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Summary

Objective—The objective of this study was to establish breakpoint concentrations for the 

fluoroquinolones (MOX and OFX) and injectable second-line drugs (AMK, KAN and CAP) using 

the MODS assay.

In memoriam
Luz Caviedes was the Peruvian scientist who first recognised the potential for turning her observation of rapid growth of characteristic 
microscopic cords of MTB in liquid culture into a useful diagnostic test. She led the development of the non-commercial MODS assay 
into a reproducible rapid test for MDR-TB endorsed by the WHO. To our eternal sadness Luz passed away on 4th November 2012. 
Aside from her huge, open heart and immense humility she was a dear and generous friend to many and she will be forever missed.
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Setting—A multinational study conducted between February 2011 and August 2012 in Peru, 

India, Moldova and South Africa.

Design—First phase determined the breakpoints to the fluoroquinolones and injectable second-

line drugs (n = 58). Second phase evaluated the MODS second-line DST as an indirect test 

compared to MGIT DST (n = 89). The third (n = 30) and fourth (n = 156) phases determined 

reproducibility and concordance of the MODS 2nd line DST directly from sputum.

Results—Breakpoints for moxifloxacin (0.5 μg/ml), ofloxacin (1 μg/ml), amikacin (2 μg/ml), 

kanamycin (5 μg/ml) and capreomycin (2.5 μg/ml) were determined. In all phases the MODS 

results were highly concordant with MGIT DST. The few discrepancies suggest that the MODS 

breakpoint concentrations for some drugs may be too low.

Conclusion—The MODS second-line DST yielded comparable results to MGIT second-line 

DST, and is thus a promising alternative. Further studies are needed to confirm the accuracy of the 

drug breakpoints and the reliability of the MODS second-line DST as a direct test.
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Introduction

Although the incidence of tuberculosis (TB) worldwide is declining, drug resistant TB is 

increasing, threatening global TB control. Countries that are most affected by the increase in 

TB drug resistance are often those least resourced to deal with this escalating problem.1 

Patients infected with multi-drug or extensively drug resistant TB (MDR/XDR-TB) strains 

require treatment regimens that include second-line anti-TB drugs. These treatment 

regimens also require extended treatment duration, and typically comprise aminoglycosides 

such as kanamycin (KAN) and amikacin (AMK); cyclic peptide, capreomycin (CAP); and 

fluoroquinolones such as ofloxacin (OFX) and moxifloxacin (MOX).2

The increasing prevalence of highly resistant Mycobacterium tuberculosis (MTB) strains 

demand that the diagnostic method of choice detect resistance to both first and second-line 

anti-TB drugs.3 Furthermore, it should be rapid, inexpensive and easily implementable. 

Molecular and culture-based methods are available to detect drug resistant TB, but several 

do not meet all these criteria. Traditional agar-based methods (Löwenstein Jensen or 

Middlebrook 7H10/7H11 by either proportion or absolute concentration method) can take 

weeks to obtain results. Initially these tests set the standard for drug susceptibility testing 

(DST) but have largely been replaced by the liquid culture system BACTEC Mycobacterial 

Growth Indicator Tube (MGIT) 960 (Becton Dickinson, MD, USA). MGIT DST is currently 

the standard for phenotypic DST of first and second-line drugs4,5 and performed following 

primary isolation in MGIT culture. MGIT DST is accurate and reproducible, but 

implementation demands advanced technical infrastructure not widely accessible in many 

resource poor countries.6 Due to the slow growth of some drug resistant MTB, it can take 

one to two months from specimen receipt to delivery of results for all the drugs tested for 

MDR/XDR-TB strains.
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Methods for molecular detection of gene mutations associated with drug resistance have 

been developed, and the line-probe assay (LPA) has been endorsed by the World Health 

Organization (WHO) for rapid screening for MDR-TB.7 The GenoType MTBDRsl LPA 

(Hain Lifesciences, Nehren, Germany) for detection of genotypic resistance to the 

aminoglycosides, fluoroquinolones and ethambutol, has been shown to be a rapid DST 

method.8 However, the technical expertise and infrastructure required may be too advanced 

to implement these tests in resource-limited settings with poor laboratory infrastructure. 

