leading order

matrix elements during FKL matching. Reweighting is essential as the approxima-

tions used to derive the HEJ matrix elements are only valid in the MRK limit; away

from this limit the HEJ matrix elements are less accurate and must be corrected.

The scale uncertainty may only be reduced by improving the accuracy to which

matching is performed. However, this is not a trivial task as it is necessary to avoid

double-counting. Work on this topic is currently in progress.
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Notwithstanding the corrections which are currently outstanding, we view

this work as a major step towards obtaining the full next-to-leading logarithmic

correction in the high energy limit for W plus jets. With this addition, not only

has the dependence upon fixed order matching been reduced, but the precision of

the all order formalism has been improved, extending the region of phase space in

which the HEJ formalism is accurate. This will facilitate a more rigorous testing of

QCD at hadron collider experiments, and allow further examination of the relative

importance of high energy logarithms in future analyses.
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Chapter 5

Modified CKKW-L Merging for

HEJ

In section 2.3 we argued that understanding the effect of vetoes on jet activity and

azimuthal dijet correlations is important for Higgs phenomenology, and furthermore

that an all order description of high energy logarithms might be necessary for such

observables. However as reviewed in section 2.5, the analyses of [138, 140] revealed

that neither HEJ nor a traditional parton shower approach could fully describe

the data, whereas the combination of HEJ with the parton shower Ariadne

yielded a much better overall agreement with data. These studies therefore provide

compelling evidence that such a combination is necessary to obtain an accurate

description in the extreme regions of phase space probed through the application

of jet vetoes.

Despite improving the predictions in many observables, HEJ+Ariadne is not

completely without deficiency. One particular observable which this approach

cannot fully describe is jet shapes. Since jets in HEJ are largely unpopulated,

any capacity to describe jet shapes should be entirely coming from the parton

shower. Ideally HEJ+Ariadne should capture these observables at least as well

as Ariadne alone, and any difference indicates that the matching procedure is

incorrectly interfering with parton shower behaviour.

In fig. 5.1 we show a plot of the average jet profile ρ(r) reproduced from [133].

This variable is defined as the fraction of the jet’s transverse momentum p⊥ that
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5. Modified CKKW-L Merging for HEJ

Figure 5.1: A comparison between HEJ+Ariadne and Pythia (with and without

multiple parton interactions) of jet profiles ρ(r) in different slices of jet transverse

momentum, reproduced from [133].

can be found at a radius r from the centre of jet, and is given by:

ρ(r) =
1

p⊥(R)

dp⊥(r)

dr
, (5.0.1)

where R is the jet radius used in the anti-kT jet definition. The method of [133]

for combining HEJ and Ariadne includes hadronisation but not multiple parton

interactions (MPI), namely the phenomenon where more than one pair of partons

from the same pair of incoming protons are involved in separate hard scattering

processes [155]. Therefore in fig. 5.1 the predictions for HEJ+Ariadne are

compared to Pythia 6 (using the Perugia 2010 tune [156]) both with and without

MPI to understand the impact of this on the jet profile. For softer jets there is

a larger disparity between the two Pythia predictions, indicating that MPI are

important for obtaining the jet shape at low transverse momenta. That MPI affect

the shape of softer jets is not surprising: it is rare to have more than one hard

process so MPI are intrinsically soft [155]. Further, in an interleaved shower the

phase space available for MPI is shared with initial state radiation (both modify

the amount of energy available in the beam remnant [68]) and thus MPI modify

the jet shape. The predictions of HEJ+Ariadne are consistent with the Pythia

prediction without MPI, so in this region we can interpret the difference with data
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as arising from a lack of MPI. For harder jets however, the impact from MPI is

smaller, but HEJ+Ariadne is no longer consistent with Pythia.

The discrepancy in the profiles of high transverse momentum jets is linked to

the shower ordering. The method for matching HEJ to a parton shower presented in

section 2.5 correctly prevents double counting of soft emissions; however some HEJ

events contain certain soft emissions that in a parton shower (due to ordering) would

be included only at a late stage in evolution, typically after collinear emissions. In

such events, the phase space for a full parton shower evolution is restricted.

One solution to this problem is to weight events by the probability the parton

shower might have produced that event; improbable configurations which might

interfere with normal shower ordering would be suppressed by small weights. Such

a weight could be computed in a manner similar to the CKKW-L merging method

of section 2.2, that is, by constructing a parton shower history, performing a trial

shower, and vetoing events where trial emissions are above a given scale. The

downside of this method is that certain hard configurations that are possible in the

parton shower but not in HEJ can be missed. However, as we discuss in the next

section, it is possible to adjust the method in such a way that these configurations

can be inserted by the parton shower.

In this chapter we present the implementation, validation and results for such a

procedure for combining HEJ with a parton shower for inclusive multi-jet production.

We have chosen Pythia 8 for the parton shower; this has the advantage that

it includes the interleaving of MPI, so these effects (which are important for jet

shapes) may also be included with relative ease.

5.1 Overview of Method

In this section we explain the method for merging HEJ with a parton shower in

greater detail; the algorithm will be detailed in full in section 5.1.3. As mentioned

above, the primary feature which distinguishes this method from that discussed in

section 2.5 is the construction of a parton shower history, and the performing of a

trial shower which is equivalent to computing the relevant Sudakov factors. In this
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5.1. Overview of Method

respect the method is very similar to CKKW-L discussed in section 2.2. Indeed

much of the technology used in the implementation of CKKW-L in Pythia can

be recycled, an additional benefit to choosing Pythia for the implementation of

our algorithm. However, as we are promoting CKKW-L from a tree-level merging

method to an all order merging method, there are a number of important differences

from CKKW-L that we now elucidate.

