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Abstract 

The number of installations of intelligent well (I-well) completions, which are providing 

layer-by-layer monitoring and control capability of production or injection, is growing. 

However, the number of available techniques for optimal control of I-wells is limited. 

Currently, most of the I-wells which are equipped with Interval Control Valves (ICVs) 

are operated to enhance the short-term production and to resolve problems associated 

with breakthrough of the unfavourable phase. This reactive strategy is unlikely to 

deliver the long-term optimum production targets. On the other side, the proactive 

control strategy of I-wells, with its ambition to provide the optimum control for entire 

well’s production life, has a potential to maximize the cumulative oil production and/or 

reduce the cumulative water production. This strategy, however, results in a high 

dimensional optimisation problem with a computationally demanding and uncertain 

objective function based on one or more simulated reservoir model(s). 

This thesis investigates the challenging proactive optimisation problem and its solution 

for detailed modelling of I-wells. The desire is to develop algorithm and guidelines that 

could be readily used by engineers to solve proactive optimisation problems for large 

real field models with limited computational resources. The black-box characteristics of 

most of the commercial reservoir simulators has limited the use of gradient-based 

algorithms despite their efficiency in solving large-scale optimisation problems. 

Stochastic estimation of the (steepest) gradient by simultaneous perturbation of all 

control variables is proposed in this thesis and shown to provide a fast and efficient 

solution to the I-well proactive optimisation problem.  

A novel framework for robust proactive optimisation of ICVs under reservoir’s 

description uncertainty, quantified by multiple model realisations, is developed. A small 

representative ensemble of model realizations that performs in an equivalent manner to 

all available realizations is systematically selected. A utility function is then calculated 

accounting for both the expectation and variance of the objective function so as to 

account for both the field development value and risk. 

The proposed robust proactive optimisation framework has been tested on several case-

studies. The practicality of the developed framework is illustrated by optimising a real 

North Sea intelligent field development with a single high-end workstation.  
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Chapter 1– Introduction 

Intelligent wells (I-wells) add downhole (zonal) control and monitoring capabilities to 

the traditional conventional wells. Downhole control provides the opportunity to reduce 

the number of wells to be drilled and to accelerate oil production by commingled 

production from different reservoir layers (zones). Moreover, the optimal control of 

zonal production (or injection) can reduce the production of unwanted fluids, and 

increase oil recovery. However, the risks associated with a non-optimum control 

increases at the same time due to possible production loss compared to the no control 

case. Several types of downhole control devices have been developed suitable for 

different reservoir types and well functions. The maximum control flexibility is 

provided by using multiple, downhole, Interval Control Valves (ICVs) installed across 

the well completion intervals. The ICV control strategy can be:  

1. Short-Term, Reactive Control strategy to achieve instantaneous goals; e.g. 

maximise oil production, minimise unwanted fluids production, manage tubing 

and production network performance, etc.  

2. Long-Term, Proactive Control strategy to improve long-term objectives e.g. Net 

Present Value (NPV) or cumulative oil production. 

Currently, most I-wells are operated to enhance current production and to resolve 

recognised problems. Reactive strategy alone requires solving a relatively simple 

nonlinear optimisation problem describing current condition of the production system. 

By contrast, the proactive control strategy has the ambition to provide optimum control 

for the entire well’s production life; results in the necessity to find solution to a high-

dimensional, nonlinear and uncertain optimization problem. The complexity of 

proactive optimisation substantially increases when it is applied to large oil and gas 

fields with multiple I-wells each equipped with multiple ICVs. Currently available, 

commercial optimisation software cannot achieve this. 

1.1. Thesis Motivations and Objectives 

With the number of I-field developments increasing, for example to provide an 

economic field development scenario in low oil price by comingled production from 
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multiple reservoirs, the need for a robust optimal framework to control these fields 

increases. This thesis develop an efficient framework for robust optimal control of I-

fields with the focus on immediate real field, industrial applications.  

Following are the main objectives of this study and the key findings in each area, 

a. Understand the nature of the proactive optimisation problem. Previous studies 

(Holmes et al., 1998) investigated the detailed, realistic modelling of I-wells. One of the 

novel aspects of this thesis is investigating the impact of the modelling approach on the 

proactive optimisation problem. It is shown that, a detailed modelling approach results 

in a more complicated optimisation problem while it is a better representation of reality. 

The optimisation framework is developed considering the realistic modelling of I-wells.   

b. Develop criteria for simplification of the proactive optimisation problem with only a 

minor loss in “added-value” by inclusion of engineering and mathematical 

understanding. The novel idea of a combined proactive and reactive approach for 

control of I-fields is scrutinised in this thesis. It is shown that plateau period with oil 

rate constraint in the most important period for proactive optimisation due to: (1) extra 

production capacity is available, therefore it is possible to improve sweep efficiency by 

manipulating the production without sacrificing current oil production (2) interaction 

between the control variables during this period, while the optimum value of one 

variable depends on the value of other variables, therefore all variables should be 

optimised simultaneously. A fast reactive control can optimise the production after the 

plateau period mostly by enhancing the outflow performance while reducing water 

production. The proposed combined approach reduces the computation time 

significantly and make optimization of real fields possible with limited computational 

resources. 

c. Develop a fast, efficient, yet robust, framework to provide optimal proactive control 

of ICVs while recognising reservoir uncertainty. The search space in a proactive 

optimisation problem with detailed I-well model is investigated in this study. Previous 

studies investigated the search space in history matching (Oliver et al. (2008), Oliver 

and Chen (2011)) and in the production optimization (Jansen et al., 2009, van Essen et 

al., 2011, Fonseca et al., 2014). The search space in all these high-dimensional problems 
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is characterised by several local optima with objective values close to the global 

optimum. This characteristic of the search space and the fact that the objective function 

is calculated using a black-box commercial reservoir simulator makes stochastic 

gradient-based algorithm a suitable choice. Simultaneous Perturbation Stochastic 

Approximation (SPSA) is shown a good performance in several case studies. 

A novel framework is developed to select a small ensemble of reservoir model 

realisations to account for the uncertain geological condition. The framework present an 

efficient combination of the standard projection and clustering methods with the focus 

on immediate application by an engineer with limited computational resources. A 

dissimilarity distance measure tailored to the subsequent proactive optimisation 

objectives is shown the best performance when projecting the realisations onto 2D 

space using multi-dimensional-scaling (MDS). Representative realisations are then 

selected from each cluster recognised using k-means clustering in the 2D space. 

The so-called robust optimisation approach has been introduced in the petroleum 

engineering by Yeten et al. (2003) for well location optimisation, Bailey and Couet 

(2005) for maximising asset value in a gas field, and van Essen et al. (2013) for 

production and injection optimisation in conventional wells. The mean-variance 

approach to robust optimisation has been previously employed in history matching 

(Chen et al., 1999). This thesis investigates the performance of the mean-variance 

approach on proactive optimisation of I-wells, while the uncertainty is represented by a 

small number of realisations selected using the developed framework. It is shown that 

optimising an adjustable utility function, calculated using selected realisations by the 

developed framework can achieve a globally acceptable performance while significantly 

reduces the computation time. Generally, larger number of realisations need to be 

selected when the focus of optimisation is on reducing the variance (i.e. a risk averse 

control scenario). 

Another novel aspect of this thesis is the application of the developed framework to a 

real North-sea intelligent field development case study. It efficiently handled the large 

number of control variables, the high computation time and the numerical instabilities, 

frequently experienced in proactive optimization of large, real-field simulation models. 

Reducing the number of wells to be drilled via an I-well development scenario resulted 
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in an increased, early-time, NPV. It may also accelerates field development and plateau 

production by speeding up the drilling process. The proactive optimization of ICVs 

extended the oil production plateau in all reservoir model realisations, ensuring that the 

early NPV gain was maintained. The robust control strategy of ICVs provides 

maximum expected added-value (i.e. increasing mean), while at the same time reducing 

the uncertainty in the operation (i.e. reducing the variance). 

1.2. Thesis outline 

Proactive optimisation of I-wells under reservoir uncertainty is investigated in this 

thesis as follows: 

Chapter 2 starts with a literature review of advanced well completion technology. 

Available inflow control devices are presented and their control flexibility are compared 

with the main focus on ICVs. Realistic modelling of the advanced well completions is 

required in order to evaluate/compare performance of different inflow control devices 

and define appropriate optimum control strategy. The impact of the modelling approach 

on the proactive optimisation is investigated 

Chapter 3 investigates the characteristic of the proactive optimisation problem by 

analysing the behaviour of the objective function and the correlation between the 

control variables. The objective is to reduce the number of proactive optimisation 

control variables by discarding variables of lower importance. This process simplifies 

the problem with a minimum loss in added-value. This is particularly important in 

computationally expensive field models with multiple I-wells each equipped with 

multiple ICVs. Two criteria are proposed to reduce the number of control variables by 

limiting the proactive optimisation period and reducing the control frequency.   

Chapter 4 starts with the mathematical formulation of the proactive optimisation 

problem. It is shown how the search space can be visualised in a proactive optimisation 

problem to provide insight into its characteristics. The large number of control 

variables, and the observed fact that the search space is typically characterised by 

several local optima with values close to the global optimum ((Oliver et al., 2008, 

Oliver and Chen, 2011, Jansen et al., 2009, van Essen et al., 2011, Fonseca et al., 2014) 

and also Section 4.3), make gradient-based algorithms a good choice for proactive 
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optimisation of the ICVs. However, commercial reservoir simulators are a black-box to 

most users; limiting access to the data required for the efficient calculation of the 

gradients using the adjoint method. An alternative approach is the stochastic gradient 

approximation methods. The Simultaneous Perturbation Stochastic Approximation 

(SPSA) and the Ensemble-based optimisation (EnOpt) are evaluated in terms of 

convergence performance, parallel processing capabilities and the nature of the obtained 

control scenario from an operational point of view. Guidelines are provided for tuning 

of the corresponding parameters. 

Chapter 5 addresses the problem of proactive optimisation under reservoir description 

uncertainty. The objective function is substituted with an augmented objective function 

(utility function) calculated using an ensemble of simulated reservoir model realisations. 

The reservoir model realisations are generated to quantify the uncertainty in the 

reservoir’s description. The utility function accounts for both the expectation and the 

variance of the Net Present Value (NPV) by modifying the objective function when 

considering different reservoir model realizations.  

Chapter 6 investigates robust optimisation of multiple reservoir model realisations. 

Consideration of all available model realizations is usually a prohibitively expensive 

option. By contrast, choosing a small ensemble of model realizations is computationally 

less demanding, but is subject to bias during the selection process. K-means clustering 

is applied for selecting an ensemble of model realizations to acceptably represent all 

available realizations. A distance measure, tailored to the proactive optimization 

application, is proposed and used to define the similarity/dissimilarity of the different 

realizations. 

Chapter 7 applies some of the developed concepts to a real North-sea field with 3 

intelligent and 8 conventional production wells. The impact of proactive optimisation of 

ICVs has also been investigated under different operational conditions (e.g. different 

water injection strategies, different control frequency). I-well development scenario 

with and without robust proactive control of ICVs is compared with a conventional well 

development scenario.  
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Chapter 8 summarises the thesis conclusions and provides recommendations for future 

work.  
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Chapter 2 – Modelling and Optimisation of Advanced Well 

Completions  

2.1. Introduction 

This chapter starts with a literature review of advanced well completion technology. 

The development of advanced well completions will be briefly reviewed followed by a 

short description of the available inflow control devices and their applications. The 

devices have varying levels of control flexibility, some of which limit the choice of 

control strategy. Two major control strategies (i.e. Reactive and Proactive) are described 

followed by a discussion of their advantages and disadvantages. Realistic modelling of 

the advanced well completions is required in order to evaluate/compare performance of 

different inflow control devices and define the appropriate optimum control strategy. 

The impact of the chosen modelling approach on optimum control is investigated. 

2.2. Advanced Well Completions 

Advances in the drilling technology have allowed the design of long and complex well 

trajectories that increase well production rates and recovery. However, developing such 

wells with a conventional completion generally fails to provide the ultimate added-value 

because they are prone to early breakthrough of unwanted fluids into an (often) limited 

section of the completion. Advanced well completions (AWCs) address this problem 

and showed great potential to improve production by providing flexible control of in/out 

flow from different zones in various well types. AWCs that provide downhole flow 

control and monitoring capabilities (Figure 2-1), generally known as Intelligent wells, 

are an integral element of intelligent oil and gas fields (a.k.a. I-fields, smart fields) 

(Robinson, 2003). Their ultimate aim is to improve reservoir management and reduce 

the number of wells to be drilled and deliver increased oil recovery while decreasing the 

required number of well interventions. 

 



 

8 

 

Figure 2-1: A two-zone I-well with control and monitoring capabilities (Courtesy of 

Baker Hughes, from (Vachon and Lee, 2007) with modification). 

The major advanced well completion components can be classified as: 

1. Downhole flow control devices. These devices enhance flow control flexibility 

by providing control of production/injection along the length of the completion 

zone in real time. By contrast conventional wells only provide surface control. 

Different downhole flow control devices are available and research is ongoing to 

develop new devices. The downhole flow control can be fixed (e.g. Inflow 

Control Devices (ICDs)), or variable. The latter is operated either intermittently 

using wireline or frequently via surface controlled Interval Control Valves 

(ICVs). Section 2.4 briefly explains the operation principles of the most 

common devices with the focus on ICVs which provide the active flow 

management required to implement the results from this study. 

2. Downhole monitoring devices. Sensors provide zonal information to aid 

reservoir characterization, make decisions for flow control, and validate the 

applied control. Zonal pressure and temperature are the most common 

parameters measured. In this study monitoring devices are required to validate 

the applied control (i.e. change in the ICV flow area) during optimum proactive 
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control scenario. The current downhole single point pressure sensors provide an 

accuracy of ± 3 psi (Da Silva et al., 2012). The accuracy is thus normally 

sufficient to confirm that an ICV has been successfully operated. 

The estimated zonal liquid production rate and water-cut is required for reactive 

control of ICVs. The current downhole Multi-Phase Flow Meters provide an 

accuracy of ± 5% of measurement of two-phase flow rate and water-cut (Da 

Silva et al., 2012). Zonal pressure and temperature data can also be translated 

into zonal liquid production rate, water-cut, etc. via virtual flow-metering with 

lower accuracy (Kawaguchi et al., 2013). The impact of measurement accuracy 

of flow rate and water-cut on reactive control of ICVs need further investigation. 

Detailed information about calculating zonal properties using downhole 

measured temperature and pressure data can be found in (Muradov, 2010) and 

(Malakooti, 2015).  

3. Annular flow isolation devices. These annular isolation devices prevent 

undesirable flow between the advanced completions production zones. 

Advanced completions are frequently installed to manage comingled production 

when there is a contrast in zonal deliverability (permeability, pressure, water-

cut) by imposing an extra pressure drop on some of the zones. Preventing 

annular flow allows the ICV to control the flow of the chosen zone and 

maximise the expected added-value. Annular Flow Isolation (AFI) is thus an 

integral part of an I-well completion. Packers and gravel packs are two common 

forms of AFI. Packers are the most common form of AFI, since installing gravel 

pack just for AFI seriously increase the complexity of the completion 

installation. Various types of packers are available with different setting 

mechanisms, costs, strength, etc. Al-Khelaiwi (2013) provides further 

background information on the different types of packers used in I-wells. 

Determining the number and placement of packers is another challenge in 

advanced well completions (Moradidowlatabad et al., 2014). A larger number of 

packers provides better isolation of the different zones; but also increases the 

cost and complexity of the completion as well as the installation risks. In this 

study we assume that adequate AFI is installed to provide acceptable annular 

isolation between the zones.   
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2.3. History of Advanced Well Completions   

The first application of advanced well completions, with the objective of enhancing 

performance of the Troll Field production wells while using downhole flow control, 

goes back to the 1990s (Lien et al., 1991, Haug, 1992). The Troll field a giant gas field 

in the North Sea with a thin oil column (4-27 meters) above an aquifer. Initially the field 

was developed as a gas field while production of the thin oil column was deemed to be 

uneconomical using vertical wells. Advances in the drilling technology allowed a 500 m 

long horizontal well to be drilled in the thin-oil-column and subsequent long-term tests 

showed significant oil production potential (Lien et al., 1991). Production logging of 

these early horizontal wells showed that ~80% of the wells’ length was initially open to 

flow. The unproductive 20% was thought to be due to insufficient clean-up, though 

some of these intervals were expected to gradually become productive (Lien et al., 

1991). It was also observed that ~75% of the inflow originated from the first half (heel) 

of the completion interval due to the frictional pressure loss along the horizontal section 

being of the same order of magnitude as the reservoir drawdown. This phenomenon, 

known as the heel-toe effect, has an increasing impact on the completion’s performance 

as the well length increases. Three different completion options were proposed to 

overcome this problem.  

1. A Passive Stinger Completion (PSC). This is an extension of the tubing into the 

horizontal completion section that shifts the inflow into the production tubing 

from the heel of the well to a point near the middle of the well. This results in 

additional pressure drop for the produced fluid from the heel section; 

consequently reducing the production contribution at the heel and providing a 

greater opportunity for toe clean-up and production. 

2. Variable density perforation. The well is perforated with a higher shot density in 

the toe section (to increase production from toe) and a lower shot density in the 

heel. The required perforation pattern is selected to equalise the well inflow. 

Well inflow calculations are performed with the objective of choosing a 

perforation density along the well that will achieve as near as possible uniform 

inflow along the length of the completion. 

3. A downhole device to control inflow. This was the first generation of passive 

Inflow Control Devices (ICDs) (Figure 2-2) with adjustable length labyrinths 
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embedded in a sleeve surrounded by a pre-packed liner (Brekke and Lien, 2013). 

The produced fluid from each section passed through the labyrinth before 

entering the production string. Ten different channel lengths could be chosen 

depending on the pressure drop required at each location to balance the flow 

along the well length. The well in-flow is balanced by imposing an additional 

pressure drop on the higher production rate intervals due to (1) employing a 

device with more restrictive configuration (Figure 2-3) or (2) employing a 

device with a pressure drop that is proportional to flow rate. 

 

Figure 2-2: Schematic diagram of the first ICD (from (Brekke and Lien, 2013)) 

 

2.4. Downhole Flow Control Devices and Their Published Applications 

An I-well downhole control device provides a restriction to flow that locally reduces the 

flow rate. They can be classified into 3 groups based on their reaction to the fluid flow.  

2.4.1 Passive flow control: ICDs 

These devices provide a single position, fixed, pre-determined flow restriction. The 

pressure drop along these devices changes with changing flow composition and rate. 

However, the flow area cannot be adjusted after the device has been installed. Optimum 

implementation of these devices requires a good knowledge of the reservoir 
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heterogeneity (and the expected production from each zone) as the device imposed 

restriction to each zone cannot be modified.  

ICDs have also been used for various other applications requiring alleviating the zonal 

flow discrepancy from reservoir heterogeneity. ICD applications are illustrated by the 

following selected case studies. 

a. Alleviating heel-toe effects: 

ICDs were employed to mitigate the heel-toe effect in the longest horizontal well 

(~3600 m) of the Troll field (Ratterman et al., 2005). The well was completed with 

Stand Alone Screen (SAS) equipped with ICDs. Five different strengths of ICDs were 

used (Figure 2-3, ICD-5 highest strength, ICD-1 lowest strength) with the highest 

strength ICDs (i.e. the ones with maximum pressure drop) (blue in Figure 2-3) being 

installed at the heel and SAS (Screen-1, yellow, in Figure 2-3), with a negligible 

pressure drop, at the toe. The results showed a balanced production inflow and 

prevented water coning. 

 

Figure 2-3: ICD configuration to balance heel-toe effect (from (Ratterman et al., 2005)). 

Colours show ICDs with different strengths. ICD-5 (blue) highest strength. ICD-1 

(green) lowest strength. Screen (yellow) negligible pressure drop.  
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b. Improving production in heterogeneous reservoirs  

b1. Short-term production strategy (a.k.a. “Snapshot” flow control completion 

design) 

This application employs a snapshot of the characteristics of the system (e.g. near well-

bore permeability, or instantaneous production rate profile) at a particular time to design 

the ICD completion to balance the production along the well bore at that particular time 

[e.g. (Least et al., 2013, Das et al., 2012)].   

 

b2. Long-term recovery strategy (a.k.a. “Lifecycle” flow control completion 

design)  

Here long-term objectives (e.g. NPV, cumulative oil production) are considered to 

develop an optimum ICD completion design. Generally, an optimisation algorithm is 

employed to find the optimum ICD strength profile while a numerical reservoir 

simulation model is used to calculate the long-term objective function for the specified 

ICD completion scenario (Alghareeb et al., 2009).     

2.4.2 Autonomous flow control: AICDs 

Autonomous Flow Control Devices (AFCDs) are the next generation of ICDs to 

substitute the passive, or fixed, flow control with a self-adjusting restriction, which 

reacts to the flow characteristics (e.g. changes in the density/viscosity) of the produced 

fluid. This self-adjusting restriction provides improved downhole flow control by a pre-

designed, fluid-dependent, flow control action. Moreover, a relatively greater added-

value is expected in reservoirs with uncertainty, where unexpected breakthrough of the 

unfavourable phase in a zone has a high probability of occurring. Autonomous Inflow 

Control Device (AICD) is a member of this group. Different types of AICDs with 

various design concepts have been proposed (Eltaher et al., 2014). Commercially 

successful design concepts have been developed, in which the changing effective flow 

area is based on the characteristics of the flowing fluid (e.g. (Fripp et al., 2013, 

Halvorsen et al., 2012)).  
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2.4.3 Active flow control: ICVs 

These devices are offering flow restriction with multiple positions that provide flexible 

flow control managed by actuation from the surface. ICVs are providing high level of 

control flexibility and the potential to achieve the ultimate expected improvement under 

uncertain operational/reservoir conditions. ICVs power and control can employ 

hydraulic, electric or electro-hydraulic systems (Shaw, 2011). Battery powered ICVs 

eliminate the need for a control line, but do require a downhole source of power or have 

a limited operational life. The control commands are then transmitted using wireless 

signals (e.g. (Tendeka, 2013)) or by circulating electrical chips (e.g. (Snider and Fraley, 

2007)). 

3 classes of ICVs are available based on the number of control positions (or flow area 

options). 

1- ON/OFF ICVs only provide fully-open and fully-closed positions. 

2-  Discrete ICVs provide a limited number of positions (up to 10, including the 

fully open and fully closed positions). Each position, represents a different flow 

area, has to be chosen during the ICV design stage. This is normally based on 

the desired flow rate and pressure drops. The flow area of many designs changes 

exponentially between adjacent positions. An optimal design ensures that an 

incremental change in the pressure drop or flow rate is achieved at all ICV 

positions. For example, when the objective of installing ICVs is to control zonal 

gas breakthrough a design with more positions with small area and fewer 

positions with larger area is preferred (Al-Khelaiwi, 2013). By contrast, control 

of zonal water breakthrough often employs a uniform logarithmic change in the 

area between the fully open and fully closed positions. This dependency on the 

fluid composition can be explained using Eq. 2-8 where the pressure drop across 

an ICV is proportional to the density of the produced fluid. 

3- Infinitely Variable ICVs, provide continuous control of the flow area between 

the fully open and fully close positions (e.g. (Rubbo and Littleford, 1998)). 

The control flexibility increases by moving from group 1 to group 3. However, this 

results in a more complex completion, which will generally have an increased chance of 
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failure, though recent advances in the ICV technology with an improved reliability have 

been reported (Rahman et al., 2012). 

The ICV’s flexible flow control capability allows implementation of new, more 

effective production scenarios, which would increase the economic viability of the field. 

These scenarios can also respect constraints defined by the installed equipment and the 

operator’s management strategy. However, finding the optimal control scenario for 

ICVs is a challenging optimisation problem which is the subject of this thesis.  

It should be noted that, the ICV’s ability of being controlled from the surface dictates a 

limitation on the maximum number of ICVs which can be installed in a well [i.e. 5 

using current technology for hydraulic ICVs; for example see (Carvajal et al., 2014)]. 

This results in a coarse scale zonation as compared to ICDs and AICDs which can be 

installed at every completion joint (~ 12 meters), hence extra consideration are required 

to achieve optimal zonation by installing ICVs in their optimum location. Recent 

development with electric ICVs allows a greater number of devices (over 20 valves 

controlled with a single downhole cable) to be installed in each well (Campbell, 2015, 

Potiani and Eduardo, 2014). Potiani and Eduardo (2014) provided a brief comparison 

among hydraulic, electric-hydraulic and all-electric systems and concluded that all-

electric system is as reliable as hydraulic system and more reliable than electric-

hydraulic systems. The all-electric system is still operational in their case study after 

around 10 years of installation and is shown to be more cost effective and reliable when 

water depth exceeds 10000 ft.    

2.5. Modelling of Advanced Wells 

The simulation of advanced wells in a reservoir simulator requires a sophisticated well 

model, which provides a detailed description of the fluid flow in the wellbore. The 

pressure losses (hydrostatic, friction, acceleration) will vary along a complex well 

structure. This is accounted for by discretising the well model into a number of 

segments, where each segment is defined using 4 independent variables: fluid pressure, 

total flow rate and water and gas fractions. The well equations are solved fully 

implicitly and coupled to the reservoir model. A steady-state well model results in a 

simpler problem as the dynamics of the well flow versus reservoir flow might be quite 



 

16 

different. This approach is known as multi-segment well model (Holmes et al., 1998) 

and is available in several commercial reservoir simulators (e.g. Eclipse Reservoir 

Simulator (ECLIPSE, 2012)). It should be noted that segment temperature is considered 

as another independent variable when thermal modelling is also performed.  

The impact of fluid production from multiple completion zones can be modelled 

realistically using a multi-segment well model. This includes variations in the zonal 

production rate due to changes in the pressure loss as a result of production changes 

from other zones or the crossflow between zones. Complex crossflow might occur in 

advanced wells (between different zones in a lateral or between different laterals). The 

multi-segment well modelling approach allows local flow conditions to be accurately 

determined including the extent and composition of any crossflow. This is in contrast to 

the traditional approaches to wellbore modelling in which average fluid properties are 

considered.  

A multi-segment well model is a collection of segments arranged in a gathering tree 

topology. Each segment consists of nodes and a flow path. The pressure is calculated at 

segment nodes while the nodes are connected to neighbouring nodes and/or grid blocks. 

Each segment is characterised by its length, diameter, roughness, area and volume, 

which are used for calculating segment storage and pressure drop. Figure 2-4 is a 

schematic diagram of a multi-segment well. It represents the flow from reservoir grid 

blocks (RG1 to RG10) to the annulus, along the annulus (segment number 16-20 and 

21-25), from the annulus to the tubing through Flow Control Devices (Segment 14 and 

15), along the tubing (segments 4-13) and to the main wellbore (segments 1-3).    

 

Figure 2-4: Schematic of the multi-segment well model 
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The pressure drop across each segment can be calculated using any of the following 

methods. The employed method depends on the role of each segment, the expected flow 

regime and the available information for that segment. 

 Fluid flow models, Homogenous flow model assumes there is no slip between 

the phases therefore all phases flow with the same velocity. The hydrostatic 

component of pressure loss (or gain) (𝛿𝑃ℎ) is calculated using a weighted 

average density of the existing phases.  

𝛿𝑃ℎ =  𝜌 𝑔 𝐿𝑝 . sin (𝜃) 2-1 

where 𝜌 is the mixture density, 𝑔 is the acceleration of gravity, 𝐿𝑝 is the 

segment length and 𝜃 is the segment angle with horizontal. Frictional pressure 

losses are calculated as follows,  

𝛿𝑃𝑓 =  2𝑓 .
𝐿𝑝

𝐷𝑝
 . 𝜌 . 𝑣2 2-2 

where 𝛿𝑃𝑓 is the frictional pressure drop, 𝐷𝑝 is the pipe diameter, 𝑓 is the 

Fanning friction factor, and 𝑣 is the fluid velocity. The Fanning factor depends 

on the Reynolds number 𝑅𝑒. For laminar flow (𝑅𝑒 < 2000), 𝑓 =
16

𝑅𝑒
. For 𝑅𝑒 >

4000, 

√
1

𝑓
=  −3.6 𝑙𝑜𝑔10(

6.9

𝑅𝑒
+ (

𝑒

3.7𝐷𝑝
)

10
9

) 2-3 

where 𝑒 is the absolute roughness of the tubing and has the same unit as 𝐷𝑝. 

For 2000 < 𝑅𝑒 < 4000 the value of 𝑓 is calculated by linear interpolation 

between 𝑅𝑒 = 2000 and 𝑅𝑒 = 4000. 

Acceleration component of pressure loss (or gain) occurs when there is a 

change in the flow velocity due to a change in the flow geometry (e.g. 

expansion, contraction or bend) or phase changes and calculated as follows, 

𝛿𝑃𝑎 =  𝐻𝑣,𝑜𝑢𝑡 −  ∑ 𝐻𝑣,𝑖𝑛

𝑖𝑛𝑙𝑒𝑡𝑠

 2-4 
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where 𝛿𝑃𝑎 is the acceleration pressure loss across a segment which is the 

difference between outlet velocity head (𝐻𝑣,𝑜𝑢𝑡) and summation of all inlet 

velocity heads (𝐻𝑣,𝑖𝑛). The velocity head is calculated as follows: 

 𝐻𝑣 =  
1

2
 𝜌 𝑣2 =  

1

2
 

𝑤2

𝐴𝑝
2  𝜌

 2-5 

where 𝐴𝑝 is the cross-section area and 𝑤 is the mass flow rate. 

Total pressure drop (𝛿𝑃) is then calculated as summation of all the pressure 

drop components:  

𝛿𝑃 =  𝛿𝑃ℎ + 𝛿𝑃𝑓 + 𝛿𝑃𝑎 2-6 

In this study the homogenous flow model is used to calculate pressure drop in 

all segments without a flow control device because of the small volume of free 

gas in these segments. Table 2-1 shows an example of contribution of different 

components of pressure drop to total pressure drop for 2 selected segments in 

the multi-segment well model shown in Figure 2-4 using 4 in. tubing. The 

acceleration component is negligible in both segments as there is no change in 

the flow velocity. 

              Table 2-1: Example of contribution of different components of pressure drop 

for 2 selected segments in the multi-segment well model shown in Figure 2-4 

 𝛿𝑃ℎ (% of 𝛿𝑃) 𝛿𝑃𝑓 (% of 𝛿𝑃) 𝛿𝑃𝑎 (% of 𝛿𝑃) 

Horizontal Segment (No. 5) 0 100 0 

Vertical Segment (No. 2) 99.5 0.5 0 

 

A “Drift-flux” model (Zuber and Findlay, 1965) should be used when two or 

more phases flowing in the segment and they tend to flow at different in-situ 

velocities. Generally, the phase that is less dense flows faster and causes a 

"slip" effect between the phases. In this condition liquid holdup can be 

significantly different from the input liquid fraction resulting in a different in-

situ mixture density (𝜌) and mixture viscosity (𝜇) and therefore a different 

pressure drop.  
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 Models for specific flow control devices, Equations have been developed and 

built into the simulator’s code to represent the pressure drop across a specific 

design of flow control devices. This study used the built-in model of sub-

critical flow through a valve to represent the performance of an ICV segment 

[see WSEGVALV keyword in (ECLIPSE, 2012)].  