While the WHO endorsement of the GeneXpert System (Cepheid, CA, USA) addresses this 

issue, the assay detects only rifampicin (RIF) resistance.9 The LPA and Xpert MTB/RIF 

assays are also more costly than traditional phenotypic methods.10

Non-commercial DST techniques, like the Microscopic Observation Drug Susceptibility 

(MODS) assay, can be implemented in resource poor settings with low cost and 

training.11,12 The MODS assay can be performed directly with decontaminated sputum and 

does not require primary MTB isolation. A recent review found that the MODS assay was 

highly accurate for detection of RIF resistance, and slightly less sensitive for detection of 

isoniazid (INH) resistance.13 While the potential for MODS to be used for DST of second-

line drugs has been recently reported,14 its application to date has been limited to INH and 

RIF.

The objective of this study was to establish the breakpoint concentrations of the 

fluoroquinolones (MOX and OFX) and injectable drugs (AMK, KAN and CAP) for the 

MODS assay. Using MDR/XDR isolates the drug concentrations that separated drug 

susceptible and drug resistant isolates were determined. Subsequently, we examined the 

accuracy of these second-line drug breakpoints by comparison to MGIT DST results from 

isolates and sputum specimens of TB patients at high risk for drug resistance in India, 

Moldova and South Africa.

Materials and methods

Setting and experimental design

This multinational study was conducted in four phases between February 2011 and August 

2012. The critical concentrations (breakpoints) for each of the five drugs was determined in 

the Laboratorio de Investigación de Enfermedades Infecciosas (UPCH). Validation of the 

breakpoints was performed in the three laboratories that comprise the Global Consortium for 

Drug-resistant TB Diagnostics (GCDD). The University of California San Diego (UCSD) 

Institutional Review Board (IRB) and the IRBs that represent the GCDD laboratories in 

India, Moldova and South Africa approved the study.

MGIT DST was performed according to manufacturer’s instructions using the WHO 

recommended critical concentrations.15 The KAN critical concentration was 2.5 μg/ml.16 

The MODS assay was performed as described previously.17 To ensure consistency and 

accuracy of results, the reference strain MTB H37Rv (ATCC 27294) was included each time 

the MGIT DST and MODS assay were performed. All work was carried out in Biosafety 

Level 2 laboratories according to international standards. 18 Preparation of the test inocula 

was done inside Class II biological safety cabinets. Sealed MODS plates were placed in 
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polyethylene Ziploc bags that were also sealed with tape. Plates were never removed from 

the sealed bags, even when reading.

Phase I: Determining breakpoints

A representative group of sixty-one MDR/XDR-TB clinical isolates were selected from the 

multinational collection of more than 500 highly drug-resistant characterized MTB isolates 

archived at UCSD. These isolates were all resistant to INH and RIF and 42 isolates were 

resistant to at least one injectable drug and 51 were resistant to at least one fluoroquinolone. 

MGIT DST was completed at UCSD on all of these isolates using standard WHO protocols 

and WHO recommended critical concentrations. Any discrepancies were confirmed using 

standard methodology. Selected isolates were sent to UPCH and the sensitivity and 

specificity for each drug was determined by comparing the MODS results at various drug 

concentrations (Table 1) with the standardized UCSD MGIT DST results.

Phase II: Validation using isolates

Each laboratory selected 10 susceptible and 10 resistant MTB isolates (at least five resistant 

to fluoroquinolones and injectables) from in-house or external strain banks. Five separate 

runs (5 isolates/run) were conducted in which the 20 isolates were tested at least once; one 

pan-susceptible isolate was tested five times, one resistant isolate tested twice. The pan-

susceptible reference strain MTB H37Rv was also tested in each run. Thus, a total of 30 

tests were performed by each laboratory (n = 90). MGIT positive cultures were used to 

prepare inocula for the indirect MODS assay. The inoculum was a 1:1000 dilution of a 1 

McFarland standard suspension of the positive MGIT culture in 5 ml of Middlebrook 7H9 

broth with Oleic Acid Dextrose Citrate; 900 μl of the inoculum was added to each well.

