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Abstract

Sole reliance on one drug, Praziquantel, for treatment and control of schistosomiasis raises concerns about development of
widespread resistance, prompting renewed interest in the discovery of new anthelmintics. To discover new leads we
designed an automated label-free, high content-based, high throughput screen (HTS) to assess drug-induced effects on in
vitro cultured larvae (schistosomula) using bright-field imaging. Automatic image analysis and Bayesian prediction models
define morphological damage, hit/non-hit prediction and larval phenotype characterization. Motility was also assessed from
time-lapse images. In screening a 10,041 compound library the HTS correctly detected 99.8% of the hits scored visually. A
proportion of these larval hits were also active in an adult worm ex-vivo screen and are the subject of ongoing studies. The
method allows, for the first time, screening of large compound collections against schistosomes and the methods are
adaptable to other whole organism and cell-based screening by morphology and motility phenotyping.
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Introduction

Infection with parasitic worms (helminths) causes a huge burden

of human disease [1] and economic loss to the livestock industry

[2]. Currently the major control strategy for the human diseases is

by large scale drug administration to schools or by mass drug

administration [3]. However, the drugs available are limited in

number and efficacy and their increasing use worldwide raises

concerns about the development of drug resistance [4,5].

Schistosomiasis affects an estimated 600 million people [6] but

only one drug, praziquantel (PZQ), is commercially available for

its treatment and control. PZQ is poorly effective against the

immature worms [7] and its increasingly widespread use [8] fuels

concerns about drug resistance developing [9]. There have been

sporadic reports of treatment failures with PZQ [10,11,12] and

strains isolated from such cases show lower susceptibility to PZQ

[13]. However, since the development of PZQ [14] there has been

limited interest in discovery of new schistosomicides apart from the

recent identification of oxadiazole-2-oxides as lead compounds

[15] and of anti-schistosome activities for some anti-protozoal

drugs [16,17].

The approved anthelmintics invariably were discovered by in

vivo screening in animal models. However the low throughput

and high costs of these models limits the discovery of new anti-

helminth agents. Therefore new high-throughput, in vitro

phenotypic screening methods are necessary to advance the

discovery of new anthelmintics including anti-schistosome

compounds. In the recent past small, focussed, compound

collections have been screened against adult schistosomes

recovered from rodents [18,19]. To facilitate screening of larger

compound collections microplate-based visual assays were

developed using in vitro-derived larval stages, schistosomula,

which can be generated in very large numbers [20,21]. With a

view to standardization and automation methods other than

manual visual assessment have recently been applied to evaluate

drug-induced damage to schistosomula [21,22,23,24]. However

bright-field microscopy is simpler to set up, reveals drug-specific

morphological effects, and is 100% effective in detecting

compounds active in the adult ex-vivo assays [20,21]. To

overcome the need for visual assessment we have developed a

label-free, high content screen (HCS) using automatic bright-

field image analysis to establish and validate a high throughput

screen (HTS) for primary drug screening against schistosomes.

Compound efficacy is assessed by a combination of larval

motility and larval morphology quantified by Bayesian analysis.

The methods make it feasible for the first time to screen very

large compound collections against schistosomes and are

applicable to other larval helminths.
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Materials and Methods

Ethics statement & animals
Experimentation was carried out under the United Kingdom

Animal’s Scientific Procedures Act 1986 with approval from the

London School of Hygiene and Tropical Medicine Ethics

committee. CD1 mice supplied by Charles River, UK were

maintained at St Mary’s Hospital, Imperial College London.

Parasite generation
Schistosoma mansoni was maintained by routine passage and

schistosomula were prepared and cultured in M169 [25] as

previously described [21]. Adult worm ex-vivo drug testing was as

previously described [19].

Compounds
The reference anti-schistosome compounds praziquantel (PZQ)

and dihydroartemisinin (DHA) were obtained from Sigma-Aldrich

(UK), methylclonazepam (MCZ) and Ro15-5458 (Ro15) were a

gift from Dr H. Stohler (Hoffman-La Roche, Basle, Switzerland),

oxamniquine (OX) was from Pfizer Ltd (Sandwich, UK) and

oltipraz (OPZ) from WHO Special Programme for Research and

Training in Tropical Diseases (WHO-TDR; Geneva, Switzer-

land). Compounds were dissolved in DMSO (Sigma-Aldrich, UK).

A 10,041 compound library comprising lead-like compounds was

provided by the Division of Biological Chemistry and Drug

Discovery, University of Dundee.

Plate set up
The last two columns of each test plate were reserved for

controls. The test compound solvent, DMSO, was used as the

negative control and added to 16 wells. Our initial testing of the

image analysis models revealed that OPZ induced the lowest

phenotype and motility scores reflecting the visual assessment that

OLT caused the most severe effects of all of the anti-schistosome

compounds tested. Therefore, OLT was chosen as the positive

reference standard and applied to 8 wells. PZQ, the current

therapy for schistosomiasis, induced intermediate phenotype and

motility scores and so 4 wells of PZQ were included on each plate

as an arbitrary check on plate performance.

Black 384-well clear-bottomed plates were selected for imaging

(PerkinElmer, UK Cat no 6007460). Into each well 0.5 ml of test

compound or DMSO was dry stamped using the Biomek FXp

(Beckman Coulter, High Wycombe, UK). When necessary a prior

intermediate dilution step in DMSO was carried out in V-

bottomed dilution plates (Greiner bio-one, UK, cat no 781280).

