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ABSTRACT. Changes in the curvature of the epidermis layer is often associated with many 

skin disorders, such as ichthyoses and generic effects of ageing. Therefore, methods to quanti-

fy changes in the curvature are of a scientific and clinical interest. Manual methods to deter-

mine curvature are both laborious and intractable to large scale investigations. This paper 

proposes an automatic algorithm to quantify curvature of microscope images of H&E-stained 

murine skin. The algorithm can be divided into three key stages. First, skin layers segmenta-

tion based on colour deconvolution to separate the original image into three channels of dif-

ferent representations to facilitate segmenting the image into multiple layers, namely epider-

mis, dermis and subcutaneous layers. The algorithm then further segments the epidermis layer 

into cornified and basal sub-layers. Secondly, it quantifies the curvature of the epidermis layer 

by measuring the difference between the epidermis edge and a straight line (theoretical refer-

ence line) connecting the two far sides of the epidermis edge. Finally, the curvature measure-

ments extracted from a large number of images of mutant mice are used to identify a list of 

genes responsible for changes in the epidermis curvature. A dataset of 5714 H&E microscopic 

images of mutant and wild type mice were used to evaluate the effectiveness of the algorithm. 

Keywords: skin layer segmentation, epidermes layer quantification, skin curva-

ture quantification. 

1  Introduction 

Although the Human Genome Project (HGP) determined the sequence of chemical 

base pairs, which make up human DNA and of identifying and mapping all of the 

genes of the human genome (approximately 20,500 genes), functionalities of the vast 

majority of genes are still under research or unknown [1]. The Mouse Genetics Pro-

ject (MGP) is a large-scale mutant mouse production and phenotyping program aimed 

at identifying new model organisms of disease. The aim of the MGP is to produce 

over 20,000 mutant lines and the results are then translated into diagnostics, and 

treatments for diseases. 

Mammalian skin is a complex organ composed of a variety of cell and tissue types. 

It is the largest mammalian organ, and although apparently simple, it is a highly orga-

nized tissue comprised of the epidermis, underlying dermis containing connective 

tissue and a deeper subcutaneous adipose layer. [2].The skin can reveal evidence of 

inflammation, hyperplasia, connective tissue disorders and underlying metabolic 



changes resulting from local and systemic influences. As dermatology research re-

quires a detailed understanding of skin structure and organization, which requires 

quantitative measurements, the automatic quantification of changes in skin structures 

has a variety of different applications for biological research. One requirement in this 

area is the accurate segmentation of the skin compartments followed by the assess-

ment of various characteristics of those compartments. For example, changes in the 

curvature of the epidermis layer are often associated with many skin disorders, such 

as ichthyoses and generic effects of ageing [3]. Therefore, methods to quantify chang-

es in the curvature are of a scientific and clinical interest. Arguably, this cannot be 

achieved without a reliable segmentation of different skin layers. 

Traditional skin studies have utilized manual methods for the quantification of skin 

features, which is a challenging task due to the complexity of the analysis with big 

amount of datasets. However, there has been recently a move towards the automation 

of these techniques to improve accuracy and efficiency by reducing processing time 

and laboratory costs.  

In previous works, one of the attempts to automate the analysis of skin layer in mi-

croscopic images was the introduction of the novel shapelet-based procedure for the 

epidermis boundaries identification and thickness measurement [4]. Later, a classifi-

cation method was proposed to segment skin layers in images based only on their 

speckle information [5]. Another interesting work was a hybrid sequence segmenta-

tion and classification technique applied to split images into different channels by z-

stack deconvolution, fitting model of skin layer and their classification into epidermis 

and dermis [6]. Recently high-definition optical coherence tomography was employed 

for grey imaging subsurface skin tissues to segment the epidermis layer with using 

weighted least square based edge-preserving smoothing method with weighted medi-

an filter followed by wavelet techniques an [7]   

Although all those methods gave great results, they do not allow automatic quanti-

fication of epidermis curvature, which is a crucial feature for gene identification and 

skin disorders diagnostic. In addition to above there wasn’t any of methods achieve 

sub-segmentation of the epidermis layer into cornified and basal layer   

In this paper, we propose an automated method to quantify and measure the curva-

ture of the epidermis layer (cornified sub-layer). The ultimate aim is to use the meas-

urements extracted from a large number of mutant mice to identify a list of genes 

responsible for significant alterations in the curvature of the epidermis. 

