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The United Kingdom Childhood Cancer Study of exposure to
domestic sources of ionising radiation: 1: radon gas

UK Childhood Cancer Study Investigators*,1,2

1UKCCS, University of Leeds, Institute of Epidemiology, 30 Hyde Terrace, Leeds LS2 9LN, UK

This paper reports the results of the United Kingdom Childhood Cancer Study relating to risks associated with radon
concentrations in participants homes at the time of diagnosis of cancer and for at least 6 months before. Results are given for
2226 case and 3773 control homes. No evidence to support an association between higher radon concentrations and risk of
any of the childhood cancers was found. Indeed, evidence of decreasing cancer risks with increasing radon concentrations was
observed. Adjustment for deprivation score for area of residence made little difference to this trend and similar patterns were
evident in all regions and in all diagnostic groups. The study suggests that control houses had more features, such as double
glazing and central heating, leading to higher radon levels than case houses. Further, case houses have features more likely to
lead to lower radon levels, e.g. living-rooms above ground level. Consequently the case – control differences could have arisen
because of differences between houses associated with deprivation that are not adequately allowed for by the deprivation
score.
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The UK Childhood Cancer Study (UKCCS) was specifically
designed to investigate the impact of a wide range of possible risk
factors, including exposure to naturally occurring ionising radia-
tion (UKCCS Investigators, 2000). The hypothesis was created
partly because of concerns expressed about the possibility that
domestic levels of radon gas and its decay products might prove
to be a risk for the development of leukaemia in both adults and
children. Two distinct lines of investigation had led to these
concerns. Firstly, some epidemiological correlation studies
appeared to show associations between mean concentrations of
radon and leukaemia at all ages (Lucie, 1989), in childhood ALL
(Alexander, 1990) and in certain childhood malignancies, including
leukaemia (Henshaw et al, 1990), although one childhood case –
control study failed to confirm these observations (Stjernfeldt et
al, 1987). Secondly, there were some dosimetric concerns that
the bone marrow dose from domestic exposure to radon and its
short-lived decay products might be higher than originally thought
due to internal patterns of fat deposition (Richardson et al, 1991).
In addition, risk estimates, based on standard radiological protec-
tion approaches, have, more recently, suggested that about 14%
of leukaemia in those aged 0 – 24 in the UK could be due to natur-
al high linear energy transfer (LET) radiation including radon
(Committee on Medical Aspects of Radiation in the Environment,
1996; Simmonds et al, 1995).

The present report compares the radon concentrations of homes
that children were living in at the time their cancer was diagnosed,
with those of a similar group of children who did not have cancer.

MATERIALS AND METHODS

The study design and details of case ascertainment and recruitment
are given elsewhere (UKCCS Investigators, 2000). The UKCCS
covered the whole of England, Scotland and Wales. Ten regional
centres (Figure 1) administered a consistent study protocol with
minor regional modifications to satisfy local ethical requirements
and practical considerations.

The study aimed to recruit all eligible children aged under 15
years of age diagnosed with malignant diseases during the period
1992 – 1996 (1991 – 1994 in Scotland). Two age and sex matched
controls were randomly selected from the same (former) Family
Health Service Authority (in England and Wales) or Health Board
(in Scotland) as the case child (UKCCS Investigators, 2000). The
parents/guardians of the children were interviewed, and a wide
range of information was collected on the social, occupational
and medical histories of the children and their parents. Social
class was derived from the occupations of the parents resident
with the child at the time of diagnosis, the adult with the highest
class taking priority (OPCS, 1990). An alternative measure of
socio-economic status was obtained from the 1991 census data
by linking postcode of address at time of diagnosis with census
enumeration district (or output area in Scotland), and calculating
a deprivation score using three variables: proportion of house-
holds without a car; proportion of overcrowded households;
proportion of persons unemployed (Draper et al, 1991; UKCCS
Investigators, 2000).