The following equations are used for calculating the pressure drop across an 

ICV: 

𝛿𝑃 =  𝛿𝑃𝑐𝑜𝑛𝑠 +  𝛿𝑃𝑓 2-7 

𝛿𝑃𝑐𝑜𝑛𝑠 =  𝐶𝑢

𝜌𝑞𝑚
2

2 𝐶𝑣
2𝐴𝑐

2
 2-8 

𝛿𝑃𝑓 = 2 𝐶𝑢 𝑓 
𝐿𝑝

𝐷𝑝
 𝜌 

𝑞𝑚
2

𝐴𝑝
2
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where 𝛿𝑃 is the total pressure drop, 𝛿𝑃𝑐𝑜𝑛𝑠 is the pressure drop due to the 

constriction, 𝛿𝑃𝑓 is the pressure drop due to the friction, 𝐶𝑢 is the unit 

conversion constant, 𝜌 is the mixture density, 𝑞𝑚 is the mixture flow rate, 𝐶𝑣 is 

the dimensionless flow coefficient for the valve, 𝐴𝑐 is the cross-sectional area 

of the valve constriction, 𝐿𝑝 is the additional pipe length in the segment, 𝐴𝑝 is 

the cross-sectional area of the pipe. This study used a small value of 𝐿𝑝 (≈ 0) 

to represent a valve segment. The segment frictional pressure drop is thus 

negligible compared to the pressure drop due to flow through the constriction. 

 Pre-calculated pressure drop tables. Multiple tables define the pressure drop as 

a function of outlet pressure, flow rate, water-cut and gas-oil-ratio similar to 

the Vertical Flow Performance (VFP) tables. The segment pressure drop is 

then calculated by linear interpolation from the tables. One of the advantages 

of this method is that tables can be generated using more sophisticated 

multiphase flow models in a separate software. Moreover, this method can be 

employed for modelling pressure drops across specific flow control devices 

(e.g. recently developed Autonomous Flow Control Devices) for which there 

are no equation currently built into the simulator. The flow performance data 

for new devices can be obtained from laboratory experiments. 
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Only one of these options can be used to calculate the pressure drop of a segment at a 

specific time step; thought it is possible to use a combination of these options for 

different segments within the well. Employing the correct option for modelling each 

segment ensures that the well model is a good representation of reality. Moreover, the 

well model should be run for enough number of iterations to ensure convergence. The 

impact of well modelling errors (uncertainty) on optimal design and control of advanced 

wells is not considered in this study. 

Two further approaches are employed in the literature for modelling zonal control in the 

I-wells in addition to the multi-segment well model. The first approach ignores the well 

flow processes and controls the zonal production/injection rate at the sand face. For 

example Chen and Oliver (2009) employed this approach to show the value of 

downhole zonal control in improving the reservoir sweep efficiency; however this 

simplified modelling approach generally fails to represent reality since the individual 

zonal production rate will be affected by production from other zones. Moreover, 

Section 2.9 shows that interaction among zonal productions due to a rate dependent 

frictional pressure drop in the tubing results in a different, and possibly more 

complicated, optimisation problem.  

The second approach involves integration of the reservoir model and well model. 

Initially this approach models the reservoir and wells separately. During the production 

period these models communicate with one another at a predefined, or adaptive, 

frequency. This approach offers the most powerful modelling due to the freedom to 

independently model the wells and the reservoir. However, the integration might results 

in an unstable process with convergence problems which increases the modelling error 

and the computation time. This is mainly due to introduction of extra constraints (i.e. 

boundary conditions) in models already optimising large number of wells/zones with 

various production constraints (e.g. field total oil rate constraints, gas lift optimisation). 

Grebenkin and Davies (2012) modelled an intelligent field using the integrated 

approach which is then employed for implementing reactive optimisation of the ICVs. 

They discussed the problems associated with integrated modelling and proposed 

solutions to alleviate these problems. The Multi-segment well model will be used for 

this thesis. 
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2.6. Optimum Control of the Downhole Flow Control Devices 

Brouwer and Jansen (2004) were the first who developed a systematic approach for 

optimal control of the downhole flow control devices based on the optimal control 

theory. Significant research efforts continue to be devoted to the development of 

methodologies for optimising production and injection parameters during the different 

stages of production (e.g. Peters et al. (2010) presents several optimisation methods on 

the Brugge benchmark case study). These approaches can be classified as optimising 

either short-term objectives [reactive optimisation (Naus et al., 2006, Grebenkin and 

Davies, 2012)] or long-term objectives [proactive optimisation (Alghareeb et al., 2009, 

Almeida et al., 2010, Haghighat Sefat et al., 2013)]. ICVs provide real time, adjustable 

zonal flow control which allows implementation of both a reactive and/or a proactive 

optimisation approach to increase the economic viability of the field while respecting 

the defined constraints by equipment and operator. This is in contrast to ICDs and 

AICDs, whose fixed design can only be optimised at the installation stage. 

2.6.1 Reactive Optimization 

Reactive optimization aims to find a control strategy for the current condition of the 

system so as to optimize the chosen short-term (instantaneous) objective, subject to any 

active constraints. This strategy, in its simplest form, starts with the measurement of a 

parameter followed by its comparison with predetermined thresholds and possible 

reactions if the threshold(s) being exceeded. This relatively simple type of control is 

suitable for real-time, decision making and reacting to unexpected situations. However, 

it often fails to provide the optimum long-term (or even short-term) field management 

strategies.  

Examples of reactive control include Jansen et al. (2002) who employed a Smart Stinger 

Completion (SSC), that is an extension of the Passive Stinger Completion (PSC) with 

actively controlled ICV, to not only reduce the heel-toe effect but also reactively control 

coning. The ICV pressure drop set point was multiplied by a factor greater than one 

when more than 25% WC or more than 5% increase in GOR was detected downhole. 

Moreover, they employed Inflow Switching Process (ISP) in a multi-zone completion to 

control coning. The segments are closed as soon as water or gas breakthrough happens. 
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Drawdown is increased to maintain the production rate, until all segments are close. The 

cycle repeats with all segments open and a lower gas rate constraints to ensure a 

gradually decreasing drawdown over life of the reservoir. These simple reactive control 

strategies provided improvement in current production through coning control however, 

the economic profitability highly depends on reservoir parameters and production 

constraints. 

Naus et al. (2006) employed a more systematic approach using Sequential Linear 

Programming (SLP) to periodically optimise ICV settings during commingled 

production of an I-well with the objective to maximise the oil production rate. This 

short-term optimisation resulted in accelerated oil production however in some cases a 

lower ultimate recovery was observed. Guyaguler and Byer (2008) employed a 

piecewise linear controls and Mixed-Integer Linear Programming (MILP) to solve the 

production allocation problem in large number of conventional wells. These techniques 

resulted in accurately capturing nonlinearities and handling multiple dependent 

operational constraints while maximizing real-time objectives. Grebenkin and Davies 

(2012) proposed a fast and simple reactive strategy for controlling large number of 

multi-zone vertical I-wells with immediate application to a full-field problem. A critical 

water cut criterion was developed to determine which offending zones should be shut-

in. Their approach (Grebenkin and Davies, 2012) was shown to be fast and stable in 

comparison to current commercial alternatives. It provided an increase in oil production 

under the condition of limited outflow performance. 

2.6.2 Proactive Optimization 

Proactive optimization of well control should be started during the early production life 

of a well to mitigate forecast problems and/or to optimise longer-term objectives (e.g. 

ultimate economical profit or oil recovery). Numerical reservoir models are used to 

calculate the production forecast to evaluate the optimisation objective function. 

2.7. Formulation of the Problem of I-well Proactive Control 

Proactive optimization of ICVs begins with a formulation of the multiphase flow in the 

reservoir. This formulation is in reality only as good as the assumptions (e.g., Darcy 

flow) behind its construction. This study is independent of the choice of 
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formulation/solution approach and considers the following short form of the reservoir 

simulation process:  

𝑑𝑦𝑟

𝑑𝑡
= 𝑆𝐼𝑀(𝑦𝑟 , 𝑥, 𝑡),                      𝑦𝑟(𝑡0) = 𝑦𝑟0, 2-10  

where, 𝑦𝑟 ∈ ℝ𝑝 is the 𝑝-dimensional state vector of the reservoir (e.g. saturations, 

pressure field) for a certain model realization 𝑟, 𝑆𝐼𝑀: ℝ𝑝  ×  ℝ𝑛𝑥 × ℝ1 → ℝ𝑝 is the 

reservoir simulation operation and 𝑥 ∈ ℝ𝑛𝑥  is the vector of 𝑛𝑥 control variables 

discretized over the field production time (𝑡). The initial state of the system is defined 

by 𝑦𝑟0
 at time 𝑡0. Differential equation 2-10 can be solved using implicit or explicit 

method. Therefore, the production performance under a certain control scenario for a 

single model realization 𝑦𝑟 is evaluated using a general, scalar objective function of the 

form (Speyer and Jacobson, 2010): 

ℱ(𝑥, 𝑦𝑟) = − ∫ ∅(𝑦𝑟(𝑡), 𝑥(𝑡), 𝑡)𝑑𝑡 
𝑡𝑓

𝑡0

+ ∫ 𝐼(𝑦𝑟(𝑡), 𝑥(𝑡), 𝑡)𝑑𝑡 
𝑡𝑓

𝑡0

,  2-11 

where ∅: ℝ𝑝  ×  ℝ𝑛𝑥 × ℝ1 → ℝ1 is a constraint term and 𝐼: ℝ𝑝  ×  ℝ𝑛𝑥 × ℝ1 → ℝ1 is 

the instantaneous objective function. In the current formulation the class of control 

functions 𝑥 is limited to the class of bounded piecewise constant functions where the 

control variables are only optimized at discretized control steps during the simulation 

period and are kept constant between two steps. This is a first-order, step-like 

discretization of the continuous optimization problem to reduce the number of control 

variables. Besides, in real-life ICV positions are often changed at regular time intervals 

either during planned operations or due to the limited number of cycles an ICV can 

experience during its life. The solution to the optimal control problem is to find the 

𝑥(. ) ∈ ℝ𝑛𝑥 that minimizes (or maximizes) the function ℱ subject to the differential 

Equation 2-10. Additional constraints on the control variables x may also be applied. 

The constraint term in Equation 2-10 (∅) is handled by the reservoir simulator to respect 

the defined well/field production limits in this study. (I.E. The reservoir simulator 

controls the well Bottom Hole Pressure (BHP) to achieve the defined liquid production 

rate). Kourounis et al. (2014) showed that this heuristic constraint handling procedure 

can outperform the formal constraint handling approach (i.e. constraints are enforced by 
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the optimization algorithm) in challenging cases of large model with large number of 

control variables. Although formal constraint handling procedure is theoretically 

superior, its efficiency decreases due to the existence of local optima and complexity of 

solving constrained optimization problems with large number of control variables. 

Moreover, the piecewise constant assumption converts the integral term into a 

summation over the discretized control steps. This results in a standard simplified Net 

Present Value (NPV) formula used by Brouwer and Jansen (2004) and utilized in this 

thesis. The objective is to find an ICV control scenario that maximizes the NPV during 

the reservoir’s production life. NPV in this study, which only considered oil and water 

production, is defined as: 

ℱ(𝑥) = ∑ [∑(𝑟𝑜𝑞𝑜,𝑗
𝑛 − 𝑟𝑝𝑤𝑞𝑤,𝑗

𝑛 − 𝑟𝑜𝑝𝑒𝑥𝑞𝑙,𝑗
𝑛  )

𝑁𝑝

𝑗=1

]

𝑆

𝑛=1

𝛿𝑡𝑛

(1 + 𝑏)𝑡𝑛
 , 2-12 

where S is the total number of simulation steps; Np is the number of production wells. 

The costs constants ro, rpw and 𝑟𝑜𝑝𝑒𝑥 (in $/sm3) are the oil price, the water handling cost 

and the operating cost respectively. Variables 𝑞𝑜,𝑗
𝑛 , 𝑞𝑤,𝑗

𝑛  and 𝑞𝑙,𝑗
𝑛  are the oil, water and 

liquid production rates of well 𝑗 at time step n in sm3/day. The discount rate b is in 

decimal and δtn is the length of the nth simulation step and tn is the cumulative time up to 

that simulation time step in years. This NPV definition reflects a simplified description 

of the “Added Value” from intelligent completions since it ignores many items, in 

particular the associated capital cost. 

2.8. Challenges in Optimum Control of the Downhole Flow Control Devices 

The following challenges are observed in the reactive and proactive optimisation of the 

downhole flow control devices.  

2.8.1 Reactive Optimization 

The following challenges of the reactive optimisation are important in this study for 

future comparison with the developed proactive optimisation approach. 



 

25 

a. Limited application period and possible control oscillation 

Reactive optimisation control is triggered when the objective function starts 

deteriorating. Optimum control, from a reactive optimisation point of view, is do-

nothing prior to this stage being reached. The algorithm must be robust in order to 

eliminate oscillations in the control of a fast dynamic system (i.e. where control actions 

result in a fast change to the system). Control oscillations in reactive optimisation are 

not uncommon [(Grebenkin, 2013)].  

b. Accounting for reservoir and operational uncertainties 

The reactive nature of control provides a flexible response to unexpected incidents. In 

principle, this eliminates the need to include reservoir description uncertainties during 

the development stage of the reactive optimisation algorithm. Grebenkin (2013) tested 

his reactive optimisation algorithm under static (porosity and permeability distribution) 

and dynamic (relative permeability, oil-water contact, gas-oil contact and aquifer 

strength) reservoir description uncertainties. He confirmed that an optimum reactive 

control adds value by increasing the expected mean and reducing the variance of the 

objective function. Birchenko et al. (2008) performed a probabilistic comparison of the 

recovery from (i) a conventional well, (ii) an I-well with an ICD completion designed to 

achieve a reasonable level of inflow equalisation (Section 2.4.1-b) and (iii) an I-well 

with an ICV completion managed by reactive control to limit production from zones 

with high water cut. They found that the expected recovery from ICD completion is 

higher than conventional completion. However, the variance was almost the same 

(Green line in Figure 2-5). The ICV completion (Red line in Figure 2-5) showed both a 

higher expected recovery and a lower variance compared to the conventional 

completion. 
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Figure 2-5: Probabilistic comparison of oil recovery in conventional, ICD and ICV 

completions (Birchenko et al., 2008) – This result was based on a limited number of 

Gaussian random realisations 

2.8.2 Proactive Optimization 

The major challenges presented by proactive optimization are: 

 Uncertain objective function 

 Large number of control variables  

 Computationally expensive objective function 

The following sections briefly explain these challenges and review the main approaches 

available in the literature to address them. 

a. Uncertain objective function 

The limited geological knowledge of the field available at time that the reservoir 

simulator’s geological model was built results in the reservoir model’s forecast having a 

normally high level of uncertainty. Model uncertainty can be quantified using an 

ensemble of models to evaluate the range of possible forecasts. Therefore the objective 

function (Equation 2-12) is in fact a function of the uncertainties, 
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ℱ(𝑥, 𝑦𝑟) = ∑ [∑(𝑟𝑜𝑞𝑜,𝑗
𝑛 − 𝑟𝑝𝑤𝑞𝑤,𝑗

𝑛 − 𝑟𝑜𝑝𝑒𝑥𝑞𝑙,𝑗
𝑛  )

𝑁𝑝

𝑗=1

]

𝑆

𝑛=1

𝛿𝑡𝑛

(1 + 𝑏)𝑡𝑛
 , 2-13  

A fixed set of control vector (𝑥) will produce a different objective function value (ℱ) 

when applied to each one of the model realizations (𝑦𝑟). 

The uncertainty can be reduced by introduction of a closed-loop reservoir management 

process, where the model(s) is continuously updated by changing the model to “history 

match” the field’s actual, measured production data (see Wang et al. (2009) and Jansen 

et al. (2009) for a detailed discussion of the components of a closed-loop, reservoir 

management process). History matching is another challenging optimization problem 

(Oliver et al., 2008, Oliver and Chen, 2011). Once completed, it requires repeating the 

production optimization of the updated model(s).  

Some production optimization studies (e.g. (Lorentzen et al., 2006, Almeida et al., 

2010, Pinto et al., 2012)) employ a single realization of the reservoir model. This is 

typically either the most probable realization or a randomly selected model from the 

ensemble of all available realizations. The resulting control scenario from proactive 

optimization of a single reservoir model realization will not be robust since the actual 

reservoir might be very different from that of the chosen model. van Essen et al. (2013) 

proposed to reduce the risk associated with the geological uncertainty by substituting 

the objective function with the expectation of the objective function calculated from a 

set of reservoir model realizations. They performed robust optimization of conventional 

wells using 100 geological realizations of the reservoir model and concluded that the 

resulting robust control scenario provided a higher mean of the objective value as well 

as reduced the variance when compared to the single realization optimization. Chen and 

Oliver (2009) applied robust optimization using all available model realizations to 

closed-loop reservoir management of (outflow independent) multi-zone production and 

injection wells in the Brugge field. 

It is generally accepted that performing robust optimization while considering all 

available model realizations is the best way to capture the geological uncertainty. 

Unfortunately, it rapidly becomes computationally expensive when applied to full-field 

models. Choosing a small ensemble of model realizations for robust optimization that 
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are representative of all available models is computationally less demanding, but is also 

subject to bias during the selection process. Chen et al. (2011) repeated the earlier (Chen 

and Oliver, 2009) study by performing robust optimization for the Brugge field with 11 

realizations distributed uniformly based on the objective function value from 104 

available realizations while considering both short-term and long-term objectives. They 

successfully reduced the computational cost. 

Haghighat Sefat et al. (2014)  employed a similar approach to reduce the computation 

time of the robust optimization approach. However, these studies employed random 

sampling for selecting a subset of realizations for robust optimization. Unfortunately, 

random sampling does not guarantee that the underlying model uncertainties are fully 

captured. The preferred alternative is to employ a methodology for systematic selection 

of a subset of realizations (Park, 2011, Scheidt and Caers, 2013). The developed 

methodology for realization selection is demonstrated in Chapter 6. 

b. Large number of control variables 

In proactive optimisation the total number of control variables (𝑛𝑥) is equal to the 

number of controlled elements multiplied by the number of control steps. Therefore, the 

total number of control variables increases proportionally with increase in the number of 

controlled elements or by an extension of the control period. The non-linear proactive 

optimisation problem is more difficult to solve with a larger number of control 

variables. 

Variable interaction is also observed in the proactive optimisation problem. This means 

that when the value of a given variable changes, the value of the other variables should 

be changed in a unique way to get the optimum results. Two types of interaction might 

exist among decision variable in an optimisation problem (Tiwari and Roy, 2002): 

1- Inseparable function interaction, in this type the effects of one variable on the 

objective function depend on the value of the other variable however there is not 

a defined functional relationship between the two variables. Figure 2-6(a) shows 

a schematic example of a problem with no interaction between the control 

variables (X1 and X2). The optimum value of control variable X1 (i.e. b) does 

not change by changing the control variable X2. While Figure 2-6(b) shows 
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interaction between control variables X1 and X2. The optimum value of X1 

changes when the value of X2 is changed. This effect is further investigated in 

Section 3.2.   

2- Variable dependence, in this type one variable in a function of other variable and 

the functional relationship is known. For example X2 = g (X1,…), where X1 

and X2 are control variables and g is the functional relationship. There is no 

variable dependence in proactive optimisation of ICVs. However, this type of 

variable dependence might be observed in complex full field optimisation 

problems (e.g. optimisation of well production rate and gas lift injection rate in a 

field where wells are equipped with gas lift and produced gas is used for gas 

lift). This type of interaction is not considered in this thesis. 

 

(a)                                                             (b) 

Figure 2-6: Schematic examples of inseparable function interaction (a) No interaction 

(b) Interaction between X1 and X2 

Two approaches are available to address the large number of control variables: (1) 

simplifying the problem to reduce the number of variables, (2) employing a more 

efficient optimisation algorithm. Published work (Brouwer and Jansen, 2004, Sarma et 

al., 2006, Suwartadi et al., 2009, Alghareeb et al., 2009, Almeida et al., 2010) and 

ongoing research tries to enhance the proactive optimisation process by improving one 

or both of these. Following subsections summarises the previous studies on proactive 

optimisation of intelligent and conventional wells classified based on the employed 

optimisation approach. The maximum number of control variables that are successfully 

handled by each optimisation algorithm is shown.  
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Gradient-based optimization: one option is to use the adjoint gradient of the forward 

model in an effective proactive algorithm. This is especially beneficial, when the 

dimension of the simulated model (𝑦𝑟 in Equation 2-10) is much higher (usually orders 

of magnitude) than the number of control variables (𝑥 in Equation 2-10). The adjoint 

approach is then computationally less expensive than finite difference based gradient 

estimation (Giles and Pierce, 2000, Jansen, 2011). Review and development of adjoint-

based optimisation with the application in reservoir simulation is available in (Jansen, 

2011). The major advantage of applying the adjoint algorithm to the I-well control 

problem is the fact that the cost of the gradient estimation is approximately one 

additional simulation run, regardless of the number of control variables. Unfortunately, 

the required data for the adjoint calculation is not available in most commercial 

reservoir simulators, though several studies have used adjoint-based algorithms for 

proactive optimization of I-wells in conjugation with an in-house reservoir simulator 

(Brouwer and Jansen, 2004, Sarma et al., 2006, Suwartadi et al., 2009, van Essen et al., 

2011). Sarma et al. (2006) and Brouwer and Jansen (2004) found that the algorithm to 

be efficient at finding a local optimum for a large number of control variables. 

Asadollahi and Naevdal (2009) used an adjoint optimizer in a commercial reservoir 

simulator (ECLIPSE, 2012) for field-scale production and injection optimization of a 

field developed with 20 production and 10 injection wells, each of which was 

selectively completed on three reservoir layers. This resulted in more than 3000 control 

variables during the 30-year production period. They found the algorithm to be very 

sensitive to the (arbitrary) starting point of the optimization process and the algorithm 

was converging to different local optima using different starting points due to the 

employed gradient-based search algorithm.  

Gradient-based methods are also employed to efficiently solve well location 

optimisation problem (i.e. a discrete optimisation problem). Zandvliet et al. (2013)  

introduced the concept of pseudo-wells  surrounding the actual wells whose locations 

have to be optimised. These pseudo-wells while producing (or injecting) at very low 

rate, to have negligible effect on the actual wells, enable calculation of the gradient of 

the objective function w.r.t. the flow rates in the pseudo-wells. The gradient is 

employed to iteratively improve well location by moving the well in the direction of the 

best pseudo-well to increase the objective function value. The pseudo-wells with zero 
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rate are eliminated from the model. Zandvliet et al. (2013) employed an adjoint method 

developed in an in-house reservoir simulator, Forouzanfar et al. (2010) employed 

adjoint optimizer in a commercial reservoir simulator (ECLIPSE, 2012) to calculate the 

gradient for subsequent well location optimisation using the concept of pseudo-wells. A 

local optimum is expected due to using a gradient-based algorithm. Zandvliet et al. 

(2013) suggested to consider several initial well location to alleviated this problem.     

Meta-heuristic optimization: algorithms have also been used to solve the proactive 

optimization problem. Genetic Algorithm (GA), a popular member of this group, was 

first introduced by Holland (1992). GA is based on the principal of natural evolution 

and survival of the fittest (See (Mohaghegh, 2000) for a description of the algorithm). 

The popularity of GA is due to its: (1) Simplicity of implementation (it treats the system 

as a black-box whose only input and output information is required) and (2) Efficiency 

in solving problems with a limited number of control variables. Alghareeb et al. (2009), 

Almeida et al. (2010) and Pinto et al. (2012) used GA for proactive optimization of I-

wells. Further, they simplified the problem to limit the number of control variables to a 

maximum of 100. Despite this, the number of simulation runs required varied from 

1,000 to more than 10,000; depending on the number of control variables. 

Particle Swarm Optimisation (PSO) is a popular member of the next generation of meta-

heuristic optimisation algorithms. PSO was developed by Eberhart and Kennedy (1995) 

inspired by the social behaviour of bird flocking. Zhao et al. (2011a) employed PSO for 

production and injection optimisation of conventional wells and compared the 

performance with stochastic gradient-based optimisation. Several meta-heuristic 

optimisation algorithms are available and new algorithms are developing. The search 

mechanism of the population based algorithms as compared to the gradient-based 

algorithms is discussed in the comparative study subsection. 

Derivative-free optimization: methods offer another approach for proactive 

optimization. Asadollahi et al. (2014) evaluated four derivative-free optimization 

methods [Hooke-Jeeves (HJ), Generalized Pattern Search method (GPS), Nelder-Mead 

(NM) and Line-Search Derivative Free (LSDF)] for production optimization of an oil 

field developed with conventional wells. They also compared these four methods with 

the gradient-based Sequential Quadratic Programming (SQP). They found that: 
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 LSDF is an efficient algorithm to solve the reservoir optimisation problem 

despite its nonlinearity. 

 GPS is capable of searching more globally, providing a rapid improvement 

towards an optimum during early iterations while showing a slow rate of 

convergence at later stages. 

 HJ performed better than GPS. It provided a combination of the exploratory and 

pattern search. 

 NM was very slow and was not recommended. 

 SQP performed efficiently at early steps. However, the convergence rate 

deteriorated at later iterations because of the noisy gradient calculated using 

finite difference method with relatively large perturbation step. Asadollahi et al. 

(2014) observed that selecting a larger perturbation step provides better total 

performance by alleviating the problem of zero gradients for some optimisation 

variables. 

Routine application of these methods to large I-field reservoir models requires that the 

model performs efficiently with a greater number of control variables. Note that 

(Asadollahi et al., 2014) also limited the optimization problem to a maximum of 54 

control variables. Hence they proposed stochastic estimated gradient-based methods as 

the most appropriate option for solving this problem.  

Stochastically estimated gradient-based optimization: take advantage of the gradient-

based algorithms efficiency in large-scale optimization problem (Zingg et al., 2008), 

when use of an adjoint code is not available (as in most commercial reservoir 

simulators). A stochastic estimate of the gradient is found by using a small ensemble of 

simultaneously perturbed control variables (i.e. the reservoir simulator is treated as a 

black-box). The most popular stochastic methods employed in reservoir engineering are 

the Ensemble-based Optimization (EnOpt) method (Chen et al., 2009), the Ensemble 

Kalman Filter (EnKF) method (Lorentzen et al., 2006) and the Simultaneous 

Perturbation Stochastic Approximation (SPSA) method (Spall, 1992).  

Do and Reynolds (2013) provided a theoretical and numerical comparison of solution of 

a set of test problems of the performance of EnOpt, a SPSA-type algorithm and a 

doubly smoothed simplex gradient algorithm. They showed that the expectation of the 
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gradient obtained by the three methods represented a first-order approximation of the 

true gradient pre-multiplied (i.e. smoothed) by a squared covariance matrix. Haghighat 

Sefat et al. (2015) provides a comprehensive comparison of the performance of SPSA 

and EnOpt methods for proactive optimization of I-wells (Also described in detail 

in Chapter 4 of this thesis). They found that both methods provided similar performance 

for medium ensemble sizes; with SPSA being frequently able to bypass local optima 

due to Bernoulli perturbation. Moreover, major differences were observed in the 

optimum solution obtained by the two methods.  

Approaches based on stochastically estimated gradients have been successfully applied 

to optimize control parameters of conventional production and injection wells (Wang et 

al., 2009, Zhao et al., 2011b, Do and Reynolds, 2013). Chen and Oliver (2009) 

employed EnOpt for optimizing production and water injection completion rates using 

the Brugge field as the test case. They employed a simplified model of an I-well which 

considered independent zonal production from different zones, though they ignored the 

effect of hydraulic communication within the wellbore.  

Comparative studies: Zingg et al. (2008) compared the performance of GA and Adjoint 

gradient-based algorithm in an aerodynamic optimization problem with 9, 19 and 35 

control variables. The GA was 6 to 200 times slower than the Adjoint approach. This 

depended on the number of control variables, the complexity of the optimization 

problem and the degree of convergence required. They found the computation time of 

the gradient-based approach to scale linearly with the number of control variables while 

the computation time for the GA increased more rapidly. SPSA has also been compared 

with various meta-heuristic optimization algorithms including Simulated Annealing 

(SA), Particle Swarm Optimization (PSO) and GA (Spall et al., 2006, Zhao et al., 

2011a, Zhao et al., 2013, Haghighat Sefat et al., 2013). A brief comparison of SPSA and 

a commercially available GA for solving proactive optimisation problems is provided in 

(Appendix B) of this thesis. SPSA was shown to give faster convergence to a near-

optimal solution compared to meta-heuristics optimization algorithms, presumably due 

to meta-heuristics algorithms being designed to effectively explore the search space 

rather than achieve a rapid improvement to a near-optimum solution. Using gradient 

information provides faster convergence to a local optimum solution however the 
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exploration capability is reduced compared to meta-heuristics optimization algorithms 

which discover the search space mostly using several populations.  

Multi-scale approach: the number of control variables can also be reduced by using a 

multiscale approach (Lien et al., 2008, Oliveira and Reynolds, 2015). The optimization 

starts with a very coarse representation of the control variables but as the optimization 

proceeds and approaches the optimum solution, the resolution is gradually increased. 

The upscaling can be performed in time (i.e. zonal control settings remain constant over 

a time period) or space (i.e. multiple zones are grouped and treated as one). Lien et al. 

(2008) found that using a multiscale approach can obtain solutions with similar or even 

better performance than the ordinary fine-scale approach. 

This study address the large number of control variables by using an efficient 

optimization algorithm (Chapter 4) and also by development of criteria to reduce the 

number of control variables by eliminating the less important ones (Chapter 3). 

Multiscale approach is not considered in this study however could complement the 

framework developed in this thesis and speed-up the optimisation process or used as an 

alternative to the developed variable reduction components.  

c. Computationally expensive objective function 

Reservoir models are generally computationally expensive which is often exacerbated 

by numerical issues arising from numerical dispersion of the discretization method 

employed as well as convergence failures of the nonlinear solvers. Several studies 

attempt to substitute some, or all, of the objective function evaluations required during 

the optimisation process with a cheaper alternative. This approach uses a surrogate 

model as an approximation function that mimics the original system behaviour that can 

be evaluated much faster. Surrogate models, also known as Meta or proxy models, can 

be divided into two main categories based on their approximation strategy: 

(1) Model driven or physics based approach. These Reduced Order Models (ROM) 

aim to approximate the original equations with lower order equations and hence 

reduce the computational cost (e.g. (van Doren et al., 2006, Wilson and 

Durlofsky, 2013, Rousset et al., 2014)). Application of these approaches 
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requires access to the reservoir simulator source codes; a requirement which is 

generally impossible when using a commercial reservoir simulator. 