 The rest of the paper is organised as follows. Section 2 explains the proposed algo-

rithm in details whereas section 3 presents the method of identifying the interesting 

genes using reference range (RR). Section 4 presents the data set used to test the pro-

posal algorithm as well as the result of interesting genes responsible for changes in 

the epidermis curvature. Finally the section 5 summarises the whole paper by clarify-

ing the aims of this work.     
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2 The proposed Method 

The proposed method consist of an algorithm that automatically computes the curva-

ture along the epidermis layer and identify the genes associated with significant 

changes in the curvature. It is summarized with an illustration in Figure 1, and works 

in 3 key stages.  

1. Segments the skin image into its three layers, namely Epidermis, Dermis and 

Subcutaneous layers. And further segments the Epidermis layer into Cornified 

and Basal sub-layers [8].  

2. Quantify the curvature of the epidermis layer by measuring the difference be-

tween the epidermis edge and a straight line (an artificial reference line) con-

necting the two far sides of the epidermis edge. 

3. Using the curvature measurements extracted from a large number of skin images 

of mutant mice to identify a list of genes responsible for changes in the epider-

mis curvature.  

 

The following subsections explain each of the key stages in details.  

 

Fig. 1. The proposed algorithm to quantify the curvature of the Epidermis layer to identi-

fy the genes associated with significant changes in it  

 



2.1 Layers Segmentation algorithm  

Segmentation is an important step in the algorithm because the quality of the results is 

impacted by the quality of the underlying segmentation. Our algorithm uses adaptive 

colour deconvolution techniques on the H&E stain images to separate different tissue 

structures as shown in Figure 2 [8]. Then the algorithm uses a set of morphological 

operations with appropriate structural elements, such as image open, image close and 

image fill a gap. To further remove unwanted objects, logical operations, such as 

adding and multiplying images, have been applied to segment epidermis sub layers as 

illustrated in Figure 3. 

 Fig. 2.Colour deconvolution A) Original image. B) Colour 2 deconvolution. C) Colour 3 

deconvolution. 
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Fig. 3. Automatic method for layers and sub-layers segmentation A) Original image. B) 

Epidermis layer segmentation. C) Dermis layer segmentation. D) Sub-cutaneous layer 

segmentation. E) Cornified sub layer segmentation. F) Basal sub layer segmentation. 

 

2.2 Quantifying the Curvature of the Epidermis Layer  

Accurate quantification of the curvature of the epidermis layer would provide new 

insights into relevant skin disease. Several studies showed that the curvature of rete 

ridges can vary in ageing or obesity [9]. Other studies found several skin disorders are 

associated with changes in epidermal junction characterization, such as psoriasis [10].  

The proposed method to quantify the curvature relies on measuring the difference 

between the actual border of the epidermis and a straight reference line connecting the 

two far sides of the border. The curvature quantification stages can be summarized as 

follows. 

 

 The border the cornified layers are first extracted from the binary mask of the 

layer obtained in the previous stage (Figure 4B and 4C). This is simply done by 

enlarging the mask by one pixel from the top and the bottom followed by sub-

tracting the original mask from it. 

 Select the top border (Figure 4D) and connect the far two sides using a theoreti-

cal reference line (the red line in Figure 4E). 

 Calculate the distances between the points on the actual top border with the ref-

erence straight line as explained below. 

 The mean of all distances is used a measure to represent the curvature of the epi-

dermis. 
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 The distance from a line (the reference line) with equation  

 

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0                                          (1)      

to the point (u, v) [11] is: 

 

Distance = 
|𝐴𝑢+𝐵𝑣+𝐶|

√𝐴2+𝐵2
                                           (2) 

The distance has been found between each points on the epidermis curve and the 

theoretical line (the red line on Figure 4E), which was define by the equation (1). 

After that, small distances (less that a threshold) are ignored as they are more likely 

to represent a noise. The mean of distances is calculated for each image to represent 

the curvature measurement. It is worth mentioning that all images have more or the 

less the same orientations close to horizontal. 

 

Fig. 4. Representative images for each step of the automated image analysis 

method to find the curvature in the cornified layer  

 

NB: A) Original image. B) Cornified layer. C|) Border for the cornified layer. D) 

Bottom curvature line. E) Theoretical red line on bottom curvature line. F) Distance 

between theoretical red line and the bottom curvature line. 

 

3 Identifying the genes associated with changes in the curvature 

of the Epidermis. 

This paper follows a stringent protocol described by the MGP to identify interesting 

genotypes for further analysis  [12], which can be summarised as follows. The refer-

ence range (RR) method is used to establish the distribution of the WT measurements 

for each genetic background. If 60% of the measurements obtained form images of a 

mutant mice falls outside the 95% confidence intervals (CI) of the RR range, the 

knocked-out gene for that mutant line is ladled as an interesting gene i.e. a gene that 

has led to significant changes to the epidermis curvature. The lower and upper 95% 

CI were computed by the following equations: 

 

𝐿𝑜𝑤𝑒𝑟 95% 𝐶𝐼=-S∗1.64+M      (4) 



 

Upp𝑒𝑟 95% 𝐶𝐼=S ∗1.96+M    (5) 

 

Where the M is the mean of the WT measurements, and S is the standard deviation.  