Full details of the methods used for measurement and calcula-
tion of mean annual household radon concentrations are
described in the main methods paper (UKCCS Investigators,
2000). Briefly, addresses lived in by the child for 6 months or more
were targeted for measurement with passive radon detectors,
provided by the National Radiological Protection Board (NRPB).
Two radon detectors were sent to each address, with instructions
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to place one in the child’s bedroom and one in the main living
area. After 6 months a letter was sent recalling the detectors, which
were returned to the NRPB for processing and measurement of the
cumulative radon exposure. The analyses in this paper only
concern the radon results for the address at diagnosis, that is, case
children who lived at that address for at least 6 months prior to the
date of their diagnosis and the equivalent dates of their controls.
Radon levels vary markedly by season and measurements obtained
will not precisely reflect the true annual average radon concentra-
tion. Seasonal correction factors based on previous studies of
ambient household radon were, therefore, applied and weighted
average concentrations were calculated, assuming 55% of the
child’s time was spent in the bedroom and 45% in the living area
(Wrixon et al, 1988; Darby et al, 1998).

Estimates of risk due to radon exposure were obtained from
logistic regression using Stata Version 6 (StataCorp, 1999). Radon
concentration estimates used were based on measurements of aver-
age radon concentration in the home occupied at the time of
diagnosis and were seasonally adjusted, using region-specific
correction factors. In order to recognise possible dose-response
relationships which may not be linear, effects of radon concentra-
tions on childhood cancer risk were investigated for the following
pre-defined levels 0 – 24, 25 – 49, 50 – 99, 100 – 199, and 200+
Bq m73, as used in a UK study of residential radon exposure
and lung cancer risk published earlier (Darby et al, 1998). Exposure
effects were also estimated by dividing radon concentrations into
quintiles and deciles.

Because of the known variations in household radon levels, the
relationship of radon concentrations with a range of possible
measures of socioeconomic status was examined. Increased radon
concentration was found to be associated with parents of higher
social class, lower deprivation score, being a home owner, and with
higher school leaving age (results not shown). Certain aspects of
socioeconomic status were potential confounders in our analyses

(UKCCS Investigators, 2000). We were also wary of the effects of
participation bias, as evidenced by the difference in socioeconomic
status between measured and non-measured homes. We therefore
included a measure of socioeconomic status in the regression
models. The deprivation score was chosen as the prime factor to
analyse, rather than social class of parents at diagnosis, because
of the large number of unclassifiables in the latter dataset. In addi-
tion analyses were conducted on whether the houses that had
double glazing or central heating, factors associated with higher
household radon concentration, were likely to influence the overall
results.

The data were analysed by the major diagnostic divisions of
childhood cancer described elsewhere (UKCCS Investigators,
2000), these briefly are Acute Lymphoblastic Leukaemia (ALL),
other leukaemias, Non Hodgkin’s Lymphoma (NHL), Hodgkin’s
Disease (HD), Central Nervous System (CNS) tumours and other
solid tumours.

RESULTS

The parents of 3838 children with cancer and 7629 children with-
out cancer were interviewed, representing 87% of eligible cases and
64% of eligible controls (Table 1). Following interview, radon
measurements were obtained from the home at diagnosis of 2226
cases (58% of interviewed cases) and 3773 controls (49% of inter-
viewed controls). Nearly all (97%) estimates were based on
readings obtained from both the bedroom and the living room.

The results presented here are largely for unmatched analyses.
Matched analyses were also undertaken and are not given in detail
in this paper because they add nothing to the results presented, and
have wider confidence intervals.

The number of measurements which could be included in an
unmatched analysis comparison represents 52% of all UKCCS
participants. There were no statistically significant differences
between the measured and non-measured homes with regard to
the distribution of childhood cancers and their matched controls
(Table 2). The characteristics of households where radon measure-
ment were and were not performed are shown in Table 3. A clear
trend with deprivation was evident: the average radon concentra-
tion for the most deprived controls being 16.1 Bq m73,
compared with the least deprived of 27.2 Bq m73.