(2) Data driven approaches. These consider the system as a black-box, generating 

the surrogate model using only input data and output responses (e.g. (Christie et 

al., 2006, Mohaghegh et al., 2012)). Such data driven models meet the 

objectives of this thesis, which aims to develop methodologies that are 

independent of the choice of the reservoir simulator employed.  Golzari et al. 

(2015) developed a novel surrogate modelling approach that performed 

efficiently in production optimisation problems with a large number of control 

variables.  

Surrogate modelling assisted optimisation was not considered in this study, which 

addresses a problem with a large number of control variables and an uncertain objective 

function. However, it is expected that a suitable surrogate modelling approach could 

complement the framework developed in this thesis and speed-up the optimisation 

process.  

2.9. Impact of I-well modelling on the optimization process 

Various previous studies [e.g. (Chen and Oliver, 2009)] employed a simplified model of 

an I-well, which considered independent zonal production from different zones, while 

ignoring hydraulic communication within the wellbore. However, in reality the 

production from an individual zone of an I-well is often affected by the production from 

other zones; an interaction, which can only be captured by coupled modelling of the 

outflow (wellbore model) in conjunction with the inflow (reservoir model). A multi-

segment well model (ECLIPSE, 2012) can efficiently capture these effects (See 

Section 2.5). This section discuss the impact of using a multi-segment well model on 

the subsequent analysis. 

A simple box-shaped model was employed to investigate the correlation of zonal 

productions and its impact on proactive optimisation. Only two phase (oil and water) is 

considered in this example however similar behaviour is expected in three phase 

problems as well. The test reservoir model has a square layout of 10×10×1 grid blocks 

in x, y and z direction, respectively. Each grid block has ∆x=∆y=120 m and thickness of 
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3 m. This reservoir consisted of a high (100 millidarcy, mD) and a low (40 mD) 

permeability region (red and blue, respectively in Figure 2-7). The reservoir was 

developed by one horizontal injector and one intelligent, 2-zone producer. Water is 

injected at a constant rate of 1400 stb/day and the production well operates at a constant 

Bottom Hole Pressure (BHP) of 600 psi. 

 

Figure 2-7: Top view of the test box-shaped reservoir model. Colour shows the 

permeability (red=100 mD; blue=40 mD). A schematic network flow diagram of the 

multi-segment I-well  

Figure 2-7 also shows a network diagram of the flow paths in the multi-segment I-well. 

Segments 14 and 15 correspond to the ICVs controlling the production from two 

different zones of the reservoir. Segments 1 to 13 correspond to the tubing, while 

numbers 16 to 25 are segments representing the annulus. Fluid flows from the reservoir 

grids to the connected annulus segments. It then flows along the annulus and through 

the ICVs into the tubing. The flow direction in the annulus and tubing is always from a 

higher segment number to a segment with a lower number. The hydrostatic pressure 

component is negligible for all segments. Note, that there are two sets of pressure drop 

components associated with the ICV segments in Eclipse: (1) the housing segment 

(similar to a tubing or annulus segment) and (2) the restriction. A good practice is to 

eliminate the components corresponding to the housing segment by considering a small 

segment length then the pressure drop is only controlled by the restriction properties. 
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Two cases are considered:   

1- A rate dependent frictional pressure drop exists in the annulus and tubing 

segments. This effect is considered by assuming a small (~2 in) internal 

diameter for the tubing and a similar annulus equivalent diameter. 

2- Frictional pressure drop is negligible in the annulus and tubing segments. A 

small friction factor and large segment diameters are used to reduce the 

frictional pressure drop in the model. 

This work will compare two identical well and completion configurations with the only 

difference being the correlation among zonal productions due to the rate dependent 

frictional pressure drop in Case-1. 

Figure 2-8 compares the liquid production rate from fully-open ICV-15 versus ICV-14 

(segments 14 and 15) while Figure 2-9 shows the liquid production rate form ICV-14 

and ICV-15 versus production time for case-1 and case-2. Greater production is 

achieved from ICV-15 in case-2, no frictional pressure drop, since it is located in the 

high permeability region. Liquid production rates from both ICVs are decreased 

proportionally over the 40 day of production period due to reservoir depletion (a linear 

plot in Figure 2-8).  

However, production from ICV-15 in Case-1 is smaller than ICV-14 during the initial 

production period. This is due to the larger frictional pressure drop as a result of high 

rate, plus the fluid from ICV-15 flows from the toe prior to evacuation. The impact of 

the frictional pressure drop decreases with time due to the flow rate decreasing. The 

ratio of the production rate from ICV-15 compared to ICV-14 is thus rate dependent. 

Hence the frictional pressure drop is the cause of the non-linear shape of case-1 data 

plotted in Figure 2-8.     
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Figure 2-8: Liquid production rate from fully-open ICV-14 and ICV-15 over 40 day 

period for case-1 and case-2  

 
                                         (a)                                                                  (b) 

Figure 2-9: Liquid production rate from fully-open (a) ICV-14 and (b) ICV-15 over 40 

days period for case-1 and case-2 
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Further testing was performed by varying ICV-14’s open area at the first time step with 

10 steps (1%, 10%, 20%, …, 90%) while monitoring the liquid production rate from 

ICV-14 and ICV-15 at the first time step in case-1 and case-2 (Figure 2-10). The 

production from ICV-14 decreases by reducing the opening area. This results in a 

reduction in the frictional pressure drop along the tubing and an increase in the liquid 

production from ICV-15 in case-1. By contrast, in case-2 only minor changes are 

observed in liquid production from ICV-15 due to weaker correlation between zonal 

production rates resulting from a small frictional pressure drop along the tubing. Note 

that larger change in ICV-14 production in case-2 is due to greater base-case production 

in that case.  

 

Figure 2-10: The zonal liquid production rate at first time step as a result of controlling 

ICV-14 opening area at first time step in case-1 and case-2 (arrows show the direction 

of increasing ICV-14 opening area) 

The test was repeated while varying ICV-15’s open area at the first time step with 10 

steps (1%, 10%, 20%, …, 90%) and monitoring the liquid production rate from ICV-14 

and ICV-15 at the first time step in case-1 and case-2 (Figure 2-11). Similar tests were 
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same trend of stronger correlation between zonal productions in case-1 compared to 

case-2 was observed.  

 

Figure 2-11: The zonal liquid production rate at first time step as a result of controlling 

ICV-15 opening area at first time step in case-1 and case-2 (arrows show the direction 

of increasing ICV-15 opening area) 

Two other tests were performed while ICV-14 or ICV-15 is fully-closed at the first time 

step and then fully-opened for the rest of the production period (dashed lines in 

Figure 2-12 and Figure 2-13 respectively). Solid lines in Figure 2-12 and Figure 2-13 

show liquid production rate versus time with fully-open ICVs (i.e. no control). In case-1 

with friction, reduction in the liquid production rate from one ICV results in an increase 

in the liquid production rate from the other ICV at the same time step due to reduction 

in the frictional pressure drop along the wellbore (see Figure 2-12 (a) when ICV-14 is 

shut and Figure 2-13 (a) when ICV-15 is shut at the first time step). Moreover, 

reduction in the liquid production from an ICV during the first time step results in a 

proportional increase in the liquid production from the same ICV in the next time step. 
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Therefore, in case-1 with friction the control variables are not independent and changing 

one variable results in a change in the other variable. 

In case-2 with no friction, reduction in the liquid production rate from an ICV during 

the first time step does no change the liquid production rate from the other ICV (see 

Figure 2-12 (b) when ICV-14 is shut and Figure 2-13 (b) when ICV-15 is shut at the 

first time step). In case-2 only a proportional increase in the liquid production from the 

same ICV is observed in the next time step (i.e. similar to Pressure Transient Testing). 

Therefore, in case-2 with no friction the control variables (zonal productions) are almost 

independent. 
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(a) 

 

 

(b) 

Figure 2-12: Zonal liquid production rates versus time as a result of closing ICV-14 at 

the first time step and then fully-open (Controlled) and fully-open during all time steps 

(Fully Open) for (a) case-1 with friction and (b) case-2 no friction 
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(a) 

 

 

(b) 

Figure 2-13: Zonal liquid production rates versus time as a result of closing ICV-15 at 

the first time step and then fully-open (Controlled) and fully-open during all time steps 

(Fully Open) for (a) case-1 with friction and (b) case-2 no friction 

 

Proactive optimisation is performed using the I-well model developed in case-1 and 

case-2. The two ICVs are controlled during the 40 control steps of 1 day each (for 

detailed description of the employed gradient based optimisation algorithm see 
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Section 4.4.1). The optimisation starts from the same initial point in both cases and is 

performed for 100 iterations. Figure 2-14 compares the normalised improvement in both 

cases while 0% shows the initial point and 100% shows the optimum solution for each 

case. Faster convergence to the optimum solution is observed in case-2, with 

independent control variables, as compared to case-1, with dependent control variables. 

More accurate estimation of the gradient, defined as the first order partial derivate of the 

objective function w.r.t. control variables, is obtained with independent control 

variables. Therefore the employed gradient-based optimisation algorithm provides more 

accurate search steps and faster convergence. This shows that employing a more 

accurate, and also more representative, multi-segment well model creates a more 

challenging proactive optimisation problem which is addressed in this thesis. Different 

results might be obtained for other choices of the optimisation algorithms. 

 

Figure 2-14: The optimisation performance during 100 iterations of the optimisation 

algorithm when the I-well is modelled using case-1 and case-2. (The data represents the 

average results from 5 independent runs.) 
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2.9.1 Summary 

In this section the impact of modelling I-wells on the production prediction and 

subsequent optimisation process is investigated. It is observed that a multi-segment well 

modelling approach is used to accurately model downhole completion outflow, provides 

a different well and zonal production performance compared to the case when the 

outflow performance is ignored. The rate dependent frictional pressure drop component 

increases the interaction between zonal productions. Hence, increasing or decreasing the 

production from one zone not only changes the production from the other zones over 

the long-term (a reservoir effect); but also generates short-term (well effect) changes, 

which can only be captured by combined modelling of inflow and outflow. A strong 

interaction between zonal productions was observed in the considered case study. We 

also showed that this strong interaction between the control variables generates a more 

difficult proactive optimisation problem compared to the case with independent zonal 

production when using gradient-based optimisation algorithms. One novel aspect of this 

study is that it addresses the more challenging proactive optimisation problem of 

employing a more accurate, but also more representative, multi-segment well model. 
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Chapter 3 – Development of criteria for simplification of the problem 

of proactive control of ICVs  

 

3.1. Introduction 

This chapter describes how the proactive optimisation problem can be simplified in 

large real field industrial applications with limited computational resources. The 

challenges associated with proactive optimisation are described in Section 2.8.2. In this 

chapter we ignore the uncertainty associated with the modelling by considering a single 

reservoir model realisation (“Proactive Optimisation under Uncertainty” will be 

discussed in Chapter 5). A large number of control variables is the challenge to be 

addressed in this chapter. The objective is to reduce the number of proactive 

optimisation control variables by discarding the less important ones in order to simplify 

the problem with a minimum loss in added-value. This is particularly important in (1) 

computationally expensive field models with multiple I-wells each equipped with 

multiple ICVs (2) to employ the commercially available software to solve the problem 

with a reasonable efficiency. Two criteria for reducing the number of control variables 

are proposed and tested on the PUNQ-S3 model. Genetic Algorithm (GA) available in 

the MEPO software (SPTGroup, 2012) was used as the commercial optimiser however 

the developed criteria for simplification of the problem of proactive control of ICVs is 

independent of the choice of the optimization algorithm.  

3.2. Limiting the length of the proactive optimisation period 

An ideal proactive optimisation has the potential to deliver the ultimate improvement of 

the system by simultaneously considering all control variables during the optimisation 

process. However, this is subject to the availability of an efficient optimisation 

algorithm which can handle a large number of control variables and find the optimum 

solution. Generally the number of iterations required for convergence increases by 

increasing number of control variables in an optimisation problem, which is particularly 

important in proactive optimisation of large real field models with limited 
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computational resources. This Section proposed classifying the production period based 

on the control strategy employed.  

The aim is to simplify the overall optimisation problem by limiting the proactive 

optimisation to the most important parts of the production period. Fast reactive control 

is expected to provide a reasonable performance for the rest of the production period 

with minor loss in the long-term objective function (e.g. NPV). A field’s production life 

can be separated into two periods based on the effective control strategy:  

1- Proactive only: This strategy can be used during the early, plateau production 

period, when the field has an excess fluid inflow capacity. Proactive 

optimisation of the production profile provides a better sweep and/or maximizes 

the NPV. 

2- Proactive/reactive: Proactive optimisation is capable of finding the optimum 

control scenario throughout the life of the field. However, a simpler control 

strategy is generally sufficient after the plateau period, satisfying both short-term 

(production improvement) and long-term (NPV improvement) objectives. As a 

result, reactive strategy is good enough during this period even when 

considering long-term objectives. An example is during the decline period, when 

the well production is constrained by THP with multiple producing zones each 

controlled by ICV. The production is limited by tubing outflow; hence, a zone 

producing a large amount of water can reduce the well production rate and 

should be shut based on both the reactive and the proactive control strategy. It 

should be noted that, the importance of performing a proactive optimisation 

increases during this period, if ultimate recovery is the objective with a low 

discount factor and a small economic production rate (i.e. negligible operating 

cost). 

Our goal is to recognise the production period associated with each group. This is 

achieved by investigating the optimisation objective function and constraints controlling 

the different stages of production. Moreover, a full-search study is performed on an 

optimisation problem and the control variables interactions are analysed to obtain the 

final conclusions. 
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3.2.1 Investigating the optimisation objectives and production constraints 

The main intention of proactive strategy is to enhance long-term objectives by 

mitigating future undesired problems and/or states. The early, plateau period of field 

production is the ideal time for this control strategy, since it can be employed without 

cost to the short term objectives; assuming an optimal plateau rate is defined which is 

generally constrained by field fluid processing capacity and/or operator’s production 

policy. As shown in Section 2.7, a simplified expression for NPV is used as the 

objective function for proactive optimization of a liquid (oil and water) producing well 

or field. Following is the formulation at zonal level, where ICV control is performed, 

ℱ(𝑥) = ∑ [∑(𝑟𝑜𝑞𝑜,𝑗
𝑛 − 𝑟𝑝𝑤𝑞𝑤,𝑗

𝑛 − 𝑟𝑜𝑝𝑒𝑥𝑞𝑙,𝑗
𝑛  )

𝑁𝑧

𝑗=1

]

𝑆

𝑛=1

𝛿𝑡𝑛

(1 + 𝑏)𝑡𝑛
 , 3-1 

where S is the total number of simulation steps; Nz is the number of production zones. 

The costs constants ro, rpw and 𝑟𝑜𝑝𝑒𝑥 (in $/sm3) are the oil price, the water handling cost 

and the operating cost respectively. Variables 𝑞𝑜,𝑗
𝑛 , 𝑞𝑤,𝑗

𝑛  and 𝑞𝑙,𝑗
𝑛  are the oil, water and 

liquid production rates of zone 𝑗 at time step n in sm3/day. The discount rate b is in 

decimal and δtn is the length of the nth simulation step and tn is the cumulative time up to 

that simulation time step in years.  

In contrast to proactive optimisation, instantaneous objective function at 𝑛th simulation 

step (i.e. the internal summation of Equation 3-1) is the objective function of reactive 

optimisation of a liquid (oil and water) producing well or field as follows. 

I(𝑥) = ∑(𝑟𝑜𝑞𝑜,𝑗
𝑛 − 𝑟𝑝𝑤𝑞𝑤,𝑗

𝑛 − 𝑟𝑜𝑝𝑒𝑥𝑞𝑙,𝑗
𝑛  )

𝑁𝑧

𝑗=1

𝛿𝑡𝑛 . 3-2 

Each zone is generating a term at the 𝑛th simulation step (Equation 3-2). This term has a 

positive impact on I(𝑥) at the beginning of production from a particular zone, but later 

on it decreases and can degrades I(𝑥). The time of this change from a positive to a 

negative characteristic for a particular zone depends on the amount of oil and water 

production from that zone, the economic parameters and the constraints imposed on the 

total liquid production (oil and/or water) or pressures (BHP, THP) by the equipment or 
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management. The focus of this thesis is on optimisation of intelligent producers. It 

should be noted that, although intelligent injectors can be controlled proactively, by 

considering zonal injection rates as extra control variables (𝑥), the optimal zonal 

injection control can never be reactive. 

The aim is to find the time that a simple control strategy suffices to control zones with a 

negative impact and improve both instantaneous and long-term objectives. The reactive 

strategy is unable to provide any control scenario or is unlikely to find the optimum 

control scenario prior to this time. Figure 3-1 (a) shows an example of multi-zone 

production from a reservoir having two layers with different permeability separated by a 

partially sealed fault. There is a limit on the total liquid rate which can be produced 

from all zones (i.e. well liquid rate constraint). Keeping all ICVs open during the whole 

production period result in early water breakthrough in the high permeability zone and 

inefficient sweep of the low permeability layer (Figure 3-1 (b)). A reactive control 

strategy improves the instantaneous objective function (Equation 3-2) by reducing water 

production from higher water-cut (WC) zones, allowing an increase in the oil 

production at that time step. However, this reactive strategy fails to improve the long-

term objectives (Equation 3-1), when it is not applied at appropriate time. The reduction 

in long-term objective is due to larger decrease in the instantaneous objective function 

(Equation 3-2) at �̈�th simulation step (�̈� > 𝑛) compared to the gain at 𝑛th step. 

Figure 3-1 (c) shows water breakthrough in the neighbour zone as a result of reactive 

control. This therefore, shows that a proactive approach is required as long as the 

optimum decisions at a particular time step is affected with the decisions at future time 

steps. Section 3.2.2 investigates such an interaction between the control variables.  
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                                           (a)                                                                (b) 

 

                    (c)                 

Figure 3-1: Example of situation that reactive control fails to provide optimum long-

term objective  (a) permeability distribution, well locations and completion (b) No-

control (c) reactive control and water breakthrough in the neighbour zone due to 

partially sealed fault. 

3.2.2 Analysing interaction between the control variables 

Variable interaction in an optimisation problem was explained in Section 2.8.2-b. 

Inseparable function interaction between the control variables in a production 

optimisation problem is investigated in this section. The control variables are ICV areas 

discretised over the field production time, assuming 20 predefined control steps. This 

ICV 1ICV 2

Intelligent 
Producer

Conventional
Injector

Intelligent 
Producer

Conventional
Injector

Oil Saturation

0.2 0.780.49
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0.2 0.780.49
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study selected two control variables at different stages of the production period and 

performing a full-factorial search on these two variables while assuming all other 

variables are fixed at fully-open. The search is performed by varying the selected 

control variables (ICV areas) between fully-closed (i.e. 0) to fully-open (i.e. 1) in 25 

steps. This assumes an infinitely variable ICV has been installed. The goal is to 

investigate if there is interaction between the control variables and how this 

characteristic is changed for variables corresponding to different production stages. This 

is achieved by investigating the changes in the optimum value of a given variable when 

the value of the other variable is changed (Figure 2-6).  

Several cases are analysed where (i) both variables are during the plateau period, (ii) 

both variables are after the plateau period and (iii) one is during the plateau and another 

one after. For case (i) and (ii) control variables are always selected at two consecutive 

control steps in order to eliminate the effect of time difference on variable interactions. 

The study is performed on the PUNQ-S3 reservoir model developed with an intelligent 

producer in the optimum location. The details of the model are described in 

Section 4.5.2.  The oil rate constraint with a maximum of 800 sm3/day and a liquid rate 

constraint of maximum 900 sm3/day are limiting the production from the field resulting 

in an oil rate plateau (until year 6) followed by a decline period (Figure 3-2).  
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Figure 3-2: Oil production rate and liquid production rate during 20 years of production 

for PUNQ-S3 (constrained case)  

Controlling an I-well equipped with 4 ICVs once every 12 months during 20 years of 

the production period (i.e. 20 control steps) results in 80 control variables. The test 

procedure was as follows: 

1- Select an ICV (ICVx) 

2- Select consecutive control steps (n, n+1)  

3- Change flow areas of the selected ICV at the selected control steps (AICVx,n , 

AICVx,n+1) between 0 and 1 at 25 increments. Keep all the other control variable 

equal to 1 (i.e. fully-open). 

4- Run 676 (26×26) experiments. 

5- Find optimum value of AICVx,n+1 for each value of AICVx,n (i.e. 26 values) 

6- Find variance of the values of AICVx,n+1 from step 5 

7- Repeat the process for another selection of ICVs and control steps. 

The test was performed for all ICVs and similar results were observed in all cases. 

Following are the main characteristics of the response surface during different 

production stages presented using ICV4.  
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Figure 3-3 shows the 3D surface plot of the NPV versus normalised flow area of ICV4 

at control step 2 (AICV4,2) and control step 3 (AICV4,3). It is observed that, the optimum 

value of AICV4,3 depends on the value of AICV4,2. When the value of AICV4,2 is small (0-

0.4) the optimum value of AICV4,3 is fully open to improve NPV by extra oil production 

at step 3 to compensate lower production during step 2. When the value of AICV4,2 is 

large (0.7-1) the optimum value of AICV4,3 is fully closed to improve NPV by delaying 

water breakthrough to improve the sweep efficiency. However, the global optimum is 

obtained by AICV4,2 =0.4 and AICV4,3 = 0.64 resulting reduced production from this zone, 

rather than completely closing the zone. Here, the variance of the optimum value of 

AICV4,3 for different values of AICV4,2 is 0.13.  

 

Figure 3-3: 3-D surface plot of NPV versus normalised flow area of ICV4 at control 

steps 2 & 3 
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Figure 3-4: 3-D surface plot of NPV versus normalised flow area of ICV4 at control 

steps 7 & 8 

Figure 3-4 shows the 3D surface plot of the NPV versus normalised flow area of ICV4 

at control step 7 (AICV4,7) and control step 8 (AICV4,8). It is observed that, the optimum 

value of AICV4,8 is always in the range of 0.36 and does not depend on the value of 

AICV4,7. Here, the variance of the optimum value of AICV4,8 for different values of AICV4,7 

is approximately zero (10-4). The global optimum is obtained by AICV4,7 = 0.32 and 

AICV4,8 = 0.36. It should be noted that lower optimum flow area compared to step 2 and 

3 (Figure 3-3) is mainly due to higher water production from this high permeability 

zone later in the production stage. However it is still economic to continue production 

from this zone rather than completely shut the zone. 

The variables interaction during the plateau period is clearly observed by the response 

surface (Figure 3-3) and larger variance in the optimum value of AICV4,3 by changing 

value of AICV4,2. No interaction is observed between the control variables after the 

plateau period as shown by Figure 3-4 and close to zero variance. The variance of the 

optimum value of AICV4,n+1 by changing value of AICV4,n for various consecutive control 

steps are shown in Table 3-1. A significant reduction in the variance is observed after 

control step 5 while the plateau period finishes at control step 6. 
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Table 3-1: Variance of optimum value of AICV4,n+1 by changing value of AICV4,n for 

various consecutive control steps 

Test # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0.126                 

2  0.13                

3   0.052               

4    0.004              

5     6×10-4             

6      8×10-4            

7       4×10-4           

8        4×10-4          

9         4×10-4         

10                 0 

Table 3-2 shows the variance of the optimum value of AICV1,n+1 by changing value of 

AICV1,n for various consecutive control steps. A significant reduction in the variance is 

observed after control step 8 which is delayed as compared to ICV4 (Table 3-1). This 

delay is mainly due to later water breakthrough in ICV1 producing from the low 

permeability zone.  

Table 3-2: Variance of optimum value of AICV1,n+1 by changing value of AICV1,n for 

various consecutive control steps 

Test # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0.15                 

2  0.093                

3   0.068               

4    0.068              

5     0.068             

6      0.07            

7       0.07           

8        3×10-4          

9         0         

10                 0 
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Another test is performed when one variable is during the plateau period and another 

variable is after. Figure 3-5 shows the 3D surface plot of the NPV versus normalised 

flow area of ICV4 at control step 3 (AICV4,3) and control step 12 (AICV4,12). The variance 

of the optimum value of AICV4,12 for different values of AICV4,3 is zero and the variance 

of the optimum value of AICV4,3 for different values of AICV4,12 is approximately close to 

zero (10-4). Therefore there is no interaction between the control variables during and 

after the plateau period.  

 

Figure 3-5: 3-D surface plot of NPV versus normalised flow area of ICV4 at control 

steps 3 & 12 

The following main conclusions can be drawn: 

I. The selected control steps are both during the plateau period: interaction is 

observed between the control variables. The optimum value of one variable thus 

depends on the value of the other; implying the control variables should be 

optimised simultaneously using a proactive approach during the plateau period. 

II. The selected control steps are both after the plateau period: no or minor 

interaction is observed between the control variables; implying that the optimum 

value of one variable can be obtained independently from the other. This 

eliminates the need for simultaneous optimisation of the variables. A reactive 

approach can now find the optimum control after the plateau period as long as 
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the objective function of the reactive (short-term objectives) does not deviate 

considerably from the long-term objectives (Section 3.2.1). 

III. One of the selected control steps is during the plateau period and the other one 

afterwards: the two variables show no, or only a minor, interaction. This means 

the proactive optimisation can be performed independent of the subsequent 

reactive optimisation and vice versa. This is particularly important for proactive 

optimisation, since it is performed early-on using a computationally expensive 

approach. Hence, having the option to eliminate the later reactive optimisation 

period from this calculation without experiencing a substantial loss, greatly 

reduces the complexity of the process.  

3.2.3 Summary 

This section investigated the behaviour of the objective function and variables 

interaction during the different stages of production. It is concluded that proactive is the 

best optimisation approach during the early production (plateau period) for a two phase 

production system with water as the unfavourable phase due to (1) generally, all zones 

are producing with a WC lower than a critical value (i.e. production from a zone does 

not degrade the instantaneous objective function Equation 3-2) hence reactive control 

will suggest a fully-open control scenario and cannot find the optimum long-term 

control strategy. (2) The optimal value of the control variables show substantial 

interaction with each other during this period and may be optimised simultaneously. 

Note that the active production constraint defines the way that proactive optimisation 

adds value at this stage. Proactive optimisation potentially improves the objective 

function during the whole production period when the well’s production is controlled by 

an oil or a total liquid rate constraint. By contrast, proactive optimisation can only 

improve the long-term objective at the cost of sacrificing objectives during the short-

term period when the well’s production is controlled by a BHP or THP constraint. I.E. 

there is a penalty associated with proactive optimisation performed under a pressure 

constraint compared to a rate constraint due to the risk that the chosen control strategy 

may not prove to be optimum (Brouwer and Jansen, 2004).     

One (or several) zones start to produce with WC higher than the critical value after the 

plateau period. Now production from one or several zones degrade the instantaneous 
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objective function (Equation 3-2). The reactive strategy of optimising the instantaneous 

objective function now has something to optimise. The resulting reactive control 

strategy provides a “close-to-optimum” long-term objective by removing the current 

negative term(s) from the objective function summation. The observation that the 

optimal value of the control variables after the plateau period show little or no 

interaction with value of the other control variables eliminate the need for all the 

variables to be optimised simultaneously. 

Similarly, these guidelines can be extended to cases that other phases are produced (e.g. 

oil and gas) or when unfavourable phase is not water.   

3.3. Limiting the control frequency of ICVs 

The total number of variables increases rapidly in a proactive optimisation problem 

since the number of control elements is multiplied by the number of control steps that 

are planned for the expected production life of the well or field. Hence the control 

frequency plays an important role in defining the computational magnitude of the 

proactive optimisation problem. The control frequency is thus a variable that will 

benefit from optimal selection. Generally, a higher control frequency provides more 

flexibility in controlling production, potentially leading to an increased added-value. 

This is particularly true up to an optimal frequency however after this point the 

production cannot take advantage of this greater flexibility. For example: (1) reservoir 

flow dynamics react slowly compared to the rate of change in the zonal drawdown 

pressure when frequent changes in the ICV’s flow area are made. (2) Proactive 

optimisation is frequently used to achieve an optimal sweep when water flooding a 

reservoir. The dynamics of the reservoir as a whole is much slower again (many 

months); hence a slow control frequency would be enough. 

In order to investigate the impact of control frequency on proactive optimisation a test 

study is performed using the PUNQ-S3 reservoir model developed with an intelligent 

producer in the optimum location. The details of the model are described in 

Section 4.5.2. As previously (Section 3.2.2) an oil rate constraint of a maximum of 800 

sm3/day and a liquid rate constraint of a maximum of 900 sm3/day limit the field’s 

production resulting in an oil plateau followed by a decline period (Figure 3-2). This 
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model will be used to investigate the added-value of proactive optimisation at different 

control frequency for the ICV actions. Section 3.2 allowed the limitation of the length 

of the proactive optimisation period to only the plateau period. This reduced the 

computational demand. Six cases were considered where the control frequency was 

increased from once every 12, 6, 3, 2, 1 and 0.5 months. The optimisation was 

performed using the Genetic Algorithm (GA) option in MEPO (SPTGroup, 2012), a 

commercially available optimisation software. Several runs were performed for each 

optimisation using different values of the tuning parameters and a different random 

number generator; the aim being to ensure that the global optimum solution has been 

found in each case. The improvement w.r.t. the base case (no-control) is calculated for 

each case (Figure 3-6). We observed a substantial change in the added-value by 

decreasing the length of control steps from 12 months to 3 months. However, 

controlling the production more frequent than every 3 months did not show a significant 

improvement in the added-value. In this case greater control flexibility resulted in 

different solutions but no major change in the objective function value. Hence more 

frequent control of the ICVs for proactive optimisation cannot be justified for this case 

study.     

 

Figure 3-6: Improvement w.r.t. the base case for proactive optimisation performed using 

different control frequency of ICVs 
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Figure 3-6 shows the percent increase in NPV as the control frequency increases. 

Figure 3-7 shows the corresponding number of simulation runs as a function of the 

control frequency. 

 

Figure 3-7: Average number of simulation runs required to find the optimum solution 

using different control frequency 

Figure 3-6 and Figure 3-7 show that there is a conflict between higher added-value of 

more frequent control and the higher computation time due to increased number of 

control variables. Moreover, two other criteria need to be considered from an 

operational point of view: 

1. In order to ensure the ICVs remain operable during their whole life, they need 

to be operated at least once (to prevent scale build-up, etc.) during a 

predetermined interval based on the chemistry of the produced fluids, the 

manufacture’s recommendations and the operators’ policy. It is of course 

possible to return the ICV to its original position after this operation, but this 

does provide a good opportunity to review whether the control scenario should 

be reviewed. 

