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Abstract 17 

 18 

Since the 1960s, large-scale deforestation in the Amazon Basin has contributed to rising global 19 

CO2 concentrations and to climate change. Recent advances in satellite observations enable 20 

estimates of gross losses of above-ground biomass (AGB) stocks due to deforestation. However, 21 

because of simultaneous regrowth, the net contribution of deforestation emissions to rising 22 

atmospheric CO2 concentrations is poorly quantified. Climate change may also reduce the 23 

potential for forest regeneration in previously disturbed regions. Here, we address these points 24 

of uncertainty with a machine-learning approach that combines satellite observations of AGB 25 

with climate data across the Amazon Basin to reconstruct annual maps of potential AGB during 26 

1993-2012, the above-ground C storage potential of the undisturbed landscape. We derive a 2.2 27 

Pg C loss of AGB over the study period, and, for the regions where these losses occur, we 28 

estimate a 0.7 Pg C reduction in potential AGB. Thus, climate change has led to a decline of ~1/3 29 

in the capacity of these disturbed forests to recover and recapture the C lost in disturbances 30 

during 1993-2012. Our approach further shows that annual variations in land use change mask 31 

the natural relationship between the El Niño/Southern Oscillation and AGB stocks in disturbed 32 

regions. 33 

 34 

  35 



The terrestrial carbon sink helps offset about 25% of anthropogenic emissions of fossil-fuel 36 

responsible for climate change1,2. While tropical forests are a major contributor to this sink, recent 37 

large-scale deforestation has weakened the capacity of the Amazonian forest to remain a long-term 38 

carbon store. The extent of land cover change in the Amazon Basin can now be quantified with some 39 

degrees of confidence using satellite-based observations3. Merging these observations with maps4,5 of 40 

Aboveground Biomass Carbon (AGB) provides a baseline estimation of gross losses from 41 

deforestation6. However, corresponding emissions may be partially compensated by regrowth in 42 

previously cleared areas1 while climate change, and extremes in particular, may alter the capacity of 43 

Amazonian forests to sequester C7. Therefore, estimates of the long-term net impact of large-scale 44 

deforestation and degradation on the land carbon sink, and its potential for recovery, are challenging 45 

to establish.  46 

A way to address these problems is to study the deviation of current AGB stocks from potential 47 

stocks, to determine and separate the human-induced and climate-induced biomass deficits. These 48 

potential stocks are those that would exist under current climate if previous large-scale deforestation 49 

and degradation had not occurred (potential AGB further noted as AGBpot
8; see Methods). AGBpot can 50 

also be considered as a measure of local suitability for long-term carbon storage to inform 51 

reforestation and afforestation mitigation strategies. While it is not a directly measurable quantity, 52 

AGBpot is comparable to carbon stocks predicted by terrestrial ecosystem models that omit land use 53 

and land cover change activities8 (such as those participating in the Intersectoral Impact Model 54 

Intercomparison Project, ISI-MIP9-11).  55 

In a previous study8, maps of AGBpot have been reconstructed over the Amazon Basin based on the 56 

relationship between climate12 and maps of observed AGB in the tropics4,5 (AGBobs) inside Intact 57 

Forest Landscapes13 (IFL). This study estimated a current human-driven AGB deficit (AGBdef = 58 

AGBpot – AGBobs) ranging from 7.3 to 8 Pg C, or 11.6-12.2% of the basin-wide AGBpot. However, this 59 

previous approach relied on AGBobs derived from data amalgamated over several years, which 60 

prevented any analysis of the evolution of AGBdef. Indeed, AGBdef continuously evolves through time 61 

as it is the difference between AGBpot, which is only driven by climate and atmospheric CO2 62 



concentrations, and AGBobs which is driven by land use activities as well as climate and atmospheric 63 