Schistosomula (120/well) were added to each well in 80 ml of

M169 media using a Matrix WellMate (Thermo Scientific,

Basingstoke, UK). Plates were then incubated in a Cytomat C2

automatic incubator (Thermo Scientific, UK) at 37uC, 5% CO2

for 3 days.

Imaging
A Scara Robot (KiNEDx Robot KX-300-470, Peak Robotics,

Colorado, USA) controlled by Overlord 3 (Process Analysis and

Automation, Hemel Hempstead, UK) was used for all plate

movements. After 3 days culture schistosomula were redistributed

and disaggregated by using the Biomek FXp programmed to

aspirate and dispense 40 ml of the well contents in each of the 4

corners of each well (63). Bright-field images were collected using

an ImageXpressMicro HCS microscope (IXM; Molecular Devices,

Wokingham, UK) fitted with a PhotometricsCoolSnapHQ camera

(Roper Scientific, Germany). Focussing of the plate and well

bottom was achieved by the IXM high-speed laser auto-focus, with

a 25 mm offset to focus on the larvae.

For motility analysis 566 sec interval time-lapse images were

collected using a 46S Fluor 0.2NA Nikon objective. For detailed

morphology a 106Ph1 Plan Fluor DL 0.3NA Nikon objective was

used to collect 4 adjacent images, which were tiled together to

maximise larval numbers for phenotype analysis. After imaging,

the plates were visualized by two independent assessors using an

inverted microscope (LeitzDiavertWetzlar, Germany).

Statistical analysis
Differences in phenotype and motility scores were measured by

one-way ANOVA with a Dunn’s post-test to measure significant

differences between DMSO control wells and individual drug

treatments. Z factors for both the phenotype and motility scores

were measured on a per plate basis in Pipeline Pilot 8.5 (Accelrys

Inc., San Diego, USA) with an acceptable score being .0.5 [26].

Results

Development of automated image analysis
Production of image library. A library of ,20,000

schistosomula images showing a wide range of drug-induced

morphological effects was created by treating larvae with anti-

schistosome compounds [21]: PZQ, OPZ, MCZ, Ro15, OX,

DHA or culturing alone in M169 media (M169 controls) or media

containing 0.625% DMSO (DMSO controls). A concentration of

10 mg/ml of the anti-schistosome compounds was chosen as this

concentration induced a wide range of differing phenotypes. The

images were captured from 5 plates run on different occasions with

48 wells per condition being imaged on each plate.

Segmentation. Automated image analysis was undertaken in

Pipeline Pilot 8.5 to determine differences in larval phenotype and

motility after drug treatment. Initially, individual schistosomula

were segmented from the background as shown in Figure 1. It

was determined that 120 schistosomula per well gave an optimal

density of larvae to allow for segmentation of sufficient non-

touching parasites at 106 (morphology) and 46 (motility)

Author Summary

Schistosomiasis is a severe helminth infection affecting an
estimated 600 million people. The one drug widely
available, praziquantel (PZQ), is not ideal. PZQ kills the
adult worms but not the developing juveniles so the
treated patient may not be cured long-term. In addition,
use of repeated mass treatment campaigns with PZQ to
control morbidity raises concerns about the development
of drug resistance. Our work is aimed at providing starting
points for drug discovery programs for schistosomiasis by
screening large compound libraries against whole organ-
isms. Praziquantel and several other known anti-schisto-
somal drugs are also active in vitro against the adult worms
and the larval stages, schistosomula. The latter are ideal for
novel drug screening as they can be produced in large
numbers in vitro, are small and so are amenable to
screening in microwell plates. Drug activity can be
assessed visually but this is subjective and laborious. We
have built an automated system for assessing drug action
involving the collection of images of the larvae and the
development of computer algorithms to analyze their
morphology and motility, defining them as ‘‘hits’’ or ‘‘non-
hits.’’ The method is reliable, consistent and efficient,
making it feasible, for the first time, to screen large
compound collections.

Whole Organism HCS by Bayesian Classification
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magnification. The mean6SD numbers of segmented larvae per

well over a 10,041 compound validation set were 29.468.5 at 46
and 25.368.8 at 106.

Phenotyping protocol. The segmented larval images in the

image library were manually classified as a hit (severely damaged

or clearly dead) or non-hit using a custom interface (Fig. S1) built

in Pipeline Pilot 8.5. Numerous image descriptors including pixel

intensities, morphological and texture properties (Table S1) of the

,20,000 segmented larvae were calculated by Pipeline Pilot 8.5.

These properties were each divided into 25 bins spanning the

range of values from manually phenotyped larvae. The occurrence

of values in an individual bin for a given descriptor among the

non-hit larvae was compared to its occurrence among the hit

larvae. Descriptor, bin pairings, which were predominantly seen in

just ‘‘hit’’ or just ‘‘non-hit’’ larvae, were then considered to be

strong predictors of larval state. The collection of these predictors

constitutes our two class Laplacian-modified Bayesian categoriza-

tion model of the differences between larvae manually classified as

a hit or non-hit.

A second Bayesian categorization model was similarly con-

structed to classify drug-specific phenotypes. In this case image

descriptors of larvae treated with the specific anti-schistosome

compounds were used to generate a multi-category Bayesian

categorization model which predicts to which compound the larval

phenotype most closely corresponds, termed ‘drug treatment

class’. In any given test well the most frequent drug treatment class

ascribed to segmented larvae is taken as the class for the well.