Phase III: Validation using sputa

Each laboratory selected 10 smear-positive sputum specimens for direct MODS second-line 

DST. Additional specimens were tested when the MODS assay was contaminated (n=1) or 

control wells failed to grow MTB (n=3). Sputum was decontaminated using a final 

concentration of 1% sodium hydroxide. Following neutralization with phosphate buffer, 

smear microscopy and MGIT culture were performed.19,20 The MODS was set-up on three 

consecutive days using the same sediments. MGIT DST was performed on the positive 

cultures.

Phase IV: Evaluation of MODS second-line DST using sputa

One hundred and fifty six sputum specimens were prospectively collected from subjects 

enrolled in the GCDD study in India (n = 50), Moldova (n = 50) and South Africa (n = 56). 

Subjects provided a sputum sample (‘spot’) at enrollment and returned the following day 

with an early morning sample. In the laboratory, the spot and early morning specimens were 

combined to produce a pooled sample with volume of at least 7.5 ml. Samples were 

decontaminated and prepared for testing as described above.
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Statistical analysis

Statistical analysis to determine the percent concordance of the MODS second-line DST as 

compared to the standard MGIT DST was performed using AcaStat software (Version 8.1.9) 

(AcaStat Software, VA, USA). ROC curves were constructed with GraphPad Prism 

(Version 5) (GraphPad Software, CA, USA).

Results

Phase I

To establish breakpoints, multiple drug concentrations were evaluated (Table 1). For the 

fluoroquinolones, 58 results were available for analysis. Forty-seven strains were resistant 

and 11 susceptible by MGIT DST. Based on the ROC curves in Figure 1, we chose a 

concentration of 0.5 μg/ml for MOX and 1 μg/ml for OFX. At these concentrations, the 

sensitivity and specificity for MOX (Fig. 2A) was 91.5% (95%CI 84.3% to 98.7%) and 

81.8% (95%CI 71.9% to 91.7%), and for OFX (Fig. 2B) 97.9% (95%CI 94.2% to 1.0) and 

100%, respectively.

For the injectable drugs, 57 AMK and KAN results and 55 CAP results were available for 

analysis. Thirty strains were resistant and 27 susceptible to AMK; 38 resistant and 19 

susceptible to KAN; and 29 resistant and 26 susceptible to CAP by MGIT DST. Based on 

the ROC curves (Fig. 1) we chose a concentration of 2 μg/ml for AMK, 5 μg/ml for KAN, 

and 2.5 μg/ml for CAP. At these concentrations, the sensitivity and specificity for AMK 

(Fig. 2C) was 93.3% (95%CI 86.8% to 1.0) and 100%; for KAN (Fig. 2D) 89.7% (95%CI 

81.8% to 97.6%) and 100%; and for CAP (Fig. 2E) 93.1% (95%CI 86.5% to 1.0) and 96.2% 

(95%CI 91.2% to 1.0), respectively.

Phase II

Using the selected breakpoints from Phase I, the three GCDD laboratories performed a 

validation test of the second-line drugs in the MODS assay using isolates with known MGIT 

DST results. In total, 89 isolates were tested [53 isolates tested once; 3 isolates, 2 times; 3 

isolates, 5 times and H37Rv, 15 times]. High concordance with both resistant and 

susceptible isolates was observed for MOX (95.5%), OFX (94.4%), AMK (96.6%), KAN 

(95.5%), and CAP (92.1%). For all drugs the discordance was always, with exception of one 

isolate, due to the MODS result being resistant and MGIT being susceptible, i.e., MODS/

MGIT: R/S – MOX, 4; OFX, 5; AMK, 3; KAN, 4; CAP, 3; S/R – CAP, 1. Replicate MODS 

results showed perfect reproducibility.

Phase III

Using the same breakpoints a validation test was performed using smear-positive sputa. The 

smear grades 3+, 2+, and1+ were evenly distributed among the specimens, representing 90% 

of specimens tested with remaining 10% being scanty. Concordance between MODS and 

MGIT was 100% for all five drugs in two laboratories. In the third laboratory, 100% 

concordance was observed for AMK, KAN, and CAP, whereas it was 96% for MOX and 

OFX. The discordance observed with MOX and OFX was due to one discrepant result 

between the MODS and MGIT. In both instances, the discrepancy was one of the three 
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replicates tests with MODS being resistant and MGIT being susceptible. The reproducibility 

of the MODS assay was determined by comparing the results from tests conducted on three 

consecutive days. Of the 30 specimens tested in triplicate, 88/90 (98%) yielded reproducible 

results.

