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ABSTRACT 

Sediment-laden flows in open channels can be sharply stratified vertically, characterized 

by a double-layer flow structure composed of a subaqueous sediment-laden flow layer 

immediately over the bed and an upper clear-water flow layer. Typical examples 

include dam-break flows and reservoir sediment-laden flows featuring turbidity currents. 

In general, sharply stratified sediment-laden flows involve a number of physical factors, 

including sharp flow stratification, inter-layer exchange, active sediment transport, and 

substantial mass exchange with the bed. Double layer-averaged models are attractive in 

modelling such flows in connection to its vertical structure. However, existing double 

layer-averaged models have either partly or completely ignored the primary features of 

stratified open-channel sediment-laden flows and thus are not generally suitable. In the 

present thesis, a two-dimensional double layer-averaged model has been developed, 

explicitly incorporating the fundamental physical factors and therefore generally 

applicable for sharply stratified sediment-laden flows in open channels. First, the 

governing equations of the new model and the employed numerical algorithm are 

presented. Then, the model is applied to investigate mobile-bed dam-break flows due to 

instantaneous full dam break and progressive failure of a dike and landslide dams. 

Enhanced performance of the new model is demonstrated over the previous models. 

Most notably, it clearly justifies the physical necessity to incorporate sediment mass 

conservation. Next, the proposed model is applied to investigate reservoir sediment-

laden flows featuring turbidity currents. The model is benchmarked against turbidity 

currents due to lock-exchange and sustained inflow. It is revealed that an appropriate 

clear-water outflow is favorable for turbidity current propagation, and also conducive to 

improving sediment flushing efficiency. As applied to prototype-scale turbidity current 

in the Xiaolangdi Reservoir in the Yellow River, China, the model successfully resolves 

the whole process from formation to recession. Following that, the hyperbolicity of the 

model equations is analyzed as related to dam-break flows and reservoir turbidity 

currents. The present model is demonstrated to preserve hyperbolicity and thus avoid 

Kelvin-Helmholtz instability. Computational tests for reservoir turbidity currents reveal 

that an excessive clear-water outflow would keep the turbidity current from being 

spoiled, and improves sediment flushing efficiency correspondingly.  
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CHAPTER 1 INTRODUCTION 

 

1.1. Sharply Stratified Sediment-laden Flows  

Sediment-laden flows, which commonly occur in surface water environments, can be 

sharply stratified vertically, characterized by a double-layer flow structure composed of 

subaqueous sediment-laden flow layer immediately over the bed and an upper clear-

water layer. Typical examples include the flows induced by dam-break flows and 

reservoir turbidity currents in open channels, and marine hyperpycnal plumes at river 

mouth respectively.  

Dam break flows are usually highly powerful and capable of triggering active sediment 

transport and rapid morphological changes, which in turn conspire to modify the flood. 

In general, strong interactions exist among the flow, sediment and morphology. 

Through friction, inertial effects and momentum exchanges with the fluid phase, erosion 

and deposition of bed materials may in turn significantly affect the development of the 

flood wave in terms of arrival time of the wave front and envelope of maximum attained 

flood levels, two parameters of utmost importance for emergency planning, risk 

management and damage assessment. Indeed damages to property and infrastructure 

resulting directly from sediment erosion, transport and deposition may even be much 

more serious than those resulting from the water flooding itself. Notably, the amount of 

sediment material entrained by catastrophic floods due to dam break or dyke failures 

may be extremely huge (Costa and Schuster 1988; Brooks and Lawrence 1999; Capart 

2000), sometimes the same order of magnitude as the initial volume of water in the 

reservoir. Consequently, the eroded sediments are observed to move collectively as a 

dense sheet of contact load, occupying a significant portion of the flow depth (Sumer et 
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al. 1996) and thus forming the subaqueous sediment-laden flow layer. In this regard, 

dam-break induced sediment-laden flows can be sharply stratified, comprising a 

bedload sediment-laden flow layer immediately over the bed and an upper clear-water 

flow layer.  

Reservoir turbidity current is subaqueous sediment-laden underflow. It is formed when 

subaerial sediment-laden flow plunges into a reservoir. Like other gravity currents, it is 

driven by the density difference with respect to the ambient fluid. Obviously, the 

sediment-laden flows in open channels induced by turbidity currents are sharply 

stratified, comprising the subaqueous turbidity current layer and the upper clear-water 

layer. More importantly, the whole process of reservoir turbidity current, i.e., formation, 

propagation and recession, is generally controlled by the water and sediment inputs 

from upstream and also the reservoir operational scheme specifying the downstream 

boundary condition. In this sense, reservoir turbidity currents are distinct from self-

accelerating turbidity currents in ocean environments (Parker et al. 1986). In general, 

turbidity currents can travel remarkable distances carrying large amounts of suspended 

sediments from the plunge point to the downstream. In reservoirs, turbidity currents are 

often the governing processes for the transport, entrainment and deposition of sediment 

(Fan and Morris 1992a). If the turbidity currents manage to arrive at the dam, it will be 

possible to flush sediment out of the reservoir. Otherwise, severe sedimentation in the 

reservoir will generally occur. Enhanced understanding of the whole process of 

reservoir turbidity currents is significant to effective sediment and reservoir 

management, flood mitigation and fish habitat recovery.  

Marine hyperpycnal plume (underflow) is a particular kind of turbidity current flowing 

under the seawater. It is normally formed at river mouth when the turbid river water, 

with both high suspended sediment concentrations and varying degrees of mixing with 
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saltwater, enters and then plunges into the seawater with the relatively smaller density. 

Associated with high-suspended concentrations, hyperpycnal underflows can transport 

considerable volume of sediments to the ocean basins (Mulder et al. 2003). Such 

underflows are rare at the mouths of most rivers; however, the extremely high 

suspended sediment concentrations which issue from the mouth of Yellow River in 

China are sufficient to favor the occurrence of hyperpycnal underflows for most of the 

year, which indeed have been considerably investigated (e.g., Wright et al. 1986, 1988, 

1990; Li et al. 1998)  

The present thesis is mainly focused on two typical types of stratified sediment-laden 

flow in open channels, featuring dam-break flows and reservoir turbidity currents. 

Before proceeding, the following definitions in relation to the stratified sediment-laden 

flow in open channels need to be clarified. First, the buoyancy force for the subaqueous 

sediment-laden flow is negative, namely towards the bed. Therefore, it demonstrates 

that the subaqueous sediment-laden flow layer is moving immediately over the bed, 

which is clearly different from positive buoyance force-driven subaqueous sediment-

laden flows (Sequeiros et al. 2009b; Gladstone and Pritchard 2010). Second, the open-

channel flow is stratified resulting from the density difference only due to sediment. 

The present research objective is only a subset of stratified open-channel flows, in 

which the density excess may be caused by salinity or temperature (Simpson 1997; 

Huppert 2006). Accordingly a primary feature of the subaqueous sediment-laden flow is 

its non-conservative nature. This is because subaqueous sediment-laden flow may 

entrain or deposit sediment, which correspondingly increases or reduces its density and 

the driving force. Third, the flow region with either low or high sediment concentration 

can be regarded as subaqueous sediment-laden flow layer in the present study. Thus the 

upper clear-water layer is merely composed of pure water and the subaqueous sediment-
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laden flow layer consists of water-sediment mixture. Fourth, the subaqueous sediment-

laden flow layer behaves as an effective median with little slip between the upper clear-

water layer and the lower erodible bed, and negligible seepage between fluid and solid 

phases. Based upon the above considerations, interactions exist among two layers and 

erodible bed. Specifically, the upper layer interacts with the lower layer by exchanging 

clear water, but the lower layer exchanges both water and sediment with the erodible 

bed. In general, sharply stratified sediment-laden flows involve a number of primary 

physical factors, including sharp flow stratification, inter-layer exchange, active 

sediment transport, and substantial mass exchange with the bed, the bottom boundary 

that usually undergoes evolution. 

1.2. Shallow Water Hydro-sediment-morphodynamics Models 

Enhanced understanding of sharply stratified sediment-laden flows and the linked 

hydro-sediment-morphodynamics has become extremely significant in the fields of 

water resources, environment protection, ecology management and public safety, given 

the frequent occurrence of the generally catastrophic floods worldwide. In the past 

decades, mathematical modelling has become one of the most proactive approaches for 

improving understanding of sharply stratified sediment-laden flows. In general, there 

have been two categories of computational models for sharply stratified sediment-laden 

flows, i.e., depth-resolving models and shallow water (layer-averaged) models. Depth-

resolving models, including full three-dimensional and vertical two-dimensional models, 

can reproduce the evolution process and the vertical structure of sharply stratified 

sediment-laden flows, induced by dam-break flows (Özgökmen 2007; Hsu et al. 2014; 

Marsooli and Wu 2014) and turbidity currents (e.g., Bournet et al. 1999; De Cesare et al. 

2001; Kassem and Imran 2001; Kassem et al. 2003; Khan et al. 2005; Huang et al. 2007, 

2008; Georgoulas et al. 2010; An and Julien 2014). Nevertheless, depth-resolving 
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models require excessively high computational costs and thus are unrealistic for 

applications to prototype-scale problems such as reservoir turbidity currents in the 

Xiaolangdi Reservoir. This holds true for general three-dimensional models for fluvial 

flow and sediment transport (Fang and Wang 2000; Wu et al. 2000). Also, the physics 

of turbulence, on which the model closures are based, is still poorly understood. In 

particular, it remains far from clear how to incorporate the effects of sediment into 

turbulence closures, even for steady and uniform sediment-laden flows in open channels. 

Comparatively, shallow water (layer-averaged) hydro-sediment-morphodynamics 

models are easier to formulate and solve, featuring a sensible balance between 

theoretical integrity and applicability. Layer-averaged refers to the fact that the physical 

quantities (velocity and sediment concentration) are averaged along the thickness of the 

sediment-laden flow layer and clear-water layer. 

Most shallow water hydro-sediment-morphodynamics models for dam-break flows to 

date are single layer-averaged models based on conventional shallow water 

hydrodynamic principles (e.g., Capart and Young 1998; Cao et al. 2004; Leal et al. 2006; 

Wu and Wang 2007; Leal et al. 2010a, b; Xia et al. 2010), in which the whole water-

sediment mixture is regarded as a single layer. Indeed they performed rather well and 

achieved satisfactory results in modelling dam-break flows. However, dam-break 

induced sediment-laden flows can be distinctly stratified, comprising a bedload 

sediment-laden flow layer immediately over the bed and an upper clear-water flow layer, 

which was first observed by Capart (2002) and thus gave rise to the awareness of 

developing double layer-averaged model for dam-break flows.  

Likewise, most existing layer-averaged models for turbidity currents are also single 

layer-averaged models, in which only the subaqueous sediment-laden flow layer is 

modelled, however the upper clear-water flow is neglected (e.g., Fukushima et al. 1985; 
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Parker et al. 1986; Choi 1998; Bradford and Katopodes 1999a, b; Sequeiros et al. 2009a; 

Hu et al. 2012; Lai and Wu 2013). Thus they are restricted to modelling the propagation 

of turbidity currents after their formation. In applications, this category of models 

hinges upon observed data to specify the upstream boundary conditions (e.g., Hu et al. 

2012), which however are not generally available. And indeed, there have been 

modelling efforts to resolve the formation of turbidity currents (Kassem and Imran 2001; 

De Cesare et al. 2001; Georgoulas et al. 2010). Critically, single layer-averaged models 

cannot resolve the formation process characterized by the transition from subaerial 

open-channel sediment-laden flow to subaqueous turbidity current, or the upper clear-

water flow dictated by the operation scheme of the reservoir. In contrast to these 

limitations, it is fundamentally important to resolve the formation process of reservoir 

turbidity current, not only scientifically but also practically. Equally importantly the 

operation scheme of the reservoir has been found to have significant impacts on 

turbidity currents (Lee and Yu 1997).  

Given the above observations, double layer-averaged models hold great promise for 

analysing sharply stratified sediment-laden flows by resolving the subaqueous 

sediment-laden flow layer and the upper clear-water flow layer distinctly based on their 

respective mass and momentum conservation laws.  

1.3. Double Layer-averaged Models  

Indeed double layer-averaged modelling of sharply stratified sediment-laden flows in 

open channels is not new at all in the broad field of fluid dynamics. As underpinned by 

the vertically stratified structure, extensive double layer-averaged models have been 

proposed for dam-break flows (Fraccarollo and Capart 2002, Capart and Young 2002, 

Spinewine 2005a, b, Savary and Zech 2007, Zech et al. 2008) and for general gravity 

currents (Rottman and Simpson 1983; Bonnecaze et al. 1993; Hallworth et al. 2003; 
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Ungarish and Zemach 2005; Adduce et al. 2012; La Rocca et al. 2012). This is sensible 

because of the significantly reduced computing cost compared to a vertical two-

dimensional (2D) or full three-dimensional (3D) model that fully resolves the vertical 

flow structure and also the ability to represent reasonably the stratification that is 

normally ignored in a single layer-averaged (SL) model. Generally, two sets of layer-

averaged equations are deployed to describe respectively the lower sediment-laden flow 

layer and the upper clear-water flow layer. However, the developments and applications 

of double layer-averaged models for sharply stratified sediment-laden flows have 

remained in infancy to date, suffering from several major shortcomings. 

First, existing double layer-averaged models for dam-break flows are simplified because 

sediment concentration in the bedload transport layer is presumed constant. For the 

highly transient and varied dam-break flows, this assumption may be far from generally 

justified. In principle, sediment concentration is one of the unknowns to be solved by a 

numerical model, but in existing simplified double layer-averaged (SDL) models 

(Spinewine 2005a, b, Savary and Zech 2007, Zech et al. 2008, Zech et al. 2009), its 

value needs to be specified beforehand and thus uncertainty is introduced inevitably. 

Succinctly, from a physical point of view, the fundamental mass conservation law for 

sediment is violated. The consequence of this fact can be serious. For example, 

according to Fraccarollo and Capart (2002), sediment particle size would have no effect 

on the bed scour induced by dam-break flows, which is questionable from physical 

intuition. Most plausibly, this stems from the assumption of constant sediment 

concentration, though the impact of the assumed equal velocities of the two layers is not 

precluded. Indeed, the extended models by for instance Capart and Young (2002), 

Spinewine (2005a) and Zech et al. (2009) do not involve the assumption of equal 

velocities in the two layers. It is also noted that Chen and Peng (2006) have developed 
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double layer-averaged models for distinctly stratified flows of different densities. 

However, these models are applicable for shallow flows over fixed bed only, without 

accounting for sediment transport and morphological evolution that are actively 

involved in dam-break floods over erodible beds. 

Second, regarding to turbidity currents, most existing double layer-averaged models 

have not incorporated sediment transport and morphological evolution, which however 

are key features of reservoir turbidity currents over mobile bed. The one-dimensional 

double layer-averaged model by Bonnecaze et al. (1993) takes into account sediment 

deposition, but ignores bed sediment entrainment and morphological evolution. Also it 

is limited to lock-exchange gravity currents without inflow from the upstream or 

outflow at the downstream boundary. Strictly, the lock-exchange gravity current is not a 

reservoir turbidity current that is normally dictated by the water and sediment inputs 

from the upstream and outflow at the downstream. Briefly, until now there have been no 

layer-averaged models capable of modelling the whole process of reservoir turbidity 

currents, which is critical to effective sediment and reservoir management. 

1.4. Present Work 

Here a coupled double layer-averaged two-dimensional mathematical model is 

proposed, explicitly incorporating flow stratification, intel-layer exchange, sediment 

transport and morphological evolution, and thus generally applicable to sharply 

stratified sediment-laden flow in open channels. Especially the flow stratification, 

which is ignored by single layer-averaged model, can be resolved by the present model. 

Also, the present double layer-averaged model is physically enhanced as sediment mass 

conservation is explicitly incorporated in lieu of the assumption of constant sediment 

concentration generic to existing double layer-averaged models for dam-break flows. As 
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compared to most existing double layer-averaged models for general gravity currents, 

the present model is physically extended by incorporating sediment transport and 

morphological evolution. The two hyperbolic systems of the governing equations for the 

two layers are solved separately and synchronously. Each hyperbolic system is solved 

by a quasi-well-balanced numerical algorithm involving drying and wetting, using a 

second-order accurate Godunov-type finite volume method in conjunction with the 

HLLC (Harten-Lax-van Leer Contact Wave) approximate Riemann solver. Employing 

this numerical strategy, the model is applied to two typical kinds of stratified open-

channel sediment-laden flows, i.e., dam-break flows and reservoir turbidity currents. 

Specifically, the model is first tested against a series of experimental dam-break flows, 

induced by instantaneous full dam break (Spinewine 2005a) and also due to progressive 

failure of a single and cascade landslide dams (Cao et al. 2011a, b, Schmocker and 

Hager 2012). Subsequently, the model is benchmarked against a spectrum of 

experimental turbidity currents induced by lock-exchange (Bonnecaze et al. 1995) and 

sustained inflow (Lee and Yu 1997). A pilot study is presented of prototype-scale 

turbidity current in the Xiaolangdi Reservoir (Li 2004; YRCC 2007), Yellow River in 

China to demonstrate the capability of the present model. Hyperbolicity of the model 

equations is further analyzed as related to dam-break flows and reservoir turbidity 

currents.  

1.5. Summary 

In Chapter 2, the governing equations, auxiliary relationships and numerical algorithm 

are presented. The two hyperbolic systems of the governing equations for the two layers 

are solved separately and synchronously. Each hyperbolic system is solved by a quasi-

well-balanced numerical algorithm involving drying and wetting, using a second-order 

accurate Godunov-type finite volume method in conjunction with the HLLC (Harten-
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Lax-van Leer Contact Wave) approximate Riemann solver. In principle, the model 

features a reasonable balance between the flux gradients and the bed or interface slope 

source terms and thus applicable to irregular topographies. 

In Chapter 3, the model is applied to laboratory experimental data of typical dam break 

flows due to instantaneous full dam break and progressive failure of a dike and 

landslide dams, either in a single setting or in cascade.  

In Chapter 4, the model is benchmarked against a spectrum of experimental turbidity 

currents induced by lock-exchange and sustained inflow. Especially, it is concerned 

with turbidity current formation, evolution and recession, plunging characteristics, 

impacts of downstream boundary conditions.  

Chapter 5 presents a computational study of prototype-scale turbidity currents in the 

Xiaolangdi Reservoir, Yellow River in China to demonstrate the capability of the 

present model. 

Chapter 6 presents the hyperbolicity analysis of double layer-averaged model as related 

to the stratified sediment-laden flows induced by dam-break flows and turbidity 

currents. Computational tests for the turbidity currents are also presented to reveal 

whether an excessive clear-water outflow would spoil the turbidity current and thus 

induce the linked Kelvin-Helmholtz instability.  

Conclusions and perspectives are summarized in Chapter 7. 
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CHAPTER 2 MATHEMATICAL FORMULATION 

 

2.1. Introduction  

Double layer-averaged modelling of sharply stratified sediment-laden flows has been 

pursued for several decades. Extensive double layer-averaged models have been 

proposed for dam-break flows (Fraccarollo and Capart 2002, Capart and Young 2002, 

Spinewine 2005a, b, Savary and Zech 2007, Zech et al. 2008) and for general gravity 

currents (Rottman and Simpson 1983; Bonnecaze et al. 1993; Hallworth et al. 2003; 

Ungarish and Zemach 2005; Adduce et al. 2012; La Rocca et al. 2012). However, the 

fundamental mass conservation law for sediment is violated in existing double layer-

averaged models for dam-break flows. Also, sediment transport and morphological 

evolution have been neglected in most previous double layer-averaged models for 

general gravity currents. Here a coupled double layer-averaged two-dimensional 

mathematical model is proposed, explicitly incorporating flow stratification, inter-layer 

exchange, sediment transport and morphological evolution. The governing equations are 

derived from the fundamental conservation laws in fluid dynamics under the framework 

of shallow water hydrodynamics. For multi grain sizes, the model is based on the 

concept of the widely used active layer (Hirano 1971; Armanini and di Silvio 1988). A 

set of auxiliary relationships are introduced to close the model. The governing equations 

for each layer are cast into a non-homogeneous hyperbolic system, with the interactions 

between the two layers and the erodible bed as well as the boundary resistance and 

gravitational action represented as source terms. The two hyperbolic systems of the 

governing equations for the two layers are solved separately and synchronously. Each 

hyperbolic system is solved by a quasi-well-balanced numerical algorithm involving 
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drying and wetting, using a second-order accurate Godunov-type finite volume method 

in conjunction with the HLLC (Harten-Lax-van Leer Contact Wave) approximate 

Riemann solver. 

2.2. Structure of Double Layer-averaged Model  

A general sketch of the one-dimensional (1D) double layer-averaged model is presented 

in Fig. 2.1. The system is represented by two moving layers and one layer at rest. 