For application of the automatic image analysis to subsequent

test wells, image descriptors were collected from individual

segmented larvae and then processed through the Bayesian

models. For each larva these models generate a larval phenotype

score, and its drug treatment class. The values per well were the

average phenotype score and the highest frequency treatment class

respectively. Based on empirical observations data collected from a

minimum of 10 segmented larvae was considered as reliable for

the mean phenotype score. Wells with fewer segmented larvae are

automatically rejected and reported as failures requiring manual

review (see Reporting section below).

Validation of the phenotype model using anti-

schistosome drugs. The screen was initially tested using a

total of 15 plates run on several different occasions, each

containing replicate columns of controls or anti-schistosome drugs.

The mean6SD raw Bayesian model scores generated ranged from

1.2161.02 for DMSO controls to 234.9262.46 for OPZ. The

phenotype score generated by this model reflects the probability

that a test larva being analysed is similar to the controls entered

into the model, with a score close to 0 demonstrating that the larva

is very similar to the control larvae and a highly negative score

demonstrating that it is very different to control larvae. It was

observed that scores generated for the DMSO control wells varied

a little between individual plates run at different times and with

different batches of schistosomula. To compensate for such

variation in the raw Bayesian model scores, individual test

compound scores from a particular plate were adjusted relative

to the corresponding controls on the same plate by subtracting the

DMSO control mean from the test score. To avoid working with

negative score values, which were incompatible with some of the

software, 40 was added to all larval scores including all controls

(235 being the highest score we have ever recorded from any

larva). The number derived was then divided by the mean value

for the DMSO control larvae. In this way the mean value for the

DMSO controls becomes 0 and the most severely disrupted, dead

larvae approach 21. The adjustment of test scores relative to the

DMSO controls on the same plate allowed the effects of test

compounds from the same library, but tested on different plates, to

be compared and ranked.

Figure 2A shows results from 5 representative plates of the 15

tested. Significant differences (p,0.001) were detected between

the mean phenotype scores of the controls and each of the anti-

schistosome drugs. OX had the least effect with phenotype scores

overlapping with the controls. There was no such overlap for the

other anti-schistosome drugs. As expected OPZ induced the lowest

phenotype score (20.7360.06) i.e. the most severe phenotype,

whilst PZQ induced a score of 20.3760.08. Z factor analysis

based on the positive (OPZ) and negative (DMSO) controls for 15

different standard test plates was evaluated to determine the

robustness of the phenotype assay between different imaging days

and batches of larvae. The resulting Z factor score was 0.5226

(Fig. 2B) demonstrating the suitability of this assay for HTS

screening.

Treatment class categorization based on anti-schistosome drug

larval morphology was also assessed with characteristic drug effects

being shown in Figure 2C. With the exception of Ro15, the

treatment class model successfully predicted $88% of wells treated

with anti-schistosome compounds and on average .50% of larvae

within the wells were correctly predicted (Fig. 2D).

Motility analysis protocol. Determination of larval motility

was carried out through the analysis of time-lapse images in

Pipeline pilot 8.5. Motile schistosomula frequently elongate and

then round up but tend not to translocate across the well bottom

so that, as also noted recently by Lee et al. 2012 [27], the centroids

of the parasites move only small distances in a given time.

Therefore, to assess motility, the cumulative change in area

occupied by individual larvae between time frames was calculated

(Fig. 3A). Larval boundaries that overlapped between successive

time frames defined individual larvae. Only larvae which co-

localized in 4 or 5 consecutive time frames and did not touch

adjacent segmented larvae were included in the analysis. The use

of 5 time-lapse images at 6 sec intervals was established

empirically and reflected the balance between the need for co-

localization of larvae in successive images, sufficient mean

movement and overall time for imaging a well. For a given larva

the cumulative change in area was divided by the average size of

the larva to allow for differences in parasite size. The final motility

score for a well was the average across all segmented larvae. Wells

with scores from fewer than 10 schistosomula were deemed

failures but were assessed manually during the reporting proce-

dures (see below).

Validation of the motility model using controls and

standard drugs. The motility model was assessed using the

Figure 1. Representative example of the segmentation of control and praziquantel treated schistosomula. Images for analysis were
captured on an Images Xpressmicro (A). Initially an adaptive threshold was applied to each individual pixel within the image to highlight objects
within the image (B). Objects highlighted by the threshold where then closed to encapsulate whole larvae using basic greyscale morphology. For
each object, background and centre points were calculated so watershed segmentation could be applied to enhance segmentation of the larvae.
Filters based on area, perimeter and form factor were then applied to the mask to remove any objects too large or small to be individual larvae taking
into account whether 106or 46 images were being analysed (C). The individual objects were then traced (D) before the mask (red) was applied to
the original image (E). The completed mask was then broken down to separate objects and applied to the original images so individual larvae could
be segmented from the background.
doi:10.1371/journal.pntd.0001762.g001
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Figure 2. Automated image analysis of larval phenotype following treatment with anti-schistosome drugs. (A) Phenotype scores
produced by the Bayesian prediction model from 5 replicate plates containing controls (M169/DMSO) or anti-schistosome drugs (10 mg/ml),
praziquantel (PZQ), oltipraz (OPZ), methylclonazepam (MCZ), Ro15-5458 (Ro15), oxamniquine (OX) and dihydroartemisinin (DHA). N = 120 wells per
condition and significance values were measured by non-parametric one-way ANOVA with individual drug treatment being compared to the DMSO
controls wells by a Dunn’s comparison post test, *** = p,0.001. NS; not significant. (B) Z factor analysis based on the distribution of the negative
(DMSO; circle) and positive controls (OPZ; triangle) from 15 analyzed plates of anti-schistosome compounds (dotted lines represent the upper and
lower thresholds). (C) Typical larval phenotypes and phenotype scores induced by the anti-schistosome drug treatments or media (M169) and solvent
(DMSO) controls. (D) Drug treatment class prediction for wells treated with the anti-schistosome drugs and the mean number of correctly predicted
larvae per well.
doi:10.1371/journal.pntd.0001762.g002
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15 plates of anti-schistosome compounds described above. The

mean6SD raw motility scores ranged from 1.3560.19 for DMSO

to 0.07160.02 for OPZ. As for the phenotype analysis, motility

scores for test compounds were adjusted to compensate for plate to

plate variation between the control larvae. For this, the DMSO

control motility mean was subtracted from the test score and

divided by the DMSO control motility mean for a given plate.