The arithmetic mean radon concentration in the homes
measured was 24.0 Bq m73, with the mean concentration being
slightly lower in case homes than in control homes. Whether
homes were distributed by the predefined radon concentrations
or by radon quintiles, the proportion of homes at the three higher
levels was always greater for controls than cases (Table 4). Nearly
all of children with ALL with the household measure of radon were
over 1 year of age at diagnosis (782 out of 805).
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Figure 1 Regional study centres of the UKCCS

Table 1 Summary of case and control housesa eligible for the study

Cases Controls

n % n %

Interviewed 3838 100.0 7629 100.0

Exclusions
Not measured 1316 34.3 3181 41.7
Detector faulty 296 7.7 673 8.8
Transit too long 0 0.0 2 0.0

Measurement valid 2226 58.0 3773 49.5
Both rooms 2165 56.4 3659 48.0
Bedroom only 26 0.7 48 0.6
Living room only 35 0.9 66 0.9

aAddress at time of diagnosis of child.
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Clear negative trends were observed of decreasing childhood
cancer risk with increasing radon concentration, most marked in
the quintile analysis (Table 5). Adjustment for deprivation made

little difference; and similar patterns were evident in each diagnos-
tic group (Table 6). Findings were similar when the analysis was
repeated using adjustment for social class (instead of deprivation),
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Table 2 Number of measured houses by diagnostic group

Cases Controls

Diagnostic group Measured (%) Not (%) Measured (%) Not (%)

Acute Lymphoblastic Leukaemia (ALL) 805 (36.2) 656 (40.7) 1306 (34.6) 1600 (42.4)
ALL in ages 1 – 14 years 782 (35.1) 629 (39.0) 1246 (33.0) 1542 (40.0)
Other leukaemias 146 (6.6) 129 (8.0) 232 (6.1) 314 (8.3)

Non Hodgkin’s Lymphomas 166 (7.5) 65 (4.0) 265 (7.0) 196 (5.2)

Hodgkin’s Disease 72 (3.2) 46 (2.9) 136 (3.6) 99 (16.8)

Tumours of central nervous system 404 (18.1) 282 (17.5) 729 (19.3) 632 (16.8)

Other solid tumours 633 (28.4) 434 (26.9) 1105 (29.3) 1015 (26.9)

Total 2226 (100.0) 1612 (100.0) 3773 (100.0) 3856 (100.0)

Table 3 Characteristics of households targeted for radon measurement

Cases Controls Geometric means

of Controls

Diagnostic group Measured (%) Not (%) Measured (%) Not (%) (Radon)

Deprivation
1 (most affluent) 359 (16.1) 172 (10.7) 686 (18.2) 467 (12.1) 18.75
2 382 (17.2) 220 (13.7) 688 (18.2) 524 (13.6) 18.44
3 383 (17.2) 206 (12.8) 656 (17.4) 504 (13.1) 17.63
4 337 (15.1) 220 (13.7) 594 (15.7) 561 (14.6) 17.63
5 293 (13.2) 211 (13.1) 463 (12.3) 574 (14.9) 15.03
6 241 (10.8) 269 (16.7) 390 (10.3) 603 (15.7) 14.38
7 (most deprived) 231 (10.4) 314 (19.5) 296 (7.9) 623 (16.2) 11.63

Social classa

I 194 (8.7) 74 (4.6) 347 (9.2) 282 (7.3) 20.10
II 663 (29.8) 392 (24.3) 1222 (32.4) 1001 (26.0) 18.08
IIIN 310 (13.9) 182 (11.3) 639 (16.9) 510 (13.2) 16.65
IIIM 413 (18.6) 235 (14.6) 642 (17.0) 561 (14.6) 15.84
IV 205 (9.2) 138 (8.6) 279 (7.4) 298 (7.7) 16.11
V 46 (2.1) 32 (2.0) 60 (1.6) 74 (1.9) 13.14
Armed Forces 21 (0.9) 16 (1.0) 21 (0.6) 36 (0.9) 15.88
Unclassifiable 374 (16.8) 543 (33.7) 563 (14.9) 1094 (28.4) 13.53

aHighest social class of those adults interviewed and occupying the house at the time of diagnosis (see text).