The first difference concerns the trial shower. Normally the procedure of

generating trial emissions from each intermediate state, and vetoing events when

the trial emission is above the reconstructed scale of the next state, is equivalent

to weighting with events Sudakov factors (as discussed in section 2.2). For merging

with HEJ, we wish to perform the equivalent of weighting with modified Sudakov

factors with subtracted splitting kernels (just as in HEJ+Ariadne the shower was

evolved with subtracted Sudakov factors). To do this, we veto the trial emissions

with a probability given by the ratio of HEJ and Pythia splitting functions

(as discussed in sections 2.5 and 3.2; also see the discussion in section 5.1.2),

with the trial shower continuing from the emission scale if the emission is vetoed.

Additionally in CKKW-L the event is vetoed if the first parton shower emission

is above the merging scale; this is equivalent to constructing the Sudakov factor

∆(tn, tms). Therefore, the above procedure for vetoing trial emissions must also be

used when testing the first emission of the parton shower (for multiplicities below

the maximum multiplicity).

In addition, so that the trial shower produces the correct Sudakov factor, the

selected path in the parton shower history should be an allowed path, namely each

intermediate state should correspond to a HEJ state (defined in section 5.1.1). In

addition, as with regular CKKW-L, the path should preferentially also be ordered.

If such a path does not exist, allowed paths are prioritised over ordered paths. If

no allowed path exists, an ordered path is selected. The weight assigned to the

path is given by the HEJ matrix element squared for the maximally clustered HEJ

state in the path, multiplied by the product of Pythia splitting functions for each

(allowed) clustering in the path. A path is then selected according to its relative

weight. This information is summarised in fig. 5.2.
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Finally, events are no longer vetoed when a trial emission that is not rejected is

above the next reconstructed scale. Instead, when a trial emission is not vetoed,

the resulting configuration replaces the hard event and is immediately passed to the

shower for subsequent evolution. This allows the insertion of hard configurations

which could not have been generated by HEJ. In the implementation of CKKW-L

for Pythia, such a scenario would only have resulted from the generation of MPI,

as these are the only configurations which could not have been generated in the

hard process event samples.

5.1.1 Definition of HEJ States

For each trial emission it is necessary to identify whether the resulting event

corresponds to a configuration which could have been produced by HEJ, namely a

HEJ state. For the purposes of merging the following requirements must be met in

order for the event to be considered a HEJ state:

1. The most forwards outgoing parton should have the same flavour as the

parton incoming along the positive z axis.

2. The most backwards outgoing parton should have the same flavour as the

parton incoming along the negative z axis.

3. All other outgoing partons must be gluons.

4. It must be possible to untangle the colour connections into two ‘ladders’ of

rapidity-ordered partons.

5. The outgoing partons must cluster into at least two jets.

6. Each extremal (most forwards or backwards) parton must be a member of

the corresponding extremal jet.

7. Each parton must have a transverse momentum above the merging scale tms.

The fourth requirement needs some further explanation. If we take a 2 → n

partonic state, it should always be possible to untangle the colour connections into
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5.1. Overview of Method

Figure 5.2: Schematic representation of how paths in the full history may be

constructed. Circles denote intermediate states; states on the same horizontal

level have the same multiplicity, with states in the bottom level having the lowest

multiplicity. State which are connected with lines to one of higher multiplicity

are the available child states obtained by clustering. States labelled ‘A’ are both

allowed and ordered. States labelled ‘B’ are allowed, but not ordered. States

labelled ‘C’ are not allowed, but may be ordered. Branches which terminate on ‘A’

are allowed, ordered, complete paths. Branches which terminate on ‘B’ are allowed

complete paths. Branches which terminate on ‘C’ include, but are not limited to,

ordered complete paths. Incomplete paths are not shown. In this example, there

are three allowed, ordered, complete paths; only these would be retained, and the

others would be discarded.
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Figure 5.3: Examples of some possible colour flows in (a) gg → gggg, (b) qg →
qgggg and (c) qQ→ qggggQ, each of which would give rise to colour chains of the

same length. The labelling of legs corresponds to their rapidity ordering in the

intial or final state.

a planar arrangement, for example as shown in fig. 5.3. It should be clear that

inserting a quark into the initial and final state is equivalent to swapping a gluon

for an outgoing qq̄ pair.

If we start on the colour index of an incoming quark or gluon, or the anti-colour

index of an outgoing antiquark, and follow the colour flow until we hit either

an incoming gluon, or outgoing quark or incoming antiquark, we will obtain a

set of colour connected partons, which we call a ‘colour chain’. Since quarks (or

antiquarks) only have one colour index, we should always obtain exactly two colour

chains for HEJ states, provided we stop if we hit an incoming gluon. (For example,

in fig. 5.3b the colour chains obtained would be a12b and b34a.) It is then always

possible to arrange the colour flow into two non-crossing ‘ladders’, with incoming

legs vertical, and outgoing legs horizonal forming the rungs of the ladder; such as

shown in fig. 5.4.

As in the matching of HEJ and Ariadne, all events passed to Pythia in Les

Houches format have colour connections that correspond to rapidity-ordered ladders

since these are the configurations that dominate in the MRK limit. Since the

colour connections are important for setting up the dipoles in the Pythia parton

shower, having two non-crossing ladders of rapidity-ordered partons is stipulated

as a requirement for a HEJ state.
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(a) (b) (c)

Figure 5.4: Examples of how colour connected partons may be arranged into

‘ladders’ for the initial states (a) gg, (b) qg and (c) qQ. Incoming legs are shown

vertically, and outgoing legs are horizontal.