Phase IV

In the final phase of the study, a larger number of prospectively collected specimens were 

tested using the same breakpoints as in Phases II and III. Of the 156 sputum specimens 

tested, 23 (14.7%) were smear negative, seven (4.5%) were MGIT culture negative, and one 

(0.6%) was MGIT culture contaminated. 148 MGIT DST results were available for 

comparison to the MODS results.

Of the 156 MODS tests, 14 (9%) had no growth in growth control wells, five (3.2%) were 

contaminated, one grew non-tuberculous mycobacteria, and 136 (87.2%) were interpretable. 

The mean time to detection of MTB bacilli in the growth control wells (an interpretable 

MODS result) was 13.2 days (95%CI 11.9 – 13.3). MODS results were available on four 

samples that were either culture negative, culture contaminated or failed to provide a result 

on MGIT DST. MODS results were available for 10/23 (43.5%) smear-negative specimens.

One hundred and thirty-five samples with both MODS and MGIT DST results were 

analyzed further to determine MODS assay performance (Table 2). The MGIT results for 

AMK and KAN for one isolate were not available thus this isolate was removed from further 

analysis. Concordance between MODS and MGIT was high for all 5 drugs (Table 3). As 

observed in Phase II, with one exception all discrepant results were false-resistant MODS 

results.

Discussion

In this study we chose breakpoints for the fluoroquinolones and injectable drugs tested 

which demonstrated high sensitivity and specificity when compared to the MGIT DST 

results. A recent publication advocates the use of wild-type strains with minimum inhibitory 

concentration distributions, in combination with data on clinical outcomes, 

pharmacokinetics and pharmacodynamics to determine critical concentrations.22 The 

isolates we used for determining the breakpoints were obtained from patients receiving 

combination therapy with fluoroquinolones and injectable second-line drugs. The inability to 

use wild-type isolates with known MICs and clinical outcomes in determining breakpoints is 

a limitation of this study but does not appear to have affected our ability to determine 

reliable breakpoints.

The MODS assay was tested in three phases – one with clinical isolates and two with 

sputum specimens. In all three phases the MODS results for the second-line drugs were 

highly concordant with the MGIT DST results. Furthermore, reproducibility among 

repetitive tests was 98%. The number of indeterminate results due to contamination was 

very low when testing sputum sediments. In one laboratory there were 14 MODS test 

failures due to no growth in control wells in the second phase of sputum testing. The failures 

did not correlate with low MTB loads in the sputum and occurred at the beginning of the 
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testing phase. This suggests the “no growth” control wells were a result of technical issues 

that were resolved once the test was performed on a routine basis. Surprisingly, 43.5% of the 

smear negative specimens yielded results for all five drugs.

The number of discrepant results between MODS and MGIT was relatively low; however, 

discrepancies were observed with each of the drugs when testing clinical isolates and 

sputum sediments. All discrepancies, with two exceptions, were false-resistant MODS 

results that suggest that the MODS breakpoints for some of the drugs may be too low and/or 

the minimum inhibitory concentrations of the isolates with discrepant results are close to the 

critical concentrations. The diagnostic accuracy of this assay is being evaluated with a large 

number of prospectively collected specimens in the GCDD Clinical Observation Phase. 

These data will either substantiate or refute this trend.

There are only two published reports describing critical concentrations for MODS second-

line drug testing. In a comparative study of agar proportion, MGIT DST, Nitrate Reduction 

Assay and MODS assay (indirect testing) the breakpoint for OFX was determined to be 2 

μg/ml and 0.5 μg/ml for MOX.22 The MOX concentration coincides with that determined in 

our study; however, the OFX concentration is 2-fold higher (1 μg/ml). A more recent study 

used ROC curves and Kaplan Meier analysis to determine the critical concentrations for 

KAN and CAP in the MODS assay with culture-positive sputa (direct testing).14 The cutoff 

point for KAN was defined as 5 μg/ml which is the same as in our study whereas the 

breakpoint for CAP was 4-fold higher than the concentration we chose to use. Thus these 

studies suggest that higher cutoff concentrations for OFX and CAP may more clearly 

differentiate isolates that are drug susceptible and resistant.

