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Endothelial Progenitor Cell Biology and Vascular Recovery Following
Transradial Cardiac Catheterization
Andrew Mitchell, MBChB, BSc;* Takeshi Fujisawa, PhD;* Nicholas L. Mills, MBChB, BSc, PhD; Mairi Brittan, BSc, PhD;
David E. Newby, MBChB, MD, PhD; Nicholas L. M. Cruden, MBChB, BSc, PhD

Background-—Transradial catheterization is associated with radial artery injury and vasomotor dysfunction and represents an
accessible model of acute vascular injury in humans. We characterized vascular injury and functional recovery to understand the
role of circulating endothelial progenitor cells in vascular repair.

Methods and Results-—In 50 patients (aged 64�10 years, 70% male) undergoing transradial cardiac catheterization, radial artery
injury was assessed by optical coherence tomography and examination of explanted vascular sheaths. Flow- and nitrate-mediated
dilatation of the radial artery was assessed in both arms at baseline, at 24 hours, and at 1, 4, and 12 weeks. Circulating
endothelial progenitor cell populations were quantified using flow cytometry. Late endothelial outgrowth colonies were isolated and
examined in vitro. Optical coherence tomography identified macroscopic injury in 12 of 50 patients (24%), but endothelial cells
(1.9�1.29104 cells) were isolated from all arterial sheaths examined. Compared with the noncatheterized radial artery, flow-
mediated vasodilatation was impaired in the catheterized artery at 24 hours (9.9�4.6% versus 4.1�3.1%, P<0.0001) and
recovered by 12 weeks (8.1�4.9% versus 10.1�4.9%, P=0.09). Although the number of CD133+ cells increased 24 hours after
catheterization (P=0.02), the numbers of CD34+ cells and endothelial outgrowth colonies were unchanged. Migration of endothelial
cells derived from endothelial outgrowth colonies correlated with arterial function before catheterization but was not related to
recovery of function following injury.

Conclusions-—Transradial cardiac catheterization causes endothelial denudation, vascular injury, and vasomotor dysfunction that
recover over 12 weeks. Recovery of vascular function does not appear to be dependent on the mobilization or function of
endothelial progenitor cells.

Clinical Trial Registration-—URL: https://www.clinicaltrials.gov. Unique identifier: NCT02147119. ( J Am Heart Assoc. 2017;6:
e006610. DOI: 10.1161/JAHA.117.006610.)

Key Words: cardiac catheterization • endothelial cell • endothelial function • radial artery catheter • vascular imaging

E ndothelial injury is central to the onset and progression
of atherosclerosis and is ubiquitous following balloon

inflation during percutaneous coronary intervention (PCI). The
consequence of endothelial denudation and dysfunction is
determined by the regenerative response mediated by the
local vasculature and circulating cells. Efforts to study and
modify this response have been hampered by the lack of an

accessible and well-characterized model of vascular injury in
humans.

The radial artery has emerged as the access site of choice
for cardiac catheterization,1,2 but there is a substantial
incidence of subclinical radial artery injury,3,4 which is
associated with vasomotor impairment.5–12 Although ethical
considerations make it challenging to induce traumatic
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experimental arterial injury in human patients, transradial
cardiac catheterization offers the opportunity to study this
process in a controlled setting.

The cellular response to vascular injury is important in
atherogenesis as well as in vascular remodeling following
coronary intervention. Since the first description by Asahara
et al in 1997,13 the role of circulating endothelial progenitor
cells (EPCs), has been the focus of intense research.
Associations have been observed between circulating EPC
numbers, vascular function, and cardiovascular outcomes.14

However, controversy over the phenotypic definition of these
cells and their specific role in vascular repair as well as their
scarcity in the peripheral blood15 make their study and
therapeutic manipulation challenging.