Before concluding this section, we note that although in principle there is no

maximum multiplicity N for FKL events produced in HEJ, since various aspects

of the algorithm are computationally intensive (such as the construction of the

parton shower history) we set N = 6. The multiplicity in HEJ is first reduced by

redistributing all soft momenta below a given scale - it is natural to take this to be

the merging scale tms. This is done in such a way that the rapidities of the hard

jet-like objects are fixed, using the same prescription applied in FKL matching in

eq. (2.4.73).

If the events passed to Pythia still have a multiplicity greater than N , clustering

is performed sequentially until the multiplicity is reduced to N . The clusterings

performed are those considered to be most likely according to the parton shower

(that is, that corresponding to maximal value of the splitting functions) provided

this still gives rise to a HEJ states. Although the necessity to perform this ‘pre-

clustering’ is potentially a limiting factor for the algorithm in its current formulation,

we do not find it has a large impact upon the merging.
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5.1.2 Evaluation of Subtracted Sudakov Factors

As in the matching for HEJ+Ariadne we wish to use a modified Sudakov factor

with subtracted kernel to generate trial emissions, which for the case of a timelike

branching is given by:

∆̃(Q2, q2) = exp

{
−
∫ Q2

q2
dk2

T

∫ 1−Q2
0/k

2
T

Q2
0/k

2
T

dz
(
PPythia(k2

T , z)− PHEJ(k2
T , z)

)}
.

(5.1.1)

The Pythia splitting function is given by:

PPythia(k2
T , z) =

αs
(2π)2

1

k2
T

Pji(z) , (5.1.2)

where Pji simply the standard Altarelli-Parisi splitting functions of table 2.1. There

is an additional factor of 1/(2π) to average over azimuthal angle. The HEJ splitting

function is given by:

PHEJ =
1

2

1

16π2

|MHEJ
n+1|2

|MHEJ
n |2 . (5.1.3)

The factor of 1
2

accounts for the fact that the matrix elements are summed over

all possible colour connections, but for each parton shower emission we wish to

calculate the splitting function for one of two possible choices (each of which

contribute equally in the MRK limit). The modified Sudakov factor in eq. (5.1.1)

may be evaluated by applying the Sudakov veto method from section 3.2 and

vetoing trial emission with probability Pveto = PHEJ/PPythia.

To account for spacelike branchings which result in the momentum fractions of

the initial state partons being modified, a ratio of PDFs must be included in the

Sudakov factor, as in eq. (2.1.5). A spacelike branching (i→ jk) at scale k2 that

results in the momentum fraction x1 of parton j being reduced to x2 = z x1 can be

accounted for by making the replacement:

Pji(z)→ Pji(z)
x1fj(x1, k

2)

x2fi(x2, k2)
. (5.1.4)

Similarly, to obtain the appropriate HEJ splitting function, we make the replace-

ment:

PHEJ →
1

2

1

16π2

|MHEJ
n+1|2

|MHEJ
n |2

x1fj(x1, µ
2
F )

x2fi(x2, µ2
F )

. (5.1.5)
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The PDFs and factorisation scale choice used in this expression should be those

used in HEJ, and not necessarily constrained to be the same as those used in the

parton shower.

5.1.3 The Merging Algorithm

The full algorithm for merging HEJ with Pythia proceeds as follows:

1. Generate samples of n(< N)-parton HEJ states. Introduce a merging scale,

tms, based on the minimum transverse momentum of the partons.

2. For each n-parton state from HEJ (2 < n ≤ N), reconstruct all possible

Pythia shower histories where each clustering has the reconstructed scale

ti, and set tn+1 = tms. If n = 2 calculate the scale t2 and continue to step 3,

and otherwise continue as follows.

(a) Throw away all histories that do not correspond to a sequence of HEJ

states.

(b) If there is at least one history that is correctly ordered in ti, throw away

every other history.

(c) Give each history that is left a weight proportional to the HEJ matrix

element squared for the lowest multiplicity (HEJ) state, times the

product of Pythia splitting functions for the sequence of emissions that

gives the original n-parton state. Pick a history at random according to

its relative weight.

(d) Starting from the most clustered state in the history, make a trial

emission from each intermediate state in the selected history starting

from ti.

i. If the emission scale is below the reconstructed scale of the next

state in the history, ti+1 , continue to the next state in the history.

If this is the original event we started with, continue to step 3.

ii. If the emission scale is above the reconstructed scale of the next

state in the history, but has produced a HEJ state, veto the emission
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with probability PHEJ/PPythia. If the emission is vetoed, generate

a new trial emission starting from the current emission scale, and

return to 2(d)i. If the emission is not vetoed replace the original

event with this state and continue to step 3.

iii. If the emission scale is above the reconstructed scale and has not

produced a HEJ state, we substitute the original event with this

state and continue to step 3.

3. (a) If in the previous step we replaced the original event with one that could

not have been produced by HEJ, continue the shower from the emission

scale of the new state without restriction.

(b) If this is the original event and we have n ≤ N start the shower from

the reconstructed scale tn and check the first emission. If it gives a

new HEJ state, discard the emission with probability PHEJ/PPythia and

continue generating the first emission starting from the scale tn. Once a

first emission is accepted, the shower continues radiating freely.

(c) If n = N , let the shower radiate freely.

The method we are presenting should be viewed as a first attempt to combine HEJ

with a parton shower using merging, and further refinements may be required. For

completeness we mention two potential issues here.

