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Abstract

Over the past years, the data envelopment analysis (DEA) methodology has registered

widespread use among researchers from many fields. Furthermore, it is important to note

that the non-Archimedean infinitesimal, ε, is a key concept in DEA models. Nevertheless,

it is known that some computational difficulties arise when using ε in DEA. In this short

communication, we show how the non-Archimedean may be voided using a directional dis-

tance function approach. Thus, our approach avoids choosing a real number (10−5 or 10−6)

as a value for ε or estimating the same.
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1. Introduction

Ever since Charnes, Cooper, and Rhodes (1979)’s proposal that the weights must be

strictly positive in data envelopment analysis (DEA) models, which anticipated the intro-

duction of the non-Archimedean infinitesimal ε, the same has become a topic of interest

for many researchers. The non-Archimedean ε can be observed in two places: (a) in the
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multiplier model, wherein ε is used as a lower bound for the weights and (b) in the en-

velopment model, wherein ε is used at the objective function level. The original two-stage

computation of DEA involving the non-Archimedean ε can be found in Cooper at al. (2006).

It is known, however, that some computational difficulties arise when using an infinites-

imal in DEA because of the finite tolerances in computer calculations. For example, setting

ε to 10−5 or 10−6 may not just change the efficiency score, but also the rankings (Färe et

al., 2016).

Attempts have been made in time to determine, estimate, bound, or even eliminate ε.

The lack of consensus over a concrete need for ε was elegantly stated in 1993 by Thompson

et al., who drew attention to the fact that ”it is not well recognized that the artificial, non-

Archimedean construct is not necessarily needed to exclude zero multipliers and to identify

positive slacks” (p. 379). In the same year, Tone (1993) proposed an ε-free DEA model,

and also introduced a new DEA efficiency measure, which, however, is not invariant to the

scaling of the input and output data; hence, by means of using a three-phase approach, he

adjusted the measure by considering some weights corresponding to the relative importance

of the inputs and outputs of the decision-making unit (DMU) of interest. Ali and Seiford

(1993), on the other hand, proposed an upper bound on ε for feasability for the multiplier

side and boundedness for the associated dual envelopment side. Later, Mehrabian, Jahan-

shahloo, Alirezaee, and Amin (2000) showed that Ali and Seiford’s bound is invalid and

presented a procedure for determining an assurance interval for ε.

In the following years, most of the studies have focused on estimating ε. Jahanshahloo

and Khodabakhshi (2004) determined an assurance interval for ε. Furthermore, Amin and

Toloo (2004) presented an algorithm for computing ε in DEA models, showing that this

algorithm is polynomial-time of O(n), where n is the number of DMUs. Alirezaee (2005),

on the other hand, determined the assurance interval of ε by means of a partition-based

algorithm, which involves solving a few number of linear programs. A more recent paper is

that by Podinovski and Bouzdine-Chameeva (2017), wherein the authors prove the existence

of an effective bound for ε.

In this short communication, we propose a way to void the non-Archimedean ε through

a directional distance function approach. This is an alternative to Cooper et al. (2006).
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This approach, also, allows to differentiate between efficiency (perfect) and efficiency in the

second phase; hence, its robustness and practicality lie within.

2. Directional distance function-based approach

Assume there are k = 1, 2, ..., K decision making units (DMUs) using xk ∈ <N
+ inputs to

produce yk ∈ <M
+ outputs. A DEA technology created from the data is:

T =

{
(x, y) :

K∑
k=1

zkxkn 5 xn,∀n,
K∑
k=1

zkykm = ym,∀m, zk = 0,∀k

}
(1)

where zk = 0, k = 1, 2, ..., K are the intensity variables. System (1) meets constant returns

to scale and has inputs and outputs, which are freely (strongly) disposable.

The input-oriented two-stage DEA model containing the non-Archimedean ε can be

written as:

min λ− ε
N∑

n=1

sn

subject to

K∑
k=1

zkxkn = λxk′n − sn, n = 1, 2, . . . , N,

K∑
k=1

zkykm = yk′m, m = 1, 2, . . . ,M,

zk = 0, k = 1, 2, . . . , K,

(2)

where sn is the nth slack variable.

To void the ε, we set it to +1, then take sn = βngn, where gn = (g1, ..., gn, ..., gN) is the

directional vector with the unit of measurement for gn as sn.Then, we set these to +1n.This

gives us the following new problem, which includes no non-Archimedean:
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min λ−
N∑

n=1

βn1n

subject to

K∑
k=1

zkxkn = λxk′n − βn1n, n = 1, 2, . . . , N,

K∑
k=1

zkykm = yk′m, m = 1, 2, . . . ,M,

zk = 0, k = 1, 2, . . . , K.

(3)

System (3) is a merger between Farrell‘s (1957) input-oriented model and Färe and

Grosskopf’s (2010a, b) slacks-based model of directional distance function with βn,∀n.

Proposition: βn is independent of unit of measurement.

Proof: Consider the following nth constraint from System(3),
∑K

k=1 zkxkn = λxk′n − βn1n.

Note that 1n = gn has the same unit of measurement as xn. Let us change xkn to

x̂kn = (xknµ), kilograms to pounds by µ. Then,
∑K

k=1 zk(xknµ) = λ(xk′nµ) − βn(1nµ),

which implies µ
∑K

k=1 zkxkn = µ(λxk′n − βn1n). Therefore, βn1n did not change; hence, it is

independent of unit of measurement. �

The slacks-based measure System (2) has the drawback that slacks of different units are

added. To remove this problem from our model, i.e., System (3), we just drop the 1n in the

objective function, so that we have min λ −
∑N

n=1 βn. Since βn is independent of unit of

measurement, so is the objective function.