Specifically, it includes (1) an upper clear-water flow layer of depth wh  and layer-

averaged velocity wu ; (2) a lower sediment-laden flow layer of depth sh , layer-averaged 

velocity su
 
and total volumetric sediment concentration sC ; and (3) an erodible bed of 

volumetric sediment concentration bC  with vanishing velocity. In general, there exist 

interactions among the upper layer clear water flow, sediment-laden flow and the 

erodible bed, which are characterized by mass and momentum exchanges. Specifically, 

the upper layer interacts with the lower layer by exchanging clear water, but the lower 

layer exchanges both the water and sediment with the erodible bed. In Fig. 2.1, TE  and 

TD  are the total sediment entrainment and deposition fluxes across the bottom 

boundary respectively; wE  is the mass exchange flux of clear water across the interface 

between the two layers; bsw zhh   is stage; bss zh   is the elevation of interface 

between the clear-water layer and sediment-laden flow layer; and bz  is bed elevation.  
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Figure 2.1 Structure of one-dimensional double layer-averaged models 

 

2.3. Governing Equations  

2.3.1. One-dimensional double layer-averaged model 

Coupled modelling has been implemented in recent single layer-averaged models (Cao 

et al. 2004; Cao et al. 2011c; Hu and Cao 2009; Hu et al. 2012). This is followed in the 

present double layer-averaged model. Consider longitudinally one-dimensional double-

layer flows over a mobile bed composed of N size classes. Let kd  denote the diameter 

of the k  th size of sediments, where the subscript k 1, 2, ... N. For multi grain sizes, 

the model is based upon the concept of the widely used active layer (Hirano 1971; 

Armanini and di Silvio 1988). The active layer lies between the sediment-laden flow 

layer and the substrate layer, where the sediment is assumed to be distributed uniformly 

in the vertical direction and can exchange with the upper and lower layers. The substrate 

layer, also known as the stratigraphy of the deposit, has certain structure in the vertical 

and may vary in time. Briefly, the governing equations of a double layer-averaged 

model comprise the mass and momentum conservation equations respectively for the 

clear-water flow layer and the sediment-laden flow layer, and also the size-specific mass 
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conservation equation for the sediments carried by the flow, the total mass conservation 

equation for the sediments in the bed and the size-specific mass conservation equation 

for the sediments in the active layer of the bed surface. These equations can be derived 

from the fundamental conservation laws in fluid dynamics under the framework of 

shallow water hydrodynamics (Abbott 1979). 

Consider a control volume of length x  and width B  in a channel. According to mass 

conservation, the variation rate of mass stored within the control volume is equal to net 

mass inflow rate. Therefore the mass conservation equations for the upper clear-water 

flow layer, lower sediment-laden layer and size-specific sediments transported by flow 

are respectively, 
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where t  is the time; x  is the streamwise coordinate; bCp 1  is the bed sediment 

porosity; wρ , sρ  are the densities of water and sediment respectively; kc  is the size-

specific volumetric sediment concentration of the sediment-laden flow layer and 

 ks cC ; kE  is the size-specific sediment entrainment flux and  kT EE ; kD  is the 

size-specific sediment deposition flux and  kT DD ; ssswc CC   )1(  is the 

density of the water-sediment mixture in the sediment-laden flow layer; 

)1(0 pρpρρ sw   is the density of the saturated bed. 

Based on momentum conservation (essentially the Newton’s second law), the variation 
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rate of momentum stored within the control volume is equal to net momentum inflow 

rate plus sum of forces. Correspondingly, the momentum conservation equations for the 

upper clear-water flow layer and the lower sediment-laden layer are  
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forces for the clear-water flow layer and the sediment-laden flow layer respectively; g  

is the gravitational acceleration; ix  is shear stress in the x - direction at the interface 

between the clear-water layer and the lower layer; and bx  is bed shear stress in the x - 

direction; PwF  and PsF  are the pressure forces for the clear-water flow layer and the 

sediment-laden flow layer respectively. The flow pressure is assumed to be hydrostatic 

as the inertial and diffusion effects in the vertical momentum equations can be usually 

neglected (Wu 2007). 
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Dividing the Eqs. (2.1-2.5) by the width ( B ) and the length ( x ) of the control volume 

and assuming 0x  give the governing equations below.  

The mass and momentum conservation equations for the clear-water flow layer are  
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The mass and momentum conservation equations for the sediment-laden flow layer are  
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The size-specific mass conservation for the sediments carried by the flow is  
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To expedite numerical solution using conservative variables, it is advisable to recast 

Eqs. (2.7-2.11), so that the densities do not appear on the left hand side of the equations. 

Thus the depth-averaged model equations are in standard and well-structured 

conservative form. They are summarized as follows,  
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In addition, the total mass conservation equation for the sediments in the bed and the 

size-specific mass conservation equation for the sediments in the active layer of the bed 

surface are respectively,  
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Eqs. (2.12) and (2.13) represent the mass and momentum conservation equations for the 

clear-water layer. The first two terms on the RHS (right hand side) of Eq. (2.13) 

represent the gravity and interfacial resistance acting on this layer, and the third term on 

the RHS illustrates the momentum transfer due to clear water exchange across the 

interface. Eq. (2.14) describes the mass conservation equation for the sediment-laden 

flow layer. The second term on its RHS quantifies the contribution of mass exchange 

with the bed. Eq. (2.15) represents momentum conservation for the water-sediment 

mixture in the lower layer. The first three terms on its RHS feature respectively the 

interfacial and bed resistances, gravity and hydrostatic pressure gradient of the clear-

water layer acting on the lower layer. The fourth term on its RHS indicates the 

contribution of the spatial variations in sediment concentration. The fifth term 
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represents the momentum transfer due to sediment exchange with the bed. Likewise, the 

last two terms on its RHS represent the momentum transfer arising from clear water 

exchange between two moving layers. Eq. (2.16) represents size-specific sediment mass 

conservation in the lower layer, incorporating sediment exchange with the bed. Eq. 

(2.17) represents the rate of bed deformation.  

The complete set of the governing equations for a single-sized sediment transport can be 

easily obtained if N  1 in Eqs. (2.12-2.17). For multi grain sizes, the widely used 

active layer formulation due to Hirano (1971), i.e., Eq. (2.18), is adopted here to resolve 

the change of bed composition. In Eq. (2.18),   is the thickness of the active layer, akf  

is fraction of the k th size sediment in the active layer;   bz  is the elevation of the 

bottom surface of the active layer; and Ikf  is the fraction of the k th size sediment in the 

interface between the active layer and substrate layer. 

2.3.2. Comparisons with previous models 

Under certain premises, the double layer-averaged model above can be degenerated into 

two previous layer-averaged models for dam-break flows, i.e., the single layer-averaged 

(SL) model (Cao et al. 2004) and simplified double layer-averaged (SDL) model 

(Spinewine 2005a). In both cases above, N  is set to be 1.  

First, when the clear-water layer vanishes and in line with this status there is no water 

exchange across the interface, Eqs. (2.12-2.13) are trivial and Eqs. (2.14-2.17) become 

the same as those of the SL model by Cao et al. (2004).  

Second, if sediment concentration sC  in the lower layer is assumed constant as in the 

SDL model by Spinewine (2005a), Eq. (2.16) is no longer required. When be  is 

introduced to quantify the bed erosion rate, instead of the sediment fluxes in Eq. (2.17), 
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bed evolution is quantified by 

b
b e
t

z




                                                          (2.19) 

A relationship between be  and wE  is suggested by Spinewine (2005a) to keep the 

sediment concentration of sediment-laden layer constant, i.e.,  
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By substituting Eqs. (2.19) and (2.20) into the governing equations of the DL model, 

one obtains the governing equations of the SDL model due to Spinewine (2005a). For 

the clear-water layer, 
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and for the sediment-laden flow layer: 
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Likewise, if the sediment entrainment and deposition are partly or completely ignored 

and the bed deformation is neglected, the present double layer-averaged model can 

readily be reduced to previous double layer-averaged model for general gravity 

currents (e.g., Rottman and Simpson 1983; Bonnecaze et al. 1993; Hallworth et al. 
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2003; Ungarish and Zemach 2005; Adduce et al. 2012; La Rocca et al. 2012). 

However, the governing equations of double layer-averaged model do not reduce to 

those of a single layer-averaged model for turbidity currents. Succinctly, this is 

determined by the distinct philosophies and premises in deriving the governing 

equations of the single and double layer-averaged models. Specifically, when the 

upper layer vanishes, Eqs. (2.14-2.16) for the lower layer reduce to a system of 

equations of a traditional shallow water hydrodynamic and sediment model for 

sediment-laden flows (Cao et al. 2004), rather than that of a single layer-averaged 

model for turbidity currents (Hu et al. 2012). Similarly, if the flow velocity in the 

upper layer is assumed to vanish (i.e., the upper clear water is assumed to be static), 

Eqs. (2.14-2.16) do not reduce the system of equations of a single layer-averaged 

model for turbidity currents (Hu et al. 2012) either. 

2.3.3. Two-dimensional double layer-averaged model  

It is straightforward to extend the 1D governing equations to 2D conditions. The 

governing equations of the model are essentially 2D shallow water equations 

comprising the mass and momentum conservation equations respectively for the clear-

water flow layer and the sediment-laden flow layer, and also the size-specific mass 

conservation equation for the sediments carried by the flow, the total mass conservation 

equation for the sediments in the bed and the size-specific mass conservation equation 

for the sediments in the active layer of the bed surface. Here the water surface elevation 

and the interface elevation above the datum level are employed as flow variables in the 

model equations. Specifically, the thickness of the clear-water flow layer wh  and the 

thickness of the sediment-laden flow layer sh  can be expressed as )( s   and 

)( bs z  respectively. Thus the terms, i.e., )2(
2

1 2
sg    and )2(

2

1 2
bss zg   , arise 
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from the simple algebraic manipulation to achieve a mathematical balance between 

fluxes and the source terms. Accordingly, these are  
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where wv  is the layer-averaged horizontal velocity component of clear-water layer in 

the y - direction; sv  is the layer-averaged horizontal velocity component of sediment-

laden layer flow in the y -direction; wy  are the shear stresses at the interface between 

the clear-water flow layer and the sediment-laden flow layer in the y - direction; and 

by  are bed shear stresses in the y - direction.  

2.4. Auxiliary Relationships 

To close the governing equations of the present 2D double layer-averaged model, a set 

of relationships has to be introduced to determine the bed boundary resistance, interface 

shear stress and water entrainment, and sediment exchange (entrainment and deposition) 

fluxes. 

2.4.1. Resistance 

Generally, unsteady and non-uniform flows may experience bed boundary resistances 

substantially different from those of steady and uniform flows. This is more pronounced 

when sediment transport is involved, which renders the bed movable and bedforms 

generated. However, no generally applicable relationships are currently available to 

represent boundary resistance in such flows. This is also the case for the interface shear 

stress, for which there has been different empirical relationships (Chen and Peng 2006; 

Kim and LeVeque 2008; Zech et al. 2008; Lee et al. 2014). Consequently, 

computational studies of stratified sediment-laden flows over fixed and mobile beds 

continue to use resistance relationships initially developed for steady and uniform flows, 

which are usually based on the Manning’s equation. This practice is followed for the 

present 2D double layer-averaged model by virtue of the conventional empirical 

relations 
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31)( wwsswiwix hUuugn                                         (2.34a)  

31)( wwsswiwiy hUvvgn                                         (2.34b) 

3/12 / sssbcbx hUugn                                               (2.35a)  

312

sssbcby hUvgn                                                (2.35b) 

where in  is the roughness at the interface between the sediment-laden flow layer and 

clear-water flow layer; bn  is the roughness of the bed; 22

sss vuU  , the resultant 

velocity of the sediment-laden flow layer; and 22 )()( swswws vvuuU  , the 

resultant velocity difference between the two layers.  

2.4.2. Mass exchange 

During the evolution process of stratified sediment-laden flows, mass exchange will 

occur in the lower and upper surface of sediment-laden flow layer. At the upper 

interface of sediment-laden flow layer, the mass flux of water entrainment wE  

physically represents the mixing of the sediment-laden flow with the clear water across 

the interface of two layers. Due to the upward decreasing trend of vertical sediment 

concentration profiles, sediment concentration near the upper surface of lower 

sediment-laden flow layer is generally very small. Therefore only mass exchange of 

clear water is considered between the clear-water layer and lower sediment-laden flow 

layer. According to laboratory observations and numerical experiments, water exchange 

is critical for the evolution of sediment-laden flow layer and has been quantified 

through the bulk Richardson number. Following Parker et al. (1986), the water 

exchange is determined by 
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wsww UeE                                                       (2.36) 

where the water entrainment coefficient 
we  is calculated empirically using the 

Richardson number 2Ri wss Uhg  and the submerged gravitational acceleration 

ssgcg   with specific gravity of sediment 1)(  wss  ,  

Ri0204.0

00153.0


we                                                               (2.37) 

According to Eq. (2.37), as Ri  approaches zero, we  approaches a value of 0.075, 

appropriate for non-stratified flows. As Ri  becomes much larger than 0.0204, the 

formula of Egashira (1980), extensively supported by data for density-driven flows, is 

obtained. 

While at the lower interface of sediment-laden flow layer, two distinct mechanisms are 

generally involved in sediment exchange with the bed, i.e., bed sediment entrainment 

due to turbulence and sediment deposition by gravitational action, though sediment 

inter-particle interactions may modify the exchange to some extent. The determination 

of the entrainment and deposition fluxes continues to be one of the pivotal components 

of computational models for fluvial sediment transport and morphological evolution. 

Nevertheless, current formulations hinge upon a series of premises, as addressed by Cao 

and Carling (2002). There is little dispute that the deposition flux can be determined 

practically by using the local near-bed sediment concentration and hindered settling 

velocity. One of the most widely used approaches to specifying bed sediment 

entrainment flux is based on the assumption that entrainment always occurs at the same 

rate as it does under capacity regime. In capacity conditions, the entrainment flux is 

equal to the deposition flux. Therefore, bed sediment entrainment flux can be computed 
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by using near-bed sediment concentration at capacity and settling velocity. Accordingly, 

the entrainment and deposition fluxes are estimated by  

skkk EE  , bkkk cD                                               (2.38) 

where k  is the size-specific settling velocity calculated by the formula of Zhang and 

Xie (1993)  
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 95.1309.1)95.13( 2                               (2.39) 

where   is the kinematic viscosity of water; kbkbk crc   is the size-specific local near-

bed concentration, bkr  is the ratio of the near-bed sediment concentration to layer-

averaged concentration. The parameter skuksk EFE   is the size-specific near-bed 

concentration at capacity condition, skuE  is the sediment capacity transport for uniform 

sediment, kF  is the areal exposure fraction of the k th sediment on the bed surface given 

by Parker (1991a, b) as below  
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With regard to suspended sediment transport, bkr  can be determined by evaluating the 

near-bed concentration at a distance of 0.05 sh  from the bed surface (Parker et al. 1986) 

46.12
*

2
* )(5.311  kbk vur                                           (2.41) 

where *u  and *v  are the bed shear velocities in the x - and y - directions. Although 

many empirical formulations are available for estimating the near-bed sediment 

concentration under capacity condition for sediment-laden open channel, only a few 
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empirical formulae for skuE  are available for subaqueous turbidity currents. Parker et al. 

(1986) introduced the following empirical formulation, 
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where kkk sgdvu  32
*

2
* )(  . In the present study, the Zhang and Xie formula is 

also adopted, which is well tested and widely used for suspended sediment transport of 

open channel flow in the Yellow River (Zhang and Xie 1993). A correction coefficient 

k  is introduced because the present study is concerned with turbidity currents. 

Currently there is no evidence to show that the computed results by determining each 

k  for size group are better than those by using a unified parameter  . Thus a unified 

parameter   is used and it is estimated by calibration in the simulation. Following the 

logarithmic-matching treatment of Guo (2002) and using the resultant velocity sU  of 

the sediment-laden flow layer, one yields the adapted version of the Zhang and Xie 

formula  
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As for the bedload sediment transport in double layer-averaged model, bedload 

sediment concentration typically varies very little vertically within the lower layer, as 

compared to its longitudinal variation. In this regard, the near-bed concentration can be 

represented by the average concentration of the lower layer, thus 1bkr . The bedload 

sediment transport capacity ec  is determined by  

ssbksku UhqE                                              (2.44a) 
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  5.138 ckkbk sgdq                                         (2.44b) 

where bkq  is the size-specific unit-width bedload transport rate at transport capacity 

status;   is the modification coefficient; sgdvu /22
   is the Shields parameter; and 

ck  is the size-specific critical Shields parameter for initiation of sediment movement. 

Usually, the threshold Shields parameter can be empirically determined over 

sufficiently mild slopes using the Shields diagram (Chien and Wan 1999). Yet, for dam-

break processes that may feature steep slopes, 
cθ  is determined following Cao et al. 

(2011c). Although a plethora of empirical formulations is available for calculating bkq , 

they are derived under steady and uniform flows, and therefore the entrainment flux 

based on these formulations may not be directly applicable to dam-break flows. A 

slightly modified version of the MPM (Meyer-Peter and Müller 1948) formula is 

introduced here (MMPM), with a modification coefficient k  to be calibrated using 

measured data. This is necessary as the Shields parameter in dam-break floods can go 

far beyond the range in which the MPM formula was initially derived. In essence, it is a 

functional form of bedload transport rate introduced based on the MPM formula, 

especially when the modification by Wong and Parker (2006) is considered.  

The following relation is employed to evaluate Ikf  (Hoey and Ferguson, 1994; Toro-

Escobar et al., 1996) 
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where skf  is the fraction of the k th size sediment in the substrate layer;   is the 

empirical weighting parameter.  

In the present work, the closure relationships for the SL model for dam-break flows are 
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in principle the special version of those for the DL model as the upper clear-water flow 

layer vanishes. To close the SDL model for dam-break flows, an empirical relationship 

is proposed to determine directly the bed erosion rate be  using a lower and upper value 

of the shear stress at the bed (Spinewine 2005a), instead of the entrainment and 

deposition fluxes in Eq. (2.27). 

Mathematical modelling has become one of the most proactive approaches in the 

context of hydraulic research and engineering practice. Yet concerns over its reliability 

have so far remained, especially when sediment transport and morphological evolution 

are involved. One of the most viable strategies to address these concerns is to 

incorporate in the governing equations of a model as much physics as possible and 

thereby minimize its uncertainty (uncertainty is inevitable because of the empirical 

relationships introduced to close the model). The present work is just one example with 

respect to this philosophy, i.e., eliminating the assumption of constant sediment 

concentration in the lower layer in SDL models for dam-break flows by applying the 

fundamental mass conservation law for sediment, i.e., Eq. (2.16). It is this fact that 

distinguishes the present DL model from the existing SDL model for dam-break flows 

(Spinewine 2005a). Equally importantly, this must not be confused with the empirical 

relationships introduced to close the governing equations of the models, which are far 

from generally applicable and inevitably feature uncertainty. The latter fact certainly 

necessitates systematic, fundamental investigations of the mechanisms of sediment 

transport in complex flows, i.e., highly unsteady and rapidly varied flows. Before new 

established closure formulations are available, model uncertainty has to be dealt with by 

empiricism that can be accrued through practice using measured datasets. 
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2.5. Numerical Algorithm  

The numerical solution of two-layer shallow water equations has been research objects 

of intensive studies during the last years (e.g., Macías et al. 1999; Abgrall and Karni 

2009). This interest is due, on the one hand, to the applicability of these models to the 

simulation of stratified geophysical flows. On the other hand, they can be considered as 

a prototype of partial differential equations involving similar difficulties, as it is the case 

for a number of two-phase flow models (e.g., Pitman and Le 2005; Pudasaini 2012). 

The main difficulty of double layer-averaged model in terms of numerical computation 

comes from the presence of non-conservative products. Thus, the solutions of the 

system may develop discontinuities and, due to the non-divergence form of the 

equations, the notion of weak solution in the sense of distributions cannot be used. 

Equally importantly, the system is conditionally hyperbolic due to the presence of the 

non-conservative products, i.e., the inter-layer interactions (Bouchut and Morales 2008). 

If the difference of the velocities of two layers exceeds a threshold, the system suffers 

hyperbolicity loss and the linked Kelvin-Helmholtz instability is expected (Armi 1986; 

Kim and LeVeque 2008). In this situation, its eigenstructure cannot be obtained in an 

explicit form. The loss of hyperbolicity is related to the appearance of shear instabilities 

that may lead, in real flows, to intense mixing of the two layers. While, in practice, this 

mixture partially dissipates the energy, and in numerical experiments these interface 

disturbances may grow and overwhelm the solution. Accordingly, some special 

treatments have to be developed. Castro et al. (2010) introduces an intermediate layer to 

recover the hyperbolicity. And Castro et al. (2011) adds locally and automatically an 

optimal amount of shear stress to make the flow to remain in the hyperbolicity region. 