One limitation of the proposed method is that only the hardest emissions (as

ordered by Pythia) are correctly described by HEJ, which is not itself ordered

in hardness. In principle it is possible to generate a HEJ state from a non-HEJ

state above the merging scale in the parton shower, and such configurations will

not have their splitting kernels subtracted. However, it is assumed that once an

emission has been performed in the shower domain, this changes the phase space

sufficiently that the HEJ matrix elements are no longer accurate.

In addition, it should be noted that the method we are presenting is currently

only applicable to FKL configurations. To include non-FKL configurations, it

would be necessary to extend the definition of what constitutes a HEJ state, and

ensure that the appropriate tree-level matrix elements are used when calculating
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the veto probability for non-FKL states. This is so that no problems arise from

double counting. Primarily such changes would affect what states may be included

in the parton shower history, and which states may be inserted by the parton

shower.

5.2 Validation

5.2.1 Calculation of Splitting Functions

A crucial aspect of the merging algorithm is the vetoing of trial emissions that

result in HEJ states with a probability given by the ratio of the HEJ to Pythia

splitting functions. In this section we validate the evaluation of the respective

splitting functions. This is done by generating samples of 2→ 2 events with HEJ,

and calculating the splitting functions for the first trial emission in the parton

shower (providing that this gives rise to a HEJ state)1. Where the trial emission

resulted in initial state recoil and ratios of PDFs were used, these factors were

removed for a direct comparison of the splitting functions themselves. For the

same reason, due to potentially different scale choices for µR and conventions for

the running of αs in HEJ and Pythia, these factors were also removed in the

comparison. In what follows, we present results for the hard process qQ → qQ;

equivalent tests were performed for gg and qg initial states and similar conclusions

were drawn.

In fig. 5.5 we show the average splitting function 〈P 〉 (defined for Pythia

and HEJ in eqs. (5.1.2) and (5.1.3) respectively) as a function of the transverse

momentum of the trial emission, with the additional requirement that the angular

separation of the emission from the nearest parton ∆R exceeds the jet radius

(R = 0.6), namely it is a wide-angle emission. We compare the average splitting

function for HEJ and Pythia with the MRK limit of CA/(2πk
2
⊥). There are

numerous observations that we can make. Firstly, HEJ is very close to the MRK

1Validation of the classification of states into HEJ and non-HEJ was performed separately on

known samples of FKL and non-FKL events.
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Figure 5.5: Average splitting function for qQ→ qgQ as a function of the transverse

momentum of the emission, where ∆Rmin > 0.6.

limit (with differences arising from contributions with finite rapidity separations).

Pythia asymptotically behaves as 1/k2
⊥, with the constant of proportionality

coming from integrating the Altarelli-Parisi splitting functions over the energy

fraction z. Further, we see that the average HEJ splitting function is greater than

that for Pythia for k⊥ & 10 GeV, indicating that all but the softest wide-angle

emissions will be accounted for by HEJ, and will be vetoed in the Pythia parton

shower. This is in line with our intuition that HEJ should properly account for

wide-angle emissions.

In fig. 5.6 we show the average splitting function as a function of the angular

distance between the emission and the nearest parton, ∆R, for emissions having a

transverse momentum greater than 10 GeV. The discontinuity in the average HEJ

splitting function at the jet radius is due to the fact that a different (regulated)

matrix element is used for emissions which are inside the jet cone. As before,

qualitatively we see that for (semi-hard) wide-angle emissions the HEJ splitting

function always exceeds that for Pythia, namely such emissions will always be

vetoed in the parton shower. However, inside the jet cone, the splitting function
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Figure 5.6: Average splitting function for qQ→ qgQ as a function of the angular

distance between the emission and the nearest parton ∆R, where kTmin > 10 GeV.

for Pythia exceeds that for HEJ, thus there is a very low probability that such

emissions will be vetoed. Again, this is in line with the expectation that collinear

emissions should be handled by the parton shower.

5.2.2 Validation of Algorithm

In this section the validation of the merging procedure is discussed. Firstly, samples

of ‘fake HEJ’ events containing two and three parton final states were produced

using the following method.

1. Generate 2→ 2 hard QCD events with Pythia. Veto all events which do

not correspond to HEJ states.

2. Start the parton shower as usual, but test the first emission.

(a) If the resulting three parton state corresponds to a HEJ state and the

scale of the shower is above the merging scale tms, accept the emission

and stop the parton shower.
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5.2. Validation

(b) Otherwise, veto the emission and generate a new first emission, starting

from the scale of the previous trial emission. Stop the shower as soon as

a three parton HEJ state is generated, or the scale falls below tms.

These ‘fake HEJ’ event samples are then merged using the algorithm detailed in

section 5.1.3, but with a couple of modifications. Firstly, the maximum multiplicity

N is now three. Secondly since the events were generated using Pythia, the ratio

of splitting functions should always return unity; thus if a trial parton shower

emission from a two parton hard event gives rise to a new HEJ state, this will

always be vetoed.

The procedure for merging ‘fake HEJ’ events should give identical results to

the case where we simply showered the subset of Pythia events that correspond

to HEJ states directly. Therefore by comparing these two schemes we can ensure

that the merging algorithm runs as anticipated and in particular that there is

no double-counting of emissions. Events from each prescription were required to

contain at least two jets, defined using the anti-kT algorithm, each passing the

following cuts:

pT j > 30 GeV, ∆R = 0.6, |∆yj| < 4.4. (5.2.1)

The centre of mass energy used was
√
s = 7 TeV. The merging scale was taken as

tms = 20 GeV. In addition two different prescriptions for selecting a path in the

parton shower history were tested. Usually the path (which in this procedure only

corresponds to single choice of clustering) is selected at random with a probability

according to its relative weight, calculated using full shower splitting kernels

including PDFs and potentially matrix element corrections. However, it is possible

to override this behaviour and assign the weight according to the shower kernel

divided by the transverse momentum scale of the clustering. The procedure for

selecting a parton shower history should only correspond to a subleading logarithmic

effect. Thus we do not expect to see significant differences between the two schemes.