CO2 concentrations. For example, anthropogenic activities such as deforestation (regrowth) may lead 64 

to a decrease (increase) in AGBobs stocks, resulting in positive (negative) trend in AGBdef. Meanwhile, 65 

the CO2-fertilization effect may lead to a greater potential for forest regeneration (i.e. greater AGBpot) 66 

as recent findings indicates it is the main driver of a global greening of the land surface14. However, 67 

locally changing climate conditions may lead to a reduction of the resilience of tropical forests and a 68 

transition toward less densely vegetated savannah landscapes15. There is a projected risk of Amazon 69 

die-back7 due to climate change, albeit with large uncertainty on its occurrence and severity16. It 70 

would reduce the potential for biomass recovery associated with reforestation by the end of the 21st 71 

century. Therefore, it is important to estimate the resilience of AGBpot to climate change to design 72 

efficient climate mitigation strategies based on reforestation.  73 

In this study, we build on a previous approach8 (see Methods) to address the evolution of AGBpot, and 74 

hence AGBdef, using a new dataset17 that provides annual estimates of AGBobs from 1993 to 2012 at a 75 

0.25° spatial resolution. By doing so, we aim to answer the following questions: 76 

- How did AGBdef evolve in disturbed regions of the Amazon Basin over these two decades?  77 

- Can we apportion this evolution to climate conditions affecting AGBpot versus human 78 

activities reducing AGBobs? 79 

- Would reforestation-based mitigation strategies be resilient to climate change in previously 80 

cleared regions of the Amazon Basin?  81 

 82 

Results 83 

We estimate a change in AGBobs from 26.3 Pg C (with a 4.1 Pg C confidence range) in 1993 to 24.1 84 

Pg C (with a 3.9 Pg C confidence range) in 2012, or a 2.2 Pg C (with a 0.2 Pg C confidence range) 85 

loss in regions of the Amazon basin which are not IFL. Using the machine-learning approach we 86 

derive a reduction of AGBpot from 32.1 Pg C (with a 4.0 Pg C confidence range) in 1993 to 31.4 (with 87 

a 3.9 Pg C confidence range) in 2012 in the same regions. Comparing the evolution of AGBobs and 88 



AGBpot results in a human-driven increase in AGBdef from 18.0% (AGBdef/AGBpot) in 1993 (with a 89 

2.3% confidence range) to 23.3% in 2012 (with a 2.7 % confidence range). Overall, ~1.5 Pg C of the 90 

~7.3 Pg C mean AGBdef in 2012 was generated by combined anthropogenic activities and climate 91 

patterns since 1993 (Table 1). The evolution of AGBdef is strongly linear during 1993-2005 (r = 0.99; 92 

p << 0.001) before plateauing from 2005 onwards with no significant trend (Figure 1). The 93 

stabilisation of AGBdef after 2005 is associated to a reduction of AGBobs stocks from 0.17 Pg C y-1 94 

(with a 6% relative uncertainty) to 0.04 Pg C y-1 (with a 14% relative uncertainty) before and after 95 

2005 respectively (Figure 2). It corresponds to a reduction in deforestation rates over the Brazilian 96 

Amazon seen in data from INPE (Figure S1 in the Supplementary Information; r = 0.97; p << 0.001) 97 

while the smooth decreases of AGBpot throughout the study period indicates a long-term negative 98 

impact of climate on the regeneration potential of disturbed regions (Figure 2).  99 

The increase in AGBdef is heterogeneously distributed across disturbed areas of the basin (Figure 3). 100 

While the spatial distributions of AGBdef are significantly correlated (r = 0.89; p << 0.001) in 1993 101 

(Figure 3a) and 2012 (Figure 3b), AGBdef increased by more than 50 Mg C ha-1 in some parts of the 102 

Brazilian arc of deforestation (between 10°S and 15°S; Figure 3c) and in central Bolivia (south of 103 

15°S; Figure 3c). We note a reduction in AGBdef, i.e. a recovery of AGBobs stocks toward AGBpot, in 104 

the south-eastern edge of the basin, and to a lesser extent in northern Brazil. This recovery indicates 105 

that non-primary vegetation, mostly rangeland in these regions, may have built up biomass stocks 106 

from 1993 to 2012. Over the period 1993-2012, local increases in AGBdef can be explained by the 107 

erosion of primary land (Figure 4). Conversely, local recovery of stocks associated to decreases in 108 

AGBdef corresponds to regions where the fraction of primary land was already low in 1993. This 109 

pattern indicates a recovery of AGB stocks in other land cover types, principally rangelands (Figure 110 