2. The life of the ICV may also be defined by an allowed maximum number of 

operations, which after performing the risk of ICV failure increases. Any such 
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constraints need to be taken into account as an extra constraint when designing 

the optimum control strategy.    

The abovementioned criteria provide a guideline for defining the optimum control 

frequency of the ICVs to provide a balance between added-value, reliability and 

computation time required for optimisation. It is believed that this trend is general since 

same guidelines were found during the real field case study discussed in Chapter 7. 

Multiscale approach (Lien et al., 2008, Oliveira and Reynolds, 2015) discussed in 

section 2.8.2-b is an alternative approach to reduce the number of control variables 

while optimum control frequency might vary at different stages of the control period.  

3.4. Conclusions 

This chapter discussed guidelines for simplifying the proactive optimisation problem by 

reducing the number of control variables, while achieving the main added-value 

expected from the task. This is especially important when using commercial optimisers 

since they have been developed to address a wide range of applications and may not 

necessarily employ the most efficient method to solve our problem, the proactive 

optimisation of ICVs. Chapter 4 will develop an efficient optimisation algorithm for 

solving the proactive optimisation problem. The developed algorithm takes advantage 

of the proposed guidelines by efficient solution of the simplified proactive optimisation 

problem when there is computational constraints driven by the industrial applications. 

Another important application of the developed guidelines is expected to be the 

proactive optimisation of real field models developed with many conventional wells and 

I-wells equipped with multiple ICVs. Note that both types of well can be controlled by 

the surface wellhead choke. Solution of this complex problem requires the use of the 

most efficient optimisation algorithm after problem simplification by implementation of 

the above guidelines. Chapter 7 presents such a case study. 
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Chapter 4– Development of a suitable algorithm for proactive 

optimisation of ICVs 

 

4.1. Introduction 

In this chapter, the search space of a proactive optimization problem is visualized to 

assist in selecting the most suitable proactive optimization approach that is state-of-the-

art stochastic gradient approximation algorithms. The Simultaneous Perturbation 

Stochastic Approximation (SPSA) method (Spall, 1992) and the Ensemble-based 

Optimization (EnOpt) method (Chen et al., 2009) have all been implemented and 

evaluated. Additionally, we present a new derivation of EnOpt using the concept of 

directional derivatives.  

Proactive optimization of an I-well control by the installed ICVs is performed with a 

detailed model of an I-well built within a commercial reservoir simulator. An I-well’s 

zonal liquid production/injection rate cannot be controlled directly due to its direct 

hydraulic communication with the other zones. Instead, the ICV flow areas are used as 

control parameters. Moreover, there is a non-linear relationship between the ICV flow 

rate and its flow area and the physics of the valves flow performance. This integrated 

approach leads to more realistic models while resulting in a different and more 

challenging optimisation problem (See Section 2.9). Solution of the resulting 

constrained, non-linear optimization problem is addressed in this chapter. The 

optimization performance of the SPSA and EnOpt algorithms will be compared for 

different case studies while employing various sets of tuning parameters. Specific 

guidelines have been developed for setting the tuning parameters in the problem of 

proactive control of ICV based on the general guidelines suggested by e.g., Spall 

(1998). In addition, the well’s operational problems normally result in the stochastic 

nature (smoothness) of the obtained ICV control scenario to be as important as its 

added-value. 
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4.2. Objective function in I-well proactive control 

Following simplified Net Present Value (NPV) formula is considered as the objective 

function in proactive optimisation of ICVs, detailed formulation and definition of the 

variables was discussed in Section 2.7.  

ℱ(𝑥) = ∑ [∑(𝑟𝑜𝑞𝑜,𝑗
𝑛 − 𝑟𝑝𝑤𝑞𝑤,𝑗

𝑛 − 𝑟𝑜𝑝𝑒𝑥𝑞𝑙,𝑗
𝑛  )

𝑁𝑝

𝑗=1

]

𝑆

𝑛=1

𝛿𝑡𝑛

(1 + 𝑏)𝑡𝑛
 , 4-1 

Only a single realisation of the reservoir model is considered in this chapter to develop 

and test the optimisation algorithms. For robust optimization, the objective function is 

substituted with another objective function as explained in Chapter 5 and Chapter 6. 

4.3. Visualisation to assist investigation of the structure of the search space 

Visualising the search space of an optimisation problem can provide a valuable insight 

into some inherent characteristics such as (i) the presence of local optima, (ii) the 

relative difference between the local optima and the global optimum in terms of the 

objective function value, (iii) the proximity of the control variables in the search space 

and (iv) the sensitivity of the objective function with respect to control variables. The 

area open to flow for each ICV at each control step is considered to be one dimension. 

The proactive optimisation is thus a high dimensional problem of up to thousands 

dimensions. Visualisation reduces the dimensionality of the data by projecting the data 

onto a 2D or 3D space while maintaining as much information as possible. High 

dimensional visualisation has already proved useful in several areas of petroleum 

engineering. Hajizadeh et al. (2012) compared the performance of the optimisation 

algorithms in history matching by visualising the optimisation process. Haghighat Sefat 

et al. (2013) showed that visualising the optimisation process can assist in quantifying 

the algorithm’s tuning process. Fonseca et al. (2014) employed visualisation to aid in 

understanding the complex nature of the objective function surface and the performance 

of the optimization algorithm during robust ensemble-based multi-objective 

optimization.  
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Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a set of H-dimensional data points with n instances defined 

on ℝ𝐻. A function δ: ℝ𝐻 →  ℝ is defined to calculate a proximity criterion where 

δ(𝑥𝑖 , 𝑥𝑗) is showing dissimilarity (distance) between two instances i and j. The goal is to 

project X into a lower (two for display) dimension space to have a set of points 𝑍 =

{𝑧1, 𝑧2, … , 𝑧𝑛} with the same number of instances (n) defined on ℝ2. Similarly a 

function δ̂: ℝ2 →  ℝ  is defined to calculate the dissimilarity (Euclidian distance) 

between two points i and j in 2D space. 𝛼: 𝑋 → 𝑍 is the projection function from H-

dimensional space to 2D. The goal is to preserve the distance relationship between the 

points given by the specified metric as much as possible i.e. make |δ(𝑥𝑖 , 𝑥𝑗) −

δ̂(𝛼(𝑥𝑖), 𝛼(𝑥𝑗))| approaches zero ∀ 𝑥𝑖 , 𝑥𝑗  ∈ 𝑋. The degree to which the distance cannot 

be preserved is the projection error. 

There are several approaches to solve this problem and reduce data dimensionality. 

Principal Component Analysis (PCA) is a widely known example which use statistical 

measures for dimensionality reduction. PCA operates by decomposing the covariance 

matrix of H-dimensional data into H eigenvectors with eigenvalues. The dimensionality 

reduction happens by selecting the first h eigenvectors (h<H) with the largest 

eigenvalues. The data variance is preserved even when h<<H. More information about 

PCA is available in (Jolliffe, 2002). A limitation of PCA is the Euclidean distance 

assumption in both high and low dimensional space. Multi-Dimensional Scaling (MDS) 

(Section 6.4), a more general approach, allows considering different types of distance 

measure for the high dimensional space is used in this thesis. 

The search space in PUNQ-S3 (see Section 4.5.3) with an I-well in non-optimum 

location is investigated by generating 5000 experiments (each experiment is one control 

scenario with 80 variables) using Latin Hypercube Sampling (See (McKay et al., 1979) 

for more information about Latin Hypercube Sampling). NPV calculated using 

Equation 4-1 with the economical parameters provided in Table 4-1 is considered as the 

objective function. MDS is employed to reduce dimension of the generated control 

scenarios from its original 80D to 2D while Euclidean distance (Equation 6-5) is 

considered as the measure in the high dimensional and 2D space. Figure 4-1 shows the 

surface generated using 5000 experiments. 
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Figure 4-1: The 2D-projected search space in a proactive optimisation problem of 

PUNQ-S3. Surface generated using 5000 experiments, colour shows the objective 

function (NPV) (warm=high; cold=low) 

Figure 4-1 reveals that there are several local optima with the objective value close to 

each other. Also in this case study a local optimum could achieve around 90% of the 

improvement obtained by the global optimum solution. A similar nature of the solution 

space was previously observed in high-dimensional history matching by (Oliver et al. 

(2008), Oliver and Chen (2011)) and in the production optimization of conventional 

wells by Fonseca et al. (2014). Jansen et al. (2009) and van Essen et al. (2011) observed 

similar behaviour during multi-objective short-term and long-term optimization, where 

degree of freedom (DOF) exists to improve one objective without sacrificing the other.  

The global optimum (i.e. the best solution in the whole search space) is the preferred 

solution. However inferior local optima (i.e. best solutions in a neighbourhood of the 

search space) may be achieved due to time and/or algorithm limitations. Gradient-based 

algorithms, as a suitable choice for optimising large number of control variables, 

generally converge to a local optimum. This limitation is alleviated using some 

techniques such as injecting noise or starting the algorithm from different initial points. 

Besides, a small difference between a local optimum and the global optimum 
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improvement in proactive optimisation of ICVs can be tolerated by a field operator 

when quickly obtaining a profitable solution is already an achievement. This makes the 

gradient-based algorithms a reasonable choice for proactive optimisation of ICVs. 

4.4. Stochastic gradient-based methods for proactive optimization of ICVs 

Large number of control variables and the characteristics of the search space (see 

Section 4.3) during proactive optimisation of ICVs is the main motivation for choosing 

gradient-based methods as an appropriate optimisation algorithm. Efficiency of the 

gradient-based methods in solving large scale optimisation problem is also observed by 

(Zingg et al. (2008), Zhao et al. (2013)) . However calculating the gradient using 

standard finite-difference approaches is computationally unfeasible due to large number 

of control variables (up to thousands). Using an adjoint formulation is normally not 

possible as it is not widely implemented in most reservoir simulation packages.  

In the current study, we use stochastic optimization methods where the gradient is 

estimated by perturbing all the control variables simultaneously (Spall, 2003). This is 

possibly a more efficient approach than the standard finite difference methods where the 

variables are perturbed one at a time. The following subsections present the details of 

the two algorithms under investigation. 

4.4.1 Simultaneous Perturbation Stochastic Approximation (SPSA) 

SPSA is a stochastic optimization method that uses an approximate steepest descent (or 

ascent) with a randomly selected stencil (Spall, 1992, Sadegh and Spall, 1998). 

Consider ℱ(𝑥𝑘) to be the value of the objective function where 𝑥𝑘 is a vector of 𝑛𝑥 

control variables at iteration k (𝑥𝑘 = [𝑥1, 𝑥2, … , 𝑥𝑛𝑥
]

𝑘

𝑇
). The gradient 𝑔𝑘(𝑥), calculated 

using standard (finite-difference) approximation method, is defined as the partial 

derivatives of the objective function: 𝑔𝑘(𝑥) =
𝜕 ℱ(𝑥)

𝜕 𝑥
=  [

𝜕ℱ

𝜕𝑥1
 ,

𝜕ℱ

𝜕𝑥2
, … ,

𝜕ℱ

𝜕𝑥𝑛𝑥

]
𝑇

where [. ]𝑇 

denotes a column vector. The goal in the SPSA is to maximize ℱ(𝑥) iteratively using: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘�̂�𝑘 (𝑥𝑘), 4-2 

where �̂�𝑘(𝑥) is the stochastically estimated gradient. 
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Calculation of �̂�𝑘(𝑥), requires that ∆𝑘∈  ℝ𝑛𝑥 is defined as a vector of mutually 

independent, mean-zero random variables [∆𝑘1, ∆𝑘2, … , ∆𝑘𝑛𝑥
]

𝑇
 satisfying the following 

conditions: 

∆𝑘𝑖
−1= ∆𝑘𝑖, 4-3 

𝐸|∆𝑘𝑖
−1| = 𝐸|∆𝑘𝑖| = 0, 4-4 

where E denotes the expected value. Usually, but not necessarily, ∆𝑘𝑖 is chosen from the 

Bernoulli (±1) symmetric distribution to respect the above conditions (Spall, 1992). 

Such 𝑛𝑥-dimensional column vector ∆𝑘 and a positive scalar 𝑐𝑘 can be used to evaluate 

ℱ(𝑥) for calculating the stochastic gradient: 

�̂�𝑘(𝑥𝑘) =
ℱ(𝑥𝑘 + 𝑐𝑘∆𝑘) − ℱ(𝑥𝑘 − 𝑐𝑘∆𝑘)

2𝑐𝑘
× [

1

∆𝑘1
,

1

∆𝑘2
, … ,

1

∆𝑘𝑛𝑥

]

𝑇

. 4-5 

Equation 4-5 is similar to the central difference approximation of the Kiefer-Wolfowitz 

(Kiefer and Wolfowitz, 1952) or finite difference method. The only difference is the 

simultaneous perturbation of all control variables in Equation 4-5. Therefore SPSA-

central requires only two evaluations of the objective function during each iteration. 

This should be contrasted with the classical forward-difference approach where (𝑛𝑥+1) 

evaluations are required. For the rest of this thesis the short-form of SPSA refers to the 

SPSA-central formulation (Equation 4-5). 

The constants 𝛼𝑘 and 𝑐𝑘 in Equations 4-2 and 4-5 are the SPSA algorithm’s tuning 

parameters. The convergence of the SPSA iterations relies on the sequence of 𝛼𝑘 and 

𝑐𝑘. The importance of the tuning increases for computationally demanding objective 

functions. Spall (1998) proposed the following decaying sequences to estimate 𝛼𝑘 and 

𝑐𝑘 to ensure a gradually refining search: 

𝛼𝑘 =
𝑎

(𝔸 + 𝑘 + 1)𝜗
 , 4-6 

𝑐𝑘 =
𝑐

(𝑘 + 1)𝛾
 , 4-7 
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where a, c, 𝔸, 𝜗 and γ are positive real numbers. For ensuring convergence of the 

algorithm the tuning parameters have to satisfy the following conditions (Spall, 1998):  

𝛼𝑘 > 0,    𝑐𝑘 > 0,    𝛼𝑘 → 0,    𝑐𝑘 → 0,    ∑

∞

𝑘=0

𝛼𝑘 = ∞,    ∑

∞

𝑘=0

(
𝛼𝑘

𝑐𝑘
)

2

< ∞. 4-8 

The constants 𝜗 and 𝛾 should also satisfy: 

𝜗 − 2𝛾 > 0,        3𝛾 − 0.5𝜗 ≥ 0. 4-9 

This results in practical values for 𝜗 and 𝛾 of 0.602 and 0.101 respectively. The 

stability constant 𝔸 is recommended to be about 5% - 10% of the allowed, or expected, 

number of search iterations (Spall, 2003). The constants 𝑎 and 𝑐 are defined by the user. 

The following subsections provide recommended guidelines for defining appropriate 

ranges for 𝑎 and 𝑐 in proactive optimization of ICVs while working in log-transformed 

space. These guidelines have recently been confirmed by an ICV-optimization 

visualization study (Haghighat Sefat et al., 2013). This sensitivity visualised the 

iterative values of the control variables in 2-dimensional space to quantify the impact of 

each tuning parameter on the search process. 

An intuitive alternative approach to determine 𝛼𝑘 is to use an approximate line-search 

method instead of Equation 4-6. SPSA with line search has been used in several studies 

(e.g. (Gao et al., 2007, Zhao et al., 2011b)). Gao et al. (2007) compared basic SPSA 

with SPSA equipped with a line search and observed that the basic SPSA achieves 

better final results despite the line search improving the initial convergence speed. This 

study uses basic SPSA where 𝛼𝑘 is determined using Equation 4-6. 

 Tuning a. Increasing 𝑎 up to some level can enhance the optimization performance if 

there is a large difference between the initial point and optimum solution and accurate 

gradient data is available. Do and Reynolds (2013) recommended choosing 𝑎 such that 

at 𝑘 = 0 we have 1 ≤ 𝛼𝑘 = 𝛼0 ≤ 3. Equation 4-6 was solved for 𝑎 after specifying 𝔸 

(set to 10% of the total allowed number of iterations), 𝜗, 𝛼0 and 𝑘 = 0. Initial testing 

found that these choices resulted in an unstable optimization process when applied to 

the proactive optimization of ICVs. The systematic search had been converted into a 
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random search in the search space which was unable to converge to the optimum 

solution. This can be attributed to: 

 Different local optima with similar objective values,  

 A sharp change in the objective value resulting from a small change in the 

control (i.e. a large search step leads to an unstable optimization),   

 Numerical convergence problem being experienced in some of the control 

scenarios. 

A smaller 𝑎 is required to compensate the gradient approximation error increase and to 

stabilize the search process. Spall (1998) reached the same conclusion when he 

recommended a smaller value of 𝑎 together with a larger 𝑐 value in a high-noise 

environment. The value of 0.1 ≤ 𝛼𝑘 = 𝛼0 ≤ 0.5 was chosen for this study. The impact 

of this choice on the optimization process will be explained in the case studies 

(Section 4.5). 

Tuning c. Spall (1998) suggested to set 𝑐 at a level approximately equal to the standard 

deviation of the objective function measurement error. The standard deviation is 

calculated by making several measurements of ℱ(𝑥) at the initial guess 𝑥0. A small, 

positive value of 𝑐 should normally be chosen for a simulation-based optimization 

problem since when the objective function being evaluated by the numerical simulator 

has a zero measurement error. However, there are two problems associated with using 

small 𝑐 in a simulation-based optimization: (1) the changes in the objective function can 

be significantly lower than round-off and/or convergence error within the simulator and 

(2) the estimated gradient will only capture the local variations of the objective function 

if the function is highly non-monotonic. Therefore, a small 𝑐 can result in an inaccurate 

search step, oscillation and a low optimization performance.  

The value of 𝑐 was defined by setting 𝑘 = 𝑘𝑚𝑎𝑥 then 𝑐𝑘 = 𝑐𝑚𝑖𝑛 in this study. 

Equation 4-7 can then be solved for 𝑐 by setting 𝑐𝑚𝑖𝑛 as the minimum plausible 

perturbation size defined by the operational and design constraints of ICVs. The ICVs 

have been assumed to have a maximum of 10, 20 and 40 positions, with a logarithmic 

change in the fractional open-to-flow area between each position, during the 

perturbation stage for the initial guess. This translates into 𝑐𝑚𝑖𝑛 being equal to 0.1, 0.05 
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and 0.025, respectively. It should be noted that these numbers of ICV positions have 

only been employed to define the size of the perturbation step, since the resulting 

optimum control setting of the ICVs is a continuous variable. 

Average SPSA, The expectation of the stochastically estimated gradient (�̂�𝑘(𝑥𝑘)), as 

calculated by the optimization algorithm, is the true gradient due to the random nature 

of ∆𝑘 in Equation 4-5 (Spall, 1992, Gao et al., 2007). Spall (1992) and Wang et al. 

(2009) suggested to use an averaged stochastic gradient calculated from an ensemble of 

perturbation vectors to improve the estimation of the search direction. SPSA generates 

𝑛𝑒 independent samples of ∆𝑘 during each iteration, resulting in 2 × 𝑛𝑒 objective 

function evaluations when using the central difference formulation for estimating the 

gradient. Consistency with EnOpt, which provides 𝑛𝑒 independent samples of ∆𝑘 from 

𝑛𝑒 objective function evaluations per iteration, was maintained by operating 𝑛𝑒/2 

independent samples of ∆𝑘 during each iteration of SPSA. The average stochastic 

gradient can then be calculated by arithmetic averaging of an ensemble of 𝑛𝑒/2 

estimated gradients using: 

�̂�𝑘 (𝑥𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑛𝑒/2
 ∑ �̂�𝑖  (𝑥𝑘)

𝑛𝑒/2

𝑖=1

,  4-10 

where �̂�𝑘 (𝑥𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average stochastic gradient which is substituted for �̂�𝑘 (𝑥𝑘) in 

Equation 4-2. The averaged stochastic gradient has been previously studied using an 

ensemble size of 2 and 4 (Spall, 1992) or 10 and 20 (Wang et al., 2009). Both studies 

concluded that the quality of the estimated gradient and the optimization performance is 

improved by increasing the ensemble size. However, an excessive increase in the 

ensemble size eliminates the stochastic effect in the obtained solution, but does not 

achieve a significant change in the final objective value. This study compares the 

optimisation process using ensemble sizes of 4 and 10. 

4.4.2 Ensemble-based optimization (EnOpt) 

This section discusses the EnOpt method (Chen et al., 2009, Chen et al., 2010). EnOpt 

is derived based on the definition of directional derivatives and stochastic estimation of 

the derivatives using an ensemble based method.  
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Directional Derivatives. Evaluation of the Jacobian ∇ℱ(𝑥𝑘), which has the components 

∂𝑗ℱ(𝑥𝑘), where 𝑗 = 1, … , 𝑛𝑥, by a straightforward differentiating method is not feasible 

for high dimensional search spaces. Hence directional derivatives were employed with a 

random direction vector (of unit length) 𝑢, defined as: 

∇𝑢ℱ(𝑥𝑘) =
ℱ(𝑥𝑘 + 𝑐𝑘𝑢) − ℱ(𝑥𝑘)

𝑐𝑘
,  4-11 

where 𝑐𝑘 is the step size. The directional derivative is related to the standard derivative 

as: 

∇𝑢ℱ(𝑥𝑘) = ∇ℱ(𝑥𝑘) ⋅ 𝑢 .  4-12 

In the previous equations, ∇𝑢ℱ(𝑥𝑘) is of size 1 and ∇ℱ(𝑥𝑘) is of size 1 × 𝑛𝑥 and 𝑢 is 

the perturbation vector of size 𝑛𝑥 × 1. Similarly, 𝑥𝑘 is of size 𝑛𝑥 × 1. 

Stochastic Ensemble Method. We use an ensemble of perturbations to approximate the 

gradient vector from an ensemble of directional derivatives as: 

∇𝑈ℱ(𝑥𝑘) = ∇ℱ(𝑥𝑘)𝑈,  4-13 

where ∇𝑈ℱ(𝑥𝑘) is an ensemble of directional derivatives of size 1 × 𝑛𝑒 where 𝑛𝑒 is the 

ensemble size (i.e., equal to the objective function evaluations here) and 𝑈 is the 

perturbation matrix of size 𝑛𝑥 × 𝑛𝑒 used in estimating the directional derivatives. 

Multiply both sides from the right side with 𝑈𝛵 one gets: 

(∇𝑈ℱ(𝑥𝑘))𝑈𝛵 = ∇ℱ(𝑥𝑘)(𝑈𝑈𝛵) .  4-14 

From which, the standard derivative can be evaluated as: 

∇ℱ(𝑥𝑘) = [∇𝑈ℱ(𝑥𝑘)]𝑈𝛵(𝑈𝑈𝛵)−1 .  4-15 

For each ensemble member 𝑖, the directional derivative around 𝑥𝑘 is: 

[∇𝑈ℱ(𝑥𝑘)]𝑖 =
ℱ(𝑥𝑘 + 𝑐𝑘𝑢𝑖) − ℱ(𝑥𝑘)

𝑐𝑘
,  4-16 
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where 𝑢𝑖 is a random normal perturbation in all components of 𝑥𝑘 with zero mean and 

variance of 1. Note that 𝑢𝑖 is multiplied by decaying 𝑐𝑘 for gradual refining of the 

perturbation steps to ensure convergence of the algorithm. Value of 𝑐𝑘 is calculated 

using the same equation employed in the SPSA (Equation 4-7). For the ensemble of 

directional derivatives, we can re-write the directional derivative in a matrix format as: 

∇𝑈ℱ(𝑥𝑘) = 𝑌,  4-17 

where 𝑌 is of size 1 × 𝑛𝑒 and each column 𝑖 of 𝑌 corresponds to 

[ℱ(𝑥𝑘 + 𝑐𝑘𝑢𝑖) − ℱ(𝑥𝑘)] 𝑐𝑘⁄  . The matrix form of Equation 4-15 is then 

∇ℱ(𝑥𝑘) = 𝑌𝑈𝛵(𝑈𝑈𝛵)−1. 4-18 

Therefore the size of ∇ℱ(𝑥𝑘) is 1 × 𝑛𝑥 where 𝑌 is of size 1 × 𝑛𝑒 and 𝑈 is of size 𝑛𝑥 ×

𝑛𝑒. Once the approximate gradient is obtained an iterative update equation can be 

formulated as: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘∇ℱ(𝑥𝑘)𝛵.  4-19 

𝑥𝑘, 𝑥𝑘+1 and ∇ℱ(𝑥𝑘)𝛵 is of size 𝑛𝑥 × 1. A decaying sequence is defined for 𝛼𝑘 using 

Equation 4-6 to ensure a gradually refining search. Moreover, ∇ℱ(𝑥𝑘)𝛵 =

((𝑈𝑈𝛵)−𝛵𝑈𝑌𝛵). Note that 𝑈𝑈𝛵 is a symmetric matrix and (𝑈𝑈𝛵)−𝛵 = (𝑈𝑈𝛵)−1. The 

inverse of the covariance matrix (N.B. 𝐸(𝑈)=0 therefore 𝑈𝑈𝛵 is the covariance matrix) 

can be problematic as the ensemble size will be much smaller than the size of the 

control vector and the resulting covariance matrix will be rank deficient. Following the 

same argument proposed by Chen et al. (2009) the gradient is preconditioned by a 

matrix (𝑈𝑈𝛵)2 to obtain a smoothed gradient. The updated equation of EnOpt is thus: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘(𝑈𝑈𝛵)(𝑈𝑌𝛵).  4-20 

Furthermore, the gradient is normalized with the ℓ∞ (infinity norm) 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘

(𝑈𝑈𝛵)(𝑈𝑌𝛵)

‖(𝑈𝑈𝛵)(𝑈𝑌𝛵)‖∞
 .  4-21 
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Equation 4-21 is then employed by the EnOpt algorithm for iteratively updating the 

control variables. The terms U and Y in our derivation are calculated using (𝑥𝑘) and 

ℱ(𝑥𝑘) from the previous iteration (k). The alternative approach is to calculate U and Y 

using the mean of the ensembles from the current iteration. As a result, each column i of 

U and Y will be: 

𝑈𝑖 = (𝑢𝑖) −
∑ (𝑢𝑗)

𝑛𝑒
𝑗=1

𝑛𝑒
,  4-22 

𝑌𝑖 = ℱ(𝑥𝑘 + 𝑐𝑘𝑢𝑖) −
∑ ℱ(𝑥𝑘 + 𝑐𝑘𝑢𝑗)

𝑛𝑒
𝑗=1

𝑛𝑒
.  4-23 

The mean of extremely large number of ensembles will approach to the value from the 

previous iteration while a limited ensemble size will generate sampling errors. This was 

accounted for in the original EnOpt method by using the mean of the new ensembles. 

Both approaches has been applied to the problem of proactive optimization of ICVs and 

their performance compared. The approach employing the mean of the new ensembles 

showed a better performance and was more stable with limited size ensembles. This 

approach will be used for the rest of this study. 

Fonseca et al. (2015) developed a methodology to quantify EnOpt ensemble size 

required to achieve a high-quality gradient in proactive optimization under uncertainty. 

A higher-quality gradient was obtained by increasing the ensemble size which is 

particularly important at later optimization iterations when the control variables 

approach the optimum solution. However, they observed that ensemble based methods, 

irrespective of ensemble size, always estimated the uphill direction. In this study, the 

same ensemble size (4 and 10) is used for EnOpt to provide a comparison with SPSA. 

4.5. Case studies 

SPSA and EnOpt have been compared by performing the same number of simulation 

runs per iteration for both algorithms using two ensemble sizes: 4 and 10. For example, 

with ensemble size of 10 (i.e., ne=10), SPSA evaluates 5 random and independent 

instances of the gradient and uses their arithmetic average. EnOpt evaluates 10 random 

independent directional derivatives. On top of that, five independent runs were 

performed and the average results are compared in order to eliminate the effect of 
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random number generator employed in both SPSA and EnOpt. For all cases the 

optimization is terminated at 100 iterations (i.e., 𝑘𝑚𝑎𝑥 = 100) in order to eliminate the 

effect of iteration number and provide a fair comparison of the different approaches. 

Decaying of 𝛼𝑘 and 𝑐𝑘 during the optimization iterations ensures convergence of the 

algorithm if it is allowed to run for a sufficient number of iterations.  

The case studies will now be presented. 

4.5.1 Case-1, a box-shaped reservoir model 

This test case deals with a synthetic reservoir model with a square layout of 10×10×1 

grid blocks in x, y and z direction, respectively. Each grid block has ∆x = ∆y = 120 m 

and ∆x = 3 m. The reservoir (Figure 4-2) consists of a high (100 mD, red) and low (10 

mD, blue) permeability regions. The reservoir is developed by one conventional injector 

and one intelligent, 2-zone producer. Water is injected at a constant rate of 40 sm3/day 

while the production well operates at a constant Bottom Hole Pressure (BHP) of 70 bar. 

This example is designed to compare the performance of different algorithms on a 

production optimisation problem with a non-optimum, water injection strategy created 

by the water injector being located close to the producer in the high permeability zone. 

 

 

Figure 4-2: Top view of case-1’s box-shaped reservoir model. 
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The production strategy (drive mechanism and production/injection constraints, etc.) 

determines how optimal control adds value and must be chosen prior to proactively 

optimising I-Well operation. Reducing the ICV’s open area decreases both the pressure 

drawdown across the formation and the liquid (oil and water) production. Reducing the 

well’s total liquid production rate under a constant BHP will only improve the NPV if: 

1- Reducing production from a zone once its production becomes uneconomical 

due to excessive water production when the water processing cost is relatively 

high. The NPV is thus improved by reducing the cost of water handling. This 

scenario is a relatively simple optimisation problem. 

2- A different situation occurs if production from all zones is economical. ICV 

choking now reduces both oil and water production, as well as the cash flow at 

that timestep. This reduction in the instantaneous objective function has to be 

justified by a future increase in the objective function due to resulting changes in 

the reservoir’s flow behaviour (streamline manipulation). The discount rate used 

in the NPV calculation is often the key factor determining whether the current 

loss is lower than the future gain. The added value in this situation is due to the 

value of the increase in the discounted cumulative oil production (i.e. the water 

processing cost is relatively low compared to the oil price and the extra oil is 

produced relatively quickly compared to the field’s producing life time). The 

solution of this optimisation problem is more difficult, as illustrated below. 

The reservoir’s production period was simulated for 40 time steps of 90 days each (total 

3600 days) with the 2 ICVs being controlled at every timestep. The total number of 

control variables will then be 40×2=80. The objective function (NPV) was calculated 

using Equation 4-1 with the Table 4-1 economic data. 

Table 4-1: Economic parameters 

Parameter Value 

Oil revenue 377 $/sm3 oil 

Water handling cost 6.3 $/sm3 water 

Operating cost of the produced liquid 12.6 $/sm3 liquid 

Discount rate 10 % / year 

The optimisation starts from the initial point of fully-open ICVs at all control steps. 

Two values of c = 0.08 and c = 0.16 were chosen. This case study allows a relatively 
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higher value of a (a = 2, a = 5 and a = 10) while providing a better estimate of the 

gradient of case-1’s simpler search space. This is not true for case-2 and case-3.  