Table 4 Distribution of measured houses by levels of radon concentra-
tiona in measured houses

Radon level (Bq m73) Cases (%) Controls (%)

Pre-defined groupings
0 – 24 1700 (76.4) 2740 (72.6)
25 – 49 346 (15.5) 676 (17.9)
50 – 99 138 (6.2) 252 (6.7)
100 – 199 28 (1.3) 80 (2.1)
200+ 14 (0.6) 25 (0.7)

Quintiles
0.00 – 8.10 520 (23.4) 679 (18.0)
8.11 – 12.41 475 (21.3) 724 (19.2)
12.42 – 18.14 417 (18.7) 785 (20.8)
18.15 – 30.18 402 (18.1) 797 (21.1)
30.19+ 412 (18.5) 788 (20.9)

Total 2226 (100.0) 3773 (100.0)

Arithmetic mean (std dev) 21.1 (31.0) 25.5 (42.4)

Geometric mean (std dev) 14.7 (2.3) 16.6 (2.3)

aSeasonally adjusted using region-specific correction factors.

Table 5 Association between household radon concentration and child-
hood cancer (Odds ratio and 95% CI) using unmatched analysis

Unadjusted for

deprivation

Adjusted for

deprivation

Radon level (Bq m73) ORa 95% CI OR 95% CI

Pre-defined groupings
0 – 24 1.00 – 1.00 –
25 – 49 0.82 0.71 – 0.95 0.84 0.73 – 0.97

50 – 99 0.89 0.71 – 1.10 0.91 0.73 – 1.13
100 – 199 0.56 0.37 – 0.87 0.58 0.37 – 0.89

200+ 0.91 0.47 – 1.75 0.95 0.49 – 1.84

Trend Test w2=9.39 P=0.002 w2=7.08 P=0.008

Quintiles
0.00 – 8.10 1.00 – 1.00 –
8.11 – 12.41 0.86 0.73 – 1.01 0.88 0.75 – 1.04
12.42 – 18.14 0.70 0.59 – 0.82 0.72 0.61 – 0.85

18.15 – 30.18 0.66 0.56 – 0.78 0.68 0.58 – 0.81

30.19+ 0.68 0.58 – 0.80 0.71 0.60 – 0.84

Trend Test w2=35.35 P50.001 w2=29.98 P50.001
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and the data were grouped by radon concentration decile, and
when radon concentration was treated as a continuous variable.

It is possible that the participation of controls might vary from
place to place depending on the local awareness of household
radon as a public health problem. However, when control partici-
pation rates were correlated with the mean radon concentration by
counties (areas of smaller population produce study numbers too
low for meaningful analysis) there was no evidence of any such
influence (data not shown).

In order to ascertain if an artefact of household measurement
was involved, a matched analysis was performed on the basis of
predicted radon concentrations for an ‘average’ household within
1 km of the actual case – control house using data from the NRPB.
As this analysis was based on national data it was possible to use all
household addresses and not confine the analysis to measured
households. The results using conditional logistic regression, (with
the base-line being 525 Bq m73) give odds ratios for exposures to
25 – 49 of Bq m73 of 1.1 (0.9 – 1.2), for 50 – 99 Bq m73 of 1.1
(0.8 – 1.6), for 100 – 199 Bq m73 of 1.0 (0.5 – 2.1) and for 200+
Bq m73 of 0.6 (0.1 – 2.9). This suggested that the negative trend
might be due to an effect coming from the household measure-
ments themselves. The work of Wrixon et al (1988) and Gunby
et al (1993) suggests that certain household features influence
radon concentration. These include flat dwelling (which gives lower
average radon concentrations) and double glazing (which gives
higher concentrations).