Another interesting approach is proposed by Abgrall and Karni (2009), where two 

artificial equations are added into the system to make the extended system hyperbolic 
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and thus it could be solved by a second-order Roe-type scheme in a rather 

straightforward manner. Yet the present model involves more equations than analyzed 

previously. Overall it is too complicated to be solved numerically as a single system 

presently, which is reserved for future studies.  

Given the above observations, an alternative solution strategy has to be developed. As 

the bed deformation is entirely determined by local entrainment and deposition fluxes 

under the non-capacity framework for sediment transport, Eq. (2.32) is separated from 

the remaining equations and can be readily solved. Further, from physical perspectives, 

it is proposed that either the upper clear-water flow layer or the lower sediment-laden 

flow layer is dictated by its own inertia, gravity and boundary resistance, whilst the 

inter-layer interactions (mainly the second term on the RHS of Eq. (2.26-2.27) and the 

third term on the RHS of Eq. (2.29-2.30)) play a secondary role and can therefore be set 

as source terms in the momentum equations. In fact, the inter-layer interactions can be 

confirmed to be negligible post priori, i.e., after the numerical solution of a specific case 

has been achieved.  

The above solution strategy facilitates the decomposition of Eqs. (2.25) to (2.31) to two 

reduced-order hyperbolic systems that represent respectively the upper clear-water flow 

layer and the lower sediment-laden flow layer, and are much easier to solve than the 

single system of Eqs. (2.25) to (2.31), i.e.,  
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where T  and U  are vectors of conserved variables; E , F , G  and H  are vectors of the 

flux variables. For the sediment-laden flow layer, bS  denotes vector of bed slope source 

term, fS  represents vector of bed friction source terms and other terms related to the 

impacts of sediment transport and water entrainment, eS  represents vector of water 

entrainment source term. Similarly, for the clear-water flow layer, bR  features vector of 

interface slope source term, fR  comprises vector of interface friction source terms and 

other terms related to impacts of water entrainment, eR  represents vector of water 

entrainment source term and variations of interface elevation; wxq , wyq  are conservative 

variables in Eq. (2.48); sxq , syq , ckq  are conservative variables in Eq. (2.49).  

The two non-homogeneous hyperbolic systems constituted by Eqs. (2.46) and (2.47) 

can be solved separately and synchronously (Li et al. 2013; Cao et al. 2015) using one 

of a hierarchy of numerical algorithms that can capture shock waves and contact 

discontinuities properly. The numerical algorithm employed in the present double layer-

averaged mobile model is an extension of that in the 2D model originally developed for 

single-layer clear-water flow over fixed bed (Liang 2010). Take Eq. (2.46) as an 

example. It can be solved numerically by an accurate finite volume Godunov-type 

approach in conjunction with the HLLC (Harten-Lax-van Leer contact wave) 

approximate Riemann solver (Toro 2001) on a fixed rectangular mesh. In principle, the 

present model is well-balanced as the inter-layer interactions play secondary roles and 

are negligible compared to inertia and gravitation.  
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2.5.1. FVM discretization 

The following time-marching formulas are used to update flow and sediment variables 

to a new time step ( 1m )  

m
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m
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x

t
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ji t SSUU                                                (2.51) 

where the subscript m  represents the time level and q  indicates the state after 

calculating the variables from Eq. (2.50); subscripts i , j  are the spatial node indexes; 

t  is the time step; x , y  are the spatial steps; ji ,21G , ji ,21G , 21, jiH  and 21, jiH  

are the interface flux vectors. 

In Eq. (2.51), the friction source term vector RK
fS , RK

eS  are computed by the third-order 

Runge-Kutta (RK) method (Gottlieb and Shu 1998). Take RK
fS  as an example,  
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The current numerical scheme is explicit and its stability is controlled by the Courant-

Friedrichs-Lewy condition. The time step is given by 
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2.5.2. HLLC scheme  

Step 1 Nonnegative reconstruction of Riemann states  

The interface fluxes ji ,21G , ji ,21G , ji ,21H  and ji ,21H  are computed using the HLLC 

Riemann solver (Toro 2001), which needs correct reconstruction of the Riemann states. 

The MUSCL (monotonic upstream-centered scheme for conservation laws) method is 

used to achieve second-order accuracy in space. The Riemann states are defined from 

the face values of flow variables obtained from the cell-centered flow information by 

applying a linear slope-limited reconstruction. At the left hand side of the cell interface 

),21( ji  , the values are evaluated by 
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L
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where   represents the slope-limited function evaluated at cell ),( ji  based on the flow 

and sediment data at the cell and its upwind and downwind neighbours, and the minmod 

slope limiter is used for better numerical stability (Hirsch 1990) 

)]1,min(,0max[)( rr                                                        (2.55) 

where r  is the ratio of successive gradients of the flow to the variable under 

consideration; for example, e.g., for   
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Similar expressions can defined for sxq , syq , ckq and sh . 

The interface values of the right-hand side of the cell interface ),21( ji   are calculated 

in a similar way, 
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where   is evaluated at cell ),1( ji  . The velocity components and volumetric 

sediment concentration are then calculated by 
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In a dry cell or a wet cell next to a dry cell, the face values are assumed to be the same 

as the corresponding flow data at the cell center. This essentially reduces the accuracy 

of the second-order scheme to first-order, which is normal for a slope limiting process.  

Based on the above interface values, the Riemann states can be sought for designing the 

non-negativity of water depth. As suggested by Liang (2010), a single bed elevation at 

the cell interface ),21( ji   may be defined as 
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The depth components of the Riemann states are then defined by 
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which preserves positive water depth. The Riemann states of other flow variables can be 

obtained accordingly 
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According to Liang (2010), it is easy to prove that the well-balancing property of the 

governing equations and the corresponding numerical algorithm would not be spoiled 

by the above reconstruction of the Riemann states if a wet-bed case is simulated. 

However, for a dry-bed application, a numerical technique is needed to preserve the 

well-balanced solutions. For example, the bed elevation and the stage component of 

Riemann states are locally and instantaneously modified by subtracting z  from the 

original values. And )](,0max[ ,21,21

L

jisjibzz     denotes the difference between the 

actual and pseudo water surface level at the cell interface ),21( ji  .  

zzz jibjib   ,21,21                                                      (2.62a) 
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Local bed modification (Eq. 2.62) completes the non-negative reconstruction of 

Riemann states, which are then directly applied by the HLLC approximate Riemann 
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solver to compute the interface fluxes ( ji ,21G ). The Riemann states at the other cell 

interfaces and the corresponding fluxes ( ji ,21G , ji ,21H  and ji ,21H ) are computed in 

the same way.  

Step 2 Numerical flux estimation 

Referring to the solution structure of the HLLC approximate Riemann solver, the 

interface flux, for instance ji ,21G , is computed from  
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where )( ,21,21
L

ji
L

ji   UGG  and )( ,21,21
R

ji
R

ji   UGG  are calculated from the left and 

right Riemann states L
ji ,21U  and R

ji ,21U  for a local problem. The fluxes L
ji

*
,21G  and 

R
ji

*
,21G  correspond to the left and right sides of the middle (contact) wave and LS , MS  

and RS  are estimates of the speeds of the left, middle (contact) and right waves. When 

evaluating fluxes in the x -direction, it should be noted that the middle wave arising 

from the presence of the y -direction momentum equation is always a shear wave, 

across which the tangential velocity component sv  changes discontinuously while 

normal velocity component su  and water depth sh  remain constant. Another passive 

component, sediment concentration component sc , can be dealt with the identical way.  
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Different choices of wave speed estimates are possible. Fraccarollo and Toro (1995) 

suggest the following approximations including dry-bed options from the two-
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rarefaction approximate Riemann solver, whereby the left and right wave speeds are 

determined from  
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where, and are calculated from  
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For general problems including dry-bed cases, the middle wave speed is calculated by 

(Toro 2001) 
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Similar formulae are used to calculate ji ,21G , ji ,21H  and ji ,21H .  

The bed slope term k

bS  is discretized using the method proposed by Liang (2010). The 

procedure for the x -direction is outlined below; that for the y -direction is similar. 
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where  L
jis

R
jiss ,21,215.0     

Eq. (2.47) for the clear-water flow layer can be solved in a similar procedure as Eq. 

(2.46). 

While the governing equations are presented for both 1D and 2D, the numerical 

algorithm presented above applies solely to the 2D governing equations. To solve the 

1D coupled model, the total-variation-diminishing version (TVD) of the second-order 

weighted-average-flux (WAF) method is used along with HLLC (Harten-Lax–van Leer 

Contact Wave) approximate Riemann solvers for the homogeneous equations. A Runge-

Kutta scheme is applied to solve the ordinary differential equations composed of the 

source terms (Li et al. 2013). The imbalanced 1D coupled model was applied to resolve 

the dam-break flows in Chapter 3. The 1D model was later extended to the 2D condition 

and made quasi-well-balanced for the turbidity currents in Chapters 4, 5 and 6. 

Nevertheless, the dam-break flows are revisited by the quasi-well-balanced 2D coupled 

model and the numerical discriminations are trivial between the computed results by 1D 

and 2D models.  

Additionally, the governing equations of the SDL model for dam-break flows, i.e., Eqs. 

(2.21) to (2.24), are cast into a single system, which may suffer hyperbolicity loss, and 

then solved numerically using the same algorithm as previously proposed by Spinewine 

(2005a), i.e., a second-order Godunov finite-volume scheme along with the LHLL 

(Lateralized Harten-Lax-van Leer) Riemann solver (Fraccarollo et al. 2003). However, 

this numerical algorithm is selected and used to construct the solution based on the 

optimistic but unjustified assumption that the loss of hyperbolicity will not invalidate 
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the results. Thus previously, this model is merely restricted to modelling the small-scale 

laboratory experiments.  

2.6. Summary 

Here a coupled double layer-averaged two-dimensional mathematical model has been 

developed, explicitly incorporating flow stratification, inter-layer exchange, sediment 

transport and morphological evolution, and thus generally applicable for the stratified 

sediment-laden flow in open channels. Especially the flow stratification, which is 

ignored by single layer-averaged model, is resolved by the present model. Also, the 

present double layer-averaged model is physically enhanced as sediment mass 

conservation is explicitly incorporated in lieu of the assumption of constant sediment 

concentration generic to existing double layer-averaged models for dam-break flows. In 

comparison to most existing double layer-averaged model for general gravity currents, 

the present model is physically extended by incorporating sediment transport and 

morphological evolution. Within the present model, the governing equations for each 

layer are cast into a non-homogeneous hyperbolic system, with the interactions between 

the two layers and the erodible bed as well as the boundary resistance and gravitational 

action represented as source terms. A set of relationships has to be introduced to 

determine the bed boundary resistance, interface shear stress, water entrainment and 

sediment exchange (entrainment and deposition) fluxes. The two hyperbolic systems of 

the governing equations for the two layers are solved separately and synchronously. 

Each hyperbolic system is solved by a quasi-well-balanced numerical algorithm 

involving drying and wetting, using a second-order accurate Godunov-type finite 

volume method in conjunction with the HLLC (Harten-Lax-van Leer Contact Wave) 

approximate Riemann solver. Admittedly, the sediment-laden flow layer with high 

contents of fine sediments may behave as non-Newtonian fluids, which necessitate 
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physically improved constitutive relationships to be incorporated in the model. 

Technically, the great computational cost is of major concern when applied to 

prototype-scale cases as a fixed uniform mesh is adopted. In this regard, the technique 

of adaptive mesh refining can be incorporated, which can greatly save computational 

time by an order of magnitude. 
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CHAPTER 3 MODELLING DAM-BREAK FLOWS 

 

3.1. Introduction  

Dam-break flows are generally energetic and may induce active sediment transport and 

rapid morphological changes, which in turn conspire to modify the flows. In general, 

strong interaction exists among the flow, sediment transport and channel morphology. 

Enhanced understanding of dam-break floods and the linked hydraulics has become 

extremely significant in the fields of water resources, environment protection, ecology 

management and public safety, given the occurrence of crumbling dams and the 

generally catastrophic floods worldwide. Typical examples of dam-break include the 

October 1999 case in Poerua River in Westland, South Island, New Zealand (Davies et 

al. 2007) and the June 1967 case in the Yalong River in China (Li et al. 1986; Chen et 

al. 1992). In addition, unpredictable massive earthquakes or other violent disturbances 

to dam infrastructure may induce major dam-break. It is also believed that reservoirs 

may be connected to seismic activities to some extent (Dalton 2010), implying that 

reservoirs could be responsible for the occurrence of earthquakes. For example, there is 

concern over the Three Gorges Dam in the Yangtze River, China (Stone 2008). Field 

observation is undoubtedly the most straightforward and direct method to study dam-

break flows, from which significant understanding of the related physics can be derived. 

However, the field observations of dam-break flows have still remained so far rare. It is 

largely because the observations are extremely hard to conduct due to the destructive 

power and unpredictable occurrence. In this regard, the information from these 

observations is rather limited and thus adds little to the systematic understanding of the 

physics. Comparatively, laboratory experiments provide a well-controlled way to 
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understand the natural phenomena systematically. Extensive laboratory experiments 

have been undertaken to study dam-break flows.  

In general, dam-break experiments include two categories, i.e., full and sudden release 

of an idealized vertical “dam”, and progressive failure of a single or cascade dams. In 

regard to full and sudden dam break, the regions on both sides of the “dam” may consist 

of a single horizontal “layer” or a succession of “layers” at rest, usually made of fluid or 

granular material, each having homogeneous properties and extending far from the 

“dam”. After removal of the “dam”, the two distinct regions are set in contact and a 

dam-break wave results. Most commonly, the physical mechanism responsible for the 

initiation of movement is gravity, transforming potential energy accumulated behind the 

dam into kinetic energy of the propagating wave. Experimental investigations of the 

geomorphic impacts of dam-break floods can be traced back to the pioneering work of 

Chen and Simons (1979), where the backward erosional rarefaction wave is induced by 

the sudden removal of a submerged barrage in a steady flow. The first idealized sudden 

and full dam-break experiment is performed by Capart and Young (1998) in a typical 

dam-break configuration, in which a kind of very light sediment with specific density 

1.048 is used. Leal et al. (2002) performed experiments with granular material of two 

distinct densities, sand and pumice. They also investigated the variety of flow patterns 

observed when changing the initial conditions, by varying the bed level and water level 

upstream of the gate, but in the absence of a sediment bed downstream of the gate. At 

the laboratory of the Civil Engineering department of the Université catholique de 

Louvain (UCL), dam-break experiments have previously been performed by Capart 

(2000), Spinewine and Zech (2002). These experiments have been conducted in a multi-

purpose tilting flume equipped with a rising gate simulating the dam-break. The flume 

was found to have several limitations that induced substantial perturbations of the flow 



 

44 

 

during gate removal and altered the quality of the attainable experimental conditions. In 

order to solve this problem, a novel experimental flume, equipped with a rapidly 

lowering gate for the purpose of achieving better-defined initial conditions, is adopted 

by Spinewine (2005a), Spinewine and Zech (2007), and Goutière et al. (2011). Such 

method can approach the idealization of an instantaneous dam collapse and thus provide 

a clear-cut initial-value problem to investigate the physical mechanisms of sediment 

entrainment and transport in highly transient conditions. Essentially, the double-layer 

structure of dam-break flows, i.e., a bedload sediment transport layer and the upper 

clear-water flow layer, is clearly observed.  

In contrast to full and sudden dam-break experiments, numerous physical experiments 

on landslide dam failure have been performed (e.g., Coleman et al. 2002; Chinnarasri et 

al. 2003; Rozov 2003; Balmforth et al. 2008, 2009; Schmocker and Hager 2009). 

Specifically, Coleman et al. (2002) conducted flume experiments on overtopping 

breaching of non-cohesive homogenous embankments, which investigated the breach 

erosion process, the breach geometry and the breach discharge, allowing for flood 

prediction due to dike failure. Chinnarasri et al. (2003) studied the flow patterns and the 

progressive damage of dike overtopping. It revealed four stages of dike damage and the 

degradation rate of the dike crest. Rozov (2003) conducted laboratory experiments to 

investigate the process of dam breach erosion, in which the physical mechanism of dam 

failure is described. However, these physical experiments are constrained by the 

comparatively small spatial scales and thus may not be able to fully reveal the 

complicated mechanism of the flood flow. In addition, these experimental studies have 

mostly focused on the dam failure process, while the flood hydrographs are sparsely 

observed. For example, Coleman et al (2002) simply measured the outflow discharge of 

the breach, but neglected the flow conditions at the upstream and downstream of the 
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dam. Chinnarasri et al. (2003), and Balmfroth et al. (2008, 2009) measured the 

geometry of the failing dam, but ignored the flow measurements. Indeed, a range of 

factors involving dam structure as well as hydrodynamic actions may affect the rate and 

size of breach formation (Morris 2009). In this connection, the experiments by Coleman 

et al. (2002) and Chinnarasri et al. (2003) are limited to the failure of the dams under the 

action of a single inflow discharge. It is certainly critical to understand the influences of 

the inflow discharge, dam height, and composition on the dam failure and flood 

processes. Importantly, a series of relatively large-scale physical experiments were 

conducted to study landslide dam failure and the flood by Cao et al. (2011a, b). The 

experiments were carried out in a flume of 80 m × 1.2 m × 0.8 m. An array of twelve 

automatic water-level probes was set at the center of each cross-section along the flume 

to record the transient stages. Compared to previous experiments on small-scale 

facilities (e.g., Coleman et al. 2002; Chinnarasri et al. 2003; Balmfroth et al. 2008, 2009; 

Schmocker and Hager 2009), these experiments covered a wide range of inflow 

discharges from the upstream, initial dam height, and initial breach dimension. The 

stage hydrographs and video recordings of the dam failure processes for each run of the 

experiments were obtained. The data help reveal the mechanisms of dam failure and 

flood propagation.  

The present model is applied to a series of typical cases, including laboratory 

experiments on flows induced by instantaneous full dam break (Spinewine 2005a) and 

also flows due to progressive failure of a single and cascade landslide dams (Cao et al. 

2011a, b, Schmocker and Hager 2012). The model has also been compared with two 

existing models, including the SDL model of Spinewine (2005a) and the SL model by 

Cao et al. (2004). To quantify the error of a numerical solution as compared against 

measured data, the non-dimensional discrepancy is defined based on the 1L  norm 



 

46 

 









isw

ii

st
hh

ηηabs
L

)(

)(
1



                                                        (3.1a) 


 


is

ibsibs

in
h

zhzhabs
L

)(

])()[(
1



                                            (3.1b) 

 
 bi

bibi

bd
zabs

zzabs
L

Δ

ΔΔ
1


 





                                                 (3.1c) 

where 1

stL , 1

inL  and 1

bdL  are 1L  norms for stage, interface between the two layers, and bed 

deformation depth. The bed deformation depth is defined by )0(Δ  tzzz bbbi , and 

η


, bs zh


  and bz

Δ  are measured stage, interface elevation and bed deformation 

respectively, while bs zh   and bzΔ  are the stage, interface elevation and bed 

deformation from a numerical solution. In the present chapter, a fixed uniform mesh is 

adopted, and the spatial step is sufficiently fine to ensure mesh independence of the 

solution, i.e., essentially equivalent solutions are obtained with an even finer mesh. The 

spatial step xΔ  is set to be 0.02 m and the Courant number 
rC  is 0.5. Bed porosity p = 

0.4 is adopted for all the test cases. 

3.2. Instantaneous Full Dam-break 

Mobile-bed dam-break experiments were carried out in a transparent flume at the 

Université Catholique de Louvain, Belgium (Spinewine 2005a). The flume was 6 m 

long, 0.25 m wide and 0.70 m high. Dam break was simulated by the rapid downward 

removal of a thin gate at the middle of the flume. The experiments were conducted over 

an initially horizontal bed composed of non-cohesive sediments, saturated with water 

and extending on both sides of the idealized “dam” represented by the gate. Here, one 

experimental case is revisited, labelled as Test Case 3.1, with an initial water depth 
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0h 35 cm upstream the dam. The median diameter of the bed material composed of 

PVC pellets was 3.92 mm and the density was 1580 kg/m
3
. Numerical modelling was 

performed within the time period before the forward and backward waves reached the 

downstream and upstream boundaries, thus the boundary conditions can be simply set at 

the initial static status. For the SDL model, sediment concentration sC  in the lower 

layer is set to be 0.22 following Spinewine (2005a), except otherwise specified. The bed 

roughness bn  is set to be 0.026 m
-1/3 

s following Zech et al. (2008). The modification 

coefficient   adopted in the DL and SL models and the interface roughness wn  are 

determined by fitting to the measured stage. It is found that  2.0 for the DL model, 

 3.0 for the SL model and in 0.006 m
-1/3 

s for the DL and SDL models lead to 

satisfactory agreement with the measured data.  