In figs. 5.7a and 5.7b we show the differential cross section as a function of the

transverse momentum of hardest and second hardest jets respectively. We compare

the results of showering gg initial state HEJ events generated with Pythia that
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Figure 5.7: Plots showing the differential cross section as a function of the transverse

momentum of hardest and second hardest jets, in which a comparison is made

between a default showering of gg HEJ-like events in Pythia, and ‘fake HEJ’

events which have been merged using two different prescriptions for the construction

of the parton shower history.
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5.3. Results

are showered directly, and samples of gg initial state ‘fake HEJ’ events merged

using the method described above for the two different aforementioned procedures

for selecting the parton shower history. There are no statistically significant

differences between all three predictions in each distribution. The same tests were

also performed for qg and qQ initial states.

The primary difference between the prescription for merging ‘fake HEJ’ events

and the full algorithm is the evaluation of the ratio splitting functions, which has

been validated independently. Since the extension to the full case is straightforward,

this completes the necessary validation of our implementation.

5.3 Results

One of the goals for the implementation of this new method was to improve the

description of jet shapes upon that predicted by HEJ+Ariadne. We therefore

considered two observables from a study of inclusive jet production at the LHC

with
√
s = 7 TeV performed by ATLAS [157]. The first is the jet profile ρ(r)

defined in eq. (5.0.1). The second is the integrated jet shape Ψ(r) which gives the

fraction of the jet transverse momentum that lies inside a cone of radius r:

Ψ(r) =
p⊥(r)

p⊥(R)
. (5.3.2)

Both observables are averaged over all jets in an event. We show results for

Pythia 8 and HEJ+Pythia in fig. 5.8. Both predictions were fully showered

with interleaved MPI and hadronised. In the shower and in the generation of HEJ

events, the PDF set used was CT14nlo [154,158]. All other parameters in Pythia

were taken as their default values for the Monash 2013 tune [159]. The scale choice

used in HEJ was µ = HT/2.

Not only is HEJ+Pythia completely consistent with the standalone predictions

for Pythia, but both have excellent agreement with data across a range of

transverse momentum slices. We emphasise that since jets in HEJ typically contain

very few partons the ability to describe this observable is entirely coming from the

parton shower and hadronisation. We found that in order to obtain agreement

with data the inclusion of both MPI and hadronisation is necessary, indicating
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Figure 5.8: Plots showing a comparison Pythia and HEJ+Pythia to ATLAS

data for the jet shape observables (a) ρ(r) and (b) ψ(r) for different slices of jet

transverse momentum.

.
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the importance of full particle level simulation for such observables. Unlike the

approach of HEJ+Ariadne, these effects have been added to HEJ in such a way

that shower evolution has not been artificially restricted.

In order to assess the performance of our merging algorithm we considered

two analyses [138, 140] for inclusive dijet production at the LHC with
√
s = 7

TeV which measured the amount and impact of additional radiation, therefore

implicitly probing higher order effects. In the results which follow, the PDF set,

scale choices and tune were chosen as for the above study of jet shapes. We compare

predictions for HEJ, Pythia, and HEJ+Pythia. The error bars on theoretical

predictions correspond to statistical uncertainties; we have not included an estimate

of scale uncertainties here. We defer a systematic investigation on the size of such

uncertainties to future studies.

In the first analysis, which we discussed earlier in section 2.5, the hardest

and second hardest jets were required to have pT > 60 GeV and pT > 50 GeV

respectively; these were taken to be the tagging jets. Events containing no jets with

transverse momentum above the veto scale Q0 in the rapidity interval between the

tagging jets were classified as gap events. The veto scale was taken to be Q0 = 20

GeV and Q0 = 30 GeV for data collected during 2010 and 2011 respectively. We

define the contribution to cross section from such gap events as σjj(Q0). The gap

fraction f(Q0) is then defined as:

f(Q0) =
σjj(Q0)

σjj
, (5.3.3)

where σjj is the inclusive dijet cross section.

In fig. 5.9 we show (a) the average number of jets Nj in the rapidity interval

between the tagging jets, and (b) the gap fraction as a function of the rapidity

separation between the hardest two jets |∆y|. HEJ underestimates the number of

jets across the spectrum of rapidities; as already mentioned in section 2.5 this is

because the disparity between the minimum pT cut for gap jets and for the hardest

two jets induces a transverse momentum hierarchy that spoils the validity of the

MRK limit even for large rapidities. HEJ performs slightly better for the more

inclusive gap fraction observable, though it still has a tendency to overestimate

the number of gap events. The are systematic shape differences between data and
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Figure 5.9: Plots showing a comparison of HEJ, Pythia and HEJ+Pythia to

ATLAS data for (a) the average number of jets in the rapidity interval between the

two hardest jets and (b) the gap fraction as a function of the size of the rapidity

interval between the two hardest jets.
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the predictions for Pythia, which appear to underestimate the number of jets at

low and high rapidities. Similarly the fraction of events with no additional jets

at large rapidities is overestimated by Pythia. Despite neither HEJ nor Pythia

being able to fully describe these observables, the merging of HEJ+Pythia gives

a close agreement with data across the entire range of rapidities. This is a positive

indication that the merging algorithm is functioning properly, combining the

necessary high energy and soft collinear logarithms in its description.