Figure 4-3 compares the results for an ensemble of size 10.  EnOpt shows better 

performance compared to SPSA for the larger a-values. SPSA use of Bernoulli ±1 

perturbation provides a rougher approximation of the gradient compared to the EnOpt’s 

use of random normal perturbation. This rough estimation in SPSA aids bypassing local 

optima by providing a more global representation of the search space. However larger 

values of a degrades the search process by converting it into a random search of the 

search space. This case’s simple optimum control scenario, reducing the production 

from the high permeability zone, generates a more monotonic search space 

characterised by few local optima. Hence SPSA showed almost the same performance 

as EnOpt with the best setting of a = 2 and c = 0.16. SPSA-forward (using following 

forward-difference formulation instead of Equation 4-5 for estimating the gradient) 

shows reduced performance. This is mainly due to the use of information from the 

previous iteration (ℱ(𝑥𝑘)) when limited ensemble size result in sampling error with 

mean of the ensembles be significantly different with the value from the previous 

iteration (as explained earlier in Section 4.4.2 for EnOpt). 

�̂�𝑘 (𝑥𝑘) =
ℱ(𝑥𝑘 + 𝑐𝑘∆𝑘) − ℱ(𝑥𝑘)

𝑐𝑘
× [

1

∆𝑘1
,

1

∆𝑘2
, … ,

1

∆𝑘𝑛𝑥

]

𝑇

.  4-24 
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Figure 4-3: NPV versus number of simulation runs for SPSA, SPSA-forward and EnOpt 

for different values of a and c (ensemble of size 10, average results of 5 independent 

runs). 

Figure 4-4 shows the standard deviation of 5 independent runs divided by the base-case 

with fully open ICVs to normalize the values. A reduction in the variance of the 

independent runs in the case with optimum value of the tuning parameters (Figure 4-4 

a) shows convergence to the optimum solution in different runs. The variance between 

the independent runs is significantly lower than the total improvement w.r.t. the base 

case (i.e. 19%) showing 5 independent runs is enough to eliminate the random effect in 

this case study. A larger variance is observed in the cases with non-optimum tuning 

parameters (Figure 4-4 b and c) showing lack of convergence in independent runs. 
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(a)                                                                   (b) 

 
                                (c) 

Figure 4-4: Standard deviation of 5 independent runs normalised by the base case versus 

simulation runs in SPSA and EnOpt for different value of a and c for ensemble of size 

10 

Figure 4-5 compares the performance of the algorithms for the ensemble of size 4. 

Generally, reducing the ensemble size degrades the quality of the estimated gradient and 

the performance of the optimisation algorithms. In this case, EnOpt is more robust since 

it provides a smoother gradient. Moreover, lower standard deviation is observed 

between the independent runs in EnOpt compared to SPSA (Figure 4-6) during the final 

simulation runs which is an indication of better convergence in EnOpt. Hypothesis 

testing (Neyman and Pearson, 1933) is performed to investigate the probability of better 

performance of EnOpt as compared to SPSA with ensemble of size 4. Average standard 

deviation of the last 50 simulation runs is considered (Figure 4-6). The null hypothesis 

(i.e. EnOpt does not provide better performance than SPSA) is only true after ~2 
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standard deviation away from the mean. Therefore EnOpt provides better performance 

than SPSA with a probability of around 95% (Figure 4-7).  

 

Figure 4-5: NPV versus number of simulation runs for SPSA, SPSA-forward and EnOpt 

(ensemble of size 4, average results of 5 independent runs) 
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Figure 4-6: Standard deviation of 5 independent runs versus simulation runs for SPSA 

and EnOpt with ensemble of size 4 

 

Figure 4-7: Probability of data being within particular standard deviation from the mean 

in a normal distribution (Kernler, 2014) 

The best scenario shows a 19% improvement in NPV compared to the base case with 

fully-open ICVs at all control steps. Figure 4-8 shows the ICV-1 and ICV-2 open areas 

during the production period for the optimum scenario (SPSA with a=2 and c=0.16). 

The area can change between 0.0127 ft2 and 10-7 ft2 in a logarithmic scale (10-7 ft2 

represents a closed ICV). The optimisation algorithm has closed ICV-1 after ~1 year, 

diverting the injection water from the side into the low permeability region zone 2. ICV-
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1 is partially opened in the last time step to produce any remaining oil from the high 

permeability layer. 

 

Figure 4-8: Optimal valve opening area during the production period obtained using 

SPSA 

Figure 4-9 shows the early loss and late gain in NPV as a result of optimisation under 

BHP constraint. The effect of an increased discount rate, from 3%, 10% to 20%, on the 

optimum control scenario is also recorded. A higher discount rate reduces the early loss 

in the optimum scenario because of assigning lower weights to the late objectives 

compared to the early objectives. 
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Figure 4-9: Change in relative value for the base and optimised case under BHP 

constraint with a varying discount rate – NPVs are normalised w.r.t. the Base-case 

(Discount rate 10%)  

4.5.2 Case-2: PUNQ-S3 reservoir model with the I-well in an optimum location 

The PUNQ-S3 model (Floris et al., 2001) which is a synthetic reservoir model, fairly 

typical of North Sea fault-bounded trap (Nikravesh et al., 2003), was used for case-2. 

The model consists of 19 × 28 × 5 grid blocks, of which 1761 blocks are active. The 

reservoir permeability is moderately heterogeneous despite the small scale of the model. 

This results in a model with a realistic, non-uniform water-front advance that is also 

computationally efficient; making it an appropriate choice for uncertainty and 

optimization studies. Figure 4-10 shows the permeability field for the top layer where 

the intelligent producer is located. The horizontal permeability (Kh) is equal to the 

vertical permeability (Kv). The model has two high permeability channels each 

surrounded by low permeability formation. The field is bounded by impermeable faults 

to the east and south with a strong aquifer in the north and west. There is a small gas 

cap at the centre of the field.  
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Figure 4-10 shows two vertical injectors in addition to the horizontal intelligent 

producer. Previous studies showed that the intelligent producer is near the optimum 

location. Thus only a small gain in production can be achieved by the optimal control of 

the production well. Case-3 investigates the optimal control of a production well in a 

far-from-optimum location. The multi-segment (ECLIPSE, 2012) well model considers 

the total pressure drop throughout the coupled well/reservoir model. Four ICVs control 

the production, one for each permeability region. The open flow area of each ICV is the 

variables to be optimally controlled. The reservoir simulator controls the BHP ≥ 100 bar 

to respect the well liquid production rate constraint of 1000 sm3/day (See Section 2.7 for 

description of constraint handling). All produced gas is injected into the gas cap (gas 

separation/injection cost is ignored in the simplified objective function in this study, 

which only considered oil and water production Equation 2-12) and the water injector 

complements the aquifer support to maintain a constant reservoir pressure (further 

details about the reservoir and well model are available in (Grebenkin and Davies, 

2010)). The injectors are operated under BHP control of 300 bar. The production period 

is 20 years with an ICV operational frequency of once per year. This results in an 

optimization problem with a total of 80 control variables.  

 

Figure 4-10: PUNQ-S3 reservoir model showing permeability distribution and well 

locations 
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The well liquid rate constraint of 1000 sm3/day is smaller than the maximum well liquid 

production potential at all times. A well total liquid rate constraint allows the NPV to 

increase if the water production can be decreased and the oil production increased. Here 

the optimum scenario does not show a lower instantaneous cash flow with respect to the 

base-case (Figure 4-14). 

The use of an estimated gradient can result in stepping into a non-optimum direction, 

decreasing the objective function value. This case study, with an optimum production 

well location and a liquid rate constraint, results in the fully-open scenario (i.e. the 

starting point of the optimization process) to be close to the optimum solution. Hence an 

unstable condition brought on by stepping in a non-optimum direction can be expected 

at an early iterations where a larger step size is employed. Spall (1997) suggested 

adding a blocking-stage to the search process in such unstable conditions. This 

blocking-stage, by checking an inequality at each iteration, prevents the algorithm 

behaving wildly and abruptly moving in a non-optimum direction. However, stochastic 

optimisation algorithms, by moving in the non-optimum directions, will explore the 

search space. This assists the algorithm to approach the global optimum. An appropriate 

tolerance should be thus considered to allow exploration of the search space while 

blocking abrupt changes. (Note that abrupt changes not only degrades the optimisation 

performance; but also increases the computation time by proposing unrealistic 

simulation cases which cause convergence problems).  

The blocking-stage checks the following inequality at each iteration: 

ℱ(𝑥𝑘+1) ≤  ℱ(𝑥𝑘) − 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒.  4-25 

We have applied two implementations of the algorithms: (1) With-Blocking: by using a 

tolerance of 1% of ℱ(𝑥𝑘). (2) Without-Blocking: by allowing the algorithm update 𝑥 at 

each iteration. 

It should be noted that, the employed SPSA and EnOpt do not require evaluation of the 

objective function for the updated control variables at each iteration. As shown in the 

final formulation of SPSA (Equation 4-5) and EnOpt (4-22 and 4-23) only values of the 

objective function for the perturbed control variables at the current time step is required 
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(ℱ(𝑥𝑘 + 𝑐𝑘𝑢𝑗)) and it is not necessary to calculate the objective function for the 

updated control variable (ℱ(𝑥𝑘+1)). However, this objective function evaluation might 

be performed for visualising the performance or to check the convergence criteria. In 

contrast it is mandatory to evaluate the objective function for the updated control 

variable at each iteration, if the blocking stage is used. This increases the total 

computation time by the time required for one additional objective function evaluation 

per iteration.     

The optimisation was performed for several choices of a and c within the recommended 

range (Sections 4.4.1). Small a and large c provide a better performance due to the small 

improvement potential and bypassing several local optima. As shown in Figure 4-11 

SPSA and EnOpt show relatively similar performance. SPSA-forward shows reduced 

performance mainly due to the use of information from the previous iteration (ℱ(𝑥𝑘)) 

when limited ensemble size result in sampling error (as explained earlier in 

Section 4.4.2 for EnOpt). 

 

Figure 4-11: NPV versus number of simulation runs for SPSA, SPSA-forward and 

EnOpt without-blocking for best a and c (ensembles of size 10 per iteration, the average 

results of 5 independent runs) 
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Figure 4-12 shows the small difference in the performance of the algorithms with or 

without blocking. Blocking did increase the total computation time due to the one extra 

objective function evaluation per iteration being more computationally demanding than 

the reduction due to the elimination of the cases with convergence problems. Blocking 

did show improved performance for SPSA; mainly due to its rough approximate of the 

gradient. 

 

Figure 4-12: NPV versus number of simulation runs for SPSA and EnOpt with-blocking 

for best a and c (ensembles of size 10 per iteration, the average results of 5 independent 

runs) 
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The solution with maximum NPV is obtained by SPSA without-blocking, providing a 

2.1% improvement w.r.t. the base-case. This is significantly higher than the standard 

deviation of 5 independent runs w.r.t. the base case (Figure 4-13) showing that both 

SPSA and EnOpt can find the optimum solution with a high probability (~100%). 

EnOpt shows a 2% improvement w.r.t. the base-case. The difference between the 

performance of SPSA and EnOpt is not statistically significant in this case study. 

 

Figure 4-13: Standard deviation of 5 independent runs normalised by the base case 

versus simulation runs for SPSA and EnOpt without blocking for ensemble of size 10 
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The normalised NPV in the base-case and optimised-case and improvement w.r.t. the 

base case are shown in Figure 4-14 a and b, respectively. No loss in the NPV is 

observed in the optimum control scenario due to the liquid rate constraint in this case as 

compared to the BHP constraint in case-1.  The improvement in NPV is due to extra oil 

production as a result of better sweep efficiency by decreasing production from the high 

permeability zone. Figure 4-14 (b) shows that the impact of better sweep efficiency is 

observed after around 2 years when the case with optimum control produces extra oil 

(and less water) as compared to the base case. No extra value is obtained after around 

13 years as the reservoir is already swept. The optimum control only ensures that the 

extra added-value is not lost for example by extra water production (last part with zero 

slope in Figure 4-14 (b)). 

 
(a) 

 
(b) 

Figure 4-14: (a) NPV versus production days in the optimised-case obtained using 

SPSA and base-case, (b) improvement in NPV w.r.t. base case 
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Figure 4-15 shows the valve opening area for 4 ICVs for the best SPSA and EnOpt 

scenarios. The area is scaled between 0 (fully closed) and 1(fully open). Figure 4-16 

shows the relative change in the cumulative oil production of each zone in the best 

scenario obtained by SPSA and EnOpt. As previously, the added-value is mainly 

obtained by decreasing the production from ICV-4 and from the high permeability 

region. An initial increase in the production is achieved from ICV-3 which is shown by 

positive slope in Figure 4-16-c. However, zone-3, due to its connection with zone-4, is 

also prone to the water breakthrough. This is alleviated in the optimum solution by a 

more uniform flood front being provided by a later reduction of production from ICV-3, 

as shown by zero slope in Figure 4-16-c. Both algorithms provide approximately the 

same level of improvement in the objective function value (Figure 4-14), despite the 

control scenarios being different since they have chosen two different local optimal 

solutions. The solution obtained by the SPSA shows larger changes being made to the 

valve area. This indicates a local convergence to a rough part of the control space in 

comparison to EnOpt. 
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(a) 

 

(b) 

Figure 4-15: Valve opening area for the best case obtained by (a) SPSA (b) EnOpt 
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(a)                                                                  (b) 

 
(c)                                                                  (d) 

Figure 4-16- Relative change in the cumulative oil production of ICVs in the optimised 

scenario obtained by SPSA and EnOpt w.r.t. the base case: (a)ICV-1 (b)ICV-2 (c)ICV-3 
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4.5.3 Case-3, PUNQ-S3 model with the I-well in a far-from-optimum location 

The case-3 reservoir model is the same as in case-2, but now the intelligent production 

well is placed in a non-optimum location; a scenario representative of the incomplete 

knowledge about the reservoir properties (Figure 4-17).  

 

Figure 4-17: Top view of PUNQ-S3 reservoir model showing permeability distribution 

(Case-3, I-well in a far from optimum location) 

Both algorithms converged to a low performance solution with a small c (c = 0.04) or 

large a (a = 5); while a value of c = 0.08 showed the best performance. Figure 4-18 
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Figure 4-18: NPV versus number of simulation runs for SPSA and EnOpt, without-

blocking (ensemble of size 10 per iteration, average results of 5 independent runs) 

Here a larger value of a provides the optimum performance than was found for Case-2. 

This is due to the larger difference between the base-case and the optimum solution as a 

result of a non-optimum well location. The maximum value is obtained by SPSA (a=1, 

c = 0.08). The standard deviation between 5 independent runs in SPSA and EnOpt 

(Figure 4-19) is significantly lower than the improvement as a result of optimization 

showing the reliability of both algorithms to find the optimum solution despite random 

behavior of the algorithms. Hypothesis testing is performed to investigate the 

probability of better performance of SPSA as compared to EnOpt with (a=1, c = 0.08). 

Average standard deviation of the last 100 simulation runs is considered (Figure 4-19). 

The null hypothesis (i.e. SPSA does not provide better performance) is only true after 

~4 standard deviation away from the mean. Therefore SPSA provides better 

performance than EnOpt with a probability close to 100%. No statistically significant 

difference is observed between SPSA and EnOpt with (a=2, c = 0.08). 
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Figure 4-19: Standard deviation of 5 independent runs versus simulation runs for SPSA 

and EnOpt with ensemble of size 10 

EnOpt outperforms SPSA using ensemble of size 4 (ne=4) (Figure 4-20) with a 

probability of 68% calculated using hypothesis testing. In this case, SPSA use of 

Bernoulli ±1 perturbation provides a coarse approximation of the gradient which speeds 

up the convergence to the optimum solution during initial iterations (i.e. far from the 

optimum solution). However, better convergence is observed by EnOpt during later 

iterations (i.e. closer to the optimum solution) by providing a smoother and more 

accurate estimate of the gradient. Introducing a blocking stage for these cases showed a 

small improvement in the performance at the cost of an increased computation time.   
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Figure 4-20: NPV versus number of simulation runs for SPSA and EnOpt, without-

blocking (ensemble of size 4 per iteration, average results of 5 independent runs) 

Figure 4-21 (a) and (b) shows the ICVs opening area for the best scenario obtained by 

SPSA and EnOpt, respectively. As previously, the area is scaled between 0 (fully 

closed) and 1 (fully open). Similar to case-2, the solution obtained by SPSA shows 

larger change in the valve area at two consecutive time steps as compared to EnOpt with 

smoother ICV operation. The added-value is mainly obtained by decreasing the 

production from the high permeability region (ICV-4) to provide better sweep of the 

reservoir.  

4.5.4 Comparison of optimal proactive control with the I-well in an optimum and 
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The non-optimum well location resulted in proactive optimization delivering a greater 

improvement (~ 8.2% w.r.t. the base case) as compared to the improvement with the 
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the well whose production results in close to the maximum NPV without applying any 
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(a) 

 

(b) 

Figure 4-21: ICVs opening area during production period for the best case obtained by 

(a) SPSA (b) EnOpt 
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Comparing Figure 4-15 and Figure 4-21 highlights the difference between the optimum 

control scenarios obtained in case-2 (with optimum well location) and case-3 (with non-

optimum well location). In case-2 the I-well is in the optimum location of an I-well with 

fixed, fully open ICVs. Hence, essentially fewer control of the zonal flow is required to 

improve the sweep performance. The extent of ICV’s control is shown by the deviation 

from the fully open area while the same control frequency of ICVs is considered for 

both cases. Higher deviation from the no-control (fully-open) in case-3 is also 

confirmed by lower average flow area of the 4 ICVs at each control step in the optimum 

control scenario obtained as compared to case-2 (Figure 4-22).  

 

Figure 4-22: Normalised average area of 4 ICVs at each control step in the optimum 

control scenario obtained for PUNQ-S3 with optimum well location (Case-2) and 

PUNQ-S3 with non-optimum well location (Case-3) 
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length is a function of the number of control steps over which we wish the zonal 

controls to be correlated. Increasing the correlation length forces the controls to be 

smoother. However, it is not always possible to obtain an optimal control, with a good 

level of improvement in NPV, with smooth controls for example when the optimal 

control shows bang-bang behaviour as in Wang et al. (2009). Further investigation on 

obtaining a smooth optimal control of ICVs is required. 

4.6. Discussion and Conclusions 

Two approaches based on stochastic estimation of gradient for the proactive 

optimisation of multiple ICVs that are independent of the choice of the reservoir 

simulator have been discussed. Moreover, the large number of control variables and the 

search space, which is characterised by several local optima with objective values close 

to the global optimum, are other reasons for suitability of the proposed approaches. 

Both approaches are employed to perform the optimisation on 3 representative case 

studies. These case studies are characterised with the following features in the search 

space: 

 Case-1: a simple optimum control scenario with a low number of local optima. 

 Case-2: the optimisation starting point is close to the optimum solution, but there 

are many local optima 

 Case-3: the optimisation starting point is far from the optimum solution and 

there are many local optima. 

Table 4-2 and the discussion below summarises the conclusions from these case studies 

and provides recommendations for future application of the algorithms. 

Tuning. Optimum selection of the tuning parameters speeds-up the optimization 

process and/or improves the obtained solution, especially with a computationally 

demanding objective function. The previously published tuning guidelines have been 

modified for the application in proactive optimization of ICVs; though if time permits, 

it is recommended to select the best tuning parameters by testing the performance of the 

algorithm with multiple values taken from the defined range.  
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Algorithm selection. Both SPSA and EnOpt show good performance. The poorer 

performance of SPSA-forward when using a limited number of ensembles is due to 

employing information from the previous iteration. The recommended implementation 

of EnOpt uses the mean of the ensembles in the current iteration for the same reason. 

SPSA tends to outperform EnOpt with a larger ensemble size (10 here) due to its ability 

to bypass more local optima. However EnOpt provides better performance than SPSA 

for a smaller ensemble size and a limited number of simulation runs due to the smoother 

estimation of gradient (double smoothing in EnOpt see Equation 4-20).  

An evaluation of the available resources is suggested for the algorithm selection stage. 

If parallel processing is not available we suggest to use EnOpt with a sufficiently small 

ensemble size (e.g. 4) in order to perform more iterations in a fixed number of 

simulation runs. However, nowadays with the increasing parallel processing capability 

(more than 4 CPUs) we recommend to use an ensemble size equal to the number of 

CPUs to take full advantage of the available resources. SPSA tends to outperform 

EnOpt under these conditions. Further, using an ensemble size larger than the number of 

CPUs is not recommended, following the same logic previously, since generally the 

optimization process takes advantage of the larger number of iterations. Additionally, 

EnOpt is more robust to the choice of the tuning parameters mainly due to its smoother 

estimation of the gradient. 

Blocking. The blocking stage is not suggested when using SPSA and EnOpt 

formulation proposed in this study due to an increase in the computation time for a 

potentially small improvement in the performance. The computation time is affected by 

two conflicting behaviors, which are an additional objective function evaluation per 

iteration and eliminating simulation of the cases with convergence problems. Tuned 

first-order methods are showing a relatively stable process which reduces the cases with 

convergence problem, eliminating the need for adding the blocking stage. Moreover, 

moving in non-optimum direction during some iterations is considered as an injected 

noise helping the gradient-based optimization algorithm to discover the search space 

and approach the global optimum solution. 

Characteristics of the solution. The case studies demonstrated that the difference 

between the two approaches is not only the level of improvement but also the 
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characteristics of the obtained optimal control strategy. SPSA use of Bernoulli ±1 

perturbation provides a coarse approximation of the gradient and will generally 

approach to an optimum solution with sharper changes in the valve area at successive 

control steps when compared to EnOpt which provides a smoother operation 

(Figure 4-15, Figure 4-16 and Figure 4-21). Li and Reynolds (2011) proposed a 

modified version of the SPSA called Stochastic Gaussian Search Direction (SGSD) 

employing random normal distribution when calculating the gradient. This modification 

is not considered in this thesis. The characteristic of the solution is particularly 

important in order to satisfy the operators’ preference to smoothly or abruptly control 

the ICV area (or zonal flow rates). 

Table 4-2: Comparison of SPSA and EnOpt for proactive optimisation of ICVs 

Cases and 

challenges 

Production 

strategy 

Optimisation 

algorithm 

N˚ of 

ensembles 

a 

value 

c 

value 

% 

Improvement 

w.r.t. base-case 

Case-1 

Simple box 

model 

BHP 

SPSA 
10 

2 0.16 
19.7 

4 16.1 

SPSA-

Forward 

10 
2 0.16 

17.5 

4 12.7 

EnOpt 
10 

2 0.16 
19.7 

4 16.9 

Case-2 

PUNQ-S3 

Optimum 

well 

Location 

Liquid 

Rate 

SPSA 

10 0.5 0.08 

2.1 

SPSA-

Forward 
1.4 

EnOpt 2 

Case-3 

PUNQ-S3 

Non-

Optimum 

well 

Location 

Liquid 

Rate 

SPSA 10 
1 0.08 8.2 

2 0.08 7.9 

EnOpt 10 

1 0.08 7.5 

2 0.08 8.1 
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Chapter 5 – Robust proactive optimisation of ICVs under reservoir 

description uncertainty 

 

5.1. Introduction 

This chapter presents modifications to the proactive optimisation workflow in order to 

include reservoir description uncertainty. Assumptions made during the reservoir 

modelling process due to the limited knowledge of the field geology and its flow 

performance result in an uncertain model forecast. Uncertainty can be accounted for by 

generating multiple, equally-weighted model realizations that represent the range of 

potential production forecasts. These realizations need to be considered in the proactive 

optimisation process to ensure robustness of the obtained control scenario to provide 

“on-average” optimal performance in all realizations. 

5.2. Problem formulation in proactive optimization under geological 

uncertainties 

Following Section 4.2, the objective of proactive optimisation is to find a control 

scenario of ICVs that maximize NPV which is in fact a function of the uncertainties, 

ℱ(𝑥, 𝑦𝑟) = ∑ [∑(𝑟𝑜𝑞𝑜,𝑗
𝑛 − 𝑟𝑝𝑤𝑞𝑤,𝑗

𝑛 − 𝑟𝑜𝑝𝑒𝑥𝑞𝑙,𝑗
𝑛  )

𝑁𝑝

𝑗=1

]

𝑆

𝑛=1

𝛿𝑡𝑛

(1 + 𝑏)𝑡𝑛
 , 5-1  

A fixed set of control vector (𝑥) will produce a different objective function value (ℱ) 

when applied to each one of the model realizations (𝑦𝑟).  

A basic, proactive optimization approach (discussed in Chapter 4) performs the 

optimization using a single realization to obtain a control scenario that might show a 

sub-optimum effect when applied to other realizations, or even decrease the objective 

value with respect to the uncontrolled case. This reflects the undesired scenario when 

the I-wells are proactively controlled based on an inaccurate reservoir model, with this 

model not being properly updated. 
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The solution is to optimise an augmented objective function considering all or selected 

model realizations. The so-called robust optimisation approach has been introduced in 

the petroleum engineering by Yeten et al. (2003) for well location optimisation, Bailey 

and Couet (2005) for maximising asset value in a gas field, and van Essen et al. (2013) 

for production and injection optimisation in conventional wells. Several definitions for 

the augmented objective function, employed during the robust optimisation process, are 

developed in the literature which are briefly explained in the following subsections.  

5.2.1 Mean-only  

Substituting the objective function with the mean of the objective function values 

calculated over different realizations, i.e. the expectation, will potentially improve the 

robustness of the obtained solution. The new objective function is defined as: 

𝒰(𝑥, �̂�) = 𝐸(ℱ(𝑥, �̂�)) 5-2 

𝐸(ℱ(𝑥, �̂�)) =
∑ ℱ(𝑥, 𝑦𝑟)𝐻

𝑟=1

𝐻
, 5-3 

where �̂� represents that a set of 𝐻 nominated equally-weighted realizations (represented 

by the state vector 𝑦𝑟) are employed to calculate the expectation (mean) of the objective 

function value for each control scenario (𝑥) during the robust optimization process. 

Various modifications of this approach have been previously applied by for example 

(van Essen et al., 2013, Chen et al., 2011, Wang et al., 2012, Fonseca et al., 2014, 

Mulvey et al., 1995, Capolei et al., 2013). The major drawback of this approach is that 

only the expected added-value (i.e. mean) but not the risk (i.e. variability) is considered 

during the robust optimisation process.  

5.2.2 Mean-variance approach  

This approach was developed to address the adverse effect of neglecting the variability 

of the objective function in the mean-only approach. The augmented objective function 

(a.k.a. Utility function) is now a combination of mean and variability of the uncertain 

objective function (NPV in this work) over a set of chosen model realizations. It was 

shown (Chen et al., 1999) that the mean-variance approach is capable of finding a 

robust solution. Their introduction of the variance term in the objective function 
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provided a flexible control of the level of risk. Petvipusit et al. (2014) employed mean-

variance approach for robust optimisation of CO2 sequestration and showed that utility 

function can be adjusted based on the preference of the decision makers toward risk. 

They found that the mean-variance approach improves the worst case scenario as 

compared to mean-only approach. Capolei et al. (2015) employed mean-variance 

approach for proactive optimisation of conventional wells. They observed that 

introducing variance term in the objective function definition is able to reduce the risk 

significantly at the price of reduced mean profits. The following form of the utility 

function was employed in this study (Petvipusit et al., 2014, Capolei et al., 2015):  

𝒰(𝑥, �̂�) = 𝐸(ℱ(𝑥, �̂�)) − 𝐴 𝜎2(ℱ(𝑥, �̂�)), 5-4 

𝐸(ℱ(𝑥, �̂�)) =
∑ ℱ(𝑥, 𝑦𝑟)𝐻

𝑟=1

𝐻
, 5-5 

𝜎2(ℱ(𝑥, �̂�)) = 𝐸 (ℱ(𝑥, �̂�) − 𝐸(ℱ(𝑥, �̂�)))
2

, 5-6 

where 𝐸(ℱ(𝑥, �̂�)) and 𝜎2(ℱ(𝑥, �̂�)) are the mean and variance of the selected 

realizations, respectively. A is a tuning constant to define the allowable level of risk in 

the robust optimization process. The mean-variance dilemma is expected by using this 

approach while focus on reducing variance can result in a solution with very low mean. 

For example, consider the extreme case of fully-close control scenario with zero 

production in all realisations and therefore minimum (i.e. zero) variance, but also zero 

mean. This is similar to bias-variance dilemma in machine learning (Geman et al., 

1992). The function of tuning constant, A, is to alleviate this problem by ensuring a 

balance between the weights of mean and variance in the augmented objective function 

(Equation 5-4). In this study the value of A is defined to provide the same order of 

magnitude for mean and variance term. The impact of A on the optimisation 

performance is investigated in Section 6.7. 

Several other researches incorporate the variability in the objective function using the 

standard deviation instead of variance (Yeten et al., 2003, Bailey and Couet, 2005, 

Alhuthali et al., 2008). It is expected that the flexible tuning constant (A) is capable to 

define the weight of mean versus variance or standard deviation. Further study to 
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investigate the impact of mean-variance or mean-standard deviation objective function 

on the robust optimisation process is required. 

5.2.3 Asymmetric approaches 

One of the drawbacks of the mean-variance approach is the symmetric nature of the 

variance. Therefore variance might be reduced by penalising the upper tail (good cases) 

instead of increasing the lower tail (bad cases) of the objective function distribution. 

Robust optimisation approaches are developed to focus on the lower tail of the objective 

function distribution, for example: Worst-case Optimisation (WCO) or Conditional 

Value-at-Risk (CVaR) optimisation. WCO considers only the worst case and solve a 

max-min (or min-max) optimisation. The CVaR approach enhances the process by 

considering the average of a class of worst cases instead of a single case. The 

disadvantage in WCO and CVaR is that ignoring the mean could result in lower added-

value. In the proactive optimisation of oil reservoirs mean-worst-case or mean-CVaR 

approach is employed (Siraj et al., 2015).  

Siraj et al. (2015) and Capolei et al. (2015) compared asymmetric and symmetric (i.e. 

mean-variance) approaches to robust optimisation under uncertainty. They observed that 

mean-variance approach has a higher tendency to penalise good cases in order to 

minimise the variance as compared to the WCO and mean-CVaR.  

Symmetric mean-only and mean-variance approaches are employed in this thesis while 

investigating the impact of realization selection on the robust optimisation process 

(Chapter 6).  