Fig. 3.1 shows water surface and bed profiles measured and computed by the DL, SDL 

and SL models. The bed scour depth and flood wave fronts are reproduced well by the 

three models as trivial difference is identified. Fig. 3.2 illustrates the water surface and 

bed profiles along with the interface computed from the DL and SDL models. 

Undesirable non-physical oscillations of the water surface profiles and interfaces from 

the SDL model are spotted (Fig. 3.2b). Quantitatively, the values of the 1L  norms of the 

DL, SDL and SL models for this case are similar (Table 3.1). The temporal and spatial 

scales of the flow, sediment transport and bed evolution in this particular case are so 

small that the performances of the three models are hardly distinguishable from Table 

3.1, except the oscillations due to the SDL model in Fig. 3.2(b). 
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Figure 3.1 Computed water surface and bed profiles compared with measured 

data 

 

 

Figure 3.2 Water surface and bed profiles along with the interface from DL and 

SDL model 
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Table 3.1 1L  Norm of the DL, SDL and SL models for instantaneous and full 

dam break (Test Case 3.1) 

Time t =0.25 s t =1.5 s 
1L  DL SDL SL DL SDL SL 

1

stL  2.68% 2.75% 2.71% 3.72% 3.93% 3.89% 

1

inL  3.12% 3.11% n/a 3.46% 3.52% n/a 

1

bdL  4.45% 4.78% 3.89% 4.47% 4.84% 5.22% 

 

3.3. Progressive Failure of a Single and Cascade Landslide Dams  

In contrast to instantaneous full dam break (Test Case 3.1) considered above, A series of 

flume experiments on landslide dam breach and the resulting floods are documented by 

Cao et al. (2011a, b). These experiments were carried out in a flume of dimensions 80 

m×1.2 m×0.8 m (Figure 3.3) and bed slope 0.001 in Wuhan University. A set of 12 

automatic water-level probes was used to measure the stage hydrographs at 12 cross-

sections along the flume. In the experiments, the dams failed by virtue of erosion of the 

overtopping flow when there was no initial breach. The experiments provided a unique 

and systematic set of observed data for testing mathematical models for dam breach and 

the resulting floods.  

 

 

Figure 3.3 Experimental setup for landslide dam failure 
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To demonstrate the performance of the models, two experimental runs are revisited, i.e., 

F-Case 11 and T-Case 2 without initial dam breach (Cao et al. 2011a, b), which are 

labelled as Test Cases 3.2 and 3.3 in this Chapter respectively. In both cases, the initial 

upstream and downstream slopes of the dam were 1/2 and 1/3, respectively. The median 

diameter of the non-cohesive dam material was 0.8 mm and the specific gravity of the 

sediment was 1.65. For F-Case 11 (Test Case 3.2), the single dam was initially 0.4 m 

high, located at about 41 m from the inlet of the flume. The inlet flow discharge was 

0.042 m
3
/s. The initial static water depths immediately upstream and downstream of the 

dam were 0.054 m and 0.048 m, respectively. For T-Case 2 (Test Case 3.3) that involved 

two dams in cascade, both dams were 0.4 m high initially, and located at 41 m and 60.3 

m respectively from the inlet of the flume. The inlet discharge was 0.025 m
3
/s. The 

initial static water depth was 0.054 m immediately upstream the first dam, while it was 

0.048 m immediately upstream and downstream the second dam. At the inlet boundary, 

flow discharge was specified, and the water depth and velocity were determined by the 

method of characteristics. There was no sediment-laden flow layer at the inlet. Besides, 

a 0.15-m high-weir was set at the flume outlet. Observation during the course of the 

experiments showed that a hydraulic drop occurred downstream of the weir, so the 

outflow did not affect the flow upstream of the weir. Here, a transmissive condition 

(Toro 2001) was imposed at the downstream boundary (80 m), and all the primitive 

variables in the outlet nodes were equal to those of internal nodes closest to the 

boundary. 

For this modelling exercise, the modification coefficient   adopted in the DL and SL 

models, the interface roughness in  for the DL and SDL models as well as the lower-

layer sediment concentration sC  in the SDL model are first calibrated using the 
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measured stage hydrographs from the experiments for a single dam failure F-Case 11, 

and then directly applied for T-Case 2 of cascade dam failure. It is found that the 

modification coefficient  4.5 for the DL model,  6.0 for the SL model, interface 

roughness wn 0.006 m
-1/3 

s for the DL and SDL models, and sediment concentration 

sC 0.1 for the SDL model lead to satisfactory agreements with measured data. For all 

the three models, bed roughness bn 0.012 m
-1/3 

s. 

Figs. 3.4 and 3.5 show the computed stage hydrographs by the DL, SDL, SL models and 

the measured data in both cases at selected cross-sections. The cross sections CS1, CS5, 

CS8 and CS12 are located at 19 m, 40 m, 54 m and 73.5 m respectively from the inlet of 

the flume (Fig. 3.3). For F-Case 11, CS5 and CS12 are located upstream and 

downstream the dam respectively. For T-Case 2, CS1 and CS5 are upstream the first 

dam, CS8 is between the two dams and CS12 is downstream the second dam. It is seen 

from Figs. 3.4 and 3.5 that the computed stages by the three models are in fairly good 

agreement with the measured data while slight discrepancies are observed.  

 



 

52 

 

 

Figure 3.4 Stage hydrographs for a single landslide dam breach 

 

 

Figure 3.5 Stage hydrographs for cascade landslide dam breach 
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Figs. 3.6 and 3.7 illustrate the water surface and bed profiles computed from the DL, 

SDL and SL models, along with the measured data for the water surface elevation and 

the interface from the DL and SDL models. In fact, the progressive failure of the dams 

is explicitly represented by the evolution of the bed profile. Regardless of the fact that 

the stage hydrographs at selected cross-sections by the SDL model match the measured 

data fairly well (Figs. 3.4 and 3.5), the computed bed and water surface profiles by the 

SDL model exhibit serious non-physical oscillations and may deviate from the 

measured data significantly [Figs. 3.6(a2-d2) and 3.7(a2-e2)]. Obviously, the numerical 

results from the SDL model are badly spoiled, rendering the sediment-laden flow layer 

hardly recognizable when compared against the results from the DL model [Figs. 

3.6(a1-d1) and 3.7(a1-e1)]. It is critical to point out that the numerical oscillations are 

inherent to the SDL model, as the use of a reduced or increased Courant number (e.g., 

rC 0.1, 0.9) does not eliminate the oscillations (not shown). Yet, it is premature to 

conclude if the numerical oscillations result from the assumption of constant sediment 

concentration embedded in the SDL model or the loss of hyperbolicity. Indeed, 

immediately following the onset of the dam breach (e.g., at 410 s in Fig. 3.6 and 675 s 

in Fig. 3.7), the SDL model performs similarly well to the DL and SL models when 

compared with the measured water surface elevation. However, at other instants when 

the flow is rapidly varied longitudinally and clearly exhibits complex structure such as 

subcritical-to-supercritical transitions and hydraulic jumps (e.g., at 430 s and 450 s in 

Fig. 3.6 and 700 s and 900 s in Fig. 3.7), the SDL model performs poorly when 

compared to the measured data, in sharp contrast to the DL and SL models. 

Comparatively, the DL model performs appreciably better than the traditional SL model 

in resolving the complex flow structures (hydraulic jumps), as shown in Figs. 3.6 and 

3.7.  
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Echoing Figs. 3.6 and 3.7, the values of the norm for stage 1

stL  (Tables 3.2 and 3.3) 

provide further testament for the improved performance of the DL model over the SDL 

and SL models in comparison with measured data. Specifically, the DL and SDL models 

feature respectively the minimum and maximum 1

stL
 
values, while the SL model lies in 

between the two, consistently through time. Particularly, when the flow is rapidly varied 

(e.g., 430 s in Fig. 3.6 and 700 s in Fig. 3.7), the 1

stL  values of the SDL model are twice 

or even greater than those of the DL model (Tables 3.2 and 3.3). These observations 

lead one to comment, if only briefly, that the DL model is physically enhanced over the 

SL and SDL models and therefore performs the best, though the computational cost is 

appreciably increased by approximately 40% and 8% as compared to SL and SDL 

models respectively. 
 

The whole processes of the dam failure, flow, sediment transport and bed evolution 

resolved by the DL model is now briefly interpreted. For F-Case 11 (Test Case 3.2), at 

t 410 s, the water flows over the top of the dam and starts to erode the toe [Fig. 

3.6(a1)]. At t 430 s, the overtopping flow erodes the downstream surface of the dam, 

causing the formation of the sediment-laden flow layer [Fig. 3.6(b1)], and a hydraulic 

jump is formed around the dam site, which is characterized by the variation of Froude 

number (not shown). Compared to that at t 430 s, the dam is further eroded at t 450 

s [Fig. 3.6(c1)], and the sediment-laden flow layer further develops more fully. Besides, 

there exist two hydraulic jumps downstream of the dam. After t 600 s, the free surface 

of the flow is nearly horizontal, unable to further erode the dam, and the dam failure 

process essentially terminates [Figs. 3.6(d1)]. For T-Case 2 (Test Case 3.3), at t 675 s, 

the water flows over the first dam, of which the toe starts to be eroded [Fig. 3.7(a1)]. At 

t 700 s, the overtopping flow further erodes the first dam and the sediment-laden flow 

layer forms [Fig. 3.7(b1)]. Two hydraulic jumps occur between the two dams. At 
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t 875 s [Fig. 3.7(c1)], the erosion of the first dam increases and the sediment-laden 

flow layer between the two dams develops further. Additionally, the overtopping flow 

starts to erode the downstream surface of the second dam and thus the sediment-laden 

flow layer forms downstream. At t 900 s, the second dam is further eroded, leading to 

the amplification of the sediment-laden flow layer downstream, while a hydraulic jump 

is also formed around the second dam site [Fig.3.7(d1)]. After t 1200 s, the water 

surface tends to be rather smooth and the dam failure process almost terminates. Clearly, 

the second dam is not eroded as fully as the first dam due to the energy dissipation 

downstream [Fig. 3.7(e1)]. 

Overall, the SL model performs well compared to the measured water surface elevation, 

as previously stated in regard to its extended version (Cao et al. 2011a, c). The DL 

model clearly shows promise for successful modelling of the highly transient and 

complex flows due to progressive failure landslide dams, either in a single setting or in 

a cascade. It resolves in a more detailed manner the physical phenomenon, facilitating a 

resolution of the sediment-laden flow layer, which is unavailable from the SL model. 

The SDL model performs poorly compared to measurements. Theoretically, the latter 

fact arises from the assumption of constant sediment concentration in the lower layer, 

which essentially breaks the fundamental mass conservation law for sediment.  
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Figure 3.6 Water surface, interface and bed profiles for a single landslide dam 

failure 
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Figure 3.7 Water surface, interface and bed profiles for cascade landslide dam 

failure 
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Table 3.2 1

stL  of DL, SDL and SL models for a single landslide dam failure 

(Test Case 3.2) 

Time t =410 s
 

t =430 s
 

t =450 s
 

t =600 s
 

Average 

DL 0.12% 6.52% 8.54% 4.43% 4.90% 

SDL 0.13% 13.89% 16.35% 6.85% 9.31% 

SL 0.13% 8.53% 11.45% 6.45% 6.64% 

 

Table 3.3 1

stL  of DL, SDL and SL models for cascade landslide dam failure (Test 

Case 3.3) 

Time t =675 s
 

t =700 s
 

t =875 s
 

t =900 s
 

t =1200 s
 

Average 

DL 0.9% 4.26% 8.19% 11.18% 3.72% 5.65% 

SDL 1.52% 13.48% 11.45% 16.68% 4.05% 9.44% 

SL 1.02% 5.24% 9.06% 14.84% 3.89% 6.81% 

 

3.4. Progressive Failure of a Dike 

This subsection aims to evaluate the three models’ ability to reproduce the 

morphological evolution of a breaching dike. An experimental test (Test-18) is revisited, 

labelled as Test Case 3.4 presently, which was carried out by Schmocker and Hager 

(2012) in a flume 8 m long, 0.4 m wide and 0.70 m high. In this case, the initial single 

dike was 0.2 m high, 0.2 m wide and located at about 1.0 m from the inlet of the flume. 

The initial upstream and downstream slopes of the dike were both 1:2. The median 

diameter of the non-cohesive dike material was 2.0 mm and the specific gravity of the 

sediment was 1.65. The inlet unit-width discharge was 0.08 m
2
/s. The initial water 

depths immediately upstream and downstream of the dike were 0.2 m and 0.0 m, 

respectively. At the inlet boundary, flow discharge was specified, and the water depth 

and velocity were determined by the method of characteristics. A free flow was imposed 

at the channel end as the downstream boundary condition, following Pontillo et al. 

(2010) for similar test cases using the two-phase model developed by Greco et al. 
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(2008). 

For the SDL model, sediment concentration 
sC  of the sediment-laden layer is assumed 

to be 0.1. The modification coefficients   adopted in the DL and SL models are both 

6.0. The interface roughness in  adopted in the DL and SDL models is set to be 0.006 m
-

1/3 
s. For the three models, bed roughness bn  is 0.015 m

-1/3 
s. 

Fig. 3.8 shows the water surface and bed profiles computed from the DL, SDL and SL 

models, along with the measured bed elevation and interface computed from the DL and 

SDL models. Overall, both the DL and SL models can reasonably reproduce the 

breaching process of the dike. As seen from Fig. 3.8, the DL model performs the best, 

followed by the SL model, and the SDL model performs the worst due to serious non-

physical oscillations. Actually this observation is corroborated quantitatively by the 

values of 1

bdL  (Table 3.4). The average 1

bdL  value of the DL, SDL, SL models are 

10.63%, 13.83% and 10.94% respectively. Obviously, the maximum error is due to the 

SDL model. Pontillo et al. (2010) modelled similar experimental cases, and the root-

mean-square error, instead of the 1L  norm, was used to measure the discrepancies 

between computational results and measured data. Therefore, a comparison of the 

performances of the DL and two-phase models may not be strictly justified. 

Nevertheless, purely from illustrations, the agreement of the DL and SL models with the 

measured bed profile (Fig. 9) is essentially equivalent to or appreciably better than its 

counterpart shown in Pontillo et al. (2010, Figs. 2 to 5), which was claimed to be an 

improvement over the traditional De Saint-Venant-Exner model. 
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Figure 3.8 Water surface, interface and bed profiles for a dike breach 

 

Table 3.4 1

bdL  of DL, SDL and SL models for Test Case 3.4 

Time t =6 s
 

t =20 s
 

t =100 s
 

Average 

DL 13.64% 9.94% 8.36% 10.64% 

SDL 17.52% 11.42% 12.56% 13.83% 

SL 12.67% 10.15% 9.89% 10.90% 
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3.5. Discussion 

3.5.1. Sensitivity analysis 

Numerical tests are conducted to evaluate the sensitivity of the computational results to 

model parameters. In general, the results with tuned parameters are qualitatively similar 

to those shown in Figs. 3.1-3.2 and Figs. 3.4-3.8 when compared with the measured 

data. 

Specifically, for Test Case 3.1, sediment concentration sC  of the lower layer in the SDL 

model is tuned by about 22% of the calibrated value (i.e., sC 0.22±0.05). Shown in 

Fig. 3.9 are the water surface and bed profiles along with the interface computed from 

the SDL model, corresponding to different sediment concentrations presumed for the 

lower sediment-laden flow layer. In Table 3.5 the corresponding 1L  values are provided. 

From Fig. 3.9, it is found that the computational results of the SDL model are very 

sensitive to the presumed value of sC . This is apparently echoed by the 1L  values 

(Table 3.5). Comparatively, 1

inL  is most sensitive to sC , whilst 1

stL  and 1

bdL  are less 

sensitive. At t 1.5 s, 1

inL  is nearly doubled in response to a variation of sC  by 22% 

(Table 3.5). It is also shown in Table 5 that the sensitivity of the 1L  values to sC  would 

increase with time. 

Likewise, the modification coefficient   in the DL model is tuned by 50% of its 

calibrated value (i.e.,  2.0±1.0), and the results are shown in Figure 3.10 and Table 

3.6. Indeed, the results are appreciably sensitive to the tuned parameter  . As seen from 

Fig. 3.10, the bed deformation seems to be relatively more sensitive to the value of   

than the stage and interface, which is clearly supported by the 1L  values in Table 3.6. 
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This is in contrast to the observation that the interface profile is most sensitive to sC  in 

the SDL model (Fig. 3.9 and Table 3.5). Physically, it is determined by the fact that   is 

directly embedded in the relationships for sediment entrainment in the DL model, i.e., 

Eqs. (2.38) and (2.44), and therefore in the bed deformation Eq. (2.32), whereas sC  is 

explicitly involved in the equations of the two layers of the SDL model, i.e., Eqs. (2.21-

2.24), instead of the bed evolution Eq. (2.19). Most notably, the sensitivity to   in the 

DL model is considerably constrained compared with that to sC  in the SDL model. This 

is substantiated by the fact that the increase of 1

stL , 1

inL , 1

bdL  of the DL model in response 

to the change of   (by 50 %) is considerably smaller than its counterpart of the SDL 

model in connection with the change of sC  (by 22%), see Tables 3.5 and 3.6. 

Consequently, the computational results are more sensitive to the presumed sediment 

concentration sC  in the SDL model than to the modification coefficient   in the DL 

model, by which a major limitation of the SDL model is characterized. 

 

 

Figure 3.9 Water surface and bed profiles along with interface from the SDL 

model assuming different sediment concentrations 
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Figure 3.10 Water surface and bed profiles along with interface from the DL 

model assuming different modification coefficient   

 

Table 3.5 1L  Norm of SDL model with different sC  for Test Case 3 

1L  sC
 

1L  Norm
 

t =0.25 s t =1.5 s 
1

stL
 

0.17
 

2.88% 6.19% 

0.22
 

2.75% 3.93% 

0.27
 

3.02% 5.97% 

1

inL
 

0.17
 

4.45% 7.16% 

0.22
 

3.11% 3.52% 

0.27
 

4.47% 7.09% 

1

bdL
 

0.17
 

5.01% 7.74% 

0.22
 

4.92% 5.04% 

0.27
 

5.49% 7.88% 
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Table 3.6 1L  Norm of DL model with different   for Test Case 3.1 

1L
 


 

1L  Norm
 

t =0.25 s t =1.5 s 
1

stL
 

1.0
 

2.71% 4.13% 

2.0
 

2.68% 3.72% 

3.0
 

2.73% 3.91% 

1

inL
 

1.0
 

3.27% 4.34% 

2.0
 

3.12% 3.46% 

3.0
 

3.18% 4.15% 

1

bdL
 

1.0
 

6.33% 6.21% 

2.0
 

4.45% 4.47% 

3.0
 

5.89% 5.64% 

 

For Test Cases 3.2, 3.3 and 3.4, numerical experiments are carried out to ascertain the 

sensitivity of the computational results of the DL model to the parameter  . Generally, 

the stage, interface and bed deformation related to the tuned parameter   are similar to 

those illustrated in Figs. 3.1-3.2 and 3.4-3.8 qualitatively. However, the 1L  values 

increase to a certain extent, as given in Tables 3.7, 3.8 and 3.9. Typically, as the 

modification coefficient   of the DL model is tuned by one-third of the calibrated 

values for Test Cases 3.2, 3.3 and 3.4, the average values of 1

stL  for Test Cases 3.2 and 

3.3 and of 1

bdL  for Test Case 3.4 increase by approximately 30-40%.  

 

Table 3.7 1

stL  of DL model with different   for Test Case 3.2 

  t =410 s
 

t =430 s
 

t =450 s
 

t =600 s
 

Average 

3.0 0.15% 9.32% 11.27% 7.11% 6.96% 

4.5 0.12% 6.52% 8.54% 4.43% 4.90% 

6.0 4.43% 8.83% 8.56% 4.52% 6.59% 
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Table 3.8 1

stL  of DL model with different   for Test Case 3.3 

  t =675 s
 

t =700 s
 

t =875 s
 

t =900 s
 

t =1200 s
 

Average 

3.0 1.05% 6.22% 11.88% 13.28% 4.68% 7.42% 

4.5 0.9% 4.26% 8.19% 11.18% 3.72% 5.65% 

6.0 4.54% 6.67% 11.06% 12.09% 3.83% 7.66% 

 

Table 3.9 1

bdL  of DL model with different   for Test Case 3.4 

  t =6 s
 

t =20 s
 

t =100 s
 

Average 

4.0 18.62% 13.56% 9.69% 13.96% 

6.0 13.64% 9.94% 8.36% 10.64% 

8.0 17.69% 14.27% 10.83% 14.26% 

 

3.5.2. Variation of sediment concentration  

Theoretically, both the DL and SL models are built upon the fundamental mass 

conservation law for sediment, so they can reflect the variation of sediment 

concentration in space and time. To illustrate this, the sediment concentration profiles 

from the DL, SDL and SL models for the instantaneous full dam-break case (Test Case 

3.1) are shown in Fig. 3.11. Here, for the DL and SDL models, the averaged sediment 

concentration over the whole flow depth is defined as )/( swssh hhhCC  . According to 

the DL model, at 0.25 s following the dam-break, sediment concentration sC  in the 

lower layer has attained a rather high value of approximately 0.3, and at 1.5 s it is 

characterized by spatial expansion and also considerable decrease except around the 

forefront of the flood wave. It is apparent that sC  varies substantially in space and time, 

as resolved by the DL model. Hence, the assumption of a constant sediment 

concentration sC  in the lower layer is not justified for the SDL model. The qualitative 



 

66 

 

similarity of the longitudinal profiles of the whole depth-averaged sediment 

concentration hC  from the SDL model to those due to the DL model does not justify the 

SDL because it is the sC , rather than hC , that is directly embedded in the SDL model.  