Figure 3B shows results from 5 representative plates. Motility

scores for DMSO controls were significantly (p,0.001) different

from all of the anti-schistosome compounds and there was no

overlap of motility scores apart from for 3 OX wells. OPZ and

DHA induced the greatest effect on motility whilst PZQ treatment

resulted in only a partial restriction in motility. Z factor analysis

using the OPZ positive control and DMSO negative controls wells

showed this assay to be suitable for high throughput screening

(Fig. 3C) with a Z Factor score of 0.5765.

Combined analysis & hit threshold definition. Although

the phenotype and motility algorithms each worked well in

distinguishing drug-treated from control parasites, combined

analysis of both measures has the potential to provide even more

robust discrimination. Figure 4A shows a plot of both scores for a

set of 3 plates containing anti-schistosome compounds tested at

10 mM, which is the concentration we routinely use for primary

screening. The scores for all of the anti-schistosome drugs apart

from DHA and Ro15 clustered distinctly from the controls with

OPZ showing the most severe effects. However, the DHA and

Ro15 scores were clustered with the controls, in contrast to their

effects at 10 mg/ml (35.2 and 25.4 mM, respectively) which are

shown in Figures 2 & 3.

All the wells treated with anti-schistosome compounds were also

visually assessed for hit status based on the hit criterion of $70%

damaged or dead larvae per well as previously described [21]. All

of the wells of anti-schistosome compounds apart from DHA and

Ro15 were recorded as hits (Fig. 4B). Based on these results,

thresholds for phenotype and motility scores, which reliably

delineated visual hit/non-hit wells treated with 10 mM anti-

schistosome drugs, were selected as 20.15 for the phenotype and

20.35 for the motility scores (Fig. 4B).

We next tested the platform against a random selection of

compounds which had been screened as hits/non-hits in a primary

in vitro S. mansoni adult worm assay for the WHO-TDR Helminth

Drug Initiative [19]. The larval algorithm scores for all of the adult

hits fell below 20.25 phenotype and 20.8 motility scores i.e. well

within the hit threshold levels (Fig. S2).

Plate reporting. An automatically-generated, interactive,

reporting system was developed within Pipeline Pilot 8.5 to allow

Figure 3. Automated image analysis of larval motility following treatment with anti-schistosome compounds. Original images were
firstly segmented as described Figure 1 and then the cumulative change in area for each individual larva measured over 5 time frames. The scores
for individual larvae were averaged to generate a motility score per well. (A) Illustration of differences in larval motility between a high motility well
(DMSO) with low overlap between larval location in successive time frames (red boundaries), a medium motility well (PZQ; praziquantel) and low
motility wells with almost perfect overlap between successive time frame boundaries (DHA; dihydroartemisinin & OPZ; oltipraz). (B) Representative
motility scores from 5 plates of anti-schistosome compounds (10 mg/ml), n = 120 wells per condition and significance values were measured by non-
parametric one-way ANOVA with individual drug treatments being compared to the DMSO controls wells using a Dunn’s comparison post test,
*** = p,0.001. NS; not significant. (C) Z factor analysis based on the distribution of the negative (DMSO; open circle) and positive controls (OPZ;
closed triangle) from 15 plates (dotted lines represent upper and lower thresholds).
doi:10.1371/journal.pntd.0001762.g003
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manual assessment of images and analysis scores on a per plate

basis (Fig. S3). Reports allow the recall of images and all well

scores in order to remove false positives (commonly due to

crystallization of test compounds). Acceptable assay performance is

assessed by confirmation of the viability of the control larvae

(mean raw phenotype score .25 and motility score .0.6) and an

acceptable Z factor score of .0.5. Plates that did not conform to

these scores would be considered failures.

Validation using a 10,041 lead compound library
Following preliminary assessment of appropriate screening

concentration/hit rate, the 10,041 compound library was screened

at 10 mM. All of the plates were also visually scored by two

independent assessors [21]. Using the HCS hit thresholds defined

above, all the visual hits (379) apart from four were determined to

be hits by the automatic analysis (Figs. 5A & B). Three of the

failures were ascribed scores which fell just outside the hit

threshold and one failed to segment due to the parasites remaining

aggregated. The hit region also contained 109 wells which were

visual non-hits (i.e. false positives by HCS). Of these, 86 were wells

containing compound crystals. All of these were readily rejected as

hits on manual review of the corresponding images in the

automated HCS plate reports by marking the ‘‘Non-Hit check-

box’’ (Fig. S3E). Overall, during the manual plate reading, 780

wells were found to have crystals, of which 130 were deemed to be

hits. Importantly, all of these fell in the HCS hit region. A novel

phenotypic effect (internal vacuolation) was also identified during

visual assessment/plate reporting for a number of compounds, a

proportion of which were scored as hits by the HCS. Visually,

larval viability was not considered sufficiently reduced to designate

these as hits and none of the compounds were active in the adult

assay. Z factor scores were reviewed to assess plate performance

during screening (Fig. 5C) all of which were within an acceptable

range.