To explore these differences the characteristics of radon concentra-
tions was directly examined (as geometric means) by house type.
When control radon concentrations were computed, it was found
that house and bungalow measurements were greater than those of
flats/maisonettes (17.1 and 9.5 Bq m73 respectively). As this is likely
to be due to floor level, an analysis based on the level of the child’s
bedroom, for example, showed that mean concentrations on the
ground floor were 19.7 Bq m73, and above the living room were
16.6 Bq m73, whilst if the bedroom and living room were both above
ground level the mean was 9.9 Bq m73. Furthermore the presence of
double glazing was associated with increased mean concentration of
radon in that household. The mean control level for households with
both bedroom and living room having double glazing is 18.1 and
without is 14.9 Bq m73. In the case of central heating, control houses
without central heating had a mean concentration of 14.2 Bq m73 ,
with either the bedroom or living room having central heating this
became 14.4 Bq m73 but when both were heated the result was
16.3 Bq m73. For each of these housing characteristics the radon
concentration was, on average, higher in the homes of controls than
cases. However, the addition of these factors to the model made little
difference to the overall results already shown. As an example, two
aspects of these data for all cancers are shown in Table 7.

DISCUSSION

The findings from this large national study offer no support for the
suggestion that radon concentration is associated with the inci-
dence of childhood cancer in general, or of leukaemia in particular.

Only 38% of radon measurements were part of a matched set
(of a case and at least one control). However, an additional 13%
of unmatched radon measurements were available for analysis
and the unmatched data are given in Table 4. The analyses of
the unmatched findings for the total data clearly show that there
is a social class bias in those cases and controls who agreed to
participate with more participants in higher socioeconomic groups
(based on occupation at the time of diagnosis). Very few house-
holds had measured household radon concentration greater than
100 Bq m73 (2.5%). However, the mean radon concentration of
24.0 Bq m73 is very close to the national average and the trends
with deprivation, and much of the other results, although statisti-
cally significant, are in fact relying on very small concentrations of
radon gas.

The results are broadly consistent in the analyses by both quin-
tile and pre-determined levels, with or without adjusting for a
deprivation score. Both sets of radon levels show a negative trend
but those with the pre-defined levels are less marked. But when 10
equal groupings were created the trend seen in the quintiles
remained, with a linear decline in odds ratios from 0.96 (CI
0.74 – 1.20) in the second lowest radon concentration category to
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Table 6 Associations between household radon concentration and childhood cancer by diagnostic group (Odds ratio and 95% CI) from logistic regres-
sion adjusting for age, sex, study region and deprivation

Radon level

(Bq m73) ALLa
Other

leukaemiasb NHLc HDd CNS Tumourse
Other Solid

Tumours

Pre-defined groupings 0 – 24 1.00 1.00 1.00 1.00 1.00 1.00
25 – 49 0.80 (0.64 – 0.99) 0.81 (0.50 – 1.30) 0.68 (0.43 – 1.10) 0.89 (0.46 – 1.73) 1.06 (0.77 – 1.32) 0.84 (0.66 – 1.06)
50 – 99 1.06 (0.79 – 1.44) 0.81 (0.39 – 1.69) 0.92 (0.48 – 1.73) 1.00 (0.39 – 2.57) 0.82 (0.52 – 1.29) 0.79 (0.54 – 1.15)
100 – 199 0.57 (0.29 – 1.12) 1.26 (0.45 – 3.52) 0.74 (0.23 – 2.39) – 0.59 (0.24 – 1.46) 0.44 (0.18 – 1.01)
200+ 0.81 (0.28 – 2.36) 1.04 (0.14 – 7.85) 1.57 (0.36 – 6.92) – 1.13 (0.34 – 3.78) 0.96 (0.33 – 2.78)