The median time to obtain an interpretable MODS result was 13.2 days which is longer than 

reported in some studies23,24; however, shorter than the mean time of 23 days required to 

perform MGIT 960 culture and MGIT DST25. Reasons for the longer MODS completion 

time could be the relative inexperience of the laboratories in reading and interpreting MODS 

assay data and/or the slow growth rate of some drug resistant isolates.

The strengths of our study are we tested MTB isolates and sputa from three distinct 

geographic locations where the frequency of resistance for these five drugs differs and the 

exposure to these drugs and treatment regimens vary, and we demonstrated accurate and 

reproducible results when MODS assays were prepared and tested in three separate 

laboratories. In conclusion, the second-line MODS assay yielded comparable results to 

MGIT second-line DST, and is thus a promising alternative. Further studies with sputum 

specimens are needed to confirm the accuracy of the individual drug breakpoints and the 

reliability of the MODS second-line DST as a direct test.
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Figure 1. 
ROC curves for (A) MOX, (B) OFX, (C) AMK, (D) KAN, (E) CAP. Drug concentrations 

that reach furthest to the top left corner represent those with highest sensitivity and 

specificity, and these were selected as the candidate breakpoints for the MODS second-line 

DST assay
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Table 1

Drug concentrations used in the development of the MODS 2nd line DST

Drug MGIT DST (μg/ml) Phase I (μg/ml) Phase II, III, IV (μg/ml)

Isoniazid (INH) 0.1 Not applicable 0.4

Rifampicin (RIF) 1.0 Not applicable 1.0

Moxifloxacin (MOX) 0.25 0.125, 0.25, 0.5, 1.0, 2.0, 4.0 0.5

Ofloxacin (OFX) 2.0 1.0, 2.0, 4.0, 8.0, 16.0, 32.0 1.0

Amikacin (AMK) 1.0 0.5, 1.0, 2.0, 4.0 2.0

Kanamycin (KAN) 2.5 1.25, 2.5, 5.0, 10.0 5.0

Capreomycin (CAP) 2.5 1.25, 2.5, 5.0, 10.0 2.5
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Table 2

Distribution of MGIT DST patterns of isolates from MGIT cultures of sputum sediments in Phase IV

MGIT DST patterns (n = 135)

Pan susceptible 50

INH mono-resistant 4

RIF mono-resistant 2

OFX & MOX resistant only 1

INH, RIF, & OFX resistant 2

MDR (INH & RIF resistant) 41

Pre-XDR (MDR + MOX or OFX resistant) 24

Pre-XDR (MDR + KAN or AMK or CAP resistant) 2

XDR (MDR + MOX or OFX + KAN or AMK or CAP) 9
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Table 3

Concordance of the MODS 2nd line DST as compared to MGIT DST in sputum sediments in Phase IV (n = 

135)

A: MOX (Concordance = 97%)

MGIT DST = 0.25 μg/ml MODS = 0.5 μg/ml MGIT DST Susceptible MGIT DST Resistant

MODS Susceptible 94 0

MODS Resistant 7 34

B: OFX (Concordance = 97%)

MGIT DST = 2 μg/ml MODS = 1 μg/ml MGIT DST Susceptible MGIT DST Resistant

MODS Susceptible 95 0

MODS Resistant 4 36

C: AMK (Concordance = 99.3%)

MGIT DST = 1 μg/ml MODS = 2μg/ml MGIT DST Susceptible MGIT DST Resistant

MODS Susceptible 123 0

MODS Resistant 1 10

D: KAN (Concordance = 99.3%)

MGIT DST = 2.5 μg/ml MODS = 5μg/ml MGIT DST Susceptible MGIT DST Resistant

MODS Susceptible 123 0

MODS Resistant 1 10

E: CAP (Concordance = 94.8%)

MGIT DST = 2.5 μg/ml MODS = 2.5μg/ml MGIT DST Susceptible MGIT DST Resistant

MODS Susceptible 119 1

MODS Resistant 6 9
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