5.3. Modifications to speed-up the robust optimisation process 

The modified augmented objective function accounts for the uncertainty by considering 

a set of  𝐻 nominated realizations. Naturally, the full ensemble of model realizations, 

the ideal approach, will identify the ultimate value, together with a significant increase 

in the computational costs, especially for full-field applications. Two possible 

approaches are described in the following subsections to alleviate this effect.  
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5.3.1 Prior reduction of the number of nominated realizations 

Choosing a small ensemble of model realizations for robust optimization that are 

representative of all available models is computationally less demanding; but is also 

subject to bias during the selection process. The small ensemble of realisations may be 

selected randomly, as in (Chen et al., 2011) and (Haghighat Sefat et al., 2014). The 

randomly selected small ensemble of realizations are distributed uniformly based on the 

objective function value. An example application of this approach is presented in 

Section 5.4.  

Employing random sampling for selecting a subset of the realizations for robust 

optimization cannot guarantee proper capturing of the underlying model uncertainties. It 

may also fail to provide optimal controls that generalizes well to the full ensemble of 

model realizations (Chapter 6). The preferred alternative is to employ a methodology to 

systematically select a subset of realizations that reflects the reservoir flow uncertainty 

of the full set (Park, 2011, Scheidt and Caers, 2013). Wang et al. (2012) used model 

input and output properties to cluster the model realizations and then select (based on 

this clustering) a small number of realizations for robust well location optimization. 

Park (2011) proposed to use a distance measure tailored to the subsequent application to 

measure the similarity/dissimilarity of all realizations. Similar realizations are grouped 

into a limited number of clusters from which a small number of realizations are 

selected. In this study the methodology developed by Park (2011) is modified to select a 

small number of realizations for robust proactive optimization of ICVs (Chapter 6). 

This approach is independent of the choice of the optimization algorithm. The 

augmented objective function is evaluated using a smaller number of selected 

realizations (i.e. reducing the number of objective function evaluations) and then 

optimised using the chosen optimisation algorithm. This approach is employed for all 

robust optimizations in this thesis. 

5.3.2 Estimating the Gradient from an ensemble of realizations 

This approach can only be used when robust optimization is performed using ensemble 

based methods. Two sets of ensemble are considered during such robust optimization; 

the ensemble of (1) perturbed control variables (𝑛𝑒) and (2) reservoir model realizations 
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(𝑁𝑟). The normal implementation of ensemble based methods requires at least 𝑛𝑒  × 𝑁𝑟 

objective function evaluations per iteration of robust optimization (i.e. all realizations 

are evaluated for each perturbed set of control variables).  

A modified approach is to perform only 𝑛𝑒 objective function evaluations per iteration 

in order to approximate the gradient (see (Stordal et al., 2014) for proof of gradient 

under geological uncertainty can be approximated using a different control variable for 

each reservoir model realization and example applications). In this approach each 

perturbed set of control variables is only applied to one realization (i.e. 1:1 ratio); 

making it computationally very attractive. However, the quality of the approximated 

gradient obtained using 1:1 ratio is not acceptable. This is especially true with a non-

monotone objective function and when there is a large difference between employed 

realizations e.g. Raniolo et al. (2013) reported failure of the 1:1 ratio in optimization of 

polymer injection due to poor gradient estimates. They suggested using a small number 

of nominated realizations which approximately captures the uncertainty (see 

Section 5.3.1). The alternative is to improve the quality of the gradient using a ratio 

other than 1:1 while each realization is employed for evaluating larger number of 

perturbed control sets. For example Fonseca et al. (2014) used 1:20 ratio to alleviate this 

problem while nominated realizations are fixed during the whole optimization process. 

Li et al. (2013) suggested to randomly select a subset of realization at every iteration. 

Fonseca et al. (2015) proposed a modified ensemble-based robust formulation where 

gradient is calculated by considering value of each individual realisation at the current 

iteration step rather than a mean-shifted approach. They showed that, this modified 

approach can achieve a greater accuracy using a lower ratio. 

Following limitations are associated with this approach: 

 It can only be coupled with an ensemble based optimisation algorithm to reduce 

the computation time by evaluating each perturbation ensemble using only one, 

or a small number, of realisations  

 All published studies (e.g. (Raniolo et al., 2013, Fonseca et al., 2014, Stordal et 

al., 2014)) consider mean-only objective function (Section 5.2.1). Calculation of 

variance, allowing employment of a mean-variance objective function 

(Section 5.2.2), is not representative using the 1:1 approach. The calculated 
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variance using 1:1 approach has the combined effect of difference in control and 

reservoir model realizations while the interest in mean-variance approach is to 

reduce the variance due to reservoir description uncertainty only.  

5.4. Mean-only robust optimisation using randomly selected realizations based on 

the objective value 

The PUNQ-S3 reservoir model with the Section 4.5.3 I-well configuration is used in 

this section. The uncertainty is quantified using 66 unique realizations of the porosity 

and permeability distribution (𝑁𝑟 = 66). They were generated by Grebenkin and Davies 

(2010) using a sequential Gaussian simulation algorithm based on real field data 

provided for the six original wells [see (Floris et al., 2001, Grebenkin and Davies, 2010) 

for the original well data). Figure 5-1 shows the distribution of NPV for the base case 

control scenario, fully open ICVs during the whole production period, for all 

realizations. Table 4-1 provides the economic parameters used for calculating the NPV. 

 

 

Figure 5-1: Distribution of NPV for the base case of all realizations and 5 randomly 

selected realisations 
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All realizations are sorted based on the NPV and five realizations were selected using a 

uniform random distribution (bins with a selected realization are shown in Figure 5-1). 

A random selection process does not guarantee to correctly capture the extent of the 

underlying uncertainty as for example in this case no realisation is selected from the 

NPV range with maximum probability (i.e. bin 782 Million $ in Figure 5-1). The 

permeability distribution and Oil-In-Place (OIP) in the selected realizations are shown 

in Figure 5-2. The small difference in OIP is because only permeability and porosity 

distribution are the uncertain parameters in this case study.  

 

     

Realization 

Number 

1 2 3 4 5 

OIP (Million 

SM3) 

13.2 13.4 13.5 13.1 12.9 

 

 

Figure 5-2: Top layer permeability distribution for 5 selected realizations 

The objective function is evaluated using the mean-only approach (Equation 5-2) for 

these 5 selected realizations. SPSA is the optimization algorithm. It used an ensemble 

size of 10, performing 50 simulation runs per iteration to estimate the gradient. The 

objective function was evaluated for the updated control variables at each iteration. 

Visualisation and checking of the rate of convergence was made possible by adding 5 

extra simulation runs per iteration. 

Figure 5-3 shows the optimization performance. The objective value of the selected 

realisations for the obtained control scenario at each iteration is shown by dashed lines 

while the mean (i.e. the objective function) is shown by the red solid line. Robust 

optimization consistently increases the mean of the selected realizations with different 

levels of improvement being achieved for each realisation. Chapter 6 describes a 
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detailed comparison of the impact of robust optimisation on the mean and variance of 

the selected realisations as well as all realisations.  

 

Figure 5-3: Objective values during the optimisation process using mean-only approach 

 

5.5. Summary 

A review of the approaches to robust optimization was provided in this Chapter. 

Generally, the objective function is modified to incorporate the underlying uncertainty. 

A greater flexibility to attain the added-value of interest from the robust optimization 

process is achieved by including both mean and variance in the robust objective 

function definition. An approach to reduce the computational cost of the robust 

proactive optimisation process by reducing the number of selected, representative 

realizations is independent of the choice of the optimization algorithm and the objective 

function definition.   
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Chapter 6–Realisation Selection in Robust Proactive Optimisation of 

ICVs 

6.1. Introduction 

Numerical reservoir models are used to calculate the oil production forecast and 

evaluate the optimisation objective function. The limited geological knowledge of the 

field requires that several assumptions have to be made during the numerical model’s 

building process. This renders the model’s forecast uncertain. This uncertainty is 

usually managed by creating an ensemble of equally-probable models to evaluate the 

range of the forecast uncertainty. Ideally, a robust proactive optimisation approach 

should consider all the available reservoir model realisations to completely capture the 

underlying uncertainty. Hundreds or thousands of the reservoir model realisations are 

available making this process computationally unfeasible. This chapter proposes an 

efficient methodology for selecting a small ensemble of the reservoir model realisations 

which are representative of all available ones. 

The simplest approach to model selection is to randomly select a limited number of 

realisations form the ensemble of available realisations without any systematic method. 

Optimising a group of randomly sampled realisations does potentially improve the 

robustness of the solution when compared to single realisation optimisation. However, 

the extent of the underlying uncertainty is unlikely to be correctly represented by this 

random selection. The approach proposed in this thesis is to choose a few representative 

models by systematic screening and clustering of all available realisations. Reservoir 

models employ various properties (e.g. permeability, porosity, water saturation), 

corresponding to thousands or millions of grid blocks. As a result, each reservoir model 

is associated with a high-dimensional data set which exacerbates the screening and 

clustering process. One way to alleviate this problem is projecting the reservoir models 

onto a low dimensional metric space where visualisation and clustering can be 

performed efficiently.  

Possible criteria for defining the distance between models to construct the metric space 

are discussed. A distance measure, tailored to the proactive optimization application, is 

used to define the similarity/dissimilarity of the different realizations which is then 

employed to perform the clustering operation. Multi-Dimensional Scaling (MDS) is 
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employed to convert all distances into an equivalent Euclidean value if necessary, 

followed by visualisation and analysis in a lower dimension. K-means clustering for 

selecting a representative ensemble of model realizations that performs in an equivalent 

manner to all available realizations has been chosen. A few more representative models 

may then be selected from the identified clusters to perform the subsequent robust 

proactive optimisation. 

Moreover, we show that this robust proactive optimization process can either focus on 

the specific objective of increasing the mean or of reducing the variance (this is 

achieved via adjustable weights in the utility function). The relative importance of these 

conflicting objectives has to be taken into account during the model realization selection 

process to ensure the near-global success of the obtained control scenario. The proposed 

robust optimization framework has been tested on the PUNQ-S3 reservoir model. 

6.2. Uncertainty quantification 

Generally, uncertainty in a reservoir model is managed by creating an ensemble of 

equally probable model realizations. Let 𝑚𝑖 ∈  ℝ1×𝑝 be a vector of 𝑝 elements 

representing 𝑖𝑡ℎ model realizations containing properties of all grid blocks (e.g. 

porosity, permeability). Usually hundreds of model realizations are generated covering 

the uncertainty associated with the reservoir description (Peters et al., 2010, Wang et al., 

2012). The matrix 𝑀 ∈  ℝ𝑁𝑟×𝑝 defines the high-dimensional, uncertainty space 

assuming the total number of available model realizations (𝑁𝑟) is:  

𝑀 = (𝑚1, 𝑚2, … , 𝑚𝑖, … , 𝑚𝑁𝑟
)𝑇 , 6-1 

where, the vector 𝑚𝑖 is the input to the reservoir simulator along with the defined 

control parameters 𝑥 and 𝑂(𝑥, 𝑚𝑖) is the output of the reservoir simulator in-terms of 

integrated quantities of interest (e.g. oil production rate, water production rate). Unlike 

the high-dimensional input vector 𝑚𝑖, the output vector 𝑂(𝑥, 𝑚𝑖) has a low-dimension 

usually representing a time series at all simulation steps 𝑆 during the field production 

time (𝑂(𝑥, 𝑚𝑖) ∈ ℝ1×𝑆 for one output only). It should also be noted that later 

optimization might require calculating a cumulative value (e.g. cumulative oil 

production, NPV) from this time series as the final objective function. The objective of 
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modelling uncertainty is not the uncertainty itself; but its impact on the response from 

the model as discussed by Park (2011). Hence it is beneficial to capture the existing 

uncertainty in the high-dimensional input space 𝑚𝑖 by the low-dimensional response 

space 𝑂(𝑥, 𝑚𝑖). Migrating to low-dimensional response space will not only simplify the 

screening and clustering process, but will also link them to the final application as 

explained in the following subsections. 

6.3. Similarity/dissimilarity distance measure 

The similarity/dissimilarity of reservoir model realizations can be defined by measuring 

the difference between the corresponding parameters of each realization. The difference 

can be measured as a distance by considering parameters from only the input space or 

only the response space or a combination of parameters from both input and response 

space as abstracted by Equations 6-2, 6-3 and 6-4 respectively. 

𝐷𝑚𝑖𝑗 = 𝐷𝑚(𝑚𝑖, 𝑚𝑗), 6-2 

𝐷𝑂𝑖𝑗 = 𝐷𝑂(𝑂𝑖, 𝑂𝑗), 6-3 

𝐷𝑂𝑚𝑖𝑗 = 𝐷𝑂𝑚([𝑂𝑖, 𝑚𝑖], [𝑂𝑗, 𝑚𝑗]). 6-4 

The input space (𝑚𝑖) is high-dimensional (103 to 106 dimensions) while the 

response/output space (𝑂𝑖) is low-dimensional (10 to 103 dimensions). 𝐷𝑚, 𝐷𝑂 and 

𝐷𝑂𝑚 are the distance measure functions which can be any standard distance function, 

e.g. Euclidean, city-block, cosine (i.e. cosine of the angle between two vectors), etc. or 

any user-defined function.  

6.3.1 Euclidean distance 

The Euclidean distance between two data sets is defined as (e.g. from input space):  

𝐷𝑚(𝑚𝑖, 𝑚𝑗) = √∑(𝑚𝑖,𝑘 −  𝑚𝑗,𝑘)2

𝑝

𝑘=1

 . 6-5 

The Euclidean distance has been used in several previous studies in the context of 

reservoir engineering, either by calculating the distance by considering parameters from 
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the input space (Tavakoli et al., 2014), the response space  (Demyanov et al., 2014) or a 

combination of parameters from both the input and the response space (Wang et al., 

2012). 

6.3.2 Connectivity distance 

In this study we modified the connectivity distance approach (Park, 2011), to generate a 

user-defined distance function for measuring dissimilarity in the response space (𝐷𝑂). 

The following criteria were considered when defining the distance function: 

1. The distance has to be correlated with the dynamic response of the reservoir 

models;  

2. The distance measure has to be tailored to capture the uncertainties of interest in 

the response parameters; 

3. Evaluation of the function avoids a time consuming, full physics, reservoir 

simulation. 

Park (2011) considered the summation of the differences in the fractional flow curves of 

all conventional production wells as the connectivity distance between models as 

follows. 

𝐷𝑂(𝑂𝑖, 𝑂𝑗) = ∑ ∫ (𝑓𝑤(𝑂𝑖, 𝑡, 𝑤𝑝
𝑔

) − 𝑓𝑤(𝑂𝑗, 𝑡, 𝑤𝑝
𝑔

))  𝑑𝑡,
𝑡𝑓

𝑡=0

𝑁𝑝

𝑔=1

 6-6 

where 𝑓𝑤(𝑂𝑖, 𝑡, . ) is the fractional flow of water as a response of model 𝑖, 𝑤𝑝
𝑔

 is the gth 

production well, 𝑁𝑝 is the total number of production wells, 𝑡𝑓 is the final production 

time. The advantage of using fractional flow as a response parameter is that a good 

approximation of its value can be calculated via a (fast) streamline reservoir simulation 

(Thiele et al., 1996). 

We have modified Park’s (2011) formulation by considering the summation of 

differences in the fractional flow curves of all fully open ICVs as a proxy corresponding 

to the performance of the production zones. 
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𝐷𝑂(𝑂𝑖, 𝑂𝑗) = ∑ ∑ ∫ (𝑓𝑤(𝑂𝑖, 𝑡, 𝐼𝐶𝑉𝑧
𝑔

) − 𝑓𝑤(𝑂𝑗 , 𝑡, 𝐼𝐶𝑉𝑧
𝑔

))
𝑡𝑓

𝑡=0

𝑁𝑧

𝑧=1

𝑁𝑝

𝑔=1

𝑑𝑡, 6-7 

where 𝑓𝑤(𝑂𝑖, 𝑡, . ) is the zonal fractional flow as a response of model 𝑖, 𝐼𝐶𝑉𝑧
𝑔

 is the 𝑧𝑡ℎ 

ICV in the 𝑔𝑡ℎ production well, 𝑁𝑧 is the total number of ICVs (zones) in the 𝑔𝑡ℎ 

production well, 𝑁𝑝 is the total number of production wells and 𝑡𝑓 is the final 

production time. 

The final objective of the proactive optimization in this study is to improve the NPV by 

controlling individual zonal production. This is often, but not always, closely related to 

a second, frequently employed objective of ensuring simultaneous water breakthrough 

in all zones. The zonal water fractional flow curves versus production time are expected 

to be an indicator of the variance in the optimal control scenario for different zones. A 

further advantage of using zonal fractional flow curves is that they reflect the zonal 

multi-phase flow dynamics, which is a particularly important parameter in the 

management of field oil-water production. An alternative choice is to use the variance 

of the NPV (Chapter 5). However, NPV provides aggregate global information on the 

behaviour of the whole system; while zonal information for subsequent zonal control is 

required for this study. Hence the clustering process has been tailored to the subsequent 

proactive optimization calculations with the fractional flow curve being calculated by 

considering the unfavourable phase (water) w.r.t. the favourable phase (oil). This study 

substitutes water-cut (WC), calculated by a full physics reservoir simulation, for the 

fractional flow curve. WC provides a similar (and possibly more accurate) behaviour to 

the fractional flow while satisfying criteria 1 and 2 above. The drawback of using WC is 

that it is calculated by a full-physics simulation which substantially increases the 

computation time (i.e. violating criterion 3). However, the WC was utilized in this study 

due to the use of a commercial reservoir simulator which did not provide quantitative, 

streamline information. The choice of using fractional flow or WC in the developed 

algorithm thus provides the additional flexibility of fast application when quantitative 

streamline information is available or slower application using the commercial reservoir 

simulators without streamline information. 
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6.4. Multi-Dimensional Scaling 

Multi-Dimensional Scaling (MDS) is a statistical technique for mapping high-

dimensional data (𝑁𝐻) onto a low-dimensional space (𝑁𝐿) while preserving the 

characteristics of the data as far as possible (Borg and Groenen, 2005). Generally, the 

distance measure between the data points is considered to be an indicator of 

similarity/dissimilarity. As a result, MDS performs the mapping such that the Euclidean 

distance between the points in the mapped low-dimensional space is as close as possible 

to the distance defined in the original space as follows.  

𝕌 → 𝕦    𝑠. 𝑡.  𝐷(𝕌𝑖, 𝕌𝑗) ≅ 𝐷(𝕦𝑖 , 𝕦𝑗), 6-8 

where 𝕌 ∈ ℝ𝑁𝐻 represents the data points in high-dimensional original space, 𝕦 ∈ ℝ𝑁𝐿 

represents the data points in low-dimensional mapped space (usually 2 or 3 dimensions 

for the visualization purpose), 𝐷(𝕌𝑖, 𝕌𝑗) is the pairwise distance in the original space, 

calculated by using Equation 6-7 and 𝐷(𝕦𝑖, 𝕦𝑗) is the pairwise Euclidean distance 

between the mapped points. In this study, MDS is performed by eigenvalue 

decomposition of the dissimilarity matrix and then retaining the largest positive 

eigenvalues. Considering 𝑁𝑟 as the total number of available model realizations the 

dissimilarity matrix has the dimension of 𝑁𝑟 × 𝑁𝑟 while elements of this matrix are 

pairwise distance between realizations corresponding to the row and the column of that 

element. The output matrix of the MDS has the dimension of  𝑁𝑟 × 𝑁𝐿 , with each 

element representing the relative location of the 𝑁𝑟 points in 𝑁𝐿 dimensional space. In 

this study it is considered that 𝑁𝐿 = 2, hence all model realizations will be mapped into 

a 2-dimensional space. MDS was previously used by (Scheidt and Caers, 2013) to map 

the high-dimensional data onto a lower dimension while preserving the 

similarity/dissimilarity of the different realizations. 

6.5. K-means clustering 

K-means clustering (Seber, 2004) is selected following previous works on the clustering 

in low-dimensional metric space (Caers and Park, 2008, Scheidt and Caers, 2013, Park, 

2011, Wang et al., 2012). K-means clustering is fast and can achieve a good clustering 

accuracy especially when it is applied to a low-dimensional point set and therefore is 
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suitable for this study. K-means clustering routines provided by MATLAB is used in 

this study. All available realizations (𝑁𝑟) are grouped into a small number of clusters 

(𝑁𝑐) after mapping from 𝑁𝐻 dimensional original space into 2-dimensional space. K-

means clustering iteratively finds the locations of the clusters centre 𝜏𝑜𝑝𝑡 =

{𝜏1, 𝜏2, … , 𝜏𝑁𝑐
} of 𝑁𝑐 clusters such that the summation of the distances for all 𝑁𝑟 

realizations from the nearest cluster centre is minimized. Formally, k-means clustering 

is an iterative algorithm that tries to solve the following optimization problem: 

𝜏𝑜𝑝𝑡 = 𝑎𝑟𝑔  min  
𝜏

∑ min
𝑗=1,…,𝑁𝑐

‖𝕦𝑖 − 𝜏𝑗‖
2

Nr

𝑖=1

, 6-9 

where 𝜏𝑗 ∈ ℝ𝑁𝐿 is the centre for cluster 𝑗, 𝕦𝑖 ∈ ℝ𝑁𝐿  representing the mapped realization 

and ‖. ‖ represents the l2-norm. Each realization is assigned to the nearest cluster centre 

after determining the optimum cluster centres (𝜏𝑜𝑝𝑡): 

𝑎𝑟𝑔 min
𝑗=1,…,𝑁𝑐

‖𝕦𝑖 − 𝜏𝑗,𝑜𝑝𝑡‖. 
6-10 

The Silhouette value (Rousseeuw, 1987) is calculated to evaluate how well a data point 

is assigned to a particular cluster.  

𝑆𝑖𝑙𝑖 =
𝑏𝑖 − 𝑎𝑖

max(𝑎𝑖, 𝑏𝑖) 
, 6-11 

𝑎𝑖 =  𝑑𝑖,𝐶(𝑖)   𝑎𝑛𝑑    𝑏𝑖 =  min
𝐶≠𝐶(𝑖)

𝑑𝑖,𝐶 , 
6-12 

𝑑𝑖,𝐶 =  
1

# 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐶
∑ 𝐷(𝕦𝑖, 𝕦𝑙)

𝑙∈𝐶

, 
6-13 

where 𝑆𝑖𝑙𝑖 is the Silhouette value for data point 𝑖, 𝐷(𝕦𝑖, 𝕦𝑙) is the Euclidean distance 

between data point 𝑖 and data point 𝑙, 𝑑𝑖,𝐶 is the average dissimilarity of data point 𝑖 

with all other data points in cluster 𝐶, 𝑎𝑖 is the average dissimilarity of data point 𝑖 with 

all other data points within the same cluster. The value of 𝑎𝑖 shows how well data point 

𝑖 is assigned to its own cluster. The value of 𝑏𝑖 is the lowest average dissimilarity of 

point 𝑖 with any point in any other cluster. This would be the neighbouring cluster 

which is the next best fit for point 𝑖. The maximum theoretical Silhouette value is +1, 

indicating points that are very distant from neighbouring clusters (e.g. an extreme case 
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with the number of clusters equal to the number of data points i.e. 𝑎𝑖 = 0). The 

minimum theoretical Silhouette value is -1, indicating that there are points that have 

been assigned to the wrong cluster. A mid-range Silhouette value of zero, indicates the 

presence of points that are not distinctly in one cluster or another.  

The average of the Silhouette value (𝑆𝑖𝑙(𝑁𝑐)) for all data points evaluates the overall 

quality of the k-means clustering process with Nc clusters. This is calculated by: 

𝑆𝑖𝑙(𝑁𝑐) =  
1

𝑁𝑟
∑ 𝑆𝑖𝑙(𝑖)

𝑖=1,…,𝑁𝑟 

, 
6-14 

  

6.6. Realization selection in PUNQ-S3 with the I-well in a far-from-optimum 

location  

The uncertainty of the PUNQ-S3 model containing a single I-well, discussed in 

Section 4.5.3, is quantified by 66 unique realizations of the porosity and permeability 

distribution (𝑁𝑟 = 66). An efficient selection workflow should provide the most robust 

control scenario while utilizing a minimum number of realizations. The robustness of 

the resulting control scenario will be evaluated by comparing the cases when a small 

ensemble of realizations is selected with either a systematic or a random process. 

Figure 6-1 shows the flow diagram employed for testing the different approaches in 

order to find the best approach to efficiently select a small ensemble of realizations to 

acceptably represent all the available realizations. 
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Figure 6-1: Flow diagram of the steps performed to investigate the performance of 

different approaches to realization selection  

Different approaches could be used to measure the dissimilarity distance between 

realizations. The proxy for the distance between the realizations used for this study, 

follows Park (2011) recommendations for conventional wells. The proxy employs a 

modified connectivity distance formula (Equation 6-7) that measures the area between 

the zonal WC and the production time curves for different realizations. This value 

provides a good measurement of the similarity/dissimilarity of the different realizations 

due to the correlation of the distance measure employed with the dynamic response of 

the model and the objectives of the subsequent optimization. Figure 6-2, the individual 

WC curves for each of the four ICVs for all available realizations, illustrates how the 
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dynamic response of the different realizations is captured by the zonal WC curves. The 

calculated dissimilarity matrix is mapped into 2 dimensions using MDS (Figure 6-3). 

 

 
(a)                                                                  (b)  

  

(c)                                                               (d) 

Figure 6-2: WC curves of 4 ICVs for all realizations, (a) ICV1, (b) ICV2, (c) ICV3, (d) 

ICV4. The colour shows the corresponding clusters. 
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Figure 6-3: Mapping all realizations onto a two-dimensional space using MDS 

K-means clustering is then employed to group the mapped data points. One of the major 

challenges in k-means clustering is to determine the optimal number of clusters (here 

𝑁𝑐𝑜𝑝𝑡). Various methods have been developed to address this challenge [e.g. (Ben-Hur 

et al., 2001)]. However, none of these methods guarantees finding an optimal solution in 

all cases. Determining the optimum number of clusters is an ill-posed problem and is 

mostly addressed by a combination of intuition supported by mathematical analysis. 

The approach used in this study is to calculate the average Silhouette value for all data 

points when k-means clustering is performed with different number of clusters (𝑁𝑐) 

(Figure 6-4). The improvement in clustering (shown by a higher mean Silhouette value) 

as a result of increasing the number of clusters is divided into two regions (blue and red 

points in Figure 6-4) (Thorndike, 1953). The main improvement is achieved in the blue 

region (up to 6 clusters) while the rate of improvement slightly decreases in the red 

region (more than 8 clusters). The number of clusters was thus initially chosen to be six; 

as the minimum number of clusters that are representative of all 66 realisations.  
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Figure 6-4: Mean Silhouette value of all data points calculated for different number of 

clusters in k-means 

 

However, more detailed analysis showed that one of the clusters contained a single 

realization (cluster 6 in Figure 6-5 (b)). This is due to the significant difference in WC 

of ICV2 and ICV4 in this realisation as compared to other realisations (red curves in 

Figure 6-6 show the realisation in cluster 6). Hence the optimum number of clusters 

𝑁𝑐𝑜𝑝𝑡 = 5 was chosen as the initial value for the subsequent optimization. Figure 6-2 

shows the clustering results of Figure 6-5 (a) in the original space. However, due to the 

combined effects of different dimensions the distinct clusters in two dimensional space 

was not present in higher dimensional original space. 
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(a) 

 

(b)  

Figure 6-5: (a) K-means clustering considering 5 clusters (𝑁𝑐=5) (b) K-means clustering 

considering 6 clusters (𝑁𝑐=6) 
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                                    (a)                                                                 (b) 

 
                                   (c)                                                                    (d) 

Figure 6-6: WC curves for the single realisation of cluster 6 (in red) as compared to 

other realisations, (a) ICV1, (b) ICV2, (c) ICV3, (d) ICV4.  

Selecting one (or several) realizations from each cluster is another important decision 

that needs to be made prior to performing robust optimization. The minimum number of 

realizations are selected to minimize the computational cost of solving the robust 

optimization problem. A minimum number of 5 realizations have to be selected to 

account for the variability embedded in each cluster since all available realizations have 

been grouped into 5 clusters.  

Five cases were considered where optimization was performed using: (1) randomly 

selected single realization, which corresponds to ignoring the model uncertainty in the 

optimization process. (2) Five realizations selected from the same cluster. This 

represents an ill-informed selection method. Several tests were performed where a 

single cluster is randomly selected and then 5 realizations were randomly selected from 
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this cluster. (3) Five realizations selected using a uniform random distribution based on 

the NPV (Section 5.4). (4) One realization is selected from each 5 clusters. This 

represents a well-informed selection method. The closest realization to the centre is 

selected as the representative realization of each cluster (Scheidt and Caers, 2013). (5) 

All available model realizations. The mean of the objective function of the chosen 

realizations (i.e. Equation 5-2) is optimized in all cases with multiple realizations. For 

all cases five independent runs were performed in order to eliminate the random effects 

originating from: (1) the random number generator employed in the SPSA, this affects 

all cases and (2) the random selection of the realizations in case 1, 2 and 3. 

The obtained control scenarios from independent runs of the five cases are applied to all 

available realizations. The improvement in the expected NPV is compared in Figure 6-7 

(a) w.r.t. the base case (i.e. average NPV of all realizations with fully open ICVs). Note 

that a reactive control was not chosen as the base case since a “do-nothing” base case is 

both unambiguous and simple to implement; allowing a relative comparison of the 

different robust proactive optimization approaches. Single realization optimization (case 

1) provides the minimum robustness at a minimum computational cost while robust 

optimization considering all available realizations (case 5) provides the maximum 

improvement, at a possibly prohibitive, increase in the computation cost (Figure 6-7(c)). 

Here, the optimization was performed for 100 iterations for each case, while at each 

iteration the average stochastic gradient is calculated using 5 independent perturbations 

employing a central difference formulation. This results in 11 simulation runs per 

iteration for case (1); 55 simulation runs per iteration for case (2), (3) and (4); and 726 

simulation runs per iteration for case (5).  

Figure 6-7 (a) and (c) show that in this case study an acceptable improvement (~ 90% of 

the improvement using all realizations) is achieved within a reasonable computational 

time when clustering is performed and one realization is selected closest to the centre of 

each cluster. The lower mean in case 1, 2 and 3 is also due to the random selection of 

realisations in these cases which is also confirmed by larger variation of the random 

runs (Figure 6-7 (b)). Moreover, the normalised standard deviation (in case (4) and case 

(5)) is significantly lower than the normalised added-value showing that 5 independent 

runs are enough to eliminate the random effect of SPSA in this case study (Figure 6-7 

(a) and (b)). The advantage of an approach with a low variance (e.g. case (4)) is higher 
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probability of achieving the optimum solution. Note that improved robust optimization 

due to prior clustering of realizations has also been observed by Wang et al. (2012) in 

an optimum well location study. 