Quintiles 0.00 – 8.10 1.00 1.00 1.00 1.00 1.00 1.00
8.11 – 12.41 0.86 (0.68 – 1.09) 0.66 (0.39 – 1.11) 1.05 (0.65 – 1.70) 1.17 (0.62 – 2.33) 1.00 (0.77 – 1.32) 0.82 (0.63 – 1.05)
12.42 – 18.14 0.86 (0.68 – 1.09) 0.62 (0.37 – 1.05) 0.86 (0.53 – 1.41) 0.52 (0.24 – 1.15) 0.69 (0.49 – 0.96) 0.60 (0.46 – 0.78)

18.15 – 30.18 0.69 (0.54 – 0.89) 0.78 (0.48 – 1.29) 0.73 (0.43 – 1.22) 0.54 (0.25 – 1.19) 0.73 (0.53 – 1.02) 0.63 (0.48 – 0.81)

30.19+ 0.77 (0.61 – 0.99) 0.71 (0.43 – 1.19) 0.79 (0.48 – 1.31) 0.65 (0.31 – 1.38) 0.77 (0.56 – 1.07) 0.60 (0.45 – 0.78)

aAcute Lymphoblastic Leukaemia. bExcluding ALL. cNon-Hodgkin’s Lymphoma. dHodgkin’s Disease. eCentral nervous system tumours.

Table 7 Association between household radon concentration adjusted
for the presence of double glazing or central heating in the measured
household, age, sex and study region

Adjusted for

double glazing

Adjusted for

central heating

Radon level (Bq m73) OR 95% CI OR 95% CI

Pre-defined groupings
0 – 24 1.00 1.00
25 – 49 0.77 0.64 – 0.91 0.76 0.64 – 0.90

50 – 99 0.73 0.56 – 0.95 0.72 0.55 – 0.93

100 – 199 0.48 0.28 – 0.82 0.49 0.28 – 0.83

200+ 0.74 0.34 – 1.62 0.71 0.33 – 1.56

Quintiles
0.00 – 8.10 1.00 1.00
8.11 – 12.41 0.78 0.65 – 0.95 0.78 0.64 – 0.94

12.42 – 18.14 0.64 0.52 – 0.78 0.63 0.52 – 0.77

18.15 – 30.18 0.57 0.47 – 0.71 0.57 0.46 – 0.70

30.19+ 0.55 0.44 – 0.68 0.54 0.44 – 0.66
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0.46 (CI 0.34 – 0.62) in the highest concentration group, with the
six highest groups showing statistically significant negative risks.

A similar trend is also seen in all the major diagnostic groups
analysed in this paper, although it is not always statistically signifi-
cant, particularly in the diagnostic categories with smaller case
numbers. Such a trend is not consistently seen in the pre-deter-
mined level analyses probably due to the small numbers in some
of the higher concentration categories. These results are largely
unaffected by adjustment for deprivation scores based on census
characteristics. In addition the trends are seen in each of the
regions participating in this study. Confining the analysis of ALL
data to exclude cases aged less than 1 year did not alter the results.

The contribution that the radon (and thoron) gases and their
short lived decay products make directly to the bone marrow is
modest when contrasted with all the other sources of high - LET
exposure to the marrow. For a 1 year-old, inhalation of radon at
20 Bq m73 has been estimated to contribute roughly 10% of the
total high LET equivalent dose to the red bone marrow (Simmonds
et al, 1995 and G Kendall (personal communication)). This would
increase to about 20% in a 10-year-old. For a 10-year-old, increas-
ing the concentration of radon breathed by a factor of five would
therefore increase the total of high LET equivalent dose by about
1.8 fold, whilst a 10-fold radon increase would increase the high
LET total by 2.8 fold. These levels are relatively modest contrasted
with other sources of high LET radiation which are predominantly
from Po210. These variations are unlikely to explain a positive
trend, let alone the negative trend seen in this paper. There is also
a low-LET contribution to the marrow dose, largely from gamma
ray sources, and this is further explored in another paper (see
Gamma paper this issue).