To compute our new model in which λ is to be minimized and
∑N

n=1 βn should be

maximized (we need to make λxk′n − βn1n small), one may solve a non-linear problem as

follows:
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max λ+
N∑

n=1

βn1n

subject to

K∑
k=1

zkxkn =
xk′n
λ
− βn1n, n = 1, 2, . . . , N,

K∑
k=1

zkykm = yk′m, m = 1, 2, . . . ,M,

zk = 0, k = 1, 2, . . . , K.

(4)

or solve the problem in two phases, following Zieschang (1984):

Phase I: λ∗ = min λ

subject to

K∑
k=1

zkxkn 5 λxk′n, n = 1, 2, . . . , N,

K∑
k=1

zkykm = yk′m, m = 1, 2, . . . ,M,

zk = 0, k = 1, 2, . . . , K.

(5)

Phase II: max
N∑

n=1

βn1n

subject to

K∑
k=1

zkxkn = λ∗xk′n − βn1n, n = 1, 2, . . . , N,

K∑
k=1

zkykm = yk′m, m = 1, 2, . . . ,M,

zk = 0, k = 1, 2, . . . , K.

(6)
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Definition 1: The DMU of interest (k’) is said to be efficient (perfectly) if and only if

λ∗ = 1 and all βn = 0, n = 1, 2, ..., N .

Definition 2: The DMU of interest (k’) is said to be efficient if and only if λ∗ = 1 and at

least one βn 6= 0, n = 1, 2, ..., N .

The DMU of interest is said to be perfectly efficient when there is no room for improve-

ment. It is to be noted that our paper cannot find weakly efficient units in line with Cooper

et al. (2006). We numerically illustrate our two-phase procedure in the following section.

3. Numerical Example

Let us consider five DMUs with two inputs and one unique output (= 1), as follows:

A(1, 2, 1), B(1, 1, 1), C(2, 1, 1), D(2, 2, 1), and E(2, 4, 1). Figure 1 depicts the DMUs’ posi-

tion in the production possibility set with the x-axis being the first input over the output

and the y-axis being the second input over the output.

Figure 1: Data representation.

One can visually infer from Figure 1 that DMUs A, B, and C form the efficient frontier

and DMUs D and E are inefficient. It can also be observed that though DMUs A and C are

efficient, still there is room for improvement by means of reducing their respective inputs.

We shall further detail these observations.

Solving System (3) in two phases using the given inputs and output data yields the

following results in Tables 1-2, where Table 1 is obtained using System (5).
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Table 1: Analytics of DMUs (Phase I)

DMU λ∗ zA zB zC zD zE

A 1 1 0 0 0 0

B 1 0 1 0 0 0

C 1 0 1 0 0 0

D 0.5 0 1 0 0 0

E 0.5 0 1 0 0 0

Based on Table 1, one can infer that, indeed, DMUs A, B, and C are forming a frontier

as the respective λ∗ attain unity. DMUs D and E, on the other hand, are inefficient, with

the respective λ∗ being not equal to unity. Furthermore, from the zB column in Table 1,

one can observe that DMU B is the peer for DMUs C, D, and E, but not for DMU A. Table

2 has been generated by solving System (6) with the additional information λ∗ that was

obtained from System (5).

Table 2: Analytics of DMUs (Phase II)

DMU λ∗ zA zB zC zD zE β1 β2 Status

A 1 0 1 0 0 0 0 1 E

B 1 0 1 0 0 0 0 0 Ep

C 1 0 1 0 0 0 1 0 E

D 0.5 0 1 0 0 0 0 0 IE

E 0.5 0 1 0 0 0 0 1 IE

Note: Ep – Efficient (perfectly); E – Efficient; IE – Inefficient.

For DMU B, λ∗ = 1 and β1 and β2 are zero; hence, by definition, B is an efficient (per-

fectly) DMU. For DMUs A and C, λ∗ = 1 and β2 and β1, respectively, are non-zero; hence,

by definition, DMUs A and C are efficient; nevertheless, there is still room for improvement

by means of reducing their respective inputs. For DMUs D and E, λ∗ 6= 1; hence, as previ-

ously mentioned, DMUs D and E are inefficient. It is evident from the zB column in Table
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2 that DMU B is the peer for the efficient and inefficient DMUs. In the case of the efficient

DMUs A and C, β1 and β2 can be interpreted as the number of units in λ∗x1 and λ∗x2, re-

spectively, that can be decreased to push DMUs A and C to be efficient (perfectly) like DMU

B at its input level. Similarly, in the case of the inefficient DMUs D and E, the correspond-

ing βs can be interpreted as the number of units in λ∗x1 and λ∗x2, respectively, that can

be decreased to push DMUs D and E to be efficient (perfectly) like DMU B at its input level.

4. Concluding remarks

The non-Archimedean infinitesimal, ε, was introduced in order to avoid the value of zero

for the weights in DEA models. In this short communication, we have shown a way to

void ε using a directional distance function approach. The limitation of the present study

consists in the fact that the proposed method still solves the problem in two phases. The

advantage, however, is that by voiding ε, one can avoid the complexities posed by the many

computational efforts.
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