Hits from the screen were also analysed and grouped according

to larval phenotype by the Bayesian categorization model to

determine which anti-schistosome compound they most resem-

bled. From the 378 hits, 175 were ascribed to the OPZ treatment

class, 60 to PZQ, 13 to MCZ, 83 to Ro15, 34 to OX and 13 to

DHA.

Repeat validation
The assay was further validated by re-testing a selection (796) of

hits and non-hits from the 10,041 compound library along with

compounds from the WHO-TDR set. There was a high level of

concordance between the initial and repeat testing (92.3% for

morphology, Fig. 6A; 95.2% for motility, Fig. 6B).

Secondary screening of compounds: Adult assay
In vitro testing against ex-vivo adult worms is a crucial secondary

screen since the adult worm is the key target of drug action.

Preliminary testing of a few of the larval hits in the secondary adult

worm assay [19] at 10 mM yielded a very low hit rate and so the

hits were all tested at 20 mM which gave 45 adult hits. Plotting the

larval phenotype and motility scores for these hits (Fig. 7) showed

that the majority corresponded to severe larval phenotypes but a

few were scattered throughout the hit threshold region. The

number of hits ascribed to different treatment classes were OPZ

28, PZQ 6, DHA 4, Ro15 4, OX 2 and MCZ 1. Subsequent IC50

testing of the adult hits identified 7 compounds which had IC50s

of ,10 mM and which are the subject of on-going studies. These

compounds were attributed the drug treatment classes OLT 5,

PZQ 1, OX 1.

Figure 4. Combined phenotype and motility analysis compared with visual hit assessment for larvae treated with known anti-
schistosome compounds. (A) Combined phenotype and motility scores for larvae treated with 10 mM praziquantel (PZQ; red), oltipraz (OPZ;
black), methylclonazepam (MCZ; orange), Ro15-5458 (Ro15; blue), oxamniquine (OX; purple) dihydroartemisinin (DHA; yellow) and controls (M169;
aqua & DMSO; green). (B) Visual assessment of hits (red) or non-hits (blue) for the wells shown in (A) with a visual hit defined as $70% damaged or
dead schistosomula within a well [21]. Based on this, the dotted line shows the thresholds selected for definition of the hit region (20.15 for the
phenotype score and 20.35 for the motility score). N = 1500 wells across 5 plates containing anti-schistosome drugs.
doi:10.1371/journal.pntd.0001762.g004
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Figure 5. Analysis of larval phenotype and motility for the Dundee 10,041 Compound Library. (A) Combined phenotype and motility
analysis of wells treated with 10 mM of the compounds. Visually assessed hits are shown in red, non-hits in blue and non-hits with compound crystals
in the well in yellow. The hit region for automated image analysis as determined above using the anti-schistosome compounds is delineated by the

Whole Organism HCS by Bayesian Classification
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Discussion

Whole organism screens have an advantage over more target-

based approaches as hit compounds can be directly translated into

new therapeutics and it has been suggested that the lack of these

screens has impacted on the discovery of new compounds [28].

We have established the first HTS for whole organism screening of

helminths based on bright-field HCS analysis of morphological

and motility changes in schistosome larvae. The published

examples of primary high content drug screens are predominately

cell-based [29,30]. A few involving whole organism screens for

Caenorhabditis elegans [31], zebrafish embryos [32], Leishmania major

[33] and Plasmodium falciparum [34] have been reported. These

exploit use of fluorescent probes or proteins since fluorescence

provides more contrast, sharpness and discrimination compared

with transmitted-light imaging. However, use of fluorescent probes

often involves more manipulations and use of potentially toxic

fluorophores [35]. Furthermore, fluorescent transgenic lines are

not available for certain organisms of interest including parasitic

helminths.

Transmitted-light imaging and analysis has been developed for

whole well segmentation of C. elegans [36] and to demonstrate

drug-induced motility changes using optical flow in adult Brugia

malayi [37]. Our approach focussed on the development of bright-

field imaging of morphology and motility of larval schistosomes

directly comparable to the manual visualization used previously

[20,21]. This requires segmentation and analysis of whole

organisms as has been described for C. elegans [31,38,39]. Our

segmentation method differs from previously reported approaches

applied to schistosomula, which used a single threshold and aimed

to segment touching larvae [40,41]. The protocol we describe uses

an adaptive threshold (relative to regional background intensity)

and avoids the need to segment touching organisms due to

successful larval resuspension prior to imaging. This resulted in

capture of sufficient individual larvae ($10/well) at 46 and 106
for analysis in 97.8% wells from the 10,041 compound library.

Analysis of cells or whole organisms by HCS has the potential to

generate image profiles to define characteristic drug phenotypes

[42] which may ultimately be interpretable in relation to

compound activity, modes of action and molecular targets,

currently undefined for any of the known schistosomicides [43].

Different schistosomicides induce a range of distinct morpholog-

ical effects in both adults [19] and larvae [20] which led us to

develop the treatment class model, grouping test compounds

causing similar effects to the anti-schistosome drugs. In screening

the 10,041 compound library, larval treatment classes ascribed to

adult hits with IC50,10 mM were OLT 5, PZQ 1, OX 1. Using

an alternative approach to our Bayesian treatment class model,

agglomerative hierarchical clustering or DBSCAN has been

recently developed [41] to ascribe larval phenotypes according

to defined morphological classes. The utility of such classifications

models according to phenotype may become clear as more hits are

detected and structure/activity relationships are understood.