 

 

Figure 3.11 Sediment concentration profiles from the DL, SDL and SL models 

 

3.6. Conclusion 

The double layer-averaged model is applied for dam break flows over erodible bed due 

to instantaneous full dam break and progressive failures of a dike and landslide dams, 

either in a single setting or in cascade. Enhanced performance of the new model is 

demonstrated over a simplified double layer-averaged model and a single layer-

averaged model. It justifies the physical necessity to incorporate sediment mass 

conservation in lieu of the assumption of constant sediment concentration generic to 

existing double layer-averaged models. The numerical algorithm proposed for the new 

model is effective and satisfactorily accurate.  
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CHAPTER 4 MODELLING RESERVOIR TURBIDITY CURRENTS 

AT LABORATORY-SCALE  

 

4.1. Introduction  

Reservoir turbidity current is formed as subaerial open-channel sediment-laden flow 

plunges into a reservoir. In general, turbidity currents can travel remarkable distances 

carrying large amounts of suspended sediment from the plunge point to the downstream. 

In reservoirs, turbidity currents are often the governing processes for the transport, 

entrainment and deposition of sediment (Fan and Morris 1992a). If the turbidity currents 

manage to arrive at the dam, it will be possible to flush sediment out of the reservoir. 

Otherwise, severe sedimentation in the reservoir will generally occur. Enhanced 

understanding of the whole process of reservoir turbidity currents, i.e., formation, 

propagation and recession, is critical to effective sediment and reservoir management, 

flood mitigation and fish habitat recovery. 

Previous studies have focused on the threshold condition for the formation of turbidity 

current based on the densimetric Froude number at the plunge point, derived from 

laboratory experiments (Fan 1960; Singh and Shah 1971) or analytical models (Savage 

and Brimberg 1975; Akiyama and Stefan 1984; Parker and Toniolo 2007; Dai and 

Garcia 2009; Li et al. 2011). However, these cannot provide sufficient effective 

information to quantify the whole process of reservoir turbidity currents. Also, extensive 

laboratory experiments have greatly enhanced the understanding of turbidity current 

physics. In general, generating turbidity currents in the laboratory involves two classical 

approaches: 1) lock-exchange turbidity currents with release of a finite volume of water-
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sediment mixture; and 2) continuous turbidity currents with sustained inflow of water-

sediment mixture. In both configurations, a reservoir of static or flowing clear water is 

first established. Water-sediment mixture is then introduced into the reservoir, either by 

withdrawal of the lock gate or by feeding water-sediment mixture continuously. 

Experimental lock-exchange turbidity currents are mainly deployed to understand their 

depositional characteristics and the propagation rate of the current front (e.g., 

Bonnecaze et al. 1993, 1995; Dade and Huppert 1995; Hallworth and Huppert 1998; De 

Rooij and Dalziel 2009); and the durations and features of the three stages of lock-

exchange turbidity currents themselves (Simpson 1997). Nevertheless, it is recognized 

that lock-exchange turbidity currents substantially differ from reservoir turbidity 

currents that are generally controlled by both the upstream and downstream boundary 

conditions. However, they contribute greatly to enhanced understanding of turbidity 

current physics and provide valuable data to test the model. Experimental continuous 

turbidity currents have been mainly used to investigate the depositional and evolutional 

characteristics of turbidity (Hürzeler et al. 1996; Lee and Yu 1997; Gladstone et al. 

1998), the vertical structure of the currents (Altinakar et al. 1996; Nourmohammadi et al. 

2011; Eggenhuisen and McCaffrey 2012), and the effects of turbulence structure on 

sediment distribution (Baas et al. 2005). Especially, Lee and Yu (1997) performed a 

series of tests to investigate the formation and propagation of turbidity currents due to 

sustained inflow and in particular demonstrated the impacts of various upstream and 

downstream boundary conditions. Also, they investigated the densimetric Froude 

number at both the incipient and stable plunge points. In addition, experiments on 

saline/brine density currents have also been conducted to add to the understanding of 

turbidity currents, such as the vertical velocity profiles (Kneller et al. 1997, 1999; 

Sequeiros et al. 2010) and current structure in meandering and sinuous channels (Keevil 

et al. 2006, 2007), sediment entrainment estimation (Garcia and Parker 1993), water 
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entrainment estimation (Hallworth et al. 1993), evolution mechanism of lock-exchange 

turbidity currents (Huppert and Simpson 1980; Amy et al. 2005) etc. As the shear stress 

and structure for experimental density and turbidity currents are physically similar 

(Cossu and Wells 2012), it adds to the understanding of turbidity current physics 

through saline/brine density current.  

The model is benchmarked against a spectrum of experimental turbidity currents 

induced by lock-exchange (Bonnecaze et al. 1995; Hallworth and Huppert 1998) and 

sustained inflow (Lee and Yu 1997).  

4.2. Lock-exchange Turbidity Currents  

4.2.1. One-dimensional lock-exchange turbidity currents 

A systematic series of experiments on one-dimensional lock-exchange turbidity currents 

were conducted by Hallworth and Huppert (1998) at University of Cambridge. The 

horizontal channel was 2 m long, 0.2 m wide and 0.25 m high. The location of lock gate 

was 0.03 m. Initially, static water-sediment mixture and clear water with both depths of 

0.10 m stand on the left and right of the lock gate, respectively. The median diameter of 

sediment was 9 µm and the density was 3270 kg/m
3
. Here two experimental cases with 

relatively low initial sediment concentrations ( 0sc  0.025 and 0sc  0.15) were 

revisited, thus the effects of non-Newtonian fluid is precluded. The upstream and 

downstream boundary conditions for both the clear-water flow layer and the turbidity 

current layer were set as rigid boundary conditions. sE  is calculated using Eq. (2.42). 

The spatial step x  is 0.005 m. The bed roughness bn  and the interface roughness in  

are determined by fitting to the measured front location. It is found that bn  0.015 m
-1/3

 

and in  0.005 m
-1/3

 lead to satisfactory agreement with measured data.  
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Fig. 4.1 shows the computed turbidity current front location against time and final 

deposition density 0/ MD  against distance along with measured data, respectively. The 

final deposition density has been normalized by initial mass loading, 0M . From Fig. 4.1, 

the computed advance of the current front and final deposition density are in fairly good 

agreements with measured data. It is seen from Fig. 4.1(a) that the turbidity currents 

propagate fast at the beginning and the speed decreases gradually along with time. 

Moreover, the larger the sediment concentration (corresponding to higher driving force), 

the faster turbidity currents propagate. Fig. 4.1(b) illustrates that turbidity currents 

deposit more sediment as the initial sediment concentration increases. And the final 

deposition density has a maximum value near the release point and decreases 

asymptotically along the channel.  

Fig. 4.2 illustrates the evolution process of 1D lock-exchange turbidity current for 0sc = 

0.15, as represented by the interface profiles at several times. After the initial collapse 

due to the withdrawal of lock gate, turbidity currents are formed as the turbidity volume 

slumps and plunges into the standing clear water because of the driving force arising 

from the density difference [Fig. 4.2(a)]. As the current propagates further downstream, 

the thickness of the current decreases greatly [Fig. 4.2(b)].  
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Figure 4.1 Numerical solutions compared with measured data for 1D lock-

exchange turbidity current: (a) front location, and (b) final deposition density 
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Figure 4.2 Interface profiles showing the evolution of 1D lock-exchange turbidity 

current ( 0sc = 0.15) 

 

4.2.2. Two-dimensional lock-exchange turbidity currents 

The two-dimensional (2D) experimental axisymmetric turbidity currents tested by 

Bonnecaze et al. (1995) at University of Cambridge are numerically revisited to further 

test the present 2D double layer-averaged model. A plan view sketch of the flume is 

given in Figure 4.3. The flume consists of a rectangular part (0.038 m wide and 0.306 m 

long) and a radial part (the width expands from 0.038 to 0.294 m within 1.83 m). A lock 

gate is placed at the centre of the rectangular part, which separates the flume-filled 

water-sediment mixture on the left side and clear water on the right side. The initial 

thickness of the turbidity volume and clear water is 0.14 m. Turbidity currents are 

initiated by instantaneous vertical withdrawal of the lock gate. The median diameter of 
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the sediment was 37 µm and its density was 3217 kg/m
3
. Three runs are conducted with 

different initial sediment concentrations: 0sc = 0.019, 0.01 and 0.005. sE  is calculated 

using Eq. (2.42). The spatial steps x  and y  are both 0.005 m. The bed roughness bn  

and the interface roughness 
wn  are determined by fitting to measured front location. It is 

found that bn  0.015 m
-1/3

 and in  0.005 m
-1/3

 lead to satisfactory agreements with 

measured data.  

Fig. 4.4 shows the turbidity current front location against time and the final deposit 

density plotted versus the radial distance, respectively. The radial distance is measured 

from the ghost origin as indicated in Fig. 4.3, which is set to be the intersection of the 

extended walls of the radial flume. From Fig. 4.4, the computed advance of current 

front and the final deposition density by the present model agree with measured values 

rather well. Fig. 4.5 demonstrates the evolution process of 2D lock-exchange turbidity 

current for 0sc = 0.01, as indicated by the interfaces at several times.  

Similar to the 1D cases above, when the lock gate is removed, the plunging of turbidity 

volume leads to the formation of turbidity currents [Fig. 4.5(b)]. The thickness of the 

current decreases sharply with the propagation of the current [Fig. 4.5(c and d)]. 

Initially the turbidity current advances fast, but decelerates gradually in time [Fig. 

4.4(a)]. The higher the initial sediment concentration, the faster the turbidity current 

propagates, and naturally more sediment is deposited [Fig. 4.4 (b)]. The final deposition 

density has a maximum value near the ghost origin point and decreases asymptotically 

along the channel.  

Lock-exchange turbidity currents are formed by the sudden release of a fixed volume of 

turbid water, and driven by difference in density from the ambient water, without any 

inflow at the upstream or outflow at the downstream boundary. Physically, double layer-
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averaged models are generally applicable, though a single layer-averaged model has 

been suggested to be approximately workable in deep ambient water (Bonnecaze et al. 

1993). Nevertheless, it is recognized that lock-exchange turbidity currents substantially 

differ from reservoir turbidity currents that are generally controlled by both the 

upstream and downstream boundary conditions. Thus the following test is warranted of 

the present model against reservoir turbidity currents subject to sustained inflow (and in 

some cases outflow) at a laboratory scale.  

 

 

Figure 4.3 Plan view sketch of experimental flume (adapted from Bonnecaze et al. 

1995) 
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Figure 4.4 Numerical solutions compared with measured data for 2D lock-

exchange turbidity current: (a) front location, and (b) final deposition density 
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Figure 4.5 Evolution of 2D lock-exchange turbidity current ( 0sc = 0.01) 

 

4.3. Turbidity Currents Due to Sustained Inflow 

This subsection focuses on the turbidity currents due to sustained inflow from the 

upstream, and in some cases subject to an outflow at the downstream, in contrast to 

lock-exchange turbidity currents considered above. A series of flume experiments were 

documented by Lee and Yu (1997) at National University of Taiwan. These experiments 

were carried out in a transparent flume of dimensions 20 m×0.2 m×0.6 m and bed slope 

0.02. A receiving tank was installed at the end of sloping section. The suspended 

material was kaolin having a specific gravity of 2.65 and a mean particle size of 6.8 µm. 

During the experimental process, the flume was first filled with clear water to form a 
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reservoir, and then open-channel sediment-laden flow was released from the head tank. 

In most runs, the outflow discharge outq  was set equal to the inflow discharge inq , while 

in some other runs, outq  was kept zero all the time or from some instant. The inflow 

discharge and its sediment concentration were kept constant in each run of the 

experiments.  

To demonstrate the performance of the model, Series B and C are revisited. Series B 

was performed to investigate the migration of the plunge point and corresponding 

variations of the plunge criteria, while Series C was designed to investigate the length of 

the plunge region and the hydraulic characteristics of the turbidity current over a long 

distance. The inflow conditions for all revisited experimental runs are summarized in 

Table 4.1.  

In this connection, it is noted that the significant value of the systematic experiments by 

Lee and Yu (1997) has not been sufficiently exploited to support the development of 

analytical and computational models for reservoir turbidity currents. Only one run 

(Series C- TC 8) has ever been simulated with a vertical 2D model based on the 

Reynolds-averaged Navier-Stokes equations and  -  turbulence closure (Kassem and 

Imran 2001). In principle, the formation of the turbidity current could be resolved by 

this model, which, however, was not explicitly evaluated. Also, the impacts of the 

outflow as related to Series B - PP4 were not resolved at all, possibly because the flow 

system becomes unsteady and the computing cost is too high. There has been a plethora 

of single layer-averaged models (e.g., Choi 1998; Bradford and Katopodes 1999a, b; 

Sequeiros et al. 2009b; Hu et al. 2012; Lai and Wu 2013), but none has been verified 

against the observed data of Lee and Yu (1997). 
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Table 4.1 Summary of inflow conditions for all revisited experimental runs 

 

Run 

Series B  

Run 

Series C 

Inflow conditions Inflow conditions 

inq  

(cm
2
/s) 

sc  

(10
-3

) 

inq  

(cm
2
/s) 

sc  

(10
-3

) 

PP 1 23.5 3.71 TC 1 24.23 4.36 

PP 2 42.25 3.71 TC 2 24.76 7.16 

PP 3 70.56 2.51 TC 3 42.25 3.63 

PP 4 85.10 2.00 TC 4 41.63 7.27 

PP 5 86.74 3.86 TC 5 41.78 10.78 

PP 6 100.21 3.27 TC 6 68.01 2.36 

PP 7 86.01 5.61 TC 7 68.22 4.27 

PP 8 99.64 4.98 TC 8 67.90 6.67 

PP 9 101.20 6.60 TC 9 68.28 8.59 

PP 10 134.46 4.85 TC 10 85.27 2.10 

 TC 11 85.45 3.88 

TC 12 85.21 5.43 

TC 13 84.70 7.37 

TC 14 97.56 3.10 

TC 15 97.52 4.73 

TC 16 97.40 5.99 

TC 17 96.47 7.81 

TC 18 116.07 6.81 

 

For this modelling exercise, the computational domain consists of the sloping section 

without including the receiving tank at the far downstream end of the flume. It is 

assumed that the discharge at the end of the sloping section is equal to the outflow 

discharge because the receiving tank is rather short. At the inlet boundary, there was no 

clear-water flow layer; and as the inflow discharge was specified, the depth and velocity 

of the sediment-laden flow were determined by the method of characteristics. A 

downstream boundary condition is not required for the turbidity current as the 

computation is automatically terminated once the current reaches the downstream 

boundary. For the outlet boundary condition of the clear-water flow layer, the depth and 

velocity were determined by the method of characteristics as the outflow discharge was 

specified. The spatial step x  is 0.025 m. The bed roughness 
bn  and the interface 

roughness 
wn  are first calibrated using measured data from Series B - PP 1, and then 
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directly applied for the other cases. It is found that interface roughness in  0.005 m
-1/3 

s 

and bed roughness bn  0.015 m
-1/3 

s lead to satisfactory agreement with measured data. 

sE  is determined according to Eq. (2.42) as   ranges between 4.0 and 20.0, which 

means partial erosion and deposition. It is also found that the maximum value of bed 

deformation is merely 3.4×10
-5

 m (not shown). Here, px  is the distance between the 

plunge point and flume entrance, ph  is the current thickness at the plunge point and 

ppsp hgu  /F , is the corresponding densimetric Froude number.  

4.3.1. Turbidity current formation and propagation 

Fig. 4.6 illustrates the formation and propagation processes of the turbidity current with 

unit-width inflow discharge 97.52 cm
2
/s and volumetric sediment concentration 

4.73×10
-3

, corresponding to Run TC 15 (Table 4.1). It is noted that upstream of the 

plunge point, the interface is actually the water surface, characterizing that there is no 

clear water flow and thus the flow is essentially subaerial open-channel sediment-laden 

flow. As the turbid water flows forward, a separation becomes pronounced from the 

clear water in the reservoir [Fig. 4.6(b)]. Then the sediment-laden flow plunges to the 

bottom and begins to move as an underflow, i.e., turbidity current [Fig. 4.6(c-d)], of 

which the upper boundary is indicated by the “interface.” Succinctly, the formation 

process of reservoir turbidity current is characterized by the transition from subaerial 

open-channel sediment-laden flow to subaqueous turbid flow. At this stage, the plunge 

point is unstable and still moves forward. By t 160 s approximately, the plunge point 

stabilizes and the current advances with a bulge-shaped head and elongated body.  

It is noted that when the upper layer vanishes, Eq. (2.46) for the lower layer reduces to a 

system of equations of a traditional shallow water hydrodynamic and sediment model 
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for open-channel sediment-laden flows (e.g., Cao et al. 2011c), which differs from that 

of a single layer-averaged model for turbidity currents (Hu et al. 2012). This is exactly 

why the present double layer-averaged model can resolve the formation process of 

reservoir turbidity current, characterized by the transition from open-channel sediment-

laden flow to subaqueous turbidity current. 

To date, the authors are not aware of any previous layer-averaged models that can 

resolve the formation process of the turbidity currents due to sustained inflow, though 

systematic experimental observations are available (e.g., Lee and Yu 1997). Most 

plausibly, this is because the currently available single layer-averaged models (e.g., 

Choi 1998; Bradford and Katopodes 1999a, b; Sequeiros et al. 2009b; Hu et al. 2012; 

Lai and Wu 2013) simply do not have the capability of resolving the interactions 

between the open-channel sediment-laden flow input from the upstream and the ambient 

water in the reservoir, irrespective of whether the latter is static or flowing as dictated 

by the outflow in relation to the reservoir operation schemes. It is most telling that the 

present double layer-averaged is warranted if the whole processes of reservoir turbidity 

currents are to be sufficiently resolved. This is further demonstrated in the following 

subsections, as compared against the observed data of Lee and Yu (1997) and the 

analytical formulations of Dai and Garcia (2009) and Li et al. (2011). Presented below 

are the characteristics at the plunge point, the streamwise profiles of the thickness, mean 

velocity and sediment concentration of the turbidity currents, as well as the impacts of 

the outflow at the downstream. 
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Figure 4.6 Turbidity current formation and propagation (Series C - TC 15) 

 

4.3.2. Characteristics at the plunge point 

Shown in Tables 4.2 and 4.3 are the parameters at the incipient and stable plunge points 

for Series B and Series C, corresponding to different inflow conditions. The analytical 
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densimetric Froude number solution at the incipient plunge point developed by Li et al. 

(2011) is based on energy balance and includes the effects of the bed slope, sediment 

concentration and the discharge of the turbidity current. Dai and Garcia (2009) analyze 

the densimetric Froude number at the stable plunge point by taking into account the bed 

slope and inflow conditions. Tables 4.2 and 4.3 clearly illustrate that the computed 

results match the measured data and analytical results very well. It is shown that pF  at 

the incipient plunge point ranges approximately between 0.9 and 1.0, while the mean 

value of pF  at the stable plunge point varies around 0.6. Thus the incipient plunging 

occurs when pF  equals to 0.9~1.0, and pF  reduces as the plunge point migrates 

downstream. The plunge point finally reaches a stable condition, where pF  equals 0.6. 

And the ph  and pF  at the incipient plunge point as well as px , ph  and pF  at the stable 

plunge point increase with the increase of the inflow discharge, but decrease with the 

increase of sediment concentration. This is mainly because larger discharge or smaller 

sediment concentration corresponds to smaller value of Ri  and thus induces more water 

entrainment.  