  
(a) 

 
(b) 

 

(c) 

Figure 6-7: (a) The improvement in the expected NPV of all realizations w.r.t. the base 

case (b) the standard deviation of 5 random runs w.r.t. the base case (c) Relative 

computation time, as a result of performing optimization using different approaches: 

(case 1) single realization optimization, (case 2) 5 realizations are selected from the 

same cluster, (case 3) 5 realizations are randomly selected based on the objective value, 

(case 4) one realization is selected from each of the 5 clusters, (case 5) all available 

realizations are considered   
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6.7. Robust optimization using selected realizations 

The framework developed for robust optimization is summarized in Figure 6-8, where 

the different steps required to efficiently select a small ensemble of realizations are 

detailed. A choice must then be made between the “mean” and “mean-variance” 

approaches for robust optimization. The effect of the random number generator 

employed in SPSA (Section 4.4.1) was eliminated here by performing five independent 

runs. Similar to previous cases the variance of independent runs is significantly lower 

than the obtained added-value. The best optimization run is then presented for three 

approaches below: 

1. Single realization optimization: The optimization of this approach uses a single 

realization. The obtained controls are then applied to all other realizations with 

the test being repeated for each of the five cluster centres (Figure 6-5 (a)).  

2. Mean optimization: The objective function is now the mean of the objective 

values of the five realizations (i.e. Equation 5-2 or Equation 5-4 with 𝐴=0). The 

cost of evaluating the objective function has increased from one to five 

simulation runs. The dashed lines in Figure 6-9 (a) shows the objective values 

for each five realizations while the solid red line is their mean value. Figure 6-9 

(b) shows the impact of mean optimization on the variance. 

3. Mean and variance optimization: The new objective function defined by 

Equation 5-4 was evaluated using two different values of 𝐴 that provided the 

same order of magnitude for the utility function’s mean and variance terms. In 

order to find the value of 𝐴 we consider the objective values of the selected 

realizations at the starting point of the optimization process (i.e. fully-open 

ICVs). The utility function value is iteratively maximized (Figure 6-10 (c)). As 

expected, the case with a larger 𝐴 (“Low Risk”) provides a control scenario that 

gives lower variance (Figure 6-10 (b)); reducing the uncertainty in the potential 

NPV at the cost of lowering the average expected NPV (Figure 6-10 (a)). 
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Figure 6-8: Flow diagram for the robust optimization framework  
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(a) 

 

 (b)  

Figure 6-9: (a) Objective values during the optimization process using mean (𝐴=0) as 

objective function (b) Variance during the optimization process 
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(a) 

 
(b) 

 
 (c)  

Figure 6-10: Mean and variance optimization approach using 𝐴=10-6 (low risk) and 

𝐴=10-7 (High risk) - (a) Mean (added-value) (b) Variance (reliability) (c) Utility 

function value (objective function) 
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Figure 6-11: Changes in objective value of the selected realizations and their mean and 

variance using the Figure 6-8 different optimisation approaches. The mean and variance 

are calculated for the 5 selected realizations. The best case from performed independent 

runs. 
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The optimum solutions obtained by the three approaches are now applied to the selected 

5 realizations. Figure 6-11 presents the percent changes in the objective value of each 

realization, mean and variance with respect to the base case. The control scenario 

obtained using a single realization optimization approach often provides the maximum 

improvement for that particular realization, but normally shows suboptimal 

performance for all other realizations; though it could, by chance, provide a significant 

global improvement (e.g. Single realization Opt. (Real. 1) in Figure 6-11). It certainly 

does not guarantee a robust control in all cases. Moreover, higher global improvement 

in single realization optimization as compared to the robust optimization might also be 

due to the convergence failure (or convergence to a local optimum) when using an 

estimated gradient-based optimization algorithm. 

Figure 6-11 shows that robust optimization improves the reliability by using an 

ensemble of realizations. Robust optimization using the value (𝐴=0) provided a 

maximum improvement of ~14% in the mean of the selected realizations; while a larger 

value (𝐴=10-6) provides the most reliable control scenario with a ~78% decrease in the 

variance, while at the same time delivering a ~4% improvement in the mean. The 

adverse effect of lower mean by introducing the variance in the objective function is due 

to the symmetric nature of the mean-variance optimisation approach as discussed in 

Section 5.2. An asymmetric approach (e.g.(Siraj et al., 2015)) is expected to alleviate 

this problem. Implementing a control scenario which reduces the variance (i.e. a reliable 

control scenario) enhances the confidence that a specific value will be achieved by 

operating the (real) well/field in the prescribed way. 

The global performance of the obtained control scenario using each robust optimization 

approach was also been investigated by applying the resulting well controls to all 

available realizations. Table 6-1 shows the percent change in the mean and variance of 

all realizations w.r.t. the base case in contrast to Figure 6-11 which shows the result of 

applying the obtained control scenario to only the selected 5 realizations. The complete 

process is then repeated with an increased number of realization (10). Robust 

optimization (𝐴=10-6) is also repeated with an increased number of optimization 

iterations (400). 
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Table 6-1: The percent change in total mean and variance w.r.t. base case by applying 

the obtained control scenario using robust optimization approaches to all realizations 

Total number 

of Iterations 

Number of 

selected 

realizations 

% Change Robust (𝑨 =0) Robust (𝑨 =10-7) Robust (𝑨 =10-6) 

100 

5 

mean +14 +10 +4 

variance -50 -54 -45 

10 

mean +13 +11 +9 

variance -50 -56 -54 

400 

5 

mean - - +8 

variance - - -47 

10 

mean - - +9.3 

variance - - -57 

Table 6-1 shows that the control scenario resulting from the mean optimization 

approach (𝐴=0) reduces the variance when applied to all realizations. This agrees with 

earlier observations (Haghighat Sefat et al., 2015) and Chapter 4 of this thesis; that 

ICVs’ flexible control improves the production performance relative to the base case. 

Hence, the realizations with less favourable base case performances show the greatest 

improvement. This effect, and the corresponding reduction in the gains achieved by 

ICV control of more favourable realizations inherently reduces the global variance in 

the mean optimization approach (Figure 6-12). However, this behaviour is not observed 

in all realizations (e.g. Figure 6-9 (a) realization 3 with a lower base case performance is 

showing less improvement than realization 5 with a better base case performance). It 

can thus be concluded that, the mean robust optimization approach (𝐴=0) does not 

guarantee achieving the minimum variance.  

The optimization algorithm aims to find a control scenario which provides a further 

reduction in the NPV variance when the value of 𝐴 is increased in the utility function. 

However, the algorithm achieves this by no longer finding the absolute maximum of the 

mean NPV. Figure 6-11 confirms that the optimization algorithm achieves lower 

variance values, but with a reduction in the optimal mean NPV value, for these cases. 
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A discrepancy in the variance value was observed when investigating the global 

performance of the obtained control scenario using 5 selected realizations. Table 6-1 

shows that robust optimization (𝐴=10-6) and 100 iterations failed to find a control 

scenario which provides minimum variance when applied to all realizations. This might 

be due to: (1) the selected realizations not being representative of all realizations when 

the objective of robust optimization is on constraining the variance. This is intuitive as 

the variance inherently depends on the degree of variability of all realizations; which 

can be captured by selecting a larger number of realizations. (2) The utility function 

becomes non-smooth when the value of 𝐴 is increased [Figure 6-10 (c)]. A non-smooth 

objective function will degrade the performance of the stochastic gradient-based 

optimization algorithm used. The optimization algorithm could have been re-tuned e.g. 

by increasing c to bypass noise to overcome this problem.  

The optimization process is repeated by dividing all realizations into 10 clusters and 

then selecting the realization closest to the centre of each cluster. Table 6-1 shows that 

increasing the number of selected realizations to 10 results in the maximum 

improvement for the case of robust optimization (𝐴 =10-6), while showing a smaller 

improvement in the other two cases. Selecting 5 realizations is thus not fully 

representative of all realizations when the emphasis of robust optimization is on 

constraining the variance.  

The optimization algorithm converged to an acceptable solution by increasing the 

number of iterations to 400 (i.e. 𝑘𝑚𝑎𝑥 = 400) in the robust optimization (𝐴 =10-6) case 

achieving the minimum variance. This shows that optimization with a risk-averse 

objective is a relatively harder to solve optimization problem which requires a larger 

number of iterations for convergence.  

Figure 6-12 (a) shows the Probability Distribution Function (PDF) when the best 

control scenario obtained using robust optimization with 𝐴 =0 and 𝐴 =10-6 and single 

realization optimization are applied to all realizations compared to the base case. The 

probability values are calculated by considering a non-parametric kernel-smoothing 

distribution (Bowman and Azzalini, 1997). The single realization results correspond to a 

randomly selected realization from the full ensemble. Figure 6-12 (b) shows the 

corresponding Cumulative Distribution Function (CDF). The variance reduction 
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mechanism − resulted from larger improvement of realizations with poor base case 

performance and smaller improvement of realizations with good base case performance 

− is shown in Figure 6-12. The reduction in variance as a result of robust optimization 

with 𝐴 =0 (i.e. mean-only optimization) is also observed by van Essen et al. (2013). A 

reactive control strategy might show lower performance than the single realization 

optimization (e.g. (van Essen et al., 2013)) or even lower than the base-case if it is not 

performed at the correct time (Section 3.2.1). 

The impact of different optimization approaches on the obtained improvement from the 

worst-case realization (with minimum base-case NPV) and best-case realization (with 

maximum base-case NPV) is shown in Figure 6-13. All approaches show higher 

improvement of the worst-case compared to the best-case. Robust optimization (𝐴=0), 

by maximising mean, provides the maximum improvement in both cases however, 

Robust optimization (𝐴=10-6) results in lower improvement in both cases while 

reducing the variance (symmetric nature of the mean-variance approach discussed in 

Section 5.2). The reduction in mean value by using mean-variance approach is also 

observed by Capolei et al. (2015). An asymmetric approach (Siraj et al., 2015) is 

expected to achieve better performance by providing higher improvement of the poor 

cases without reducing the improvement in the good cases.  

The value of 𝐴 (𝐴 ≥ 0) in the robust optimization approach has to be decided based on 

the level of uncertainty (quantified by the variance calculated for the base case of all 

realizations) in the reservoir model and the need for a risk-averse control scenario based 

on engineering judgment or economic concerns. In this study only two values of 𝐴 are 

considered to provide the same order of magnitude for mean and variance terms in 

Equation 5-4. A Pareto front can be generated by considering different value of 𝐴 to 

help decision maker to select the preferred solution based on the risk preference. 

Capolei et al. (2015) considered Sharpe ratio (Sharpe, 1994), that is the ratio of added-

value to risk (𝑆ℎ = 𝐸(ℱ(𝑥, �̂�)) / 𝜎(ℱ(𝑥, �̂�))), as a measure to systematically choose a 

solution. The value of 𝐴 that generates the final solution with the maximum Sharpe ratio 

(also called the market solution) can then be selected.  
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(a) 

 
(b) 

Figure 6-12: (a) PDF for the best cases obtained using different optimization approaches 

and base case (b) CDF for the best cases obtained using different optimization 

approaches and base case (Note: the peaks in (a) are as a result of fitting a kernel 

distribution with limited number of data points (i.e. 66 realizations here) – larger 

number of data points are required to investigate if the obtained distribution is 

multimodal) 
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Figure 6-13: Impact of different optimization approaches on worst-case (min fully-open 

NPV) and best-case (max fully-open NPV) realizations 

6.8. Weighted sampling 

The above clustering approach resulted in clusters of dissimilar size (i.e. each cluster 

was made up of a different number of realizations) for the PUNQ-S3 case study. 

Table 6-2 shows the number of realizations in each cluster together with the weight of 

each cluster calculated from the number of realizations in each cluster divided by the 

total number of realizations. A weighted random sampling approach (Olken, 1993) 

using MATLAB’s routine was introduced to address this issue. The sampling was 

performed 10 times with a different group of 5 realizations being selected from clusters 

each time according to the weight of each cluster (i.e. higher chance for realizations to 

be selected from the clusters with higher weights).  

The results of robust mean optimization using each selected group are shown in 

Figure 6-14. It is worth noting that each iteration corresponds to 55 simulation runs 

since the average gradient is calculated by 5 independent perturbations using the central 

difference formulation. The best control scenario obtained from each optimization run 

was then applied to all realizations. Table 6-3 shows the corresponding increase in the 

mean and the reduction in the variance w.r.t. the base case when the obtained control 

scenario using different groups of realizations and different random number generator in 
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the SPSA is applied to all realizations. These results are similar to Figure 6-7(a) – Case 

4 while here we use weighted random sampling instead of selecting the cluster centers. 

Table 6-2: Weight of each cluster used in weighted sampling 

Cluster name Number of realizations Weight 

Cluster-1 24 0.36 

Cluster-2 8 0.12 

Cluster-3 8 0.12 

Cluster-4 17 0.26 

Cluster-5 9 0.14 

 

 

Figure 6-14: Robust mean optimization using 10 groups of realizations selected by 

weighted random sampling 

We have thus achieved an improvement in the final optimization results by using a 

weighted random sampling approach rather than equal weights for all clusters and 

choosing cluster centers (compare average from Table 6-3 with Figure 6-7(a) case-4). 

The weighted sampling approach performs better than equal weights for all clusters 

with a probability of more than 95.4% calculated by the hypothesis testing using the 

standard deviation and mean from Table 6-3 and Figure 6-7 case-4. This can be due to 
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incorporating cluster weights which reduce the adverse effects of random realization 

selection. This result is particularly attractive when greater parallel processing 

computing resources are available since it provides the opportunity to perform robust 

optimization with an ensemble of realizations larger than the number of clusters. 

Table 6-3: The percent change in total mean and variance of all realizations by applying 

the control scenario from different groups of realizations selected by weighted random 

sampling 

Groups of selected 

realizations 

Mean (% change w.r.t. 

base case) 

Variance (% change w.r.t. 

base case) 

Group-1 12.6 -44.6 

Group-2 12.9 -52.4 

Group-3 12.7 -53.3 

Group-4 14.2 -46.6 

Group-5 11.6 -48.5 

Group-6 13.2 -49.7 

Group-7 13.6 -50.0 

Group-8 12.7 -47.6 

Group-9 12.6 -56.5 

Group-10 13.1 -50.3 

Average 12.9 -50.0 

Standard Deviation 0.68 - 

 

6.9. Summary and conclusions 

Proactive optimization of ICVs promises the maximum long-term objective value 

during the considered field life. However, the robustness of the optimized ICV control 

scenario depends on the reliability of the employed simulation model. The control 

scenario obtained using only a single model realization, while providing the maximum 

improvement for that particular realization, normally results in a sub-optimal 

performance when applied to the full ensemble of possible realizations. Chapter 6 has 

presented an efficient framework, integrating several previously developed components, 

for robust proactive optimization of I-wells. SPSA was chosen as the optimization 

algorithm based on the arguments presented in Chapter 4 however the framework is 

compatible with any optimization algorithm. Following main conclusions are obtained. 
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1. Robust optimized ICV controls are obtained when the objective function is 

substituted with an augmented function evaluated using an ensemble of 

realizations. Employing the full ensemble of model realizations is the ideal 

approach and should provide the ultimate value (van Essen et al., 2013). 

However, its use would significantly increase the computational costs. A 

workflow for smart selection of a smaller ensemble of realizations has been 

developed.  

2. The recommended approach by Caers and Park (2008) for measuring the 

similarity/dissimilarity of the different realizations in response space prior to 

clustering is shown to perform successfully for I-wells. A connectivity distance 

measure tailored to the objective of the subsequent optimization is defined 

following Park (2011). It is observed that the distance calculated by summation 

of the differences in the WC curves of all ICV zones provides a suitable 

performance measure for use during clustering analysis when the objective of 

proactive optimization is to improve oil recovery by delaying early water 

breakthrough. This measure of connectivity distance is expected to change for 

other reservoir depletion strategies and drive mechanisms. 

3. It is essential for success of the clustering algorithm to ensure that the chosen 

connectivity measure is projected onto a lower dimension (2-dimensional) 

space. MDS was used here to preserve the similarity/dissimilarity of the 

different realizations (Scheidt and Caers, 2013). K-means clustering was found 

to efficiently (i.e. fast and achieve a good clustering performance) group all 

realizations into a small number of clusters which may then be used to select a 

small ensemble for robust optimization.  

4. Robust optimization by selecting realizations from different clusters (Wang et 

al., 2012) proportionally weighted with respect to the relative cluster size 

provides both an improvement close to the ultimate value as well as a substantial 

reduction in the computational cost. It provided ~ 90% of the ultimate value at a 

cost of only ~ 8% of the computational effort when compared to full ensemble 

optimization for the chosen case study.    

5. The utility function approach (Chen et al., 1999, Petvipusit et al., 2014, Capolei 

et al., 2015) performed effectively with a reduced computation time when an 

objective-oriented realizations selection process is applied to ensure that the 
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selected realizations properly captured the required characteristics of all 

realizations. The chosen value of the utility function parameter, 𝐴, defines the 

manner in which the optimization provides robustness to the control scenario.  

a. A value of 𝐴=0 (i.e. mean optimization) maximized the mean of the 

selected realizations. The flexible and optimal control provided by ICVs 

was observed to reduce the variance to some extent; despite the variance 

term having been ignored in the objective function’s definition. This 

behaviours was also observed by van Essen et al. (2013) in robust 

optimization of conventional wells. 

b. Higher values of 𝐴 reduced the variance to give a more risk-averse 

control scenario. Conflict was not observed when attempting to 

individually increase the mean and reduce the variance during the early 

stages of optimization when the control variables were far from the 

optimum value. However, conflict did occur between these two 

objectives during the later stages of optimization when the optimum 

value of the augmented objective function is being approached. A risk 

tolerant control scenario, with a lower variance in the expected NPV, can 

thus be expected to show a relative decrease in the mean of the NPV 

(also reported by Capolei et al. (2015)). Asymmetric approaches are 

expected to show lower tendency of compromising the best cases in 

order to reduce the variance (Siraj et al., 2015). 

c. A Pareto front can be generated by considering different value of 𝐴 to 

help decision maker to select the preferred solution based on the risk 

preference. Capolei et al. (2015) considered Sharpe ratio (Sharpe, 1994), 

that is the ratio of the added-value to risk (𝑆ℎ = 𝐸(ℱ(𝑥, �̂�)) /

 𝜎(ℱ(𝑥, �̂�))), as a measure to systematically choose a solution. The value 

of 𝐴 that generates the final solution with the maximum Sharpe ratio 

(also called the market solution) can then be selected. 

Focusing robust optimization on the more risk-averse control scenario, with a larger 

value of 𝐴 in the utility function, reduces the variance and also results in a more 

complicated optimization problem. Increasing the number of chosen realizations was 
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shown to address this problem. Increasing the number of iterations is also required to 

ensure convergence of the resulting non-smooth objective function. 
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Chapter 7 - A full-scale, simulation and robust proactive optimisation 

study of a real-field with 8 Conventional and 3 Intelligent Wells  

 

7.1. Introduction 

This chapter describes the testing of the developed concepts on a large, complex full-

scale North-sea field simulated using a commercial reservoir simulator (ECLIPSE, 

2012). A field development scenario employing advanced well completions as a 

potential substitute to a fully conventional development has been modelled. Each I-well 

is equipped with 4 Infinitely Variable (IV) ICVs controlling the production from the 

different reservoir layers. The I-wells were modelled using the Eclipse multi-segment 

well option. The developed criteria in Chapter 3 were employed to simplify the 

proactive optimisation problem in order to solve it in a reasonable time using limited 

computational resources (a single high-end workstation). The challenges associated 

with this simplification and the resulting sub-problems in a large field model are 

described and the best approach is proposed. The chosen simplified approach results in 

a sub-optimal solution however, the developed workflow ensures to achieve maximum 

added-value in a reasonable time with limited computational resources. 

The developed workflow is employed to evaluate the impact of the water injection 

scenario on production from the reservoir and the added-value obtained from proactive 

optimisation of ICVs. Finally, the developed robust optimisation framework is applied 

to determine the added-value from the optimum ICV control scenario while the 

uncertainty is captured using available model realisations. The added-value of the 

partial I-well field development scenario is compared with that of a fully conventional 

development. 

7.2. Model description 

The N-field reservoir simulation model contains of two main reservoirs which partly 

overlay each other (Figure 7-1). Each reservoir is further divided into two 

heterogeneous layers which may or may not be hydraulically connected. The reservoirs 
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are moderately thick (tens of meters) with a typical permeability between a tenth and 

several Darcies (Figure 7-2). The reservoir simulation model is relatively large (200,000 

active cells) and computationally expensive. The field is modelled at the beginning of 

the development stage; prior to any production history being available. 

 

Figure 7-1: Schematic diagram of the N-field reservoirs from Grebenkin and Davies 

(2012) 

Efficient aquifer pressure support is expected for the lower reservoir while there is no 

aquifer support for the upper reservoir. Similar fluids, a light oil with a moderate Gas-

Oil-Ratio, are found in both reservoirs (detailed information about the reservoir cannot 

be presented due to confidentiality).     

The conventional development plan is to drill 21 conventional wells (14 producers and 

7 injectors). Six conventional producers are located in the overlap part of the field with 

3 wells producing each reservoir. An alternative development scenario is proposed 

where 6 conventional producers in the overlapped area are substituted by 3 intelligent 

producers. This provides commingled production from 4 distinctive layers with each 

layer being monitored and controlled by ICV. Hence the total production well count is 

reduced to 11 including 3 I-wells and 8 conventional wells. Figure 7-2 shows 

production wells layout in the I-well development scenario. All wells are produced by 

gas lift with a maximum total lift gas supply limit for the field.   
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The initial ramp-up period is followed by the constrained maximum oil production 

plateau. The production declines after the plateau period and is constrained by a 

minimum THP limit. A higher THP limit is considered for producers far from the centre 

in order to transfer the produced fluid to the processing facilities located at the centre of 

the field. The resulting field oil and liquid production profiles for I-well development 

scenario with fully open ICVs are shown in Figure 7-3.  

 

Figure 7-2: Permeability distribution and production wells layout in the I-well 

development scenario 
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Figure 7-3: Field Oil Production Rate (FOPR) and Field Liquid Production Rate (FLPR) 

normalised to the plateau oil rate during whole production period for the N-field. (Dates 

are modified and provided for comparison purpose only.) 

The field injection in the base-case is controlled to achieve a 100% voidage replacement 

while each individual injector is constrained by a limit on maximum injection rate and 

maximum BHP. Impact of employed injection scheme on the field production is 

discussed in Section 7.5. 

7.3. Defining the suitable period for proactive optimisation 

Following the conclusions from Chapter 3, the proactive optimisation is limited to the 

plateau period with oil rate constraint. Noted that, (1) reactive control is not an option 

during the plateau period, (2) due to interaction between the control variables during 

this period, they need to be optimised simultaneously, and (3) there is no loss in the 

current (or short-term) objectives (oil production) when a proactive optimisation is 

performed during this period to extend the plateau. Figure 7-4 shows how the 

production period is divided into the proactive (green) and the reactive (red) period. 

This chapter describes proactive optimisation process applied to the plateau and early 

decline (25% of the plateau period length) phases. A fast and efficient reactive control 

approach developed for this field was previously reported (Grebenkin, 2013).  
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Figure 7-4: N-field Field Oil Production Rate (FOPR) and Field Liquid Production Rate 

(FLPR) normalised to the plateau oil rate. Proactive control strategy applied (green) 

followed by reactive control strategy (red).  

7.3.1 Multi-level optimisation during plateau period 

Proactive optimisation of production in fields developed with intelligent and 

conventional producers equipped with gas-lift results in large number of control 

variables. Optimising all the control variables simultaneously using a mathematical 

optimisation algorithm would be the ideal approach, but results in a very complex 

optimisation problem which is computationally demanding. The alternative approach is 

to reduce the number of control variables by breaking the optimisation problem into 

simpler sub-problems. Each problem may then be addressed separately, potentially by 

using different optimisation approaches. A sub-optimal solution is expected by solving 

this simplified problem however, the developed workflow ensures that maximum 

added-value is obtained in a reasonable time by using limited computational resources 

for this large field case study. This study used two optimisation loops: 

1- Outer loop: Zonal production control using ICVs. 

2- Inner loop: Allocating production among all producers to respect the defined oil 

rate constraint, allocating total available gas to gas lifted wells that can make the 

best use of it. 
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Outer loop optimisation was performed iteratively using the developed robust 

optimisation framework and discussed in Section 7.6. The objective function, NPV, was 

calculated using Equation 4-1 with the economic data employed previously (Table 4-1).  

The inner loop is performed using Eclipse’s built-in optimisation algorithms 

consecutively in one month frequency to ensure an optimal performance while outer 

loop control variables are set. The production allocation among all producers is 

explained in Section 7.3.2. The gas lift optimisation facility in Eclipse allocates lift gas 

increments to the wells based on the current Gas-lift Utilisation Factor (GUF), taking 

into account of any limits on the group production rate and supply of lift gas. 

7.3.2 Production allocation during the plateau period 

Production allocation among all available producers is the optimisation to be performed 

when limiting the proactive optimisation of ICVs to the plateau period with oil rate 

constraint since by definition the field has the potential to produce more oil than the 

defined rate constraint (Figure 7-5). Different approaches to select which wells are to be 

produced are explained in Appendix A. The logic behind each approach and the test on 

PUNQ-S3 (Appendix A) indicated that optimisation provides the maximum 

improvement compared to alternatives. However, the optimisation approach is 

computationally demanding for this case and becomes prohibitively expensive when 

combined with proactive optimisation of ICVs when only limited computing resources 

(a single, high performance PC) are available. The optimisation approach was not 

employed for N-field. The objective is to choose the best alternative approach, with 

maximum added-value, in order to decrease the deviation from the optimal solution (the 

best approach deviates only 0.2% from the optimal solution in PUNQ-S3 as shown in 

Appendix A).  

Four cases are considered using prioritisation and group rate control approaches, 

assuming a direct (higher priority to high oil potential wells) or an inverse (higher 

priority to low oil potential wells) ratio. These cases were compared with the base-case 

of assigning a higher priority to the off-centre wells with a fixed (lower) priority for the 

central wells. Figure 7-6 compares the field’s 10 year cumulative production with fully 

open ICVs. The 10 year production period was chosen as fully capturing the added-
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value from extending the plateau and any adverse effects during the subsequent decline 

period. A reactive control strategy, not considered here, would be implemented during 

the subsequent field life. 

Prioritising production from wells with a lower oil production potential (1/Qo) was 

found to increase the cumulative oil production. This was observed for both 

Prioritization (1/Qo) and Group Rate Control (1/Qo) (see Figure 7-6). The same trend 

has been previously observed in the PUNQ-S3 reservoir (Appendix A). Initiating the 

production from low oil rate potential wells rearranges the reservoir’s flow behaviour 

due to increased production from reservoir areas with a lower sweep potential. 

Moreover, from production point of view, this provides a longer time for low oil 

potential wells to recover their potential reserves.    

 

 

Figure 7-5: Normalised N-field oil production rate (normalised to the plateau oil rate) 

during the plateau and early decline period with (blue) and without (red) the constraint 

on oil production  
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Figure 7-6: Normalised field cumulative oil production during plateau and early decline 

period utilising different well production allocation strategies 

ON/OFF or continuous nature of the production control is another important decision. It 

is observed that a continuous control delivered by Group Rate Control provides a higher 

cumulative oil production in both cases (Qo and 1/Qo) (Figure 7-6). This is due to the 

fact that greater control flexibility is provided by a continuous control as compared to 

the ON/OFF control at the same control frequency. Greater control flexibility is 

required to improve the performance in non-optimum cases. A greater difference is thus 

observed between Prioritization (Qo) and Group Rate Control (Qo) (i.e. non-optimum) 

compared to the difference between Prioritization (1/Qo) and Group Rate Control 

(1/Qo). Moreover, continuous control maybe preferred from an operational point of 

view since stopping and (re)starting wells may impair the well’s performance.  

For the rest of this chapter Group Rate Control (1/Qo) is selected to allocate the 

production among all producers while proactive optimisation of ICVs is performed. An 

even higher added-value and more stable production are obtained using this approach. 

7.4. Defining optimum control frequency of ICVs  

Section 3.3 concluded that controlling ICVs at an optimum frequency  
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 Provides a good level of added-value  

 Prevents a substantial increase in the number of control variables and the 

computational time 

 Ensures the valves remain operable by operating them at a minimum required 

frequency defined by the producer and operator 

 May reduce the risk of valve failure associated with the frequency of operation  

Proactive optimisation of the N-field ICVs was performed at frequencies of 48, 24, 12, 

6 and 3 months using NPV (Equation 4-1) as the objective function with Table 4-1 

economic data. We observed that reducing the length of control steps increases the 

added-value by providing more flexible control (Figure 7-7). Note that the GA in 

MEPO (SPTGroup, 2012), a commercially available optimiser, failed to find the 

optimum solution for the 6 and 3 months control steps with more than 100 control 

variables. A control frequency of 48 months represent the case when the I-wells have 

been equipped with ICDs to give a constant flow area during the whole period.  

A control step of 6 months will be used for the remainder of this chapter.    
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Figure 7-7: Percent improvement in NPV w.r.t. the base case (fully-open ICVs during 

whole production period) for the N-field ICVs controlled at different frequencies 

 

7.5. Impact of water injection scheme on added-value from proactive 

optimisation of ICVs 

N-field water injection is constrained by the total rate of available water for injection 

from two sources: (1) external source (e.g. sea water) with limited processing capacity 

and (2) produced water. As a result, more water is available for injection when water-

cut increases during the later production stages. Five different injection regions have 

been previously defined (Figure 7-8). Two different water injection allocation schemes 

between these 5 reservoir regions will now be compared in order to allocate the total 

available water. 

 Voidage replacement: this scheme tries to inject water in the group of injectors 

in each region equivalent to a fraction of the total production from the group of 

producers in the same region. The fraction is known as voidage replacement 

fraction which can be greater or smaller than 1. Optimal application of this 
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scheme requires identifying appropriate regions (assuming no hydraulic 

connections) and the corresponding production and injection well group. There 

is often hydraulic connectivity between the defined regions; hence the calculated 

production (or injection) from a particular region does not necessarily represents 

the fluid produced (or injected) in that region. The voidage replacement fraction 

for each region is usually tuned at several points during the production period to 

alleviate this problem. The main advantage of this scheme is that it results in 

reasonably stable water injection rates.            

 Pressure maintenance: A target pressure (often equal to the initial reservoir 

pressure) is defined for each region. The algorithm tries to find the appropriate 

rate for the region’s injection wells that meets this target pressure (ECLIPSE, 

2012). A more stable and uniform regional pressure normally results from this 

approach and therefore provides a more robust control of injection while 

maintaining the initial reservoir pressure. However, there can be abrupt 

variations in the individual well injection rates.  

 

Figure 7-8: Defined regions with corresponding producers and injectors 

Initially all ICVs are considered as fully open during the whole production period. 