S2). Despite this apparent recovery of AGB stocks, the deficits in these regions were still >50 Mg C 111 

ha-1 in 2012.  112 

Our estimates indicate a significant negative correlation between inter-annual variations of the El 113 

Niño/Southern Oscillation (ENSO), represented by a winter composite of the Multivariate ENSO 114 

Index (MEIw, see methods) and detrended ΔAGBpot integrated over previously disturbed regions 115 



(Figure S3 in the Supplementary Information; r = -0.57; p ≈ 0.01). This relationship indicates that 116 

negative (La Niña) phases of ENSO would drive positive anomalies in ΔAGBpot, i.e. a stronger sink, 117 

while positive (El Niño) phases of ENSO are associated with negative anomalies in ΔAGBpot, a 118 

weaker sink. However, past and current human activities mean that this significant relationship 119 

between ENSO and the sink strength disappears when comparing with de-trended ΔAGBobs (r = -0.38, 120 

p > 0.10). We conclude that, through clearing and subsequent regrowth, human activities have 121 

become the main driver of inter-annual variability of the land-based sink, dominating natural climate 122 

drivers, in disturbed regions of the Amazon.  123 

 124 

Discussion 125 

The annual biomass maps have allowed resolution of AGB changes across the Amazon Basin, 126 

indicating areas of heavy losses, but also some areas of AGB gain (Figure 2). By mapping the 127 

potential biomass, we show the evolution of the basin’s capacity to store C, a baseline without human 128 

impacts. Because AGBpot is determined from annual AGBobs data in IFL, the annual variation in 129 

AGBpot indicates the effect of climate on the storage capacity of the intact forest. We show that this 130 

potential has declined over 1993-2012 (Figure 2) similarly to AGB stocks in IFL (Figure S4 in the 131 

Supplementary Information), due to climate and in spite of rising atmospheric CO2 concentrations 132 

(Table 1). Indeed, the evolution of AGB stocks in IFL is significantly correlated with the vegetation 133 

water stress estimated by GLEAM18 (r = 0.64; p < 0.01). The post-2005 decrease in AGB stocks in 134 

IFL follows a transition to stronger stress conditions around 2002 that prevail until the end of the 135 

study period in 2012. This transition toward more water-stressed conditions corresponds to the onset 136 

of the 2002-2003 El Niño episode19 followed by the 2005 and the 2010 Amazonian droughts20,21. 137 

Overall, these results indicate that drying conditions have degraded the capacity of the disturbed 138 

regions to regain their lost biomass which is line with the projected risk of climate driven Amazon 139 

biomass loss7. This climate-driven reduction in the capacity for regeneration also corroborates with 140 

risks for tropical forests to be replaced by savannahs if drier conditions dominates15. 141 



Our results are first-order estimates and we are aware that hard-to-quantify and potentially large 142 

uncertainties may arise from ground-level measurements22, the way they are used in combination with 143 

remote-sensing data to derive large-scale biomass maps23, and the identification of forest cover24 and 144 

intact forest landscapes13. Therefore, we have validated the robustness of our machine-learning 145 

approach in several ways. First, it simulates annual AGBobs with <0.1% bias integrated over out-of-146 

sample IFL regions (Figure S5a in the Supplementary Information). We note a tendency to 147 

overestimate AGB in less densely vegetated regions (Figure S5b and c in the Supplementary 148 

Information) but the local mean relative bias is <1.2%. Second, pixel to country-scale estimates of the 149 

evolution of AGBdef through time are in agreement with independent datasets of deforestation (Figure 150 

S1) and land cover change rates (Figure 3). Finally, the ~7.3 Pg C AGBdef estimated after 2005 is 151 

similar to the one reported previously8. Our highest confidence results indicate a ~0.08 Pg C y-1 152 

increase in AGBdef for the period 1993-2012. This net number is about half of recent estimates of 153 

gross C emissions from the Amazonian deforestation25. It is in agreement with the ~50% 154 

compensation of gross C emissions from tropical deforestation by regrowth1. Assuming that large-155 

scale deforestation started in 1960 (ref. 26), the initial AGBdef of ~5.8 Pg C in 1993 corresponds to a 156 

higher 0.18 Pg C y-1 net biomass loss prior to this date. The decrease in AGBdef growth rate between 157 

1993 and 2012, and especially after 2005 (Figure 1), matches reports of a slowing down of Brazilian 158 

deforestation during 2005-2012 (refs. 26-28) but is also a result of a decrease in AGBpot in disturbed 159 

regions of the Amazon Basin.  160 

Furthermore, field studies20,21 and airborne measurements29 have shown that climate variability, and 161 

especially El Niño-induced droughts, have a large impact on the carbon balance of undisturbed areas 162 

of the Amazon Basin. These previous results are in agreement with the negative correlation between 163 

MEIw and ΔAGBpot (Figure S3 in the Supplementary Information). Overall, human-induced clearing 164 

and recovery processes mask the natural response of ecosystems to climate in disturbed parts of the 165 

Amazon Basin. While this impact is intuitive, we are able to demonstrate it quantitatively with the 166 

AGBpot reconstructions. Finally, this result raises concerns on the viability of climate change 167 

mitigation strategies, as climate change is likely to challenge the resilience of forested landscapes. 168 



 169 

Conclusion 170 

We have recreated annual maps of potential AGB for the Amazon Basin, which allows the net 171 

impacts of global change on basin biomass to be determined. Compared to maps of historical biomass, 172 

these indicate an increase of ~1.5 Pg C in the biomass deficit (AGBdef) for 1993-2012. This basin-173 

wide number is a net estimate of climate-induced variation of AGBpot and deforestation-induced 174 

erosion of AGB stocks, which are partly compensated by regrowth in some areas post-deforestation. 175 

Overall, our results indicate that land use change continues to erode the carbon storage of the Amazon 176 

basin while climate change is impairing its capacity to sequester carbon through natural processes of 177 

regrowth, raising concerns on the long-term resilience of land-based mitigation strategies.  178 

  179 



Methods 180 

Annual maps of AGB 181 

We use annual Above Ground Biomass maps17 (AGBobs) for the period 1993 through 2012 based on 182 

the passive microwave observed vegetation optical depth (VOD, dimensionless) from a series of 183 

satellites. VOD is an indicator of the total water content in the aboveground vegetation, i.e. including 184 

both canopy and woody components30-32. This VOD dataset can qualitatively capture the long-term 185 

and inter-annual variations in vegetation water content over different land cover types33-37. Annual 186 

AGBobs maps were created by establishing a relationship between VOD and a pan-tropical map4 of 187 

AGBobs circa 2000. These annually resolved maps are comparable with previous independent 188 

estimates of AGB dynamics1,5,6. For more details about the methodology used to create AGBobs maps, 189 

please refer to Liu et al. (2015, ref. 17). 190 

 191 

Creating potential AGB maps 192 

To derive the evolution of the AGB deficit (AGBdef) we first created annually resolved maps of 193 

potential Above Ground Biomass (AGBpot) in previously disturbed regions. AGBpot corresponds to 194 

AGB stocks there would exist under current climate if deforestation had not occurred in these regions. 195 

It can also be conceptualized as the current forest regeneration potential if regrowth was 196 

instantaneous. The method to create AGBpot maps was described in Exbrayat and Williams (2015; ref. 197 

8) and is only briefly summarized hereafter. 198 

First, we used a Random Forest machine-learning algorithm38,39 to reproduce AGBobs as a function of 199 

climatology in identified Intact Forest Landscapes (IFL) which cover about 55% of the Amazon 200 

Basin. The Random Forest technique relies on multiple decision trees (here n = 1,000) to group data 201 

points as a function of driving data. Then, in each final node a multiple linear regression is trained to 202 

predict the target variable (here AGBobs) as a function of explanatory data. Each individual decision 203 

tree is trained on a randomly selected subset of the data and the final prediction is the average of all 204 

trees. Here, we use the CRU CL2.0 climatology dataset12, re-gridded to a matching 0.25° resolution 205 



with the Climate Data Operators version 1.6.9, and latitude, a proxy of intra-annual photoperiod 206 

amplitude, as explanatory variables to predict AGB in IFL. The assumption is made that regions 207 

identified as ‘intact’ may be subject to small-scale indigenous management40 or disturbances41 that are 208 

negligible at the coarser 0.25° resolution used here8. Compared to our previous study we used an 209 

updated IFL dataset13 that represents the extent of intact regions for the year 2013. It ensures that 210 

training regions have remained intact throughout the whole period covered by the AGBobs dataset (i.e. 211 