Fig. 4.7 shows the computed relationship between ph  and 
312 )( pp gq   for Series B, 

including those not only at the incipient and stable plunge points, but also in between 

them. The theoretical results at the incipient plunge point according to Li et al. (2011) 

and at the stable plunge point due to Dai and Garcia (2009) are also included. The two 

dash lines represent respectively the incipient and stable plunge points, corresponding to 

pF = 1.0 and 0.6 proposed by Lee and Yu (1997). Echoing Tables 4.2 and 4.3, the 

computed results from the present model agree with the analytical results based on Li et 

al. (2011) and Dai and Garcia (2009) and also the observed data of Lee and Yu (1997) 

rather well. Fig. 4.8 shows the temporal variation of the plunge point location for three 
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typical cases in Series B. It is seen that the location of the stable plunge point and also 

the time from the incipient to stable plunge point are distinct as the inflow discharge and 

sediment concentration vary. For a specific case (Series B- PP 4), the densimetric 

Froude number pF  decreases and the plunge depth ph  increases with time, and 

eventually both reach stable values (Fig. 4.9). 

 

Table 4.2 Parameters at incipient and stable plunge points in relation to different 

inflow conditions (Series B) 

 

RUN 

 

Incipient Stable 

ph (cm) pF  ph (cm) pF
 

meas. comp. Li et al. comp. meas. comp. Dai & Garcia comp. 

PP 1 5.36 5.31 0.81 0.86 6.87 6.80 0.62 0.63 

PP 2 7.40 7.37 0.96 0.97 9.28 9.39 0.65 0.62 

PP 3 10.25 9.97 0.96 0.96 13.85 14.12 0.69 0.68 

PP 4 12.56 12.48 1.02 1.03 17.15 17.25 0.64 0.64 

PP 5 10.57 10.46 0.98 0.99 13.19 12.95 0.70 0.68 

PP 6 13.54 13.63 0.95 0.97 16.32 16.40 0.72 0.69 

PP 7 9.68 9.45 0.97 0.98 12.63 12.52 0.64 0.64 

PP 8 12.84 12.43 0.97 0.99 14.37 14.60 0.66 0.67 

PP 9 10.68 10.26 1.05 1.06 13.45 13.69 0.64 0.64 

PP 10 12.68 12.38 0.94 1.03 18.09 17.95 0.68 0.67 
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Table 4.3 Parameters at incipient and stable plunge points in relation to different 

inflow conditions (Series C) 

 

Run 

Incipient Stable 

pF  px  ph  pF  

Li et al. comp. meas. comp. meas. comp. Dai & Garcia comp. 

TC 1 0.85 0.87 6.03 6.025 6.64 7.88 0.62 0.61 

TC 2 0.89 0.90 5.52 5.50 5.62 6.43 0.64 0.63 

TC 3 0.96 0.98 7.10 7.12 8.91 9.73 0.66 0.68 

TC 4 0.95 0.94 6.29 6.31 7.17 7.94 0.65 0.67 

TC 5 0.97 0.95 10.05 10.12 14.31 15.18 0.63 0.61 

TC 6 0.99 0.96 10.05 10.12 14.31 15.18 0.63 0.61 

TC 7 1.01 1.0 9.65 9.60 11.31 12.46 0.59 0.58 

TC 8 0.98 0.99 8.05 8.03 10.53 11.13 0.65 0.62 

TC 9 0.97 0.97 7.76 7.68 10.02 10.89 0.64 0.63 

TC 10 0.99 0.96 11.24 11.26 17.04 17.85 0.66 0.65 

TC 11 0.98 0.95 10.13 10.09 14.49 15.26 0.65 0.64 

TC 12 1.02 1.03 9.46 9.56 12.97 13.69 0.64 0.66 

TC 13 0.99 0.96 8.58 8.63 11.16 11.86 0.66 0.67 

TC 14 0.98 0.97 10.96 10.98 16.51 17.20 0.67 0.65 

TC 15 1.01 0.99 10.04 10.03 14.29 14.96 0.65 0.66 

TC 16 0.99 0.98 9.55 9.68 13.18 14.29 0.67 0.64 

TC 17 1.02 1.03 8.71 8.74 11.44 12.35 0.63 0.65 

TC 18 0.99 0.96 9.68 9.78 9.68 10.03 0.67 0.65 
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Figure 4.7 Computed turbidity current thickness at plunge point compared with 

analytical formulations, with two dash lines representing the incipient and stable 

plunge points due to Lee and Yu (1997) 
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Figure 4.8 Temporal variation of plunge point location 
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Figure 4.9 Computed densimetric Froude number and turbidity current thickness 

at plunge point compared with measured data (Series B-PP4) 

 

4.3.3. Non-dimensional profiles of turbidity currents 

Fig. 4.10 shows the spatial variation of dimensionless current thickness, velocity and 

sediment concentration computed by the present model along with measured data. Here, 

the data from Runs TC 5, TC 8, TC 12 and TC 15 at two selected cross-sections located 

at 11.3 m and 13.3 m respectively from the inlet of the flume are considered. Due to 

water entrainment, the discharge of the turbidity currents increases longitudinally and 

hence can be treated as an index of the distance from the plunge point. The data at x  

11.3 m in run TC 5 are used as the reference values (i.e., mxsh 3.11,  , mxsu 3.11,  , mxsc 3.11,  , 

mxsq 3.11,  ) to nondimensionalize the thickness, velocity, sediment concentration and 
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discharge of the turbidity currents, which are represented by sĥ , sû , sĉ  and sq̂ , 

respectively. It is seen from Fig. 4.10 that because of water entrainment, the thickness 

of turbidity currents increases longitudinally and thus the velocity and sediment 

concentration reduce accordingly. Overall, the observed non-dimensional thickness, 

velocity and sediment concentration profiles of the turbidity currents are well 

reproduced by the present model. 

 

 

Figure 4.10 Computed dimensionless turbidity current thickness, velocity and 

sediment concentration compared with measured data 

 

4.3.4. Impacts of downstream boundary conditions on turbidity currents 

Fig. 4.11 illustrates the impacts of downstream boundary conditions on the turbidity 
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currents in relation to Series B - PP4. The impacts are represented by variations in the 

plunge flow depth, plunge location and front location of the turbidity current. It is 

shown in Fig. 4.11 that if the outflow is cutoff from the initial state, the plunge point has 

not yet reached a stable state within the time period considered. Likewise, the stable 

plunge point becomes unstable as the outflow is terminated at 4.33 min. As the outflow 

increases, the water level in the reservoir will get lower. Most notably, an outflow of 

clear water in the upper layer generally leads to a decrease in the plunge depth [Fig. 

4.11(a)], migration of the plunge location downstream [Fig. 4.11(b)], and acceleration of 

the propagation [Fig. 4.11(c)] of the turbidity current, and vice versa. Physically, a clear-

water outflow facilitates a certain flow velocity of the upper layer, which leads to less 

interface resistance (Eq. 2.45) to the turbidity current and reduced water entrainment 

(Eq. 2.47).  

From Figs. 4.7, 4.9, 4.10 and 4.11(a) as well as Tables 4.2 and 4.3, the computed results 

by the present model agree with measured values rather well, though subtle differences 

are spotted. This suggests that the turbidity currents are reasonably well resolved by the 

present model.  
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Figure 4.11 Impacts of downstream boundary conditions: (a) computed turbidity 

current thickness at plunge point compared with measured data, (b) computed 

plunge location, and (c) computed front location (Series B -PP 4) 

 

4.3.5. Recession of turbidity current in an extended case 

Here an extended case from Series B - PP 4 is numerically investigated to demonstrate 

the capability of the present model to reproduce the recession of turbidity currents. It is 

assumed that clear water inflow with a smaller unit-width discharge 40.0 cm
2
/s, instead 

of sediment-laden open channel flow, is released when the plunge point reaches stable 

condition ( t  4.33 min). And when the turbidity currents reach the downstream 

boundary, they are assumed to deposit within the receiving tank. Fig. 4.12 illustrates the 

formation, propagation and recession process of the turbidity current. Similar to the 

results above (Fig. 4.6), the turbidity current has been formed due to the sustained 
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sediment-laden inflow at t  200 s [Fig. 4.12(a)]. After t  4.33 min, as clear water is 

released from the inlet, instead of sediment-laden inflow, the turbidity current continues 

to propagate downstream while its tail is rapidly replaced by the clear water released 

from upstream. Accordingly a complex flow regime is generated, which can be divided 

into five sections, as shown in Fig. 4.12(b). At the far upstream, there is a section of 

clear-water open-channel flow, which is followed by a section of “turbidity current”, of 

which the density difference from the ambient water upstream is not enough compared 

to inertia and gravitational action to drive it flow upstream, in contrast to a traditional 

turbidity current. Next, a section of sediment-laden open-channel flow exists, and to the 

downstream is a section of turbidity current, followed by a section of clear-water flow. 

Later, the two sections of turbidity current merge, leading to the disappearance of the 

sediment-laden open-channel flow [Fig. 4.12(c)]. As time increases, the turbidity 

current recedes and is close to disappearance at t  2000 s [Fig. 4.12(d)].  
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Figure 4.12 Turbidity current formation, propagation and recession (extended case 

from Series B - PP 4) 

 

4.4. Implications and Discussions  

It is interesting to evaluate the sediment flushing efficiency of a reservoir. In general, it 

is defined as the ratio of the bulk sediment volume siV  input from the inlet of the 

reservoir to that ( soV ) carried away through the downstream boundary. Here siV  and soV  

are calculated by  

dtcuhtV
inlet

ssssi  )()( ,    dtcuhtV
outlet

sssso  )()(                      (4.1a, b) 

It is noted that Lee and Yu (1997) focused on the turbidity currents without an 

evaluation of sediment flushing efficiency. In their experiments, there was no bottom 

outlet for sediment flushing at the downstream boundary (i.e., the end of the sloping 
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section of the experimental flume). Here the experimental runs Series B - PP4 (Lee and 

Yu 1997) are extended to facilitate numerical investigation of the impacts of reservoir 

operation on sediment flushing. All the model parameters are kept the same as used in 

subsection just above (Fig. 4.11). It is assumed that at the downstream boundary, there 

is a 4 cm-high bottom outlet on the bed, which has a presumed maximum (unit-width) 

discharge of 42.55 cm
2
/s. When the turbidity current reaches the downstream boundary, 

the bottom outlet is opened for sediment flushing, while the total outflow discharge 

(including clear-water flow and possibly turbidity current) remains the same as that in 

the experiments by Lee and Yu (1997). At the downstream boundary, before the arrival 

of the turbidity current, the depth and velocity of the clear-water flow layer are 

determined by the method of characteristics according to the total outflow discharge, as 

no downstream boundary condition is needed for the turbidity current. When the 

turbidity current has reached the bottom outlet, its respective discharge is equal to the 

maximum of the bottom outlet if the upper surface of the turbidity current is level with 

or higher than that of the bottom outlet; otherwise it is equal to a proportion of the 

maximum discharge of the bottom outlet calculated by the turbidity current thickness 

relative to the height of the bottom outlet. If the turbidity current is in the subcritical 

regime, its depth and velocity are determined by the method of characteristics in line 

with its respective outflow discharge ( sq ); otherwise no downstream boundary 

condition is needed. Meanwhile the depth and velocity of the clear-water flow layer are 

determined by the method of characteristics based on its respective discharge 

(= sout qq  ).  

Fig. 4.13 shows the sediment flushing efficiencies for the extended cases adapted from 

Series B - PP4 of Lee and Yu (1997). In general, sediment flushing commences as the 

turbidity current reaches the bottom outlet, and the flushing efficiency increases with 
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time, which clearly requires sustained inputs of water and sediment from the inlet. If the 

clear-water outflow is cutoff from the initial state or after 4.33 min, the sediment 

flushing efficiency decreases. Generally, the sooner the clear-water outflow is cutoff, 

the less the sediment flushed out of the reservoir. Physically, the clear-water outflow 

accelerates the propagation of the turbidity current (Fig. 4.11c), which leads to an 

increase in the amount of sediment flushed out and therefore enhanced sediment 

flushing efficiency.  

It follows that an appropriate clear-water outflow not only favors the turbidity current 

propagation (Fig. 4.11c), but also is conducive to improving sediment flushing 

efficiency (Fig. 4.13). This is undoubtedly of significance for developing optimal 

sediment management schemes for reservoirs on the Yellow River in China and others 

worldwide, which suffer from severe sedimentation problems. In a way, it adds to the 

current understanding of the effects of distinct reservoir operation schemes on 

sedimentation mitigation (Fan and Morris 1992a, b). Nevertheless, more detailed 

investigations are necessary to delimit quantitatively the impacts of reservoir operation 

schemes on sediment flushing by means of turbidity currents. This certainly holds for 

the Xiaolangdi Reservoir at the upstream end of the lower Yellow River, for which a 

case study is presented below. Particularly, it remains to be unraveled if an excessive 

clear-water outflow would spoil the turbidity currents that have already formed, as a 

result of Kelvin-Helmholtz instability.  

Equally importantly, the impacts of the downstream boundary conditions on turbidity 

currents are in essence substantiated by the clear-water outflow through spillway and 

flood diversion, which is usually determined by the reservoir operation scheme. These 

significant impacts clearly tell that previous single layer-averaged models (e.g., Choi 

1998; Bradford and Katopodes 1999a, b; Sequeiros et al. 2009b; Hu et al. 2012; Lai and 
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Wu 2013) are inadequate for applications in such cases because the clear-water flow is 

not modeled at all. The advantage (enhanced capability) of the present double layer-

averaged model is evident.  

 

 
Figure 4.13 Sediment flushing efficiencies for extended cases 

 

4.5. Conclusion  

The present model is demonstrated to perform very well compared to a range of 

laboratory experimental turbidity current induced by lock-exchange and sustained 

inflow. It facilitates for the first time the whole-process of reservoir turbidity currents: 

formation, propagation and recession. Computational tests using the present model 

reveal that an appropriate clear-water outflow is favorable for the propagation of 
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turbidity currents, and also conducive to enhancing sediment flushing efficiency. This is 

significant for optimal operations of reservoirs suffering from sedimentation problems. 

However, it remains to be unraveled if an excessive clear-water outflow would spoil the 

turbidity currents that have already formed, as a result of Kelvin-Helmholtz instability. 

Further investigations are conducted in Chapter 6 to delimit quantitatively the impacts 

of reservoir operation schemes on sediment flushing by means of turbidity currents. 
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CHAPTER 5 MODELLING RESERVOIR TURBIDITY CURRENTS 

AT PROTOTYPE-SCALE 

 

5.1. Introduction  

Flume experiments may be constrained by their relatively small spatial scales. Field 

observations of turbidity currents are relatively more abundant, as compared to those of 

dam-break flows. Ford et al. (1983) provide a detailed summary of observations of 

density currents in lakes and reservoirs. Nix et al. (1981) report turbidity current flows 

in DeGray Lake, and Hebbert et al. (1979) measured the inflow of low-temperature, 

high-salinity water into Wellington Reservoir in Western Australia. Alavian and 

Ostrowski (1992) made detailed velocity and temperature measurements in Watts Bar 

and Melton Hill reservoirs while routing a density current through the TVA reservoir 

system. In China, turbidity currents have been measured in many reservoirs built on 

heavily sediment-laden rivers, and even on rivers with low silt discharge. Specifically, 

in the Fengjiasha, Guanting and Liujiaxia Reservoirs, several turbidity currents were 

measured and documented, which provided valuable information to support the analysis 

of physical features of turbidity currents, including the plunging of muddy river flow at 

the head of the reservoir, the longitudinal and transverse variations in the density current 

as it flows towards the dam, the percentage of the sediment inflow that can be 

discharged by venting a density current through bottom sluices (Fan et al. 1959; Fan 

1986). Especially, the ratio of sediment outflow to sediment inflow during a flood, 

termed the turbidity current venting efficiency, ranged from 18% to 36% in the 

Sanmenxia Reservoir with no backwater in the density current and no rising of pool 

water during flood periods. While in Fengjiashan Reservoir, the venting efficiency for 
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flood peaks ranged from 23% to 65% derived from the 14 turbidity currents measured 

from 1976 to 1980. Most notably, the Yellow River of China, which is well known due 

to its extremely high sediment concentration, has long been suffering from serious 

sedimentation. The average annual sediment load of the Yellow River was approximated 

to reach as high as 1.6 billion tonnes in relation to the average annual runoff of about 

43.2 billion m
3
 (Qian and Wan 1983). Alternatively, the average volumetric sediment 

concentration exceeds 0.014. Consequently, a few hyperconcentrated sediment-laden 

flood events are usually formed in the annual flood season. Thus turbidity currents are 

frequently observed in the Yellow River, which simulate the awareness of reducing 

reservoir sedimentation by turbidity currents. The Xiaolangdi Reservoir is located in the 

lower Yellow River, about 130 km downstream of Sanmenxia Reservoir (Fig. 5.1). It 

controls 92.3% of the total basin area of the Yellow River and almost 100% of the 

sediment load. Severe sedimentation has occurred in the Xiaolangdi reservoir since its 

completion in 2001. Therefore a series of large field-scale water-sediment regulation 

experiments has been undertaken by the Yellow River Water Resources Commission 

(YRCC 2007) since 2002. Turbidity currents were formed in the Xiaolangdi Reservoir 

by plunging of the sediment-laden floods released from the Sanmenxia Reservoir at the 

upstream and believed to be the most important means for sediment flushing. A 

significant volume of hydrological data was collected, concerning the location of the 

front, average velocity and sediment concentration of the turbidity currents. The field 

experiments are certainly essential in support of not only practical sediment 

management, but also development and applications of analytical and computational 

models. However, most post-experimental analyses are built upon simple empirical 

relations, which cannot provide sufficient effective information to quantify the whole 

process of reservoir turbidity currents. In addition, there has been a lack of 

mathematical models available for the whole-process of the turbidity current, from 
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formation and propagation. Notably, the work by Hu et al. (2012) modelled the 

propagation of turbidity currents while neglecting the impacts of the clear-water flow in 

the upper layer.  

Here the present model was applied to a pilot study of prototype-scale turbidity currents 

in Xiaolangdi Reservoir, Yellow River in China. The present pilot study covers the 

whole process of the turbidity currents, from formation and propagation to recession, 

which is distinct from the work by Hu et al. (2012), which only modelled the 

propagation of turbidity currents while neglecting the impacts of the clear-water flow in 

the upper layer.  

 

 

Figure 5.1 Sketch of the Yellow River 

5.2. Turbidity currents in Xiaolangdi Reservoir  

5.2.1. Case description 

From 19th June to 13th July 2004, a water-sediment regulation experiment was 
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conducted to make full use of the extra water storage to reduce sedimentation in the 

Yellow River. During the whole experiment, two separate turbidity current events were 

formed in the Xiaolangdi Reservoir by releasing sediment-laden inflows from the 

Sanmenxia and Wanjiazhai Reservoirs. Here the second event is revisited, as field data 

shows that the first turbidity current dissipated at about 6.5 km upstream of the 

Xiaolangdi dam (Li 2004; YRCC 2007) and thus is unsuitable for the whole-process 

modelling. This turbidity current occurred in the afternoon of 7th July, about 1 day after 

the end of the first event. Though indirectly, it was generated due to the water release 

from the Wanjiazhai Reservoir between the 2nd and 7th July. When this water flow 

entered the Sanmenxia Reservoir and thus increased its water storage, the flow 

discharge at Sanmenxia increased to approximately 5200 m
3
/s, which induced a second 

sediment-laden flood and thus the second turbidity current in the Xiaolangdi Reservoir. 

There are 56 cross sections in the 130 km long main stream between Sanmenxia and 

Xiaolangdi dams. And the impacts of tributaries in between the two dams are tentatively 

neglected as they play a secondary role. The inflow discharge and its sediment 

concentration, which are actually released from the Sanmenxia Reservoir, are shown in 

Fig. 5.2 along with the outflow discharge through the Xiaolangdi dam. The inflow 

essentially relates to a hyperconcentrated flood modulated by the Sanmenxia Reservoir. 

The time t  0 h corresponds to 13:00 7th July, when the flow discharge at Sanmenxia 

reached its peak value. The computational time is 108 hours (from 13:00 7th July to 

3:00 12th July). The total outflow discharge outQ , including sQ  for the turbidity currents 

and wQ  for the clear water respectively, was kept constant and amounted to 2700 m
3
/s. 

A total of 18 bottom outlets with the depth of 5 m are distributed at different locations 

under the dam. The maximum discharge for sediment flushing through the bottom 

outlets under the Xiaolangdi dam was 1500 m
3
/s. At the upstream boundary, the 

discharge was specified, and the velocity and depth of the subaerial sediment-laden flow 
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or clear-water flow were determined by the method of characteristics. The downstream 

boundary conditions are implemented in a similar manner to those in the subsection 

entitled Sediment flushing efficiency.  