If the number of measurements from a mutant that are below the lower 95% CI 

was >60% or above the upper 95% CI was >60%, the gene of that particular mutant 

line is consider for future investigation by biologists.  

 

4  Experiments.  

4.1  Dataset 

The proposed method is tested on a dataset generated by the Wellcome Trust Sanger 

Institute (WTSI), which generates mouse genetic and phenotypic data, and distributes 

this data and resources to the scientific community. The program at WTSI to func-

tionally annotate the mouse genome is illustrated. The primary phenotyping data gen-

erated by WTSI aims to discover genes involved in diseases. There are many other 

research projects that focus on the biological functions of genes in the mouse genetics 

area by WTSI, such as mouse behaviours, cancer and developmental genetics [13] 

.Data can be accessed via the mouse resources portal 

(http://www.sanger.ac.uk/mouseportal/). H&E stained skin from 16 week-old female 

mice. The testing data set has 5714 H&E stained image with 20X of magnification 

and dimensions 1444X908. The images contained 29 wild-type (WT) animals and 

116-knockout animal selected randomly by WTSI. There were 2-3 slides available 

from each animal, and 6-10 images per slide (captured at the magnification and reso-

lution above) were created.  

4.2 Results 

As it is not feasible to manually check the segmentation accuracy of 5714 images, we 

took random sample of 500 images. By close manual examination, we found that 18 

images out of the 500 image were not segmented successfully as shown in Figure 5 

i.e. the segmentation algorithm achieved an accuracy about 96.4%.  

As for the analysis results based on the RR method explained above, we identify 

32 genotypes responsible for changes in the Epidermis curvature. Figure 6 shows 18 

genotypes (e.g. Actn4/ Actn4) in which the curvature measurements are bigger than 

the RR 95% CI upper threshold whereas Figure 7 shows 14 genotypes (e.g. Wdr37) in 

which the curvature measurements are smaller than the RR 95% CI lower threshold 

Figure 8 shows an example of these interesting genotypes, particularly Actn4/ 

Actn4 that increase the curvature in the epidermis layer and Wdr37 that is associated 

with a decrease in curvature. Figure 8 shows example of images, which have in-

creased and decrease in the curvature of the epidermis layer of the H&E microscopic 

images in the mice skin. 

 

http://www.sanger.ac.uk/mouseportal/


 

Fig. 5. Segmentation accuracy, A) Bad segmentation. B) Good segmentation 

  

4.3 Curvature Accuracy Compared  With Manual  

Twenty five images was selected randomly from development data set (5714 images), 

then a manual technique was used to quantify the curvature in the epidermis layer to 

determine the truth distance values. Next the comparing operation has been done, 

which was clarified in Figure 7, with the automatic result, which 𝑅2 value, was 0.90, 

has used to measure the approach data to the fitted linear line ground truth value of 

the distance was found, by calculate the distance between the epidermis layer and the 

reference line, which was connected between a start point and end point of the epi-

dermis layer as shown in Figure 6, after that, the mean value was calculated for all 

distances values , for every single image, and then the comparison was applied be-

tween the mean value of the manual and the automatic method. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Fig.7. Comparison between manual and automatic method 

 

 

 

Fig.6. Manual method for quantifying the curvature of epidermis layer 



5 Conclusion 

Biological image processing and analysis provides techniques that help scientists to 

evaluate the effects of environmental exposure and physiological changes in a re-

search context. These techniques may also be used to evaluate the effect of the treat-

ments and drug efficiency in the context of the drug discovery. All of these analysis 

techniques could also be applicable clinically. In all applications, novel combinations 

of image processing/analysis techniques and pipelines will save time and are expected 

to produce more accurate results that will ultimately help or improve the speed and 

quality of dermatology and cosmetic treatments. This paper described a method for 

quantifying the curvature of the epidermis to help identifying genes responsible for 

changes in the curvature. Experiments on a large set of microscopic images of mutant 

and WT mice demonstrated the effectiveness of the proposal.  

 

 

 

 

Fig. 8. Curvature in development data. From analysing 5714 development images, 18 

genotypes showed curvature measurements bigger than RR 95% CI upper threshold.  
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Fig. 9. Curvature in development data. From analysing 5714 development images, 14 

genotypes showed curvature measurements smaller than RR 95% CI lower threshold. 

 

 

Fig. 10. Automatic estimation of interesting genes for curvature in epidermis 

layer.
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