1993 – 2012). In addition to these continuous drivers, we used a categorical variable to separate pixels 212 

corresponding to large-scale open water regions in the Global Lakes and Wetlands Database42. As 213 

VOD values are strongly influenced by the open water dynamics, the pixels with large-scale open 214 

water are identified and the VOD values over these pixels are assumed constant among different 215 

years17.  216 

Once trained the algorithm can then be used to estimate annual, climate-driven, AGBpot in previously 217 

disturbed regions (i.e. outside IFL) regions. Although it has been identified as the major driver of the 218 

recent greening of the land surface14, CO2 is not explicitly used in our approach because of the lack of 219 

availability of spatially-explicit data of atmospheric concentrations. However, we assume that the 220 

impact of increasing CO2 on AGB stocks is intrinsically included in time series of AGB in IFL which 221 

also include the impact of changing climatic conditions. Using annual maps of AGBpot we can 222 

calculate an AGB deficit (AGBdef = AGBpot – AGBobs) and derive time series of its evolution from 223 

1993 to 2012. As the temporal evolution of AGBpot is only driven by climate and atmospheric CO2 224 

concentrations, we assume that AGBdef is representative of the net and cumulative impact of 225 

anthropogenic activities on biomass dynamics on AGB stocks. We perform the analyses using the 226 

mean AGBobs from Liu et al. (ref. 17) to derive AGBpot and AGBdef. Furthermore, we evaluate the 227 

uncertainty in our approach by performing the analysis with the 5th and 95th percentiles of AGBobs 228 

data17 to report the corresponding confidence ranges in AGBpot and AGBdef. As a proof of concept, we 229 

first validate the method using ~50% of randomly selected pixels in IFL as training dataset and the 230 

remaining IFL pixels as target dataset to assess the robustness of the approach to recreate 20 years of 231 

AGBpot. Corresponding results are presented in Figure S5 of the supplement. We note a good 232 



agreement between reconstructions and data in IFL although there is a tendency for the machine-233 

learning to overestimate AGB in less densely vegetated regions.  234 

 235 

Validation of results 236 

Our estimates of AGBpot cannot be directly validated against field data. However, we expect the 237 

temporal evolution of AGBdef to be related to contemporary deforestation rates and land cover 238 

changes. Therefore, we compare time series of AGBpot from pixel to country-scale with independent 239 

datasets of Land Use and Land Cover Change (LULCC). First, we compare annual deforestation rates 240 

reported by INPE for the Brazilian part of the Amazon Basin with the corresponding trend in AGBdef 241 

over the whole period 1993-2012. Second, we use spatially-explicit data from the Land-Use 242 

Harmonization project version 2 (LUH2v2h; data updated from ref. 43). LUH2v2h is a global driving 243 

dataset that provides annual land cover information for the period 850-2015 C.E. in the Land Use 244 

Model Intercomparison Project44 (LUMIP) contribution to the upcoming sixth phase of the Coupled 245 

Model Intercomparison Project45 (CMIP6). In LUH2v2h land covers are distributed between 12 246 

classes (2 primary land classes, 2 secondary land classes, 5 cropland classes, 2 pasture and rangeland 247 

classes and 1 urban class) and the fraction they cover in each 0.25° pixel is reported annually.  248 

 249 

Climate sensitivity 250 

We compare the evolution of AGBobs in IFL with time series of the vegetation stress factor S from the 251 

GLEAM dataset v 3.1a (ref. 18). GLEAM is a data-assimilation system that uses satellite observations 252 

to constrain daily estimates of global terrestrial evaporation and root-zone soil moisture46. The factor 253 

S is an output of GLEAM and represents the ratio of actual evapotranspiration to potential 254 

evapotranspiration, an indicator of ecosystem’s water stress. It is as a function of vegetation state and 255 

soil moisture availability and therefore takes long-term effects of precipitation conditions into 256 

account. We use the mean annual value of S across the IFL regions of the Amazon Basin, expressed 257 

as a z-score, to explain the evolution of AGBobs (Figure S4). 258 



We seek to further understand the impact of large-scale human disturbances by quantifying their 259 

impact on the response of ecosystems to climate variability. We focus on the El Niño/Southern 260 