In fig. 5.10 we look at the ratio of the averages of the second to first moment

of azimuthal decorrelation, 〈cos(2∆φ)〉/〈cos(π −∆φ)〉, as a function of (a) |∆y|
and (b) the average transverse momentum of the tagging jets, pT . As previously

discussed in section 2.5, this variable is a measure of the how correlated (or back-

to-back) are the jets, with some cancellation of systematic uncertainties between

the numerator and denominator. HEJ generally overestimates the correlation of

the jets, particularly at low rapidities and small transverse momenta; this is due to

missing radiation included by the parton shower. Pythia gives a good description

of the azimuthal correlation for both observables, perhaps with the exception of

large rapidities, where it is likely to underestimate the number of hard jets.

In the second analysis the tagging jets were required to have an average trans-

verse momentum pT of at least 50 GeV; additional jets were required to have a

transverse momentum pT > 20 GeV. Jets were defined using the anti-kT algorithm

with R = 0.6, and were required to have rapidity |yj| < 4.4. In fig. 5.11 the tagging

jets were again taken to be the two hardest jets; two observables are shown as a

function of pT in different slices of the tagging jets’ rapidity separation. Figure 5.11a

shows the average number of jets in the rapidity interval between the tagging jets,

while fig. 5.11b shows the gap fraction. The predictions for HEJ systematically

underestimate the number of jets at large transverse momenta, and systematically

overestimate the gap fraction in the same region. Pythia performs well for the

entire range of transverse momenta, and across the different rapidity slices. The

disparity between HEJ and Pythia in this observable emphasises the need for a

parton shower. The predictions for HEJ+Pythia are again consistent with both

Pythia and data within statistical uncertainties, indicating that parton shower
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Figure 5.10: Plots showing a comparison of HEJ, Pythia and HEJ+Pythia

to ATLAS data for the ratio of the average of the second and first moment of

azimuthal decorrelation, 〈cos(2∆φ)〉/〈cos(π −∆φ)〉, as a function of (a) |∆y| and

(b) pT .
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Figure 5.11: Plots showing a comparison HEJ, Pythia and HEJ+Pythia to

ATLAS data for (a) the average number of jets in the rapidity interval between the

two hardest jets and (b) the gap fraction as a function of the average transverse

momentum of the two hardest jets, in slices of their rapidity separation.
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effects have been successfully incorporated into HEJ.

Since neither of the previous two analyses adequately explore the phase space

in which high energy logarithms become dominant, we performed a study of dijet

production at
√
s = 7 TeV using the more inclusive cuts of [139]. Specifically, this

required at least one jet with a transverse momentum pT > 45 GeV and with all

other jets having a transverse momentum pT > 35 GeV. Jets were again defined

using the anti-kT algorithm, but with R = 0.5, and were required to have rapidity

|yj| < 4.7.

In fig. 5.12a we show the average number of jets as a function of the rapidity

separation between the most forwards and backwards jets, ∆yfb. We can make

numerous observations. Firstly, discrepancies between all three theoretical predic-

tions are much more visible. For large rapidities, HEJ predicts an average number

of jets that exceeds three, signifying that there is a non-trivial contribution from

jet multiplicities of four or higher. This is precisely as one would expect from high

energy logarithms becoming dominant. Pythia predicts far fewer jets at large

rapidities, which is unsurprising since additional jets can only arise from the parton

shower, which despite including higher order effects does not account for high

energy logarithms. Until about 5 units of rapidity, there is fairly good agreement

between HEJ and HEJ+Pythia. However, HEJ+Pythia predicts slightly fewer

jets at large rapidities.

In fig. 5.12b we show the ratio of the inclusive three-jet cross section to the

inclusive dijet cross section also as a function of ∆yfb. There is now good agreement

between HEJ and HEJ+Pythia at large rapidities. This suggests the differences

in fig. 5.12a correspond to multiplicities greater than three. The origin in the

reduction of higher multiplicities in HEJ+Pythia is not yet completely understood.

One possible explanation is that the parton shower induces a smearing such that

fewer jets pass the necessary criterion. Alternatively it could be accounted for by

the insertion of non-FKL configurations of lower multiplicity. This issue could be

resolved by the extension of this method to merge non-FKL events. Refinements

of the method may indeed be necessary, although without a comparison to data

however, it is difficult to determine what is the correct prescription. We hope that
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Figure 5.12: Plots showing a comparison HEJ, Pythia and HEJ+Pythia for (a)

the average number of jets and (b) the ratio of the inclusive three jet cross section

to the inclusive dijet cross section, both as a function of the rapidity separation of

the most forwards and backwards jets.
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an experimental study with similarly inclusive cuts will be conducted in future.

Notwithstanding the differences in the average number of jets between HEJ

and HEJ+Pythia at large rapidities, this study indicates that additional hard

jets are indeed being added to Pythia with this merging algorithm. The previous

analyses explored indicated that this procedure also preserves the impact of the

parton shower, MPI and hadronisation. We have therefore successfully combined

effects corresponding to both high energy and soft collinear logarithms.

5.4 Summary and Outlook

In this chapter we have introduced a new CKKW-L-inspired merging algorithm for

combining HEJ with a parton shower. For the first time HEJ events have been

fully evolved down to particle level using a modern parton shower with effects

such as MPI properly accounted for. This has resulted in the ability to correctly

describe distributions of jet shapes. This method therefore ameliorates some of the

limitations of the earlier method used to match HEJ with Ariadne.