The Bayesian models developed here can also be readily

modified by uploading larval images of any novel phenotypic

effects identified during image review for any compounds of

particular interest e.g. those which show adult worm activity.

Similarly the models could be modified by addition of images of

dashed lines. (B) Performance of the Automated image analysis categorization compared to the visual assessments. (C) Z factor analysis of phenotype
(open) and motility (closed) per plate of the Dundee compound library.
doi:10.1371/journal.pntd.0001762.g005

Figure 6. Reconfirmation screen of selected hit and non-hit compounds. Phenotype (A) and motility (B) results from initial screening
(Phenotype/Motility score 1) and repeat screening (Phenotype/Motility score 2). Hits which repeated (red), non-hits which repeated (blue) and tests
which did not repeat (yellow).
doi:10.1371/journal.pntd.0001762.g006
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novel phenotypes deemed on manual review not to warrant hit

status e.g. those causing internal vacuolation identified during our

screening.

The HCS was validated using several compound collections. At

10 mM, a commonly used concentration for primary screening, the

models reliably and reproducibly distinguished all of our reference

schistosomicides from the controls with the exception of DHA and

Ro15. This is not considered a failure of the primary assay since

both of these compounds are inactive in the visual larval and adult

worm in vitro assays at 10 mM. Based on the results with the anti-

schistosome drugs, hit thresholds of 20.15 for phenotype and

20.35 for motility were established and proved robust in detecting

40 previously tested adult hit compounds [19] and 99.8% of

visually assessed hits from the 10,041 compound library. The HCS

produced a false positive rate of 1.1%, mostly (78%) due to the

precipitation of test compounds in wells which in fact contained

healthy parasites and which were readily redefined as non-hits

during routine reviewing of the automated plate reports.

The HCS offers significant advantages over other recent

approaches to objective quantitation of schistosomula damage.

Peak et al. (2010) [23] successfully assessed severe drug effects

based on uptake of fluorescent markers but the assay involves

multiple wash steps and was unable to detect more subtle effects

e.g. caused by PZQ. An assay based on use of the redox indicator,

Alamar Blue, was similarly less sensitive than visual assessment for

more subtle effects and was influenced by variation in parasite

numbers per well [21]. Isothermal microcalorimetry [44],

assessment of motility via electrical impedance measurement

[45] and optical flow [37] are also able to quantitate drug effects in

schistosomes, but are not currently readily adaptable to high

throughput applications.

Much of the HTS described is automated and simple to

operate. Once test plates have been set up and left for 3 days in the

Cytomat incubator, the image capture and analysis systems would

run automatically after opening ‘‘Overlord 3’’, the automation

control software and pressing ‘‘run’’. Thereafter, plates emerge

from the Cytomat and are robotically moved around for barcode

reading, parasite resuspension, imaging and then return to the

cytomat. Subsequent analysis involves opening Pipeline Pilot 8.5

and running the analysis protocol. Once complete the plate reports

are accessible within an intranet web-port. To become sufficiently

familiar with the current customized system would require only a

couple of days of training and completing a few test runs. Basic

modification of the analysis protocols e.g. to run fewer test

compounds in a plate, would require some familiarity with

Pipeline Pilot 8.5 as well as MetaXpress software which controls

the IXM microscope. More significant alterations of the protocols

would require in-depth knowledge of all the different software

involved. Currently the platform takes 2 hrs to image a 384 well

plate and a further 2 hrs to analyse the phenotype and motility

images. The system can be programmed to start imaging at any

time of the day and could run close to continuously. So if test

plates were set up on each of 4 days per week, the throughput,

limited by plate reading, would be ,48 plates or 16,896

compounds/week which would require around 26106 cercariae/

week. In fact it is cercarial production which is limiting our current

throughput capability to around 10 plates twice per week (,7,000

compounds/week, 350,000/year).

In conclusion, the HCS described is suitable for primary

screening of large compound collections for activity against

schistosomes. Further studies are ongoing to adapt this system to

screen against several species of nematode larvae of medical and

veterinary importance, which may allow parallel testing of libraries

against various helminths.

Supporting Information

Figure S1 Schistosoma Analysis Platform custom inter-
face. The custom interface enables selection and viewing of a

particular plate (A) and well (B). This subsequently loads individual

wells (C) and segmented larval images (D). Each segmented larva

can be selected (E) and manually phenotyped with a selection of

criteria (F) along with the anti-schistosome compound with which

the well was treated.

(TIF)

Figure S2 Combined larval phenotype and motility
analysis of compounds initially screened against adult
worms. Larval phenotype and motility scores for compounds

from a previously tested WHO/TDR compound library which

were adult hits (red) or non hits (blue) (N = 40 of each).

(TIF)

Figure S3 Interactive plate report. Data from a chosen

plate is displayed in the interactive web port via a tabbed table, bar

charts and a phenotype/motility scatter plot (A). Data from a

particular well can be highlighted in the table or on the scatter plot

by clicking on a cell in the table or a point on the graph. This will

also display the appropriate phenotype and motility images in the

dynamic container (B). Clicking on these enlarges them and also

shows images and phenotype scores of the individual larvae (C) or

motility scores for individual larvae (D). Once a well has been

assessed to be a hit or non-hit, the table can be updated by clicking

the appropriate check box (E) which once submitted (F) will

update the database.

(TIF)

Table S1 Image descriptors used to build Bayesian
models. Image descriptors including morphological properties

(size, solidity, circularity, eccentricity) pixel intensity properties

(normalized intensity mean, standard deviation, skewness, etc.)

and texture properties at multiple length scales (spatial moments,

central moments, Hu moments, co-occurrence correlation, co-

Figure 7. Secondary adult hit screening of larval hits for the
Dundee 10,041 Compound Library. Larval phenotype and motility
scores for the compounds which were tested in the secondary adult
assay. Adult hits are depicted in red and non-hits in grey.
doi:10.1371/journal.pntd.0001762.g007
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occurrence entropy etc.) were used to build both Bayesian models

for phenotype scoring and phenotype classification.

(TIF)

Acknowledgments

We wish to thank Ken Duncan and Richard Elliott for their advice

throughout the project. We also wish to thank Julie Frearson for all her

advice on high-throughput instrumentation and Paul Andrews for help in

HCS selection, Malcolm Crook for advice on laboratory automation and

Paul Wyatt for arranging the supply of the compound library from the

University of Dundee’s compound collection.

Author Contributions

Conceived and designed the experiments: QDB ALH RAP. Performed the

experiments: RAP NRM AG. Analyzed the data: RAP QDB NRM.

Contributed reagents/materials/analysis tools: IHG IH LSB AEB IM.

Wrote the paper: RAP QDB.

References

1. Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, et al. (2008) Helminth

infections: the great neglected tropical diseases. The Journal of clinical
investigation 118: 1311–1321.

2. Knox MR, Besier RB, Le Jambre LF, Kaplan RM, Torres-Acosta JF, et al.

(2011) Novel approaches for the control of helminth parasites of livestock VI:
Summary of discussions and conclusions. Veterinary parasitology.

3. WHO (2010) Working to overcome the global impact of neglected tropical

diseases. WHO/HTM/NTD/20101 Geneva, 2010.

4. WHO (2011) Working to overcome the global impact of neglected tropical

diseases. Update 2011. WHO/HTM/NTD/20113 Geneva, 2011.

5. Geary TG, Woo K, McCarthy JS, Mackenzie CD, Horton J, et al. (2010)
Unresolved issues in anthelmintic pharmacology for helminthiases of humans.

International Journal for Parasitology 40: 1–13.

6. King CH (2010) Parasites and poverty: the case of schistosomiasis. Acta Trop

113: 95–104.

7. Sabah AA, Fletcher C, Webbe G, Doenhoff MJ (1986) Schistosoma mansoni:
chemotherapy of infections of different ages. Experimental parasitology 61: 294–

303.

8. Fenwick A, Webster JP, Bosque-Oliva E, Blair L, Fleming FM, et al. (2009) The

Schistosomiasis Control Initiative (SCI): rationale, development and implemen-
tation from 2002–2008. Parasitology 136: 1719–1730.

9. Cioli D (2000) Praziquantel: is there real resistance and are there alternatives?

Curr Opin Infect Dis 13: 659–663.

10. Stelma FF, Talla I, Sow S, Kongs A, Niang M, et al. (1995) Efficacy and side

effects of praziquantel in an epidemic focus of Schistosoma mansoni. American
Journal of Tropical Medicine and Hygiene 53: 167–170.

11. Guisse F, Polman K, Stelma FF, Mbaye A, Talla I, et al. (1997) Therapeutic

evaluation of two different dose regimens of praziquantel in a recent

Schistosoma mansoni focus in Northern Senegal. American Journal of Tropical
Medicine and Hygiene 56: 511–514.

12. Ismail M, Metwally A, Farghaly A, Bruce J, Tao LF, et al. (1996)

Characterization of isolates of Schistosoma mansoni from Egyptian villagers
that tolerate high doses of praziquantel. American Journal of Tropical Medicine

and Hygiene 55: 214–218.

13. Cioli D, Botros SS, Wheatcroft-Francklow K, Mbaye A, Southgate V, et al.

(2004) Determination of ED50 values for praziquantel in praziquantel-resistant
and -susceptible Schistosoma mansoni isolates. International Journal for

Parasitology 34: 979–987.

14. Caffrey CR, Secor WE (2011) Schistosomiasis: from drug deployment to drug

development. Curr Opin Infect Dis.

15. Sayed AA, Simeonov A, Thomas CJ, Inglese J, Austin CP, et al. (2008)
Identification of oxadiazoles as new drug leads for the control of schistosomiasis.

Nat Med 14: 407–412.

16. Eissa MM, El-Azzouni MZ, Amer EI, Baddour NM (2011) Miltefosine, a

promising novel agent for schistosomiasis mansoni. International Journal for
Parasitology 41: 235–242.

17. Keiser J, Manneck T, Vargas M (2011) Interactions of mefloquine with

praziquantel in the Schistosoma mansoni mouse model and in vitro. The Journal
of antimicrobial chemotherapy 66: 1791–1797.

18. Hudson A, Nwaka S (2007) The Concept Paper on the Helminth Drug
Initiative. Onchocerciasis/lymphatic filariais and schistosomiasis: opportunities

and challenges for the discovery of new drugs/diagnostics. Expert Opinion on
Drug Discovery 2: S3–S7.

19. Ramirez B, Bickle Q, Yousif F, Fakorede FK, Mouries M-A, et al. (2007)

Schistosomes: challenges in compound screening. Expert Opinion on Drug

Discovery 2: S53–361.

20. Abdulla MH, Ruelas DS, Wolff B, Snedecor J, Lim KC, et al. (2009) Drug
discovery for schistosomiasis: hit and lead compounds identified in a library of

known drugs by medium-throughput phenotypic screening. PLoS neglected

tropical diseases 3: e478.