Figure 7-9 (a-e) shows the average pressure in the 5 defined regions while Figure 7-10 

shows the average reservoir pressure when N-field water injection is controlled using 

voidage replacement or pressure maintenance scheme. Bubblepoint pressure is around 
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1300 psi for all regions. Both water injection schemes are able to keep the regions and 

reservoir pressure above the Bubblepoint pressure. However, pressure maintenance 

provides improved control with the region pressures being maintained at values close to 

the initial reservoir pressure (Figure 7-10). Voidage replacement leads to significantly 

lower pressures in regions 1 and 5 (Figure 7-9 a, e) and over injection in regions 2 and 3 

(Figure 7-9 b, c). An extended plateau is achieved by the pressure maintenance scheme 

(Figure 7-11). Figure 7-12 compares the difference in region cumulative oil and water 

production after the plateau (year 1911) in the pressure maintenance case w.r.t. voidage 

replacement. Lower cumulative oil and water production in region 2 is due to reduced 

injection in that Region in the pressure maintenance scheme. Reduced injection in 

region 3 results in lower water production in that region. However, the hydraulic 

connectivity between the regions results in increased oil production being observed. 

Increased injection in region 1 and 5 results in higher production in the neighbouring 

regions (3 and 4).  Note that any extra water produced by the N-field will be re-injected 

into the reservoir which consequently keeps the reservoir pressure. Higher cumulative 

oil production is achieved by extending the plateau in the pressure maintenance scheme 

(Figure 7-13). No major difference in the oil production is observed after the plateau 

(Figure 7-13b) however higher water production in the pressure maintenance scheme 

results in a decrease in NPV as compared to the voidage replacement scheme 

(Figure 7-14). This can be alleviated by performing production optimisation. 

The oscillation that sometime is observed in the pressure maintenance water injection 

scheme (e.g. Figure 7-9 b, c) is due to its use of proportional control. Therefore, the 

change in the volume of injected water to each region at the next time step is determined 

by the difference between the region pressure and the defined target pressure at the 

current time step. This can result in oscillations when the dynamics of the system is 

very fast (e.g. region pressure increases significantly by extra injection).  
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(a)                                                                (b) 

 
(c)                                                                  (d) 

 
(e) 

Figure 7-9: Bubblepoint pressure and average pressure of different injection regions (a) 

Region 1 (b) Region 2 (c) Region 3 (d) Region 4 (e) Region 5 when water injection is 

controlled using Voidage replacement or pressure maintenance scheme  
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Figure 7-10: Average reservoir pressure when water injection is controlled using 

Voidage replacement or pressure maintenance scheme 

 

Figure 7-11: Normalised (to the plateau oil rate) field oil production rate when water 

injection is controlled using Voidage replacement or pressure maintenance scheme  
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Figure 7-12: Change in cumulative oil and water production of the defined regions in 

the pressure maintenance w.r.t. Voidage replacement 
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(a) 

 

(b) 

Figure 7-13: (a) Normalised Field cumulative oil production using Voidage replacement 

or pressure maintenance scheme (b) difference in Field cumulative oil production 

(Qpressure maintenance – QVoidage replacement) 
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Figure 7-14: Difference in NPV (NPVpressure maintenance – NPVVoidage replacement) 

 

7.5.1 Water injection schemes and proactive optimisation  

Two cases are considered. In each case the proactive optimisation of ICVs is performed 

at 6 months control frequency while voidage replacement or pressure maintenance 

scheme is employed to control the water injection. Figure 7-15 compares the relative 

NPV of the optimised case w.r.t. the base-case with fully open ICVs. Proactive 

optimisation of ICVs provides a small improvement with a close to optimum injection 

scenario. However the importance of proactive optimisation increases when the water 

injection scheme deteriorates (which frequently occurs in practice). It should be noted 

that the pressure maintenance scheme for the N-field provided a better performance by 

keeping all region pressures close to the initial reservoir pressure and therefore can be 

considered as closer to the optimum injection scenario as compared to the employed 

voidage replacement scheme. The ultimate added-value is only achieved by a combined 

optimisation of production and injection (Figure 7-15) despite production well 

optimisation being able to alleviate the negative impacts of a non-optimum injection 

scenario. 
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Figure 7-15: Comparison of the added-value of proactive optimisation of ICVs while 

water injection is controlled using voidage replacement or pressure maintenance 

 

7.6. Robust proactive optimisation of ICVs under uncertainty  

This section reports the results of robust proactive optimisation of ICV operation during 

the plateau and early decline periods using the workflow developed earlier with SPSA 

as the optimisation algorithm. ICVs are controlled once every 6 months. At the second 

level: 

 The production optimisation allocates as much as possible the constrained total 

oil production rate to low potential wells using Group Rate Control (1/Qo).  

 Gas lift operation is optimised using the gas lift optimisation facility in Eclipse. 

 The water injection is controlled using voidage replacement. 
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7.6.1 Uncertainty in N-field 

The reservoir uncertainty for the N-field was presented in the form of 3 model 

realizations. These had been provided by the operating company assuming that 

formation porosity and permeability, faults (locations and transmissibility), initial water 

saturation and reservoir net-to-gross were the major uncertainties. 3 different levels 

(minimum, most likely and maximum) are considered for all uncertain parameters to 

generate 3 realizations with pessimistic, most likely and optimistic performance. For the 

rest of this study these realizations are known as P10 (optimistic), P50 (base or most 

likely) and P90 (pessimistic). This should not be confused with the P10, P50 and P90 

predictions of a probabilistic distribution. Figure 7-16 and Figure 7-17, the field oil 

production rate and NPV for these 3 model realizations produced with fully-open ICVs, 

record the impact of expected level of uncertainty in the response space. All 3 N-field 

realizations will be used for robust optimisation since the Chapter 6 realization selection 

stage is not required with the limited number of models available.    

 

Figure 7-16: Normalised to the plateau rate early-time Field oil production rate for 3 N-

field model realizations representative of the expected level of uncertainty 
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Figure 7-17: Relative NPV of early-time Field oil production for the N-field model 

realizations 

7.6.2 Robust optimisation 

Robust optimisation of N-field employed the “mean” approach (Equation 5-4, with 

A=0) using the 3 reservoir model realizations. SPSA is employed as the optimization 

algorithm with an ensemble size of 6 (𝑛𝑒 = 6), α0 = 0.12 and cmin = 0.05. Figure 7-18 

shows the improvement w.r.t. the base-case versus iteration number for all realisations 

and for the objective function (i.e. the mean). The optimization algorithm increases the 

mean of the objective value of the 3 realizations (increasing trend of mean in 

Figure 7-18). The fluctuations in the mean value is due to the stochastic nature of the 

SPSA algorithm which might move in non-optimum direction during some iterations. 

Extra fluctuations in the objective value of individual realisations might also be 

observed due to a control scenario reducing one realization while providing greater 

increase in the other realizations and therefore improves the mean. 
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Figure 7-18: (%) NPV increase w.r.t. the base-case for all 3 N-field models employing 

the “mean” objective function 

The optimisation was performed for 100 iterations at a computational cost of ~20 

min/iteration using 21 CPUs of 3.2 GHz frequency of a HP-800 workstation (total run-

time = 100×20 min ≈ 33 hr). Figure 7-18 indicates that 85% of the improvement was 

obtained after 10 iterations requiring only ~3.5 hours computation time. 

Figure 7-19-b shows an improved mean implies a higher expected added-value while 

the reduced variance implies a higher reliability (lower risk) by applying the best ICV 

control scenario identified by robust proactive optimisation. The maximum 

improvement (~4%) is obtained for the pessimistic scenario (P90); with smaller 

improvements (~1.3 % and ~0.2 %) for the P50 and P10 realisations, respectively 

(Figure 7-19-a). As discussed in Section 6.7, the flexible zonal-flow control provided by 

I-well’s ICVs improves the production performance compared to the equivalent base-

case of fully open ICVs with no control. Experience shows that the optimisation 

generally delivers a greater improvement for the less favourable realisations. This effect 

inherently reduces the variance in the robust optimisation. 

Figure 7-20 shows field oil production rates for the base control case with fully-open 

ICVs and the optimised-case for all 3 realisations. An extended oil plateau was 

observed for all realisations. 
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(a)                                                                      (b) 

Figure 7-19: (a) % Increase in NPV and (b) % change in the mean and variance for the 

best control scenario for all 3 N-field models 
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Figure 7-20: Normalised to the plateau rate Field oil production rate for base-case 

(fully-open ICVs) and optimised-case of different realisations 

Figure 7-21, Figure 7-22 and Figure 7-23 compare the NPV for the conventional 

development plan (i.e. 14 conventional producers) versus the I-well version with a 

lower number of wells (i.e. 8 conventional and three 4-zone I-producers) with and 

without optimisation of ICV control in the P90, P50 and P10 realisations during the 

proactive optimisation period. It is assumed that the total drilling cost is invested at the 

beginning of the drilling campaign, hence the intelligent well case shows an initial 

improvement in NPV due to reducing the number of drilled wells. The drilling 

campaign continues after the start of production and ends on 07/05 (Figure 7-21b).  

The I-well case with fully open ICVs and no optimisation showed improved production 

compared with the conventional well case for the P90 model (Figure 7-21b green line). 

This improvement is mainly due to accelerating the field’s development by advancing 

the drilling schedule and not due to proactive optimisation of ICVs, the subject of this 

thesis. This drilling acceleration effect is not significant for the P50 and P10 realisations 
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drilling schedule cannot increase the current production due to the oil production rate 

constraint. Moreover, additional favourable effects were observed in the previous case 

studies when comingled production of zones without control was improving the 

production performance. This is achieved by allowing the stronger zone to keep the 

weaker zone flowing longer and/or changes in the downhole pressure profile which 

positively influence the recovery. 

Robust proactive optimisation improves the production in the I-well controlled case in 

all realisations (section b of the figures show the difference in the NPVs). Proactive ICV 

optimisation was able to maintain the initial NPV gain by extending the oil production 

plateau while uncontrolled production via fully-open ICVs loses this advantage faster. It 

should be noted that, after this period the reactive control should be performed to 

improve the production by reducing the water production. 
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(a) 

 

(b) 

Figure 7-21: (a) NPV (b) ΔNPV for I-wells without optimisation and optimised I-wells 

w.r.t. conventional wells for the P90 reservoir model 
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(a)                                                                         (b) 

Figure 7-22: (a) NPV (b) ΔNPV for I-wells without optimisation and optimised I-wells 

w.r.t. conventional wells for the P50 reservoir model 

  

(a)                                                                         (b) 

Figure 7-23: (a) NPV (b) ΔNPV for I-wells without optimisation and optimised I-wells 

w.r.t. the conventional wells for the P10 reservoir model 
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shows the improvement in NPV w.r.t. the base-case (i.e. I-well with fully-open ICVs 

during the whole production period) versus iteration number.  

 

Figure 7-24: Improvement in NPV w.r.t. the base-case (i.e. I-well with fully-open ICVs) 

for realisation P50 versus iteration number 

 

The best control scenario, which produced the maximum NPV, is applied to all 

realisations. Table 7-1 shows the percent improvement in NPV of each realisation and 

the percent change in the mean and variance of NPV, all calculated w.r.t. the base case. 

It is observed that single realisation optimisation, while providing the maximum 

improvement for that particular realisation, fails to provide optimal performance for 

other realisations. This behaviour results in a lower mean. Moreover, single realisation 

optimisation is unable to reduce the variance by ignoring the underlying uncertainty. 

For example, in this case an increase in variance is observed by single realisation 

optimization which means higher uncertainty compared to the base-case (Table 7-1). 

Robust optimization provides the control strategy of ICVs with the maximum expected 

added-value (i.e. increasing mean) while reducing the uncertainty in the operation (i.e. 

reducing the variance) in this full-field case study (Table 7-1). 
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Table 7-1: Changes in the NPV of each realisation, mean and variance w.r.t. the base-

case when the control scenario is obtained using single-realisation optimisation or 

robust optimisation 

 % Change 
NPV 

(P10) 

NPV 

(P50) 

NPV 

(P90) 
Mean Variance 

Robust optimisation +0.2 +1.3 +4.3 +1.6 -12 

Single-realisation 

(P50) 
+0.05 +2 +0.3 +0.8 +2.8 

 

7.7. Conclusions 

 Production allocation needs to be performed among all producers to respect the 

defined rate constraint when limiting the proactive optimisation of ICVs to the 

plateau period. The two-level approach, proposed in this study, enhances the 

robust proactive optimisation process of large real-field models by reducing the 

number of control variables associated with each stage. 

 The ultimate improvement is only obtained by optimizing both production and 

injection. 

 The developed framework can efficiently handle a large number of control 

variables, the high computation time and the instabilities due to several 

simultaneous optimizations, frequently experienced in proactive optimisation of 

large real-field models. 

 The proposed robust proactive optimisation approach provides the control 

strategy of ICVs with the maximum expected added-value (i.e. increasing mean) 

while reducing the uncertainty in the operation (i.e. reducing the variance) in this 

full-field case study.  

 The flexible and optimal control provided by ICVs inherently reduces the 

variance during the mean optimisation approach which provides a relatively fast 

process (mean is a relatively smooth function). The developed mean-variance 

(utility function) approach can be applied to achieve a larger reduction in the 

variance (i.e. low-risk control scenario). The mean-variance approach would 

result in a more complicated search space which theoretically would increase the 

computation time (Section 6.7).  
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Chapter 8 – Conclusions and recommendations for future study 

 

8.1. Conclusions 

Proactive optimisation of ICVs under reservoir uncertainty is investigated in this thesis 

and a novel, fast, efficient and robust framework is developed. The main results of this 

thesis can be grouped into following areas. 

8.1.1 Impact of I-well modelling on proactive optimisation problem 

Realistic modelling of advanced well completions is required to evaluate their 

performance and define an optimum well control strategy (Coats et al., 2004, Holmes, 

2011). This can be achieved by detailed modelling of the outflow (wellbore model) 

coupled with the inflow (reservoir model). This approach is known as multi-segment 

well model (Holmes et al., 1998) and is available in several commercial reservoir 

simulators (e.g. Eclipse Reservoir Simulator (ECLIPSE, 2012)). The realistic interaction 

between the zonal productions (i.e. control variables) is captured by such detailed 

modelling which generally results in a more difficult optimisation problem compared to 

the case with independent zonal production especially using gradient-based optimisation 

algorithms. 

8.1.2 Simplifying the proactive optimisation problem 

Ideal proactive optimisation should be able to find the optimum control scenario 

prescribed for the whole production period to provide the maximum long-term objective 

value. However, the proactive optimisation problem often needs to be simplified in 

order to employ commercially available optimisation algorithms and/or reduce the 

computational cost. The following criteria are suggested for simplifying the proactive 

optimisation problem (i.e. without significant loss in the long-term objective value) by 

including engineering and mathematical understanding of the problem based on 

performed case studies. 
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a. Proactive optimisation is essential during early production period (defined by an 

oil production plateau) due to excess fluid inflow capacity and interaction 

between the control variables during this period. A simpler reactive control 

strategy is generally sufficient after the plateau period, satisfying short-term 

(production improvement) objectives. Reactive control is expected to provide a 

close to optimum long-term (NPV) objective during this stage while improving 

the objective function by reducing production of unfavourable phase(s) or 

improving tubing outflow performance.  

b. Frequent control provides more flexible control of well production, potentially 

leading to an increase in the added-value. This is true up to a frequency. 

However after this point more frequent optimisation does not improve the 

results. This can be explained by the slow reservoir dynamics, mainly 

controlling the proactive optimization added-value, in contrast to the fast well 

dynamics which is generally the most important in the reactive optimization 

process. The control frequency should thus be carefully selected for a cost 

effective, reservoir management process with a reduced number of control 

variables. 

8.1.3 Choosing an optimisation algorithm for proactive optimisation of ICVs 

a. The search space in the proactive optimisation of ICVs is characterised by 

several local optima with objective values close to the global optimum. This was 

confirmed by (1) visualising the search space of a proactive optimisation 

problem and (2) identifying multiple control scenarios with the objective values 

close to each other using SPSA and EnOpt. Search space of similar topography 

was previously observed in a high-dimensional history matching study by 

(Oliver et al. (2008), Oliver and Chen (2011)) and in the production 

optimization of conventional wells by Fonseca et al. (2014). Jansen et al. (2009) 

and van Essen et al. (2011) observed similar behaviour during multi-objective 

short-term and long-term optimization, where Degree Of Freedom (DOF) exists 

to improve one objective without sacrificing the other. 

b. Gradient-based algorithms are a suitable candidates for proactive optimisation of 

ICVs. Methods based on stochastic approximation of the gradient by 

simultaneous perturbation of all control variables provide a sufficiently accurate 
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estimate of the gradient. Furthermore, these methods are independent of the 

choice of the reservoir simulator. 

c. SPSA and EnOpt, two popular stochastic gradient estimation algorithms, have 

shown good performance in proactive optimization case studies. Previously 

published tuning guidelines have been modified to make them more suited to 

proactive optimization of ICVs. Case studies demonstrated that, the two 

approaches not only gave differing levels of production improvement, but also 

the characteristics of the resulting optimal control strategies were different. 

SPSA tends to outperform EnOpt with a larger ensemble size and is 

recommended when greater parallel processing is available. No correlation in 

time is considered for the SPSA and EnOpt employed in this study and therefore 

fluctuations are observed in the optimum control of ICVs. A smoother control 

can be obtained by multiplying the gradient by a covariance matrix with a 

defined correlation length (e.g. (Do and Reynolds, 2013, Zhao et al., 2013)). 

EnOpt tends to be recommended in this condition.  

8.1.4 Robust proactive optimisation of ICVs under reservoir description uncertainty 

a. The control scenario obtained based on optimization of a single model 

realization provided the maximum improvement for that particular realization, 

but normally resulted in sub-optimal performance when applied to the full 

ensemble of possible realizations.  

b. Robust optimized ICV controls are obtained by substituting the above objective 

function with an augmented function evaluated using an ensemble of 

realizations. It was confirmed that the control scenario obtained using robust 

mean-only optimization provided a greater expectation of the objective value as 

well as a lower variance compared to a single realization-based optimization 

(also reported by (van Essen et al., 2013)). Flexible, optimal control provided by 

ICVs generally provides a greater improvement of reservoir realizations with 

poorer base case performance and a smaller improvement of realizations with a 

good base case performance. This inherently reduces the variance to some 

extent; despite the variance term not playing a role in the objective function’s 

definition (also reported by (van Essen et al., 2013)). Alternatively, the utility 

function, by considering both mean and variance of the ensemble of realizations 



 

173 

with adjustable weight, allows control of the manner in which the optimization 

provides robustness to the control scenario. The observed drawbacks of the 

mean-variance approach is the symmetric nature of the variance, therefore 

variance might be reduced by penalising the upper tail (good cases) instead of 

increasing the lower tail (bad cases) of the objective function distribution. The 

reduction in the mean value during the mean-variance optimization is also 

observed by Capolei et al. (2015). An asymmetric approach (Siraj et al., 2015) is 

expected to achieve better performance by providing higher improvement of the 

poor cases without reducing the improvement in the good cases. 

c. Employing the full ensemble of model realizations for robust optimisation is the 

ideal approach that can be expected to provide the ultimate value, assuming the 

existing uncertainty is quantified by the full ensemble of model realizations. 

However, its use significantly increases the computational costs. A small 

ensemble of randomly selected realisations does not fully guarantee capturing 

the underlying model uncertainties. A systematic clustering of all the realisations 

followed by selection of representative realisation(s) from each cluster has been 

developed. Use of a connectivity distance measure defined in response space and 

tailored to the objective of the subsequent optimization is recommended as a 

measure of the similarity/dissimilarity of the different realizations prior to 

clustering. Moreover, the developed framework reduced the adverse effect of 

random realization selection which is theoretically preferred while independent 

runs are often computationally expensive. 

8.1.5 Application to the full-field model 

The developed concepts have been successfully employed to find the optimum I-well 

development scenario of a full-field model in a reasonable time using limited 

computational resources. The developed framework can efficiently handle a large 

number of control variables, high computation time and the instabilities due to several 

simultaneous optimizations, frequently experienced in proactive optimisation of large 

real-field models. The chosen simplified approach is expected to result in a sub-optimal 

solution however, the developed workflow ensures to achieve maximum added-value in 

a reasonable time with limited computational resources. 
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The proposed robust proactive optimisation approach provides the control strategy of 

ICVs with the maximum expected added-value while reducing the uncertainty in the 

operation. Reducing the number of wells to be drilled via a partial I-well development 

scenario resulted in an increased, early-time, NPV. Proactive optimisation of ICVs 

ensured that the early NPV gain was maintained by extending the oil production 

plateau. 

 

8.2. Recommendations for future study 

1- Apply the proposed proactive followed by reactive approach to a realistic full-

field study and compare the computation time and added-value with proactive 

during whole production period. 

2- Investigate the relation between optimum control frequency and reservoir 

dynamics (e.g. transient time obtained from well testing). 

3- A numerical comparison of the prior realizations selection followed by robust 

optimisation (developed in this thesis) with the alternative approach of 

estimating the gradient using an ensemble of all realizations (Section 5.3.2) 

particularly the modified ensemble-based robust formulation proposed by 

Fonseca et al. (2015). 

4- Propose surveillance techniques to validate and update (if necessary) the 

obtained proactive control decisions. 

5- The developed framework can be extended to simultaneous injection and 

production or simultaneous advanced completion design and control 

optimisation.  

6- Integration into a closed loop management workflow. 

7- Investigate the impact of a different geology on the developed workflow and 

obtained conclusions. 
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Appendix A - Production Allocation  

Various production rate limits can be imposed on a group of wells or the whole field 

when simulating the different stages of the field’s production life. The limits can be 

total liquid production rate and/or production rate of one or more individual phases. The 

higher production rate potential of the system must now be reduced within the defined 

limit by a production cut-back from a single or multiple wells. This control, normally 

performed using the surface choke, provides the opportunity to add short and/or long-

term value by optimal allocation of the production. The approaches available within the 

Eclipse (ECLIPSE, 2012) reservoir simulator are:     

a. Optimisation 

This approach follows the same logic as proactive optimisation of ICVs while the 

control variables are contribution to production from different wells. The maximum 

added-value is obtained in this approach if robust optimisation is performed using a 

suitable algorithm. However, similar to proactive optimisation, it is associated with a 

large scale optimisation with a computationally demanding and uncertain objective 

function. Optimising wells’ production contribution has been studied previously (e.g. 

(Do and Reynolds, 2013)) and can be addressed using the developed optimisation 

framework in this thesis. 

b. Prioritisation  

Prioritisation uses a built-in feature in Eclipse (ECLIPSE, 2012) to reduce the 

computational time compared to the above “optimisation” approach. It speeds up the 

decision making process and/or invests computational resources to optimise other parts 

of the system (e.g. optimum downhole control of ICVs).  

A priority coefficient (𝑃) is defined for each well, 

𝑃 =
𝐴 + 𝐵𝑄𝑜 + 𝐶𝑄𝑤 + 𝐷𝑄𝑔

𝐸 + 𝐹𝑄𝑜 + 𝐺𝑄𝑤 + 𝐻𝑄𝑔
, A-1 

where 𝑄𝑜, 𝑄𝑤 and 𝑄𝑔 are potential oil, water and gas production rate of the well which 

is the production rate that a well would achieve in the absence of any rate constraints at 
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the current grid block conditions. Coefficients (𝐴-𝐻) are user-defined quantities to 

prioritise wells’ production based on the produced phases. Figure A1 shows the flow 

diagram of the algorithm. The majority of wells are either fully open or shut when 

production allocation is performed using prioritisation approach. This ON/OFF control 

is not preferred from an operational point of view due to the problems associated with 

well shut-in (well start-up, cross-flow during shut-in from surface, etc.). Calculation of 

the priority coefficient and subsequent allocation is repeated at a pre-defined frequency. 

The use of potential rate calculated using the near wellbore region eliminates the control 

oscillation problems and accounts for longer-term performance as compared to reactive 

control employing current production rates.        

 

Figure A1: Flow diagram of the production allocation among several wells using the 

“Prioritisation” option in Eclipse 

c. Guide-rate control  

This approach, also a built-in feature in Eclipse (ECLIPSE, 2012), provides an 

alternative to prioritisation. The target rate is allocated to individual wells in proportion 

to each well’s specified guide rate (𝐺𝑅):   
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𝐺𝑅 =
𝑄𝑜

𝐴

𝐵 + 𝐶(𝑄𝑤 𝑄𝑜)⁄ 𝐷
+ 𝐸(𝑄𝑔 𝑄𝑜)⁄ 𝐹, A-2 

where oil is considered as the favourable phase (for a general formula see (ECLIPSE, 

2012)). Coefficients (𝐴-𝐹) are user-defined quantities. 

d. Case-study (PUNQ-S3) 

The above three approaches to production allocation were tested on PUNQ-S3 

(Section 4.5.2) developed with 4 conventional producers (Figure A2). The field was 

constrained by total oil production rate of 1000 sm3/day and a minimum BHP of 100 bar 

for production wells (Figure A3) during the 12 year production period. Figure A4 shows 

the individual cumulative oil and water production for all 4 wells producing at the 

minimum BHP and without limit on total filed oil production rate.  

 

Figure A2: PUNQ-S3 developed with 4 conventional wells 
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Figure A3: Field oil production rate (BHP and oil production rate constrained)  

   

Figure A4: Individual well cumulative oil and water production in BHP constrained 

case from Figure A3 

 Table A1 describes five tests performed to allocate the defined total oil production rate 

among the 4 producers. A control frequency of 6 months in test-1 resulted in 96 control 

variables while “Prioritisation” and “guide-rate control” was performed at 1 month 

intervals. Figure A5 compares the field cumulative oil production. Optimisation 

approach provides the maximum value at the cost of 1100 simulation runs (N.B. the 

optimisation was performed for 100 iterations using central difference formulation and 

ne=10). Initiating the production from low oil rate potential wells (i.e. Prioritisation 

(1/𝑄𝑜) and Guide-rate (1/𝑄𝑜)) increases production from reservoir areas with a lower 

sweep potential; resulting in an improved sweep of the reservoir (Figure A5). Only 

simple sets of coefficients are employed in this study to represent initiating production 
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from low or high potential wells. However, the coefficients in guide rate can also be 

optimized (e.g. (Asadollahi et al., 2012)). 

Moreover, Figure A5 shows that the continuous control delivered by Guide-rate 

provides greater flexibility and a higher cumulative oil production in both cases (Qo and 

1/Qo). A greater difference observed between Prioritization (Qo) and Guide-rate 

Control (Qo) compared to the difference between Prioritization (1/Qo) and Guide-rate 

Control (1/Qo) shows the value of greater flexibility in non-optimum and uncertain 

cases. It should be noted that in this case study initiating the production from high oil 

rate potential wells (i.e. directly proportional to 𝑄𝑜) is non-optimum due to a lower 

cumulative oil production.   

Table A1: Production allocation test descriptions 

# Method Description 

1 Optimisation SPSA (Section 4.4.1), control every 6 months 

2 Prioritisation (𝑄𝑜) Equation A-1: 𝐵 = 1, 𝐸 = 1, 𝐴, 𝐶, 𝐷, 𝐹, 𝐺, 𝐻 = 0 

3 Prioritisation (1/𝑄𝑜) Equation A-1: 𝐴 = 1, 𝐹 = 1, 𝐵, 𝐶, 𝐷, 𝐸, 𝐺, 𝐻 = 0 

4 Guide-rate (𝑄𝑜) Equation A-2: 𝐴 = 1, 𝐵 = 1, 𝐶, 𝐷, 𝐸, 𝐹 = 0 

5 Guide-rate (1/𝑄𝑜) Equation A-2: 𝐴 = −1, 𝐵 = 1, 𝐶, 𝐷, 𝐸, 𝐹 = 0 

 

Figure A5: Percent cumulative field oil production (w.r.t. optimisation approach) when 

production allocation is performed using different approaches  
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Individual well production rates for Prioritisation (1/𝑄𝑜) and Guide-rate (1/𝑄𝑜) control 

are compared in Figure A6. Reduced production from high oil potential wells P2 and P4 

(Figure A4) and ON/OFF control in Prioritisation are recorded. Figure A7 compares 

Guide-rate (1/𝑄𝑜) control with the optimisation approach. The greater cumulative oil 

production in the optimisation approach is due to: 

1. No prior assumption on the control type: a continous control of well rates is 

assumed which can operate at 0 (shut) or 1 (fully-open) if it is optimum at some 

control steps. By contrast guide-rate control or prioritisation approach consider 

the prior assumption that only a continous control or an ON/OFF control is 

suitable during the whole prduction period, respectivley.  

2. Recongnise long-term objectives and correlation between control variables: for 

example, well P3 is prone to early water breakthrough if production from P4 is 

chocked back significantly. This is alleviated in the optimum solution by higher 

production from P4 and stopping production from P3, resulting in higher 

production from P2 and a better sweep as compared to Guide-rate (1/𝑄𝑜) 

control. 
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Figure A6: Individual well production rate in Prioritisation (1/𝑄𝑜) and Guide-rate 

(1/𝑄𝑜) control 
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Figure A7: Individual well production rate in optimum control and Guide-rate (1/𝑄𝑜) 

control 
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Appendix B – Comparison of SPSA and a commercially available GA 

for proactive optimisation of ICVs 

The MEPO software package (SPTGroup, 2012) provides a convenient implementation 

of GA for use with various commercial reservoir simulators. Proactive optimisation of 

ICVs with the I-well located at an optimum well location within the PUNQ-S3 reservoir 

model (Section 4.5.2) was performed using GA in MEPO and compared with the SPSA 

optimisation results. Further comparisons are available in (Haghighat Sefat et al., 2013).  

Several sensitivity studies were performed together with the use of available “rule of 

thumb” to find the best values of the tuning parameters of GA. A population size of 80 

with a 50% replacement gave the best performance. Iterations in GA and SPSA cannot 

be directly compared since they require a different number of objective function 

evaluations. The same computational power, equal to 1000 objective function 

evaluations, is assigned to both algorithms. Both algorithms are stochastic, hence 

random effects play an important role in the optimisation and a comparison based on a 

single run of each algorithm is incorrect. Five independent runs were performed in order 

to eliminate these random effects originating from the random number generator and the 

average results area shown in Figure C1. The use of stochastically estimated gradient in 

SPSA can result in stepping in a non-optimum direction during some iterations, 

decreasing the objective function value. Blocking is performed to plot the results of 

SPSA (i.e. if the value of the objective function decreases at some iteration previous 

maximum value is shown). The optimisation starts from the initial point with fully open 

ICVs during the whole production period in both algorithms. 

Figure C1 shows that SPSA outperforms GA due to a faster improvement in the 

objective function. The complex search space in this example is characterised by several 

local optima (Section 4.5). Moreover, the I-well’s optimum location together with the 

use of liquid rate constraints reduces the value of the production optimisation i.e. the 

value of the optimised objective function is close to that of the base case with no-control 

(Table 4-2). This is a difficult situation for GA due to the global search behaviour of the 

algorithm. By contrast, it is favourable to SPSA due to its fast local movement using 

gradient. 
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Figure C1: Comparison of the performance of SPSA and GA versus the number of 

simulation runs 
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