We assessed the performance of the algorithm by considering observables which

measure the additional radiation in the rapidity interval between two tagging

jets. In observables which require a parton shower, such as the average number

of jets as a function of the average transverse momentum of the tagging jets, the

description of HEJ+Pythia was consistent with standalone Pythia and data.

The improvement upon HEJ in such distributions is notable. For the average

number of jets as a function of the rapidity separation of the tagging jets, where

a pT hierarchy is induced by the disparity of cuts on jet transverse momentum,

both high energy and soft-collinear logarithms become important. Though neither

HEJ nor Pythia could fully describe the data, HEJ+Pythia was consistent with

data. Furthermore, an investigation of related observables but with more inclusive

cuts revealed the jet multiplicity for large rapidity intervals is increased relative

to Pythia through merging. These results demonstrate that we have combined

effects originating from both parton shower and from HEJ, and indicate that we

have ensured there is no double counting of emissions. This work therefore provides
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a proof of concept for this method. Nevertheless, it is still necessary to perform a

systematic study on the impact of scale and PDF choices.

Notwithstanding what has been so far achieved, what has been presented

constitutes a first attempt at merging HEJ with a parton shower. We envisage

numerous refinements that can be made. There is a need to implement a prescription

for incorporating non-FKL events into the merging procedure. In particular this is

required to obtain the correct total cross section; it may also have an impact upon

which states may be inserted by the parton shower, and potentially multiplicities in

large rapidity intervals. Such a prescription would not require dramatic changes to

the algorithm. Firstly, the definition of what constitutes a HEJ state would need

to be extended; secondly, the appropriate tree-level matrix elements should be used

when calculating the veto probability of trial emissions. In addition, as discussed

in section 5.1.3, a limitation to the method is that only the hardest emissions are

correctly described by HEJ. This is a problem because the parton shower may

generate HEJ states from a non-HEJ states above the merging scale. To resolve

this issue will require further study.

It is also important to implement this method for processes other than those

which are purely QCD. Since one of the primary motivations was to assess the

impact of jet vetoes that are relevant for Higgs plus dijets studies, this process is the

next natural extension. Finally, although we chose to implement this method for

Pythia, in principle it should be possible to implement for other parton showers.

It would be interesting to compare the effect of merging HEJ with different choices

of parton shower.

It is intriguing that Pythia performs as well or better than the predictions

for Pythia+POWHEG provided for the original experimental studies. There are

parameters in Pythia which are tuned to data that facilitate the modelling of

non-perturbative effects; one would not expect this to have an impact on observables

which measure the number of hard emissions. It would therefore be worthwhile to

investigate what is the impact of tuning on the observables we have considered,

and determine whether this is consistent with what is expected for soft QCD.

Although we have been able to draw many positive conclusions by comparing
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with experimental data, in many cases the error bars on data are large, and the

cuts that were chosen are not conducive to examining the effect of high energy

logarithms. Both these points entail that it is difficult to discriminate between

theoretical predictions that model different physics and should be expected to differ.

We hope that as more data is collected, future analyses will examine a similar set

of observables but with a more inclusive cut selection.

This work has reinforced the notion that the interplay between different types

of logarithms is not necessarily straightforward, and that there are circumstances

under which the combination of two all order summations is necessary. We hope

that the merging algorithm we have developed may be used in future as a tool

to inform analyses what selection of cuts and observables are sensitive to parton

shower effects, high energy effects, or both.
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Chapter 6

Conclusions

At its inception the LHC was often touted as a machine for discovering new

physics, and yet so far there has been no conclusive evidence for physics beyond

the Standard Model observed in any of its many searches. This has necessitated

the exploration of increasingly extreme regions of phase space and the scrutiny

of ever more rare Standard Model processes. These experimental activities are

supported by the development of sophisticated theoretical tools for modelling the

expected backgrounds in these searches.

As we have discussed earlier in this thesis, one area of particular interest is the

production of a Higgs boson in association with dijets through vector boson fusion.

This channel may be enhanced with respect to gluon fusion and thereby studied

through the application of cuts requiring large invariant dijet masses, rapidity

separations and jet vetoes. In addition, distributions of large invariant masses are

of interest in their own right since undiscovered heavy coloured particles could

appear here as resonances. In such scenarios, there is an opening of phase space and

the probability for semi-hard wide-angle emissions is enhanced. Specifically, higher

order corrections to the cross section are accompanied by the appearance of large

logarithms that spoil the convergence of fixed order calculations. More traditional

approaches that combine fixed order calculations with a parton shower were found

to underestimate the number of hard jets in such regions. The HEJ formalism

introduced in chapter 2 was developed to sum these high energy logarithms to all

orders and thereby provide an accurate description of perturbative QCD in the
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high energy limit.

The approach of HEJ improved upon the earlier BFKL formalism in numerous

ways. By using spinor helicity formalism it exposes high energy factorisation with

a minimal level of approximation, such that integration of the amplitude may be

performed in the full phase space. Secondly by matching to fixed order calculations,

the normalisation of the total cross section may be correctly obtained. These

features entail that HEJ can provide accurate theoretical predictions for hadron

colliders such as the LHC. It has proved successful at describing large invariant

mass distributions and the average number of jets in the interval between the

two most extremal jets in rapidity. However, in regions of large jet transverse

momenta the fixed order component of the cross section begins to dominate and the

accuracy of the predictions is reduced. To improve the reliability of predictions for

observables which probe this region, it is necessary to extend the HEJ formalism

to next-to-leading logarithmic accuracy.