The initial bed topography is interpolated from 56 cross sections surveyed in May, 2004 

(Fig. 5.3). The bed morphology resulting from the first event is not used because firstly 

there was no measurement of bed topography after its occurrence, and secondly the 

computed bed morphology from the first event is subject to uncertainty to an unknown 

extent. Initially there is no turbidity current on the river bed. The following parameters 

are specified with reference to the background of the Xiaolangdi Reservoir: p  0.4, 

s  2650 kg/m
3
, and d  20 µm. In this subsection, the sediment transport is confined 

to a single size (i.e., the sediment size is kept at a single value, normally the median or 

mean sediment diameter, throughout the modeling), whilst the results of modelling 

using multiple sediment sizes are presented in a separate subsection below. Here the 

spatial step of 25 m is adopted. sE  is calculated through Eq. (2.43) following Hu et al. 

(2012). The Courant number rC  is set to be 0.4. The interface roughness in  adopted is 

set to be 0.005 m
-1/3 

s, following the calibrated value for the test cases related to the 

laboratory experiments in the previous section. The bed roughness bn  and the correction 

coefficient   need to be calibrated by fitting to the measured front location. It is found 

that bed roughness bn  0.035 m
-1/3 

s and correction coefficient   30 lead to 

satisfactory agreement with measured data. These calibrated parameters are appreciably 

different from those calibrated by Hu et al. (2012), which mostly can be ascribed to the 

limitation that the motion of the upper clear-water is not taken into account in the single 

layer-averaged model by Hu et al. (2012).  
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Figure 5.2 Time histories of Inflow discharge and sediment concentration along 

with outflow discharge in Xiaolandi Reservoir from 13:00 7th July to 3:00 12th 

July, 2004 
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Figure 5.3 Contour of initial bed topography based on the survey in May 2004 

 

5.2.2. Advance of turbidity currents 

Information on current advance can facilitate timely operation of the bottom outlets 

under the dam so that sediment can be flushed out of the reservoir (Fan and Morris 

1992a). If the bottom outlets are closed upon the arrival of the current, the turbidity 

currents may lead to severe sedimentation, or alternatively, if the bottom outlets are 

opened too early, stored water may be wasted. Shown in Fig. 5.4 is the computed front 

location of the sediment-laden flow (i.e., open-channel sediment-laden flow upstream 

the plunging point or the turbidity current downstream the plunging), measured along 

the course of the river. The measured data shown in Fig. 5.4 correspond to the arrival 

time (approximately t  20 h) of the turbidity current at Xiaolangdi dam. In Fig. 5.4, 

the computed results with the fine grid (25 m) and a coarser grid (50 m) are included. 
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The difference between the two mesh resolutions is just marginally discernible, which 

demonstrates that the 25 m mesh resolution is sufficiently fine (i.e., mesh independence 

of the numerical solution is attained). From Fig. 5.4, the computed current propagation 

with bn  0.035 and   30 compares best with the measured data. The advance of the 

turbidity current front is mainly affected by the two parameters bn  and  . A faster 

advance is generally obtained with a larger correction coefficient   and a smaller bed 

roughness bn . Physically, in relation to a larger correction coefficient  , bed sediment 

entrainment increases (Eq. 2.43), which leads to a higher sediment concentration and 

thus a larger driving force for the turbidity current. Therefore it propagates faster. The 

larger the bed resistance, as represented by bn , the more energy the turbidity current 

dissipates and thus it propagates slower. 

 

 
Figure 5.4 Computed front location of sediment-laden flow compared with 

measured data, measured along the course of the river 
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5.2.3. Whole process of turbidity currents 

Figs. 5.5 and 5.6 demonstrate the formation, propagation and recession process of the 

turbidity current by virtue of the clear-water layer thickness wh , turbidity current 

thickness sh  and sediment concentrations sc  respectively at four instants ( t  4 h, 8 h, 

20 h and 108 h). Also, Fig. 5.7 shows the whole process of the turbidity current by 

means of the water surface, interface and bed along the thalweg.  

As illustrated in Figs. 5.5(a, b), 5.6(a) and 5.7(b), the flow at t  4 h is divided into two 

distinct sections, i.e., the open-channel sediment-laden flow upstream and the clear-

water flow downstream. At about t  6.6 h, the open-channel sediment-laden flow 

advances to the cross section at approximately x  38 km, characterized by an abrupt 

increase in longitudinal bed slope (Fig. 5.3). Here the turbid water plunges into the clear 

water and begins to propagate as underflow, which marks the formation of turbidity 

current. Alternatively, the plunge point is located at roughly 56.5 km from the inlet 

along the course of the river, as shown in Fig. 5.7(c). From Fig. 5.6(b), a current with 

relatively high sediment concentration is formed and the highest sediment concentration 

occurs at current front. 

After traveling about 13.5 hours since its formation, the turbidity current arrives at the 

Xiaolangdi dam [Fig. 5.4, Fig. 5.5(e, f), Fig. 5.6(c), Fig. 5.7(d)] and begins to be drained 

out through the bottom outlets; the largest turbidity current thickness occurs at the 

narrowest cross section (at x  65 km and y  35 km roughly); and the plunge point 

has hardly migrated downstream the plunging point at x  38 km [Fig. 5.7(d)]. As 

shown in Fig. 5.6(c), the sediment concentration starts to reduce gradually except in the 

section close to the inlet where sediment-laden flow continues to be released (Fig. 5.2). 
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After being vented through the bottom outlets for about 88 hours, the thickness of the 

turbidity current [Fig. 5.5(h)] and sediment concentration [Fig. 5.6(d)] have decreased 

considerably, along with a significant movement of the plunge point to the downstream 

[Fig. 5.7(f)]. In a way, this clearly reflects a state of recession of the turbidity current. It 

is rational to anticipate that the turbidity current would finally recede if clear water 

continues to be released at the Sanmenxia Reservoir and the turbidity current is allowed 

to flush through the bottom sluice gates under the Xiaolangdi dam.  

These observations along with the reasonable agreement with observed data for the 

turbidity current advance suggest that the present model with properly specified 

parameters can properly resolve the whole process of turbidity currents in Xiaolangdi 

Reservoir. 
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Figure 5.5 Distributions of turbidity current thickness and clear-water thickness in 

Xiaolandi Reservoir from 13:00 7th July to 3:00 12th July, 2004 
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Figure 5.6 Distributions of volumetric sediment concentration in Xiaolandi 

Reservoir from 13:00 7th July to 3:00 12th July, 2004 
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Figure 5.7 Water surface, interface and bed profiles along the thalweg in Xiaolandi 

Reservoir from 13:00 7th July to 3:00 12th July, 2004 
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5.2.4. Bed deformation and sediment mass conservation 

Fig. 5.8 shows the bed scouring depth, defined as ),,()0,,( tyxzyxz bb  . The turbidity 

current appears to be erosive during the early stage, as indicated by the positive values 

of the bed scouring depth [Fig. 5.8(a, b)]. This is a clear manifestation of the occurrence 

of bed scour. Physically, this is attributable to the rather high discharge and sediment 

input released at the Sanmenxia Reservoir combined with the discharge through the 

Xiaolangdi dam (Fig. 5.2). As the inflow discharge and sediment concentration decrease 

gradually, bed aggradation occurs during the course of the turbidity current propagation 

towards the dam [Fig. 5.8(c, d)]. By t  108 h, the whole domain of the Xiaolangdi 

reservoir sees bed aggradation, except locally narrow reaches [Fig. 5.8(d)].  

For turbidity currents in an ocean environment, it has been suggested that self-

accelerating mechanism exists (Parker et al. 1986). Specifically, the current entrains 

sediment from the bed, which leads to a higher sediment concentration, and thus a larger 

difference in its density from the ambient water. This essentially corresponds to an 

increase in the driving force for the current. Then, the current accelerates, and picks up 

more sediment from the bed, which further accelerates the current. Therefore, a self-

reinforcing cycle is established. This mechanism cannot be precluded for the reservoir 

turbidity current in question, as the influence of the coefficient   in relation to bed 

sediment entrainment [Eq. (2. 43)] is marginally detectable (Fig. 5.4). Nevertheless, it is 

hard to isolate the effect of the self-accelerating mechanism from the control of the up- 

and downstream boundary conditions in the reservoir. This is also the case for the effect 

of sediment deposition out from the turbidity currents, which is opposite to the 

influence of the self-accelerating mechanism. Fortunately, all of those are properly 
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incorporated in the present fully coupled model. 

An evaluation of the global sediment mass conservation is certainly warranted as it can 

reveal not only the bulk aggradation or degradation in the Xiaolangdi Reservoir along 

with sediment flushing efficiency, but the performance of the present model. It accounts 

for the budget of the sediment that enters the Xiaolangdi Reservoir from the release at 

the Sanmenxia Reservoir, is flushed out at the Xiaolangdi Reservoir by means of 

turbidity current, and also the sediment content within the flow. For this purpose, the 

volume )(tVsc  of the sediment contained within the flow is defined by 

  dxdychtV sssc )(                                                          (5.1) 

and the volume of the sediment due to bed erosion or deposition by )(tVsb , 

    dxdytyxzyxzptV bbsb ),,()0,,()1()(                            (5.2) 

The volume )(tVsi  of the sediment input from the upstream, and that )(tVso  carried 

away through the bottom outlets, respectively, are  

  dydtcuhtV
inlet

ssssi )()( ,      dydtcuhtV
outlet

sssso )()(             (5.3a, b) 

The bulk mass conservation of the sediment phase provides that the residual sediment 

volume 

0)0()()()()(  scscsbsosis VtVtVtVtVR                            (5.4) 

In a perfect case, sR  should vanish, but normally it does not due to numerical errors. It 

is an important indicator of the performance of a numerical model in the sense of mass 

conservation. A positive value of )(tVsb  means bulk degradation and the reverse 



 

113 

 

demonstrates a bulk aggradation. 

The volumes of sediment input from the upstream boundary ( siV ), carried away through 

the bottom outlets ( soV ), scoured from or deposited at the bed ( sbV ), and contained 

within the flow ( scV ) along with their residuals ( sR ) are illustrated in Fig. 5.9. It is 

demonstrated that by t = 18 h, there is no sediment flushed out from the reservoir ( soV = 

0) as the turbidity current has not yet arrived at the bottom outlets. Before t = 18 h, the 

sediment volume contained within the flow ( scV ) exceeds the sediment input from 

upstream ( siV ), thus the sediment scoured from bed is considerable ( sbV > 0), echoing 

the occurrence of bed scour as illustrated in Fig. 5.8(a, b). Along with the gradual 

reduction of the sediment input rate, both scV  and sbV  decrease, and especially sbV  

reduces to be negative, which means a shift from bulk degradation to bulk aggradation 

in the Xiaolangdi Reservoir. At approximately t = 20.5 h, due to the arrival of the 

turbidity current, the bottom sluicing gates under Xiaolangdi dam are opened for 

sediment flushing, inducing sediment output. After t = 60 h, the sediment input rate 

becomes stable, soV  increases gradually, scV  is little changed, while sbV  decreases 

further, characterizing continuous bulk aggradation. At t = 108 h, about 1.173×10
7
 (m

3
) 

of sediment has been flushed downstream by means of the turbidity current, while the 

bulk aggradation in the Xiaolangdi Reservoir amounts to 1.196×10
7
 (m

3
), which are 

respectively equivalent to 37.47% and 38.2% of the sediment input from the Sanmenxia 

Reservoir. The sediment flushing efficiency (37.47%) of this particular turbidity current 

is consistent with the empirical range (18% - 36%) for the Sanmenxia Reservoir (Fan 

and Morris 1992b) immediately upstream the Xiaolangdi Reservoir. Yet this sediment 

flushing efficiency is considerably lower than others that can be over 60% (Fan and 

Morris 1992b). Echoing the observations (Figs. 4.11, 4.12 and 4.13) derived from the 
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computational tests in relation to the laboratory experiments by Lee and Yu (1997), 

further investigations are necessary to optimize the reservoir operation scheme in line 

with differing inflow and sediment inputs so that the sediment flushing efficiency can 

be maximized.  

There has been no estimate of the bulk aggradation during the period of this particular 

turbidity current to confirm the present modelling in this regard. Yet according to 

YRCC (2007), the bulk aggradation was about 6.0×10
7
 (m

3
) over two months, during 

which two turbidity current events occurred, and the first (from 18:00 5th to 19:00 6th 

July 2004) did not manage to reach the Xiaolangdi dam and therefore the sediment 

released from the Sanmenxia Reservoir entirely deposited on the bed. Given this 

information and also that tributary contributions have been neglected in the present 

modelling, the amount of bulk aggradation (1.196×10
7
 m

3
) in connection with the 

particular turbidity current studied herewith is reasonable. Equally notably, the bulk 

residual ( sR ) of sediment in the Xiaolangdi Reservoir is very small (Fig. 5.9), compared 

to the sediment volumes scoured from or deposited at the bed, input from the upstream 

or output through the bottom outlets. More specifically, the ratio of the residual sR  to 

siV  is only 1.61%. This further confirms the excellent performance of the present model 

to resolve reservoir turbidity currents.  
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Figure 5.8 Distributions of bed scouring depth induced by turbidity current in 

Xiaolangdi Reservoir from 13:00 7th July to 3:00 12th July, 2004 
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Figure 5.9 Sediment volumes input from the upstream, output through bottom 

outlets, scoured from or deposited at the bed, contained within the flow and their 

residuals in Xiaolandi Reservoir from 13:00 7th July to 3:00 12th July, 2004 

 

5.3. Multi grain sizes versus single size of sediments  

So far, the present double layer-averaged model is run by using a single size of 

sediments (i.e., the sediment size is kept at a single value, normally the median or mean 

sediment diameter, throughout the modeling). Whilst in practice sediments in debris 

flows may be heterogeneous. In this regard, the present model is evaluated as applied to 

modelling reservoir turbidity currents in Xiaolangdi Reservoir with multi grain sizes of 

sediments. The initial bed topography, the inflow discharge and its total sediment 

concentration released from Sanmenxia Reservoir along with the outflow discharge 

through Xiaolangdi dam are the same as in the case using a single size of sediments, as 
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addressed above (Section 5.1). The fed material (sediment inflow) and bed material are 

composed of graded sediments with five size fraction, ranging from 9.12 µm to 55.9 

µm. The detailed material composition is given in Table 5.1.  

 

Table 5.1 Fed and bed material composition 

kd (µm) 9.12 12.2 21.2 38.7 55.9 

% 10.0 22.0 43.0 20.0 5.0 

 

Fig.5.10 shows the computed front location of the sediment-laden flow, which is also 

measured along the course of the river. The measured arrival time of the turbidity 

current at Xiaolangdi dam and the computed results using a single size of sediments are 

also included. From Fig. 5.10, the computed current propagation with bn  0.0375 and 

  20 compares best with the measured data. Similar to the cases with single-sized 

sediment transport, a faster advance is generally obtained with a larger correction 

coefficient   and a smaller bed roughness bn . The turbidity current with multi grain 

sizes of sediments advances slower initially ( t 8 h), however then moves faster after 

the formation of turbidity currents, as compared to that using a single size of sediments.  
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Figure 5.10 Computed sediment-laden flow location with measured data using 

multi grain sizes: measured through the course of the river 

 

Figs. 5.11 and 5.12 illustrate the formation, propagation and recession process of the 

turbidity current using multi grain sizes of sediments as represented by the clear-water 

layer thickness wh , turbidity current thickness sh  and total sediment concentration sC  

respectively at four typical instants ( t  4 h, 8 h, 19.7 h and 108 h). Also, Fig. 5.13 

shows the whole process of the turbidity current by virtue of the water surface, interface 

and bed along the thalweg. And the computed results using a single size of sediments is 

also incorporated. Similarly, the flow is divided into two distinct sections initially, i.e., 

the open-channel sediment-laden flow upstream and the clear-water flow downstream 

[Figs. 5.11a, b, 5.12a, 5.13b]. At approximately t  6.75 h, the turbidity current is 

formed due to the plunging of turbid water into clear water. Seen from Fig. 5.12(b), at 

this stage, the sediment concentration of turbidity current is shown to be relatively high 
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and the highest value occurs at the current front. After traveling about 13.0 hours since 

its formation, the turbidity current reaches the Xiaolangdi dam [Fig. 5.10, Fig. 5.11(e, f), 

Fig. 5.12(c), Fig. 5.13(d)] and begins to be flushed out through the bottom outlets; with 

the plunge point stabilizing at x  40 km [Fig. 5.13(d)]. Likewise, after being vented 

through the bottom outlets for nearly 88 hours, the thickness of the turbidity current [Fig. 

5.11(h)] and sediment concentration [Fig. 5.12(d)] have also decreased considerably, 

along with a significant movement of the plunge point to the downstream [Fig. 5.13(f)]. 

Comparatively, the plunge point in case using multi grain sizes of sediments migrates 

downstream less than that in case with single-sized sediment transport (shown in Fig. 

5.14), which leads one to speculate that graded sediments may be conducive to the 

stabilization of plunge point.  
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Figure 5.11 Distributions of turbidity current thickness and clear water thickness 

in Xiaolandi Reservoir from 13:00 7th July to 3:00 12th July, 2004 
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Figure 5.12 Distributions of volumetric sediment concentration in Xiaolandi 

Reservoir from 13:00 7th July to 3:00 12th July, 2004 
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Figure 5.13 Water surface, interface and bed along the thalweg in Xiaolandi 

Reservoir from 13:00 7th July to 3:00 12th July, 2004 
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Figure 5.14 Movements of plunge point at specific instatns 

 

Fig. 5.15 demonstrates the variations of the bed scouring depth. Initially, the turbidity 

current with multi grain sizes of sediments is also shown to be erosive [Fig. 5.15(a, b)], 

and then turns to be depositional as the time is going on [Fig. 5.15(c, d)]. By t  108 h, 

the whole domain of the Xiaolangdi reservoir features bed aggradation, except locally 

narrow reaches [Fig. 5.15(d)]. Qualitatively, the reservoir sedimentation due to turbidity 

current with multi grain sizes of sediments is less serious than that in case using a single 

size of sediments. Figs. 5.16 and 5.17 illustrate the distributions of characteristic size 

D50, D90 (the particle sizes at which 50% and 90% of the sediments are finer 

respectively). Seen from Figs. 5.16 and 5.17, the bed coarsening trend is demonstrated 

before the turbidity current arrives at the dam mainly due to the bed erosion caused by 

the turbidity current. After the arrival of the turbidity current, the bed is gradually fining 

due to the bed aggradation induced by the turbidity current.  
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Fig. 5.18 illustrates the volumes of sediment input from the upstream boundary ( siV ), 

carried away through the bottom outlets ( soV ), scoured from or deposited at the bed 

( sbV ), and contained within the flow ( scV ) along with their residuals ( sR ). Similarly, it 

features the initial growth of scV  due to mass gain from the bed erosion ( sbV > 0) before 

t = 20.0 h, then the decrease of scV  along with a shift from bulk degradation to bulk 

aggradation, and finally the gradual stabilization of scV  along with the further increasing 

of soV  as well as the decrease of sbV . Overall these results are qualitatively similar to 

those using a single size of sediments. Finally, about 1.299×10
7
 (m

3
) of sediment has 

been flushed out of the reservoir, while the bulk aggradation in the Xiaolangdi 

Reservoir amounts to 1.067×10
7
 (m

3
), which are respectively equivalent to 41.51% and 

34.07% of the sediment input from the Sanmenxia Reservoir. As compared to the 

counterparts of the case using a single size of sediments, the sediment flushing 

efficiency has increased slightly and the bulk aggradation decreases accordingly, 

echoing the qualitative observation through Fig. 5.15(d). Fig. 5.19 illustrates the size-

specific sediment flushing volume through the bottom outlets. Seen from Fig. 5.19, the 

flushing volume of grain size D 21.1 µm and D 55.9 µm feature respectively the 

maximum and minimum values, and those of other sizes lie in between them. In general, 

the sequence of the flushing volume of different grain size is consistent with that of the 

material composition.  