Late endothelial outgrowth cells (EOCs) are isolated from
peripheral blood mononuclear cells expanded under angio-
genic culture conditions.16 These cells have high proliferative
activity, form a monolayer of cells resembling mature
endothelium in culture, and form perfusing vessels

in vivo.16,17 As such, EOCs are widely considered to be the
progeny of circulating EPCs.18 Assessment of EOC function
and the mobilization of EPCs following controlled vascular
injury may provide novel insights into their role in vascular
repair and regeneration.

This study aimed to characterize the extent of acute
vascular injury following transradial cardiac catheterization,
the degree of functional impairment, the time course of
recovery, and the contribution of circulating EPCs to the
restoration of vascular function.

Methods

Participants
Fifty patients undergoing elective transradial cardiac catheter-
ization for known or suspected coronary artery disease at the
Royal Infirmary of Edinburgh, Scotland (UK) were recruited.
Patients were excluded if they had a recent acute coronary
syndrome or cardiac catheterization (<3 months) or had
severe valvular heart disease, renal impairment (estimated
glomerular filtration rate <30 mL/min per 1.73 m2), contrast
allergy, pregnancy, or were unable to give informed consent.
The study was approved by the local research ethics
committee, and written informed consent was obtained from
all patients.

Protocol
At the time of cardiac catheterization, structural injury to the
radial artery was assessed by optical coherence tomography
(OCT). Radial sheaths were also examined for endothelial cells
in a subset of patients (n=10). Function of the radial artery
was assessed using flow-mediated dilatation (FMD) and
nitrate-mediated dilatation (NMD) at baseline, at 24 hours,
and at 1, 4, and 12 weeks after angiography. In all patients,
the contralateral (noncatheterized) radial artery was examined
as an internal control. Venous blood was obtained to isolate
and culture endothelial cells at baseline and at 24 hours
following catheterization, as described below.

Cardiac Catheterization
Angiography was performed via the right radial artery in all
cases. Briefly, following local anesthesia with 1% lidocaine, the
radial artery was punctured using the Seldinger technique. An
intravenous bolus of heparin (5000 U) was given, with
additional heparin administered at the operator’s discretion
if follow-on coronary intervention was undertaken. Arterial
sheaths were removed at the end of the procedure with
hemostasis achieved by a compressive wrist band (TR band;
Terumo).

Clinical Perspective

What Is New?

• Although radial artery injury is a well-recognized conse-
quence of transradial cardiac catheterization, this study is
the first to comprehensively and simultaneously describe
structural injury, vasomotor function, and accompanying
cellular profiles.

• The incidence of arterial injury detectable by intravascular
imaging following transradial cardiac catheterization in this
study using contemporary equipment is lower than
described previously.

• Transradial cardiac catheterization causes reversible vaso-
motor dysfunction, the recovery of which is not influenced
by peripheral blood endothelial progenitor cell concentra-
tions or in vitro endothelial outgrowth cell function.

What Are the Clinical Implications?

• The superiority of the radial artery as the access route of
choice for cardiac catheterization is emphasized by low
incidence of arterial injury and the reversible nature of
vasomotor dysfunction.

• The lack of association between traditionally defined
endothelial progenitor cell concentrations and vascular
recovery suggests that these populations may not play an
important role in vascular repair.

• Given the feasibility of defining arterial injury and following
arterial function noninvasively, the radial artery in the
context of cardiac catheterization is a useful model to
examine the processes influencing vascular repair and may
be a useful tool in translational studies of potential
therapies.
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Optical Coherence Tomography
OCT of the radial artery was performed at the beginning and
end of the angiography procedure. Briefly, a 6-French arterial
sheath (Check-Flo, 13 cm, uncoated; Cook Medical) was
inserted a short distance (2 cm) into the vessel. A coronary
guide wire (Balance Middleweight; Abbot Vascular) was then
passed to the brachial artery under fluoroscopic guidance,
over which an OCT catheter (Fastview; Terumo) was
advanced with the position monitored using live intravascular
imaging. Following 200 lg of intraradial glyceryl trinitrate,
contrast (75% solution Omnipaque; GE Healthcare) was
injected into the radