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Paths to a malaria vaccine illuminated
by parasite genomics
David J. Conway

Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical

Medicine, Keppel Street, London WC1E 7HT, UK

More human death and disease is caused by malaria
parasites than by all other eukaryotic pathogens com-
bined. As early as the sequencing of the first human
genome, malaria parasite genomics was prioritized to
fuel the discovery of vaccine candidate antigens. This
stimulated increased research on malaria, generating
new understanding of the cellular and molecular mech-
anisms of infection and immunity. This review of recent
developments illustrates how new approaches in para-
site genomics, and increasingly large amounts of data
from population studies, are helping to identify antigens
that are promising lead targets. Although these results
have been encouraging, effective discovery and charac-
terization need to be coupled with more innovation
and funding to translate findings into newly designed
vaccine products for clinical trials.

The need for a malaria vaccine
The drive to sequence malaria parasite genomes began in
the 1990s with a bold vision for ‘vaccinomics’ which would
showcase the benefits of genomics to society [1]. This was
well conceived, and remains relevant because malaria
causes at least half a million deaths and 200 million clini-
cal cases each year, with several species of Plasmodium
parasites infecting humans via transmission by Anopheles
mosquitoes [2]. The disease occurs in most tropical areas of
the world, with the greatest burden being on children and
pregnant women in Africa where Plasmodium falciparum
is most prevalent. Existing interventions need to be more
widely applied, including insecticide-treated bed nets to
reduce mosquito biting, antimalarial drug prophylaxis
targeted to vulnerable groups, and access to prompt diag-
nosis and treatment. An effective vaccine could be a cost-
effective additional means of controlling malaria [3] and
might enable its elimination from some areas.

A key issue for malaria vaccine design is selecting the
most appropriate parasite life-cycle stage to be targeted
(Box 1) [4,5]. A vaccine to prevent blood-stage infection from
occurring could target the parasite at the initial pre-eryth-
rocytic stage, but would need to be fully effective because
even a small number of parasites emerging from the liver
can initiate a severe blood-stage infection. By contrast, a
vaccine targeting the asexual blood-stage directly could

be effective in suppressing the replicating parasites and
thereby preventing most disease, even if it did not achieve
absolute sterile immunity. As a potential complement to
either of these, vaccination against parasite sexual stages
would not prevent disease directly but might reduce trans-
mission to mosquitoes, thereby possibly having a beneficial
effect at the population level. Molecular characterization
of these developmentally differentiated stages was an
early goal of genomic and transcriptomic studies.

The first genome sequence of a malaria parasite was
published in 2002 for a cultured strain of P. falciparum
containing approximately 5500 genes encoded on 14 chro-
mosomes with a complete haploid genome size of �23 Mb
[6] (Figure 1). Genome sequences of diverse malaria para-
site species, including P. vivax, the second most important
cause of human malaria [7], the zoonotic P. knowlesi [8],
other primate malaria parasites [9,10], and parasites of
rodents which can be studied in laboratory mice [11], show
similar core genome organization. Each of the chromo-
somes shows a largely conserved syntenic gene order
[12], except in the subtelomeric regions which contain large
gene families that have diverged substantially between
species [10,12,13]. Within each species, meiotic recombi-
nation occurs in a brief diploid stage within the mosquito
midgut after fertilization between haploid male and female
gametes in the blood meal. Recombination occurs at an
average of 1 cM per 10–30 kb in experimental crosses of
P. falciparum [14], although effective recombination rates
in natural populations can be lower due to self-fertilization
[15]. The diversity of parasites within infections directly
influences the rate of outcrossing, which is greatest in
highly-endemic populations where superinfection by un-
related genotypes commonly occurs [16]. Subtelomeric
chromosomal regions can additionally undergo recombina-
tion during mitotic replication in the asexual blood stage
of infection, with crossing-over occurring between non-
homologous chromosomes in the same genome [17]. For
vaccine design, the genetics and development of the para-
site need to considered in the context of host immune
responses that might suppress or eliminate an infection.

Feasibility of vaccination
A degree of immunity to malaria is generally acquired by
experience of the infection, as shown by experimental
studies in the first half of the 20th century on patients
with neurosyphilis. Fevers induced by administering ma-
laria parasite infections were beneficial to such patients in
the age before antibiotics, because elevated temperatures
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killed spirochetes more effectively than other available
treatments, but many patients became immune to repeat-
ed malaria infections [18]. Studies on naturally acquired
immunity in endemic populations then showed that

malaria parasite levels in children or non-immune adults
were reduced by passive transfer of serum Immunoglobu-
lin G (IgG) from relatively immune adults, which has
encouraged subsequent focus on the role of antibodies in
acquired immunity to blood-stage parasites [19]. More
detailed studies over the past 40 years have shown that
immunization of human volunteers with attenuated
parasites confers strong protection against experimental
challenge infections [20,21].

Parasites may be attenuated at the infective sporozoite
stage which invades hepatocytes [20], or at the subse-
quent blood stage in erythrocytes [21]. Intravenous vac-
cination using sporozoites isolated from irradiated
mosquitoes requires a demanding regimen of five doses
of >100 000 parasites over a 3 month period to elicit
responses that prevent parasites developing beyond the
pre-erythrocytic liver stage [22]. It is difficult to stan-
dardize the irradiation dose that each individual parasite
receives, but alternative possibilities are chemical atten-
uation (e.g., alkylation of parasite DNA) [23], or genetic
attenuation to remove the need for treatment of each
batch. Multiple gene knockouts have been identified that,
in combination, cause parasites to arrest development
within the liver and elicit pre-erythrocytic stage immu-
nity [24,25]. Engineering parasites to attenuate at the
blood stage would require modification of metabolism to
allow growth in selective laboratory media but not in
normal human blood, as illustrated by parasites that
have lost the apicoplast organelle under selection in
culture [26,27].

Box 1. Malaria parasites – species and life-cycle targets for

vaccination

The major malaria parasites of humans are P. falciparum and

P. vivax. Vaccine development is generally considered separately

for each of these because they are distantly related and have only

limited antigenic cross-reactivity. Other human malaria parasites

P. malariae, P. ovale (comprising biological species P. o. curtisi and

P. o. wallikeri), and P. knowlesi (a zoonosis from macaque monkeys)

are less common globally and are not considered for vaccine

development. Malaria parasites are haploid throughout the cycle

except for a brief diploid zygote stage after fertilization in the midgut

of the mosquito. Phases of the parasite life cycle that are candidate

targets for vaccination are:

Pre-erythrocytic stage. Invasive sporozoites inoculated by mos-

quitoes and subsequent development to large schizonts within the

liver (taking �6 days in P. falciparum, and 10 days or longer for

P. vivax) which do not cause disease but are a potential target to

prevent blood stage infection.

Asexual blood stage. Causes all the symptoms of malaria as a result

of significant parasitaemia achieved by repeated multiplication cycles

(every �48 h for P. falciparum and P. vivax), with merozoite invasion

followed by growth and replication of the parasite within the

erythrocyte (forming early trophozoite ‘ring’ stages, late trophozoites,

and schizonts) before the release of more merozoites.

Sexual stage. Male and female gametocytes in the blood are

ingested by mosquitoes and transform into gametes and ensuing

motile zygotes (ookinetes) which might be targeted by antibodies

taken with the parasites into the blood meal.
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Figure 1. Haploid Plasmodium falciparum genome containing 14 chromosomes. The whole genome of 23 Mb contains �5500 protein-coding genes. Subtelomeric regions

shaded orange are highly divergent in sequence and gene content among species; the core genome shaded blue has a high level of synteny among Plasmodium species,

although some genes are species-specific. Loci encoding the 15 antigens incorporated in reported clinical vaccine trials are shown. Only six of these have clear orthologs in

all Plasmodium species (shown in bold font). The full names of each of these antigens are given in Box 2. A region of chromosome 10 is enlarged on the bottom right of the

figure to show a cluster of antigen-encoding genes including several that are highly polymorphic (most are members of the msp3-like gene family flanked by unrelated

antigen genes at both ends of the cluster).
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Although there is a precedent for use of live-parasite
vaccines to prevent protozoan infections of domestic ani-
mals [28], subunit vaccines containing specific antigens are
generally considered more feasible for broad delivery to
human populations [4,5]. These may be constructed as
recombinant proteins (that are either soluble, or form
virus-like particles, or chemically conjugated nanoparti-
cles), long synthetic peptides, recombinant plasmid DNA,
or recombinant viral vectors, each potentially offering a
product profile that could be incorporated into an Expand-
ed Program for Immunization (EPI) schedule [29]. The
most advanced candidate developed to date is the RTS,S
vaccine, which includes a large portion of the primary
sequence of P. falciparum CSP (circumsporozoite protein
– see Box 2 for abbreviations and names of all malaria
antigens subsequently referred to) sequence co-expressed

with the hepatitis B surface antigen as a virus-like particle,
delivered with a potent proprietary adjuvant (ASO1). This
shows safety and short-term protective efficacy of 20–50%
against malaria infection and disease in most clinical trial
populations [30]. The experience of RTS,S and other re-
combinant protein vaccine development indicates the im-
portance of adjuvant choice to elicit high-titer antibodies.
Viral-vectored vaccine delivery may be optimized through
prime–boost schedules expressing malaria antigens by one
recombinant virus (such as an adenovirus) in the first
immunization and by an unrelated viral vector (such as
a poxvirus) in boosting immunizations [31]. Some sche-
dules incorporating particular candidate antigens show
potent immunogenicity, although only a small minority
of individuals have been protected from challenge infection
and the determinants of efficacy need to be resolved
[32]. However, for any subunit vaccine, inclusion of the
most-effective target antigens is vital, and it is for their
identification that parasite genomics is most important.

Discovery of vaccine candidate antigens
Vaccine candidates based on 15 different antigens of
P. falciparum have proceeded to clinical trials that have
been published so far (Figure 1 and Box 2). These antigens
are diverse proteins, expressed at various stages of the life
cycle, and were first described during an early period of
parasite molecular characterization; the sequences of
these genes were published between 1984 and 2000 when
most other genes of the parasite were still unknown
(Figure 2). It is remarkable that there have been no
reported vaccine trials incorporating any of the thousands
of proteins encoded by genes first described in the reference
parasite genome sequence published in 2002 [6]. It is very
improbable that all promising candidate antigens were
discovered ahead of the genome sequence, and some po-
tential reasons for the lack of vaccine trials based on
genomic findings are discussed below.

For the 15 vaccine candidate antigens that have under-
gone trials to date, there was a mean overall ‘lag period’ of
10 years from the primary publication of each antigen gene
sequence until the first publication of a clinical vaccine
trial incorporating a sequence of the respective antigen
(Figure 2). There was a wide range in this time-window
(from only 3 years for CSP, MSP1, and LSA-1, to 20 years
for EBA-175), and for 11 out of the 15 antigens the period
was less than 12 years. This shows that it is possible, as
illustrated by most of these examples, to proceed from
initial antigen gene discovery to a reported vaccine trial
in less time than has already elapsed since the first ma-
laria parasite genome publication in 2002. The absence of
any published vaccine trial incorporating a new candidate
antigen discovered in the genome sequence is therefore not
a trivial observation. Another possible explanation is that
most of the limited capacity and funding for malaria
vaccine development may be committed to supporting
previously identified candidates. Focus on a limited pre-
existing portfolio might have unintentionally blocked new
candidate development, even without proprietary or other
conflicting interests which could exacerbate such an effect.
A further possibility is that that the increased scale of
discovery promoted by genome sequence analysis has itself

Box 2. Malaria parasite antigens

Abbreviated and full names of antigens with sequences incorpo-

rated in experimental vaccine trials already, and others mentioned

in the article.

In reported trials

AMA1 Apical membrane antigen 1

CSP Circumsporozoite protein

EBA175 Erythrocyte binding antigen 175 kDa

EXP-1 Exported protein-1

GLURP Glutamate-rich protein

LSA-1 Liver stage antigen-1

LSA-3 Liver stage antigen-3

STARP Sporozoite threonine-asparagine-rich protein

MSP1 Merozoite surface protein 1

MSP2 Merozoite surface protein 2

MSP3 Merozoite surface protein 3

Pfs25 P. falciparum sexual stage antigen 25 kDa

RESA Ring-infected erythrocyte surface protein

SERA5 Serine-rich antigen 5

TRAP Thrombospondin-related adhesive protein

Others

CLAG Cytoadherence-linked asexual protein, also known

as heavy molecular weight rhoptry protein family

1 (RhopH1)

DBP Duffy-binding protein in P. vivax (homologous to

P. falciparum EBA proteins)

EBA140 Erythrocyte binding antigen 140 kDa

EBL-1 Erythrocyte-binding-like protein 1

MSP6 Merozoite surface protein 6 (also known as

MSP3.2, paralogous to MSP3 and MSPDBP)

MSPDBL1 Merozoite surface protein with Duffy-binding-like

domain (also known as MSP3.4)

MSPDBL2 Merozoite surface protein with Duffy-binding-like

domain (also known as MSP3.8)

MTRAP Merozoite-specific TRAP homolog

PfEMP1 P. falciparum erythrocyte membrane protein 1

encoded by

var genes

Rh4 Reticulocyte-binding-like protein homolog 4

Rh5 Reticulocyte-binding-like protein homolog 5

RIFIN Repetitive interspersed family, gene product

Ripr Rh5-interacting protein

S-Antigen Heat-stable soluble antigen

STEVOR Subtelomeric variant open reading frame, gene

product

SURFIN Surface-associated interspersed gene family

product

VAR2CSA A particular PfEMP1 that binds chondroitin

sulfate A
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inhibited the selection of candidates because there are now
so many proteins to investigate that there may be in-
creased uncertainty about the type and amount of data
required for prioritization. Clearly, vaccine candidates
should not continue to be prioritized for product develop-
ment solely on the basis of the order in which they were
discovered, and there is therefore a need for an evidence-
based process to mark the candidacy of an antigen. Given
the complexity of the parasite life cycle, and the diverse
immune mechanisms that may be relevant, standardiza-
tion will not be simple, but the following section outlines
relevant evidence for inclusion.

Evidence to prioritize candidate antigens
Profiling naturally acquired immune responses

Studies to identify specific human immune responses
associated with protection from malaria are important,
particularly when responses to multiple antigens are
analyzed in parallel. These involve laboratory assays of
antigen-specificity of naturally acquired serum antibo-
dies, or peripheral blood lymphocytes in culture, and
correlations with incidence of clinical malaria of the sam-
pled individuals in cohort studies of endemic populations
[19,33–35]. The incidence of clinical malaria is more
relevant to measure than the incidence of any detected
infection by the parasite because naturally acquired
immunity mainly acts to reduce the density of parasites
in the blood rather than entirely preventing infection

[36,37]. A separate approach has been to analyze immune
responses in individuals protected by experimental
immunization with attenuated parasites, screening reac-
tivity against various parasite proteins in an attempt to
implicate particular specificities [38]. The difficulty in
producing high-quality recombinant antigen reagents
has limited the effectiveness of protein microarrays to
scale up to the parasite proteome, and thus prioritization
of antigens for analysis is ideally determined by predic-
tions from genetic and functional studies.

Genetic crosses and linkage group selection

Experimental genetic crosses of parasites have been vital
in identifying genes that encode targets of immunity [39],
determinants of virulence [40], erythrocyte invasion [41],
and drug resistance [42]. They have been most extensively
applied in studies of rodent malaria parasites, particularly
P. yoelii [40] and P. chabaudi [42]. Although some studies
require cloning of progeny, it is also possible to analyze
uncloned progeny to identify genomic regions influencing
growth or survival under experimental conditions. This
linkage group selection approach has identified loci encod-
ing targets of strain-specific immunity in rodent malaria,
confirming the importance of the merozoite surface protein
MSP1 [39]. This approach may be widely applicable for
genetic mapping of immune targets in other apicomplexan
parasites, including Eimeria which causes coccidiosis in
chickens [43].
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Figure 2. 30-Year timeline of P. falciparum vaccine antigen sequence description and first clinical trial publication for each antigen. Dates of first description of gene

sequences are shown by arrows above the timeline for each of the 15 P. falciparum antigens with sequences incorporated into vaccines reported in published clinical trials

(arrows below the timeline indicate the first trial in each case). The color shading indicates the parasite life-cycle stage at which each of the antigens is mainly expressed:

pre-erythrocytic (blue), asexual blood stage (red), sexual and zygote transmission stage (green). The nature of the vaccine constructs varied extensively, based on synthetic

peptides, recombinant proteins, virus-like particles, or viral vectored systems. In some cases only a short sequence representing part of an antigen was included in the

vaccine, combined with sequences from other antigens, whereas in other cases most of a primary sequence of a single antigen was incorporated. For several of the

antigens, other vaccine constructs have also been designed and tested at later dates that are not shown on the scheme. The date of publication of the first parasite genome

sequence in 2002 is marked by a broken arrow above the dateline.

Review Trends in Genetics February 2015, Vol. 31, No. 2

100



It is notable that some important targets of immunity
are encoded by genes occurring only in P. falciparum or
P. vivax but not in rodent malaria parasites, including
several of the vaccine candidates already developed
(Figure 1). However, the linkage group selection approach
has not yet been applied to identify targets of acquired
immunity in human parasites directly. Very few genetic
cross experiments have been published for P. falciparum,
and none for P. vivax, because the procedure requires
inoculating progeny parasites from mosquitoes to splenec-
tomized chimpanzees to allow parasites to develop to blood
stages. In one study, a key role of the P. falciparum
merozoite ligand Rh5 (which does not have an ortholog
in rodent parasites) in erythrocyte invasion was identified
by mapping this locus for ability to invade Aotus monkey
erythrocytes [41], and subsequent studies to characterize
this potential target of immunity are noted below. Because
experimental infections of chimpanzees may no longer
be conducted, owing to ethical considerations, it would
be relevant to consider studies of uncloned parasite proge-
ny in human volunteers, under safety guidelines that
have already been defined for experimental infections
[44]. Genetic cross experiments on human malaria para-
sites may also utilize an immunodeficient mouse with
adoptively transplanted human hepatocytes, allowing
development of parasites from mosquitoes through the
liver stage, after which they may be harvested into trans-
fused human erythrocytes [45].

Functional studies

Parasite genetic cross experiments map loci down to a few
cM, typically in the order of approximately 50 kB which
may contain upwards of 10 genes, after which targeted
gene knockout and allelic replacement may identify causal
genes. Large libraries of gene knockouts are now available
for rodent malaria parasites that are most amenable to
genetic manipulation [46], while targeted modification of
P. falciparum has also undergone scale-up [47] and meth-
odological innovation [48,49]. In conjunction with these
approaches, protein–protein interaction studies have
revealed functions of particular gene products, as illustrat-
ed by defining the role of Rh5 in merozoite invasion, after
genetic mapping [41].

Experimental knockout of the Rh5 gene in P. falciparum
was not achieved despite repeated attempts, suggesting
that it may be essential to parasite growth at the cultured
asexual blood stage [50]. Prey–bait screening of protein
interactions then revealed that Basigin is the erythrocyte
surface receptor for Rh5 [51], a crucial finding that led to
studies on antibody inhibition of the binding [52,53] and
inhibition of erythrocyte invasion [54], as well as structural
analysis of the molecular interactions [55]. The relative
abundance of Rh5 transcript at the merozoite-containing
schizont stage appears to vary among parasite isolates
from clinical cases [56], but anti-Rh5 antibodies signifi-
cantly inhibit merozoite invasion by all isolates tested so
far [52]. Naturally occurring amino acid polymorphisms in
Rh5 do not affect human Basigin receptor binding or
antibody inhibition [52], but several mutations that alter
Rh5 binding to Aotus monkey erythrocytes have occurred
in a parasite line adapted to these hosts [57]. Another

merozoite protein, termed the Rh5-interacting protein
(Ripr), has been subsequently identified and is being ana-
lyzed as a potential target of immunity [58]. The prey–bait
system that identified the parasite–host Rh5–basigin
interaction allows broad screening, and has already iden-
tified merozoite protein MTRAP as a ligand binding to
semaphorin-7A on erythrocytes, although antibodies were
unable to block this particular interaction [59]. Apart from
Rh5–Ripr, other key interactions between parasite pro-
teins include a functional complex between the candidate
antigen AMA1 and rhoptry neck protein 2 (RON2) at the
apical tip of merozoites during erythrocyte invasion, and
immunization of animals with both components has eli-
cited more inhibitory antibodies to AMA1 than was
achieved by immunization with AMA1 alone [60].

Characterizing developmental and epigenetic variation

Expression of P. falciparum genes at particular life-cycle
stages has been described by transcriptome profiling, with
particular detail for the cultured 48 h cycle of the asexual
blood stages [61,62]. Apart from stage-specificity, which is
largely orchestrated by a family of AP2 transcription fac-
tors [63], many genes show clonally variant expression
among individual parasites at a particular stage [64]
(Box 3). A survey of asexual blood stages of several labora-
tory clones and subclones of P. falciparum estimated that
approximately 10% of all genes exhibit clonally variant
transcription [65]. Detection of expressed protein in indi-
vidual parasites also reveals clonal variation that can be
hard to resolve by analysis of transcript levels in bulk-
cultured populations [66].

Malaria parasite genes in subtelomeric chromosomal
regions show extreme patterns of sequence diversity and
clonal expression variation, particularly the var gene fam-
ily with approximately 60 copies in each haploid P. falci-
parum genome encoding variants of the parasite-infected
erythrocyte membrane protein 1 (PfEMP1) [6]. The anti-
genic repertoire of PfEMP1 is too large to allow develop-
ment of a multivalent vaccine to cover the existing
diversity, but two lines of investigation support the concept
of a vaccine based on a small subset of antigenic types.
First, parasites which adhere to the receptor chondroitin
sulfate A (CSA) on placental capillary endothelia in preg-
nant women express a particular variant of PfEMP1,
termed VAR2CSA, that is encoded by only one or a few
similar var gene types in each parasite genome [67,68],
although there is considerable antigenic diversity due
to allelic polymorphism within populations. A vaccine
which either covered VAR2CSA polymorphism within a
multi-allelic formulation or which focused responses
on conserved epitopes might protect against pregnancy-
associated malaria, and this prospect has led to structural
studies to design proteins based on particular domains
eliciting antibodies that inhibit receptor binding [69,70].
A second aspect of var gene specialization is that the
expression of particular genes is associated with severe
clinical forms of malaria in children [71–73], probably
due to variant pfEMP1 products causing infected erythro-
cyte cytoadhesion to particular capillary endothelial sur-
faces [74,75] or enhanced rosetting of uninfected
erythrocytes around infected erythrocytes [76]. Antigenic
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cross-reactivity among candidate PfEMP1 sequences is
being studied towards identifying a subset of candidate
products for a multivalent vaccine against severe malaria
[77].

Other large subtelomeric gene families in P. falciparum
termed rifin and stevor encode proteins that are variably
expressed on infected erythrocytes and merozoites, al-
though whether antibodies to these are protective is not
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Figure 3. Example of variation in expression of a malaria parasite antigen. The P. falciparum MSPDBL2 protein is encoded by an msp3-like gene expressed on merozoites

contained in mature blood-stage schizonts. The expression is variable among individual parasites because most schizonts are negative whereas a minority are positive. The

figure shows example data from one parasite clone (HB3) (reproduced with modification from [66]). (A) A single microscopy field showing fixed parasite-infected

erythrocytes. The left panel shows immunofluorescence of schizonts that react with an anti-MSPDBL2 antibody; the right panel shows DAPI (40,6-diamidino-2-

phenylindole)-stained parasite DNA in the cells (schizonts having multiple blue clustered nuclei). (B) Proportions of mature schizonts positive for MSPDBL2 vary among

different subclones of the HB3 parasite. The eight subclones shown were cultured separately for several weeks, and then analyzed by microscopy counting of hundreds of

mature schizonts from each to determine the percentage positive (with 95% confidence intervals).

Box 3. Antigen gene polymorphism and expression variation

Some parasite antigens are encoded by a single gene with allelic polymorphism, and others are encoded by different paralogous genes that can

switch transcriptional expression (Figure I).

∗

∗

∗

∗

∗

∗

• One locus
• Allelic polymorphism
• Expression fixed

• Mul�ple loci
• Minimal allelic polymorphism
• Expression switching

• Mul�ple loci
• Allelic polymorphism
• Expression switching

∗

∗

∗

An�genic
polymorphism

An�genic
varia�on

An�genic
polymorphism
and varia�on

(A) (C)(B)

TRENDS in Genetics 

Figure I. Parasites are depicted here as oval-shaped cells expressing a single antigen type on the surface, encoded by a gene at a particular chromosomal locus marked

by a similar shape which is enlarged for visibility. Transcriptionally active loci are indicated with an asterisk. For absolute schematic simplicity, no cellular details (e.g.,

nucleus) are shown. (A) Allelic polymorphism of a single locus with fixed expression (as for many malaria vaccine candidates such as CSP, TRAP, MSP1, and AMA1). (B)

Variation due to alternative expression of different loci with minimal allelic polymorphism (as for malaria parasite antigens including some of the EBA and Rh ligands

using alternative erythrocyte receptors). (C) Variable expression of highly polymorphic loci contributing to a very extensive potential repertoire of diversity (as for

parasite genes encoding PfEMP1, and for some of the CLAG/RhopH1 and MSP3-like proteins).
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as well established as for PfEMP1 [78,79]. Merozoite pro-
teins encoded by smaller gene families are also variably
expressed, including several encoded by msp3-like genes
clustered in a non-subtelomeric position of the genome [66]
(Figure 1). For one of these proteins, MSPDBL2, only a
minority of mature merozoite-containing schizonts within
any parasite line are positive, and Figure 3 illustrates the
variability among cultured subclones of a single parasite
clone. Among members of the EBA and Rh families of
merozoite proteins that bind alternative erythrocyte recep-
tors for invasion, some reciprocal patterns of expression
and function have been shown. In particular parasite
clones, experimental knockout of the gene encoding the
ligand EBA175 (which binds to glycophorin A on
the erythrocyte surface) leads to increased expression of
the alternative ligand Rh4 (which binds to complement
receptor 1 on the erythrocyte surface), supporting a concept
of vaccine design to incorporate both of the alternative
ligands [80]. These candidates might be combined along
with other alternatives, such as EBL-1 that is expressed in
some parasites to bind to glycophorin B, or EBA140 that
binds to glycophorin C [81], or alongside more broadly
required merozoite proteins such as Rh5 [54] or its adjunct
binding partner Ripr [80,82]. Several of these parasite
ligands also contain allelic sequence polymorphisms that
have potential adaptive significance (Box 3).

Detecting signatures of natural selection on antigens

Pathogen antigens are likely to be subject to frequency-
dependent selection from acquired immune responses, and
particular patterns of allelic polymorphism may reveal
departures from neutral expectations as a consequence.
Several antigens already considered to be malaria vaccine
candidates first showed such evidence [83], encouraging
prospects that the identification of genes with similar
patterns may reveal previously unidentified targets of
immunity. Genome-wide scans of allele-frequency distri-
butions in endemic West African populations have impli-
cated particular genes as being under balancing selection,
with alleles having more-intermediate frequencies than
expected in the absence of selection, and in contrast with
most of the genome [66,84] (Figure 4). This was particu-
larly apparent for many genes with peak expression at the
invasive merozoite stage, including members of the eba,
clag/RhopH1, surfin, and msp3-like gene families, sup-
porting the idea that this extracellular stage is particularly
susceptible to acquired immunity [66,84]. Interestingly, a
few of the antigen genes that are apparently under balanc-
ing selection may also have been under recent directional
selection in local populations [85–87], suggesting that
new alleles are occasionally introduced into the repertoire
by mutation or immigration, and rapidly increase in fre-
quency before being checked by allele-specific acquired
immunity.

Genome sequences for the small number of P. vivax
strains published to date indicate that this species is more
polymorphic than P. falciparum, with nucleotide diversity
being approximately twice as high, suggesting that this
parasite has been widespread in humans for longer
[88]. Analyses of P. vivax candidate antigen gene sequences
in population surveys implicate ama1, trap, and dbp as

being under balancing selection [89], consistent with
results for their P. falciparum homologs [83]. To allow a
provisional genome-wide scan for evidence of selection in
parasite species for which there are only a few whole-
genome sequences, information on polymorphism may
be analyzed alongside comparative data on divergence
between species. Contingency tests on polymorphism-
versus-divergence ratios include the McDonald–Kreitman
(MK) test for skew in the ratios of nonsynonymous and
synonymous single-nucleotide polymorphisms (SNPs) and
interspecies fixed differences, and the Hudson–Kretman–
Aguade (HKA) test of the ratio of pairwise nucleotide
polymorphism versus interspecies divergence, which
may be compared across genes. This is illustrated for data
on P. falciparum polymorphisms among a small number of
laboratory lines compared with fixed differences between
P. falciparum and the chimpanzee parasite P. reichenowi
[10] (Figure 5). Genes with outlying values for MK and
HKA ratios were largely independent, and known antigen
genes more commonly had only high HKA ratios.

Genome-wide scans for loci under selection have not
yet incorporated detailed analyses of repeat sequences,
subtelomeric chromosome regions, or other loci with
highly divergent alleles. Such sequences are not reliably
characterized by short-read mapping to reference genomes
and are therefore omitted from most analyses. However,
advances in longer-read sequencing and methods of
de novo assembly may soon capture the substantial
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Figure 4. Genome-wide scanning for malaria parasite genes potentially under

balancing selection. P. falciparum population genomic data from clinical isolates

sampled from two different West African populations (Guinea and The Gambia)

are plotted and compared. Each point represents a gene with at least three SNPs in

each population (3316 genes in total included) on a scatterplot of Tajima’s D values

for the polymorphic site frequency spectra in Guinea (n = 100 isolates) and Gambia

(n = 52 isolates) (reproduced with modification from [84]). This shows negatively

skewed frequency distributions for most genes in both populations (with genome-

wide average values of less than �1.0), indicating more rare alleles than expected

under a neutral equilibrium, and probably reflects demographic growth of P.

falciparum populations historically. Against this background, a minority of genes

have positive Tajima’s D values, indicating those at which allele frequencies are

more balanced than expected under neutrality. Enlarged symbols are shown for

the genes with values above 1.0 in both populations that are most likely to be

under balancing selection. These include several known antigens that are labeled

for illustration, together with other genes that have not been previously studied.
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polymorphism that exists in these regions [90], highlight-
ing the need for suitable population genetic analytical
methods for such loci, where processes of mutation and
recombination do not fit simple models.

The predictive power of analyses to identify patterns of
selection on antigen genes should be evaluated by epide-
miological and experimental validation of the putative
targets. In epidemiological studies, large cohorts of
individuals need to be followed in order for levels of natu-
rally-acquired antibodies against an array of different
recombinant proteins to be tested for correlations with
reduced prospective risk of clinical malaria [33–35]. To
test for activity against blood-stage parasites in culture,
available assays include antibody inhibition of erythrocyte
invasion by merozoites [82], antibody opsonization en-
abling phagocytosis of merozoites [91], and antibody-
dependent cellular inhibition (ADCI) of growth in the
presence of monocytes [92]. Allele-specific inhibition has
been demonstrated for antibodies to P. falciparum AMA1,
an N-terminal part of MSP1, and P. vivax DBP [93–96],
supporting the prediction that signatures of balancing
selection on these merozoite antigens are driven by natu-
rally acquired immune responses.

Towards vaccine formulation
Design of malaria vaccines should incorporate discoveries
from the above areas of research, although there remains
no standardized means or structure for capturing these.
Different alternative approaches will remain potentially
viable. In particular, vaccines designed to prime immune
responses in infants to specific targets of naturally ac-
quired immunity need to either focus immune responses
on conserved parts of the antigens or to elicit polyvalent
responses that cover the natural antigenic diversity. If
polymorphisms are clustered in regions of a primary se-
quence, it may be possible to use a relatively conserved
part of the sequence, an approach that has been followed
to focus on a C-terminal sequence of MSP3 of P. falciparum
as a vaccine component [92]. When polymorphisms are
broadly interspersed with conserved parts of sequences, for
example within AMA1 or the P. vivax DBP, such dissection
to remove polymorphic sites may not be possible, although
particular formulations may still induce strong antibody
responses to conserved epitopes [95,97]. Alternatively,
multiple allele-specific antibodies may be generated to give
protection against the range of allelic types circulating
within populations, a ‘diversity-covering’ approach used
for several vaccine formulations that have reached clinical
trials, based on MSP1 [98], MSP2 [99], and AMA1 [100], as
well as allelic combinations of both MSP1 and AMA1
together [101,102].

Antigenic diversity in relation to vaccination has been
intensively studied for AMA1, in which the particular
importance of a highly polymorphic amino acid position
has been shown in several studies, including a clinical
trial demonstrating allele-specific protection [103,104].
Experimental animal antibody inhibition of erythrocyte
invasion in culture indicates that a multivalent vaccine
containing between three and five different allelic types of
AMA1 would cover most of the epitope polymorphism in
this antigen [93,94]. For the polymorphic N-terminal
region of MSP1, polyvalent hybrid proteins have been
constructed that induce a wide range of antibody specifi-
cities which recognize the diverse natural allelic
sequences [105,106]. In the cases of other antigens (the
C-terminal region of MSP1 and the near-full length of
MSP2 separately), for which known allelic sequences
group into dimorphic allelic classes, two allelic types have
been incorporated into formulations for clinical trial
[98,99,101].

There remains no consensus template for an effective
malaria vaccine, but the success of multivalent vaccines
against viral and bacterial infections supports the ratio-
nale to characterize individual targets of immunity in
detail to assist the design of subunit vaccines. Engineering
of more effective immunogens is vital, and should involve
modeled protein design to focus responses on important
epitopes [107], as well as the use of the most-effective
delivery systems [108]. Application of these principles,
combined with lessons from empirical studies of a small
number of malaria candidate antigens to date, should
enable genome-scale studies on the parasite to be more
systematically translated into the development of malaria
vaccines.
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Figure 5. Genome-wide scan of gene polymorphism in P. falciparum versus
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shown at an arbitrary ratio of 0.15 to visually indicate genes with highest relative
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genes are not plotted here as they have infinite MK skew values (although

significant in a number of cases by Fisher’s exact test), mostly due to having no

synonymous polymorphisms. Abbreviations: HKA, Hudson–Kretman–Aguade test;

MK, McDonald–Kreitman test.
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