Oscillation (ENSO), a main driver of global climate variability47. The state of ENSO, quantified 261 

through the calculations of an index, significantly correlates with the strength of the global land 262 

carbon sink48. Indeed, positive (negative) El Niño (La Niña) phases drive warmer and drier (cooler 263 

and wetter) conditions over large parts of the pan-tropical region, including the Amazon Basin, which 264 

explains spatial patterns of ecosystem carbon uptake48. Following previous studies48,49 we use a winter 265 

composite of the Multivariate ENSO Index50,51 calculated between Dec/Jan and Mar/Apr (referred as 266 

MEIw). To quantify the impact of human disturbances on the response of the Amazon terrestrial 267 

carbon sink to ENSO, we study the correlation between MEIw and detrended anomalies of annual 268 

ΔAGBobs and ΔAGBpot stocks integrated over disturbed (i.e. non-IFL) regions of the Amazon Basin. 269 

We choose to rely on a global index rather than actual data of temperature and precipitation for the 270 

Amazon Basin because past deforestation may have altered these quantities in regions where land-271 

atmosphere coupling is strong52,53. 272 

 273 
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 408 

Tables 409 

 410 

Table 1. Total AGBobs in the disturbed regions of the Amazon Basin from Liu et al. (2015) and 411 

AGBpot from this study in 1993 and 2012. Reported values are mean, with 5th and 95th 412 

percentiles between brackets. All values are in Pg C, rounded to the first decimal. 413 

 414 

  415 

1993 2012 

AGBobs AGBpot AGBdef/AGBpot  AGBobs AGBpot AGBdef/AGBpot  

26.3 

(24.0 / 28.1) 

32.1 

(29.8 / 33.8) 

18.0% 

(17.0% / 19.3%) 

24.1 

(22.0 / 25.9) 

31.4 

(29.2 / 33.1) 

23.3% 

(22.0% / 24.7%) 



 416 

Figures 417 

 418 

 419 

Figure 1. Time series of AGBdef in disturbed areas of the Amazon Basin expressed as a fraction 420 

of AGBpot. The green area represents the 5th and 95th percentile while the thick black line 421 

represents the mean. The shaded time period 1993-2005 highlights when the basin-wide increase 422 

in AGBdef exhibits a linear trend (r = 0.99; p << 0.001) before this trend disappears after 2005. 423 

 424 

 425 
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 427 

 428 

Figure 2. Change in total AGBobs and AGBpot in previously disturbed regions since 1993. 429 

Differences between AGBpot and AGBobs, represented as a grey shading, correspond to the 430 

evolution of AGBdef for 1993-2012. For clarity only the mean estimates are represented. 431 



 432 

 433 

 434 

 435 

Figure 3. Aboveground Biomass Carbon deficit (AGBdef) in (a) 1993, (b) 2012  and (c) the change in AGBdef over these two decades (c). Untouched 436 

IFL areas are represented in grey. In sub-panel c, positive (red) values indicate an erosion of AGB stocks while negative (green) values indicate a 437 

partial recovery. Maps were created using the cartopy module version 0.12.0 (http://scitools.org.uk/cartopy/) for python 2.7 438 

(http://www.python.org/). 439 

 440 
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 442 

 443 

Figure 4. (a) Fraction of primary land outside IFL regions in 1993. Grey areas represent IFL regions. (b) Change in fraction of primary land 444 

between 1993 and 2012. Blue represents the decline in primary land during 1993-2012. (c) Temporal correlation between fraction of primary land 445 

and AGBdef from 1993 through 2012 over each 0.25° grid cell. Hatched areas represent statistically significant correlation (p < 0.05). A negative 446 

correlation indicates an increase in AGBdef (i.e. an erosion of AGB stocks) when the fraction of primary land decreases through time. Maps were 447 

created using the cartopy module version 0.12.0 (http://scitools.org.uk/cartopy/) for python 2.7 (http://www.python.org/). 448 
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