When an ecological approach was adopted using NRPB data on
localities, the results were generally negative with (excluding the
small number in the highest category) a flat distribution. This
points to characteristics in the individual households as possibly
being important in determining radon concentrations. As it was
recognised in this (and other) case – control study that socioeco-
nomic differences occur between cases and controls and between
interviewed and first choice controls (UKCCS Investigators,
2000), this area seemed to be likely to hold the possible explanation
of the negative trend. Indeed this appears to be the case, when
features likely to cause variability of household radon concentra-
tions and census variables are analysed following the work of
Wrixon et al (1988) and Gunby et al (1993). This view is
supported by direct studies of case – control differences in double
glazing, central heating and dwelling above ground level, which
all suggest that controls with a higher ‘socioeconomic status’ (i.e.
more likely to have double glazing, central heating and less likely
to be a flat dweller) are more likely to be interviewed. Even when
controls with low levels of radon concentration occur, the case
equivalents are even lower. This could then lead to the negative
trend seen across all diagnostic groups.

It is noteworthy that the results for the corresponding UKCCS
analysis for gamma radiation in virtually the same households
showed no risk but do not show a negative trend (see Gamma
paper, this issue). Sources of household gamma radiation are unaf-
fected by whether the dwelling is a flat or by the presence or
otherwise of double-glazing and central heating.

It is unlikely that the negative trend is explained by either an
adaptive response or a true protective effect. It would be necessary
to hypothesise that these explanations held across a very wide range
of disease types with known differences in pathogenesis and indeed
some, such as HD and NHL have no previously reported associa-
tions with ionising irradiation (Mueller, 1996). Most of the
scientifically rigorous studies on adaptive responses or protective
effects are based on experimental designs delivering tens of milli-
Grays as stimulating doses and observing responses to larger
subsequent challenge doses of radiation to the bone marrow or
other tissue (UNSCEAR, 1994). These studies and most others

use challenge doses of radiation (usually low-LET) far greater than
those seen in the context of this study.

That aside, the overall lack of association in the study is gener-
ally consistent either with the more sophisticated of the ecological
analyses such as Richardson et al (1995) or with the only other
large (US) case – control study of Lubin et al (1998). Both studies,
however, have dealt only with childhood leukaemias. The present
study reports upon a larger series of ALL cases than the US study
but with far lower numbers in the higher exposed categories. Lubin
et al (1998) show some signs of lower risks associated with higher
levels, but by no means as consistently as in this present study,
whilst the US trend was statistically non-significant. This analysis
of UKCCS data deals only with concentrations measured after
the time of diagnosis in those households occupied at the time
of diagnosis and for a minimum period of 6 months prior to that
date. One ecological study has suggested a positive relationship
between radon concentration at the address at birth and risk of
childhood cancer (Gilman and Knox, 1998).

A smaller study from Germany of leukaemias gives internally
inconsistent results, showing a significant negative trend in the under
2-year-olds and a positive, but non-statistically significant, trend in
the over 2-year-olds for AML (Steinbuch et al, 1999). Our study
showed, a non-significant but flat relationship in the under 2-year-
olds and a negative trend in older cases with AML. It should be noted
that in our study childhood cancers other than ALL also show no sign
of increased risk associated with radon concentrations but instead a
negative trend. A smaller study of leukaemias and certain solid
tumours from Germany showed lack of association between leukae-
mia and radon (Kaletsch et al, 1999) whilst a significantly increased
risk was observed for CNS tumours, but this was based on only six
cases. A recent Swedish ecological analysis has found a risk for higher
radon concentration households, but relied on very low numbers in
the low concentration group (Kohli et al, 2000).

In conclusion, our results are reassuring, in that they do not
suggest any detectable public health risk of childhood malignancies
in the UK population from radon exposure at the levels measured
in the 6 months prior to diagnosis.
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