21. Mansour NR, Bickle QD (2010) Comparison of microscopy and Alamar blue
reduction in a larval based assay for schistosome drug screening. PLoS neglected

tropical diseases 4: e795.

22. Holtfreter MC, Loebermann M, Frei E, Riebold D, Wolff D, et al. (2010)
Schistosomula, pre-adults and adults of Schistosoma mansoni ingest fluores-

cence-labelled albumin in vitro and in vivo: implication for a drug-targeting

model. Parasitology 137: 1645–1652.

23. Peak E, Chalmers IW, Hoffmann KF (2010) Development and validation of a
quantitative, high-throughput, fluorescent-based bioassay to detect schistosoma

viability. PLoS neglected tropical diseases 4: e759.
24. Manneck T, Braissant O, Ellis W, Keiser J (2011) Schistosoma mansoni:

antischistosomal activity of the four optical isomers and the two racemates of

mefloquine on schistosomula and adult worms in vitro and in vivo. Experimental
parasitology 127: 260–269.

25. Basch PF (1981) Cultivation of Schistosoma mansoni in vitro. I. Establishment of
cultures from cercariae and development until pairing. The Journal of

parasitology 67: 179–185.

26. Zhang JH, Chung TD, Oldenburg KR (1999) A Simple Statistical Parameter for
Use in Evaluation and Validation of High Throughput Screening Assays.

J Biomol Screen 4: 67–73.
27. Lee H, Moody-Davis A, Saha U, Suzuki BM, Asarnow D, et al. (2012)

Quantification and clustering of phenotypic screening data using time-series
analysis for chemotherapy of schistosomiasis. BMC genomics 13 Suppl 1: S4.

28. Swinney DC, Anthony J (2011) How were new medicines discovered? Nature

reviews Drug discovery 10: 507–519.
29. Bickle M (2010) The beautiful cell: high-content screening in drug discovery.

Analytical and bioanalytical chemistry 398: 219–226.
30. Zanella F, Lorens JB, Link W (2010) High content screening: seeing is believing.

Trends in biotechnology 28: 237–245.

31. Gosai SJ, Kwak JH, Luke CJ, Long OS, King DE, et al. (2010) Automated high-
content live animal drug screening using C. elegans expressing the aggregation

prone serpin alpha1-antitrypsin Z. PloS one 5: e15460.
32. Peravali R, Gehrig J, Giselbrecht S, Lutjohann DS, Hadzhiev Y, et al. (2011)

Automated feature detection and imaging for high-resolution screening of
zebrafish embryos. Biotechniques 50: 319–324.

33. Siqueira-Neto JL, Song OR, Oh H, Sohn JH, Yang G, et al. (2010)

Antileishmanial high-throughput drug screening reveals drug candidates with
new scaffolds. PLoS neglected tropical diseases 4: e675.

34. Baniecki ML, Wirth DF, Clardy J (2007) High-throughput Plasmodium
falciparum growth assay for malaria drug discovery. Antimicrobial agents and

chemotherapy 51: 716–723.

35. Graves R (2011) Incorporating transmitted light modalities into high-content
analysis assays. In: LM CMaM, editor. Label-free technologies for drug

discovery. New York: John Wiley and Sons, Ltd. pp. 101 = 110.
36. Moy TI, Conery AL, Larkins-Ford J, Wu G, Mazitschek R, et al. (2009) High-

throughput screen for novel antimicrobials using a whole animal infection
model. ACS Chem Biol 4: 527–533.

37. Marcellino C, Gut J, Lim KC, Singh R, McKerrow J, et al. (2012) WormAssay:

a novel computer application for whole-plate motion-based screening of
macroscopic parasites. PLoS neglected tropical diseases 6: e1494.

38. Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS (2008) Dimensionality and
dynamics in the behavior of C. elegans. PLoS computational biology 4:

e1000028.

39. Cronin CJ, Mendel JE, Mukhtar S, Kim YM, Stirbl RC, et al. (2005) An
automated system for measuring parameters of nematode sinusoidal movement.

BMC genetics 6: 5.
40. Singh R, Pittas MI, Heskia I, Xu F, McKerrow JH, et al. (2009) Automated

image-based phenotypic screening for high-throughput drug discovery. In:
Proceedings of 22nd IEEE Symposium on Computer-Based Medical Systems,

2009: ALbuquerque, New Mexico, USA.

41. Lee H, Moody-Davis A, Saha U, Suzuki B, Asarnow D, et al. (2012)
Quantification and clustering of phenotypic screening data using time-series

analysis for chemotherapy of schistosomiasis. BMC Genomics 13: S4.
42. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, et al. (2004)

Multidimensional drug profiling by automated microscopy. Science 306: 1194–

1198.
43. Doenhoff MJ, Cioli D, Utzinger J (2008) Praziquantel: mechanisms of action,

resistance and new derivatives for schistosomiasis. Curr Opin Infect Dis 21: 659–
667.

44. Manneck T, Braissant O, Haggenmuller Y, Keiser J (2011) Isothermal

microcalorimetry to study drugs against Schistosoma mansoni. Journal of
clinical microbiology 49: 1217–1225.

45. Smout MJ, Kotze AC, McCarthy JS, Loukas A (2010) A novel high throughput
assay for anthelmintic drug screening and resistance diagnosis by real-time

monitoring of parasite motility. PLoS neglected tropical diseases 4: e885.

Whole Organism HCS by Bayesian Classification

www.plosntds.org 11 July 2012 | Volume 6 | Issue 7 | e1762