 



 

125 

 

 

Figure 5.15 Distributions of bed scouring depth induced by turbidity current in 

Xiaolandi Reservoir from 13:00 7th July to 3:00 12th July, 2004 

 

 
Figure 5.16 Distributions of D50 of the bed sediments in Xiaolandi Reservoir from 

13:00 7th July to 3:00 12th July, 2004 
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Figure 5.17 Distributions of D90 of the bed sediments in Xiaolandi Reservoir from 

13:00 7th July to 3:00 12th July, 2004 
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Figure 5.18 Sediment volumes input from the upstream, output through bottom 

outlets, scoured from or deposited at the bed, contained within the flow and their 

residuals in Xiaolandi Reservoir from 13:00 7th July to 3:00 12th July, 2004 
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Figure 5.19 Size-specific sediment flushing volume through the bottom outlets in 

Xiaolandi Dam from 13:00 7th July to 3:00 12th July, 2004 

 

5.4. Conclusion 

The prototype-scale turbidity current in the Xiaolangdi Reservoir, Yellow River in 

China is reproduced by the present model. The model successfully resolves the whole 

process from formation and propagation to recession. And the advance of the current is 

captured by the model fairly well when compared to the measured data. It is also 

demonstrated that turbidity current with multi grain sizes of sediments features faster 

propagation, more stable plunge point and less sedimentation, as compared to that using 

a single size of sediments. The present work facilitates a viable and promising 

framework for whole-process modelling of turbidity currents, in support of reservoir 

sediment management. 
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CHAPTER 6 HYPERBOLICITY ANALYSIS AND ITS 

IMPLICATIONS FOR RESERVOIR OPERATION 

 

6.1. Introduction 

In the present study, the governing equations for each layer are cast into a non-

homogeneous hyperbolic system, whilst the inter-layer interactions are represented as 

source terms as they are negligible compared to inertia and gravitation. The two 

reduced-order hyperbolic systems of the governing equations for the two layers are 

solved separately and simultaneously. The present model solved by the proposed 

numerical solution has demonstrated rather good performance when tested against a 

spectrum of experimental cases including dam-break flows and turbidity currents (Li et 

al. 2013; Cao et al. 2015). Although the proposed numerical solution is demonstrated to 

be effective and satisfactorily accurate post priori, it is essential to carry out 

hyperbolicity analysis systematically by analyzing and comparing the eigenvalues of the 

governing equations when respectively cast into a single system or two reduced-order 

hyperbolic systems. Hyperbolicity analysis of the present model is conducted in the 

present chapter as related to typical stratified sediment-laden flows featuring dam-break 

flows and reservoir turbidity currents. Computational tests for reservoir turbidity 

currents are also carried out to reveal whether an excessive clear-water outflow would 

spoil the turbidity current and thus induce the linked Kelvin-Helmholtz instability.  

6.2. Eigenvalue Analysis  

It is easy to verify that the eigenvalues ( w , w , s , -s , s ) associated with the 
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Jacobian matrix of the two reduced-order systems (RS) composed of Eqs. (2.12)- (2.16) 

if N  1 are given by  

ww ghuw  , ww ghuw                                         (6.1a, b) 

ss ghus  , ss ghus  , ss u                                 (6.2a, b, c) 

To evaluate the eigenvalues of the full set of governing equations of the two layers as a 

single system (SS), the inter-layer interactions terms and variable sediment 

concentration term are put into the LHS of the non-homogeneous equations. 

Accordingly, the governing equations of two layers can be rewritten in primitive 

variables  
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where cw   .  

Indeed, the five eigenvalues  5,...,1ii  can be computed by 0 IA   ( I  is the 
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unit matrix) and thus are the roots of the characteristic polynomial below,  

0])))(())[((( 222  swsswws hhgghughuu                   (6.6) 

From Eq. (6.6), it is easy to calculate one eigenvalue su5  which is associated with 

the sediment continuity equation, i.e., Eq. (2.16). Indeed the exact solutions of the rest 

four eigenvalues can be obtained analytically. A detailed procedure is described in 

Lawrence (1990) and a short derivation is given below. Generally two external 

eigenvalues are always real, while the other two internal eigenvalues may become 

complex conjugate, which is related to hyperbolicity loss and the Kelvin-Helmholtz 

instability. 

The following quantities are defined: ws hhH   is total flow depth; Hhh sw4  the 

depth ratio;  ws uuu 
2

1
 the arithmetic mean velocity;   Hhuhuu wssw ˆ  the "hat" 

velocity; 
c

wc







  the relative density velocity; 

w

w
w

gh

u
F


  and 

s

s
s

gh

u
F


  are 

the densimetric Froude numbers of two layers respectively; 22222

swsw FFFFG   is 

the composite Froude number; 
 

gH

uu
F sw



2

2 
  the stability Froude number.  

With the above definitions, the characteristic polynomial may be rewritten: 

0
4

0


m

m

ma                                                                 (6.7) 

where  2222222

0 1 Ghhghhgughughuua swswwsswsw   ; ugHuuua sw
ˆ241  ; 

gHuuua sw  24 2

2 ; ua 43  ; 14 a . 

The first step of the solution procedure is reduce Eq. (6.7) by making a substitution of 
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variables, considering an observer moving at the arithmetic mean velocity u , i.e., 

uy  , yielding the reduced quartic equation: 

024  feydyy                                                (6.8) 

where )2(
2

1 2

 FgHd  ; )ˆ(2 uugHe  ; ])(4[)
4

1
( 4222

  FFgHf  . 

The four solutions of the reduced quartic equation above are )( 21
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143 zzzy  ， . Thus the expressions of the eigenvalues are  
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143 zzzu   ，                                   (6.9b) 

where )sgn( ws uu  , and 1z , 2z , 3z  are the solutions of the normalized cubic 

equation  

023  tszrzz                                              (6.10) 

where )2)(
4

1
( 2

 FgHr  ， )]2(1[)
4

1
( 22   FgHs ， 23 )1()

4

1
(  FgHt   

The solutions of this normalized cubic equation can be obtained through Tartaglia 

Equation and also depend on the value of its discriminant: 

23 )
2

1
()

3

1
( qpDz                                                (6.11) 

where )3(
3

1 2rsp  , )2792(
27

1 3 trsrq  . 

If 0zD , 1z , 2z  and 3z  are real and thus the eigenvalues are all real.  
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If 0zD , 1z  remains real , but 2z  and 3z  are complex conjugate. Being conjugate, the 

combination )( 21

2

21

3 zz   remains real also, so that the eigenvalues 21，  are always real. 

On the contrary, the combination )-( 21

2

21

3 zz  is purely imaginary, leading to 43，  that are 

complex conjugate.  

In the analysis below, the five eigenvalues computed by two respective frameworks SS 

and RS are compared and analyzed. Specifically, the two external eigenvalues 1 , 2  

are compared to w , w , whilst the two internal eigenvalues 3 , 4  are compared to s , 

s . And 5  matches s  as they are both equal to the layer-averaged velocity of the 

sediment-laden flow layer su . This strategy is adopted in all the cases. Besides, a logical 

parameter   is introduced to better describe the hyperbolicity of the present double 

layer-averaged model. If all the eigenvalues computed by SS are real, then   1, 

meaning hyperbolicity preservation; whilst if two internal eigenvalues are complex 

conjugate, then   -1, meaning hyperbolicity loss; besides if double-layer structure 

does not exist, i.e., either the clear-water layer or the sediment-laden flow layer exists, 

then   0.  

Hyperbolicity analysis of the present model is carried out as related to typical 

experimental cases concerning progressive failure of a single landslide dam (Cao et al. 

2011b) and turbidity currents due to sustained inflow (Lee and Yu 2007). For practical 

applications, computational tests for reservoir turbidity currents are also presented to 

reveal whether an excessive clear-water outflow would spoil the turbidity current and 

thus induce the linked Kelvin-Helmholtz instability. All the modelling parameters are 

kept the same as their counterparts above.  
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6.3. Progressive Failure of a Single Landslide Dam 

Fig. 6.1 presents comparisons of the five eigenvalues computed by RS and SS. The five 

eigenvalues calculated by SS are all real, indicating the hyperbolicity preservation. 5  is 

always equal to s . At t  430 s, when the water flows over the top of the dam and 

starts to erode the toe of the dam [Fig. 3.6(b1)], the difference between 1  and w  is 

trivial [Fig. 6.1(a)], but the discrepancies of the other three pairs of mutually compared 

eigenvalues are discernible [Fig. 6.1(a2-a4)]. When t  600 s, at the instant clearly 

characterized by the rather smooth water surface and fully developed sediment-laden 

flow layer [Fig. 3.6(d1)], the discrepancies between all the four pairs of eigenvalues can 

be obvious. Even so, the positivity and negativity of the eigenvalues computed by SS 

and RS at the inlet and downstream are consistent, which demonstrates the consistency 

of the implementations of the boundary conditions by the two frameworks. The 

distributions of the logical parameter   shown in Fig.6.2 apparently verify the 

hyperbolicity preservation of the present model equations when applied to this case 

because the values of the parameter   are always displayed as “1” if the double-layer 

structure exists during the whole process.  
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Figure 6.1 Comparisons of the eigenvalues computed by SS and RS 

 



 

137 

 

 

Figure 6.2 Distributions of   during the whole process for a single landslide dam 

failure 

 

6.4. Turbidity Currents Due to Sustained Inflow  

When the model is applied to turbidity currents due to sustained flow, the comparisons 

of the eigenvalues computed by frameworks SS and RS are presented in Fig. 6.3. The 

five eigenvalues by SS are all shown to be real. Initially the flume is filled with moving 

clear water, thus only two pairs of the eigenvalues (i.e., 1  and w , 2  and w ) related 

to the clear-water flow layer, are not equal to zero and are the same [Fig. 6.3(a1-a5)]. 

When t  25 s, the turbid water is released from upstream but has not plunged to the 

bottom. At this stage, the whole flow is divided by a pronounced separation 

(approximately located 3.68 m from the inlet) into two sections including the open 

channel sediment-laden flow at the far upstream and the following clear-water flow. 

After this location w  and w are the same as 1  and 2  respectively [Fig. 6.3(b1-b2)], 
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while ahead of this location s  and s  are amount to 3  and 4  [Fig. 6.3(b3-b4)]. 

When t 450 s, the plunge point stabilizes and the current advances with a bulge-

shaped head and elongated body. Due to the fully developed double-layer structure, the 

effects of non-conservative products are more profound and thus the discrepancies of 

the eigenvalues computed by SS and RS frameworks become rather obvious [Fig. 

6.3(c1-c4)]. In addition, the positivity and negativity of the eigenvalues computed by SS 

and RS are the same, indicating that no difference exists between the implementations 

of the boundary conditions of these two frameworks. Fig. 6.4 illustrates the distributions 

of   during the whole process for the turbidity currents. It is noted that   are 

displayed as “non-negative value” during the whole process, which further corroborates 

the preservation of hyperbolicity.  

Overall the hyperbolicity analysis above demonstrates that the present double layer-

averaged model solved by the proposed numerical solution would preserve 

hyperbolicity and thus avoids exhibiting the linked Kelvin-Helmholtz instability as the 

eigenvalues generic to SS and RS are all real although the appreciable discrepancies are 

observed.  
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Figure 6.3 Comparisons of the eigenvalues computed by SS and RS for turbidity 

currents 
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Figure 6.4 Distributions of   during the whole process for the turbidity currents 

 

6.5. Implications for Reservoir Operation 

It remains to be unraveled if an excessive clear-water outflow would spoil the turbidity 

currents that have already formed, as a result of Kelvin-Helmholtz instability (Cao et al. 

2015). Here the experimental run Series B- PP4 is extended to facilitate the impacts of 

excessive clear-water outflow on turbidity currents. All the modelling parameters are 

kept the same as used in Subsection 4.3. It is assumed after the plunge point reaches 

stable state ( t  4.33 min), the outflow discharge would alter according to the outflow 

conditions as summarized in Table 6.1. Similar to Subsection 4.3.5, at the outlet, a 4 

cm-high bottom outlet on the bed, which has a presumed maximum (unit-width) 
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discharge of 42.55 cm
2
/s. The upstream and downstream boundary conditions are 

determined in a similar way to those in Subsection 4.3.5.  

Fig. 6.5 illustrates the turbidity current evolution for Run EC 2, from subaqueous 

sediment-laden underflow [Fig. 6.5(a)] to open-channel sediment-laden flow [Fig. 

6.5(d)]. By t  250 s, the plunge point reaches a stable state and current advances with 

a bugle-shaped head and elongated body [Fig. 6.5(a)]. After this stage, the total outflow 

discharge has doubled (Table 6.1). Due to the increasing outflow along with the 

subsequent turbidity current venting, the stable plunge point becomes unstable and its 

location mitigates downstream significantly [Fig. 6.5(b and c)]. More notably, the water 

level declines sharply. As times goes on, the clear water has been completely drained 

out, leading to the vanishing of clear-water layer and the appearance of open-channel 

sediment-laden flow [Fig. 6.5(d)]. Clearly, no interface instability is exhibited during 

the whole process.  

Fig. 6.6 illustrates the distributions of   during the whole process for EC 1-4, 

characterized by gradual growth of outflow discharge. The appearance of non-negative 

values of   clearly indicates hyperbolicity preservation for all these cases and thus 

demonstrates that the turbidity current would not be spoiled and keeps flow stability 

when the outflow discharge is increased appropriately. Generally it is suggested 

increasing outflow discharge appropriately would avoid causing the water body muddy 

due to the breakdown of turbidity current.  

Fig. 6.7 shows the sediment flushing efficiencies for EC 2-5. In general, sediment 

flushing commences as the turbidity current reaches the bottom outlet, and the flushing 

efficiency increases with time, which clearly requires sustained inputs of water and 

sediment from the inlet. And the final efficiency increases greatly along with the growth 

of outflow discharge. It is also noted that during later stage, specifically when the 
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subaqueous underflow has turned into open-channel sediment-laden flow [see Fig. 

6.5(d)], the profiles in Fig. 6.7 indeed represents the sediment flushing efficiency by 

open-channel sediment-laden flow other than turbidity current. Specifically, the final 

efficiencies for EC 1-5 are approximately 47%, 52%, 58%, 63% and 70% respectively. 

Notably the efficiencies have raised 5%, 11%, 16% and 23%, corresponding to the 

outflow discharge increased by 50%, 100%, 150% and 200%. Physically, the clear-

water outflow accelerates the propagation of the turbidity current, which leads to an 

increase in the amount of sediment flushed out and therefore enhanced sediment 

flushing efficiency (Cao et al. 2015).  

It follows that an excessive clear-water outflow not only keeps the turbidity current 

from being spoiled (Figs. 6.5 and 6.6), but also is conducive to improving sediment 

flushing efficiency (Fig. 6.7). This is undoubtedly theoretically and practically critical to 

develop optimal sediment management schemes for reservoirs worldwide, which suffer 

from severe sedimentation problems. In a way, it further adds to the current 

understanding of the effects of distinct reservoir operation schemes on sedimentation 

mitigation (Fan and Morris 1992a, b). 

 

Table 6.1 Summary of inflow and outflow conditions for extended cases 

Run Inflow discharge 

inq  (cm
2
/s) 

Sediment Concentration 

inc  

Outflow discharge 

outq  (cm
2
/s) 

EC 1 
0q  0c  0q  

EC 2 
0q  0c  1.5 0q  

EC3 
0q  0c  2.0 0q  

EC4 
0q  0c  2.5 0q  

EC 5 
0q  0c  3.0 0q  
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Figure 6.5 Turbidity current evolution (EC 3) 
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Figure 6.6 Hyperbolicity analysis by distributions of   for EC 2-5 
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Figure 6.7 Sediment flushing efficiencies for EC 1-5 

 

6.6. Conclusion 

The hyperbolicity analysis of the model equations has been conducted by analysing and 

comparing the eigenvalues of the governing equations when cast into a single system 

(SS) or two reduced-order hyperbolic systems (RS) respectively. When applied to 

typical stratified sediment-laden flows featuring dam-break flows and reservoir turbidity 

currents, the model can preserve hyperbolicity and thus avoid Kelvin-Helmholtz 

instability as the eigenvalues generic to two frameworks are all real although 

appreciable discrepancies can be observed. Computational tests for reservoir turbidity 

currents reveal that an excessive clear-water outflow would keep the turbidity current 
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from being spoiled, and improves sediment flushing efficiency correspondingly. This 

further adds to the understanding of optimizing reservoir operation schemes.  
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CHAPTER 7 CONCLUSIONS AND PERSPECTIVES  

 

7.1. Conclusions 

Sediment-laden flows in open channels can be sharply stratified vertically, characterized 

by a vertical double-layer flow structure composed of subaqueous sediment-laden flow 

layer immediately over the bed and an upper clear-water flow layer. However, existing 

double layer-averaged models have either partly or completely ignored the primary 

features of stratified open-channel sediment-laden flows and thus are not generally 

suitable. In the present thesis, a new coupled two-dimensional double layer-averaged 

model is developed, explicitly incorporating flow stratification, inter-layer exchange, 

sediment transport and morphological evolution and thus generally applicable for 

sharply stratified sediment-laden flow in open channels. The two hyperbolic systems of 

the governing equations for the two layers are solved separately and synchronously. 

With this numerical solution, the model is applied to two typical kinds of stratified 

sediment-laden flows in open channel featuring dam-break flows and reservoir turbidity 

currents respectively. The hyperbolicity of the model equations is further analyzed as 

related to dam-break flows and reservoir turbidity currents. The following conclusions 

are drawn.  

 The present work justifies the physical necessity to incorporate the sediment mass 

conservation in lieu of the assumption of constant sediment concentration generic 

to previous simplified double layer-averaged models. The present model 

satisfactorily resolves typical dam-break cases involving the instantaneous full dam 

break and progressive failure of a single and cascade landslide dams, and features 

the improved performance over existing models when compared to experimental 
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measurements. In contrast, the simplified double layer-averaged model 

demonstrates significant sensitivity to the presumed constant sediment 

concentration. Most notably, when applied to progressive failure of landslide dams, 

the simplified double layer-averaged model exhibits serious non-physical 

oscillations and performs rather poorly. Theoretically, the failure of numerical 

computation arises from the assumption of constant sediment concentration in the 

lower layer, which essentially breaks the fundamental mass conservation law for 

sediment and should be eliminated.  

 The present model facilitates for the first time the whole-process modelling of 

reservoir turbidity currents over erodible, irregular bed, i.e., formation, propagation 

and recession. It has been demonstrated to perform very well when compared to a 

spectrum of experimental cases, including turbidity currents due to lock-exchange 

and sustained inflow. It is revealed that an appropriate clear-water outflow is 

favourable for turbidity current propagation, and also conducive to improving 

sediment flushing efficiency. This is definitely significant for optimizing reservoir 

operation schemes. As applied to prototype-scale turbidity currents in the 

Xiaolangdi Reservoir in the Yellow River, China, the model successfully resolves 

the whole process from formation to recession and also reproduces the advance of 

current fairly well. It is found that the turbidity current with multi grain sizes of 

sediments features faster propagation, more stable plunge point and less 

sedimentation, as compared to that with single-sized sediment transport. The 

present work facilitates a viable and promising framework for whole process 

modelling of turbidity currents, in support of reservoir sediment management. 

 The present model is demonstrated to preserve hyperbolicity and thus avoid Kelvin-

Helmholtz instability when applied to dam-break flows and reservoir turbidity 
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currents. When the governing equations are cast into a single system (SS) or two 

reduced-order hyperbolic systems (RS), the eigenvalues generic to these two 

frameworks are all shown to be real although the appreciable discrepancies can be 

observed. Computational tests for reservoir turbidity currents reveal that an 

excessive clear-water outflow would keep the turbidity current from being spoiled, 

and improves sediment flushing efficiency correspondingly. This further adds to the 

understanding of optimizing reservoir operation schemes.  

7.2. Perspectives 

 Uncertainty of the model primarily arises from the estimations of the interface and 

bed resistances as well as bed sediment entrainment, which are related to the flow 

evolution and morphological changes. The interface and bed resistances have been 

approximated by the constant Manning roughness coefficients respectively, which 

may give rise to uncertainties to some extent. Moreover, the mechanism of 

sediment entrainment by turbulent flow has so far remained poorly understood 

although there has been a plethora of empirical relationships available for the 

determination of sediment entrainment flux. Certainly systematic fundamental 

investigations of the mechanisms, in relation to boundary resistances as well as bed 

sediment entrainment in sediment-laden flows, are warranted. Currently, 

uncertainty can be dealt with by empiricism that can be accrued through practice 

using more measured datasets.  

 The sediment-laden flow layer with high contents of fine sediments may behave as 

non-Newtonian fluids, featuring the transition and propagation characteristics 

deviating substantially from the Newtonian fluid. Indeed a plethora of rheological 

models have been proposed, including power law, viscoplastic, Bingham plastic, 
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Herschel–Bulkley, etc. However, it is very difficult to carry out systematic 

experiments to verify or test any of these conceptual models, therefore much further 

work needs to be done in this area before a good scientific understanding is to be 

obtained (Huppert 2006). Overall the non-Newtonian rheology necessitates the 

physical enhanced constitutive relationships to be incorporated in the model.  

 Technically, the great computational costs can hinder the wide applications of the 

present double layer-averaged model in prototype-scale domains as a fixed uniform 

mesh is adopted and a separate continuity equation for each grain size has to be 

solved. In general, for prototype-scale hydro-sediment-morphodynamics modelling, 

the need for a high-resolution mesh exists only in a relatively small portion of the 

entire domain, while a locally coarse mesh suffices over the majority area of the 

domain. In this regard, the technique of adaptive mesh refining (AMR) can be 

incorporated, which can greatly save computational time and concurrently maintain 

the accuracy of the model. These are reserved for future studies.  
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