In chapter 4 we introduced a certain type of next-to-leading logarithmic correc-

tion to the process-dependent current factor of the amplitude. In the high energy

limit, scattering occurs through colour octet exchange in the t-channel. At leading

logarithmic accuracy, in processes that involve initial state quarks the most extremal

outgoing partons must also be quarks. However at next-to-leading logarithmic

accuracy, a gluon emission more extremal than the outgoing quark leg is permitted;

this is known as an unordered emission. Whilst quark-initiated processes can be

suppressed by PDFs, in the W plus jets production where at least one quark (or

antiquark) must participate in the hard scattering such corrections can become

significant. This channel being experimentally well constrained provides a useful

avenue in which new theoretical tools may be tested.

In section 4.1.1 we performed an analytic calculation of the unordered current

with W emission, and verified that it was gauge invariant in section 4.1.2. The

implementation of this current for use in numerical calculations of the amplitude

was verified in section 4.1.5 by ensuring the correct high energy behaviour is

reproduced. For the calculation of the cross section, an improved sampling of phase

space was deemed to be necessary. A study of the phase space generation was
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performed in section 4.2.1 and validated in section 4.2.2. Finally the channels which

could now be accommodated into the all order formalism needed to be removed

from the matching procedure. This and the resulting thorough validation which

was performed was discussed in section 4.3.

Comparisons between the HEJ formalism and ATLAS data for an analysis of

W plus inclusive dijet production were made in section 4.4. Across a range of jet

transverse momentum distributions it was found that the inclusion of unordered

emissions in the all order formalism both reduced the fixed order component at large

transverse momenta, and improved the agreement with data. The normalisation of

the distribution of the invariant mass between the two hardest jets was reduced,

though the shape was found to be relatively unaffected. Although one might have

anticipated there to be no change at all in this distribution, the high energy limit

is most applicable when the jets used are the most forwards and backwards jets in

rapidity. We analysed the distribution of the rapidity separation between the most

forwards and backwards jets, and found that despite a linear reduction in the fixed

order component, the change in the total rate for large rapidity separations was

minimal, which is consistent with our expectations.

Corrections of a similar size are to be expected with the forthcoming inclusion

of quark-antiquark pairs in the final state, either as a correction to the Lipatov

vertex or to the currents factors. The former has already been implemented for

pure jets, and simply needs integrating into the implementation for W plus jets.

We have already demonstrated in section 4.1.6 that the correction to the effective

W current may be obtained from the unordered current by crossing symmetry.

Therefore, the only significant remaining task for obtaining the full NLL correction

to W plus jets is the modification of the matching procedure. We expect that the

full correction will become available in the near future.

The impact of extending the HEJ formalism to include subleading logarithmic

effects is the ability to describe observables which are sensitive to large transverse

momenta, entailing that predictions may be applicable in a greater number of

scenarios. However, these corrections will not be sufficient in regions of phase

space where there are large transverse momentum hierarchies and soft-collinear
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logarithms become important. One example is the average number of jets in the

rapidity interval between two tagging jets as a function of the tagging jets’ average

transverse momenta. Such observables require the inclusion of a parton shower for

an accurate description to be obtained. The first attempt to combine HEJ with a

parton shower, implemented for Ariadne, was largely successful; however, there

were two notable shortcomings with this approach. Firstly, the effect of multiple

parton interactions was not included. Secondly, certain HEJ configurations limited

the phase space for a full parton shower evolution. These effects were noticeable

for example in distributions of jet shapes.

In order to address these issues, a merging algorithm inspired by CKKW-L was

proposed. The implementation of this new approach was discussed in chapter 5.

The implementation was validated in two ways. Firstly a comparison of the splitting

functions for HEJ and Pythia, which are required to ensure the Sudakov factors

are appropriately subtracted, was performed in section 5.2.1. The average splitting

function for the first trial parton shower emission with respect to a 2→ 2 partonic

configuration was shown as a function of both the transverse momentum of the trial

emission, and the angular distance to the nearest parton. The splitting functions

demonstrated the expected qualitative behaviour, and gave a visual representation

of the expected outcome of the vetoing procedure. The second step of validation

performed in section 5.2.2 involved the generation of two- and three-parton HEJ-like

events using the parton shower, and ensuring that the effect of merging these events

was indistinguishable from the process of simply showering two-parton HEJ-like

events. This procedure ensures that there is a full coverage of phase space without

any double counting of emissions.

In section 5.3 we demonstrated that our new merging algorithm indeed ac-

commodates an improved description of jet shape observables, indicating that the

parton shower evolution is no longer improperly restricted. We further examined a

set of observables which measure the amount of additional radiation in the rapidity

interval between a pair of jets. We find that in the average number of jets and gap

fractions, both as a function of the size of rapidity interval and the dijets’ average

transverse momentum, there is a good agreement between HEJ+Pythia and data.
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It appears that parton shower effects are being incorporated into HEJ, whilst

high jet multiplicity events are added relative to Pythia. The work presented

therefore delivers proof of concept for our merging procedure. As outlined in

section 5.4, we envisage numerous extensions that can be made to the current

implementation. Nevertheless, we hope that it proves informative for the design of

future experimental analyses.

In this thesis, we have aimed to provide a more accurate modelling of QCD in

extreme regions of phase space, allowing for increasingly rigorous testing of the

Standard Model. Optimistically, we can hope this will facilitate the discovery of

new physics. Alternatively, it will tighten the constraints on what BSM physics is

allowed, whilst simultaneously improving our understanding of Standard Model

phenomenology in the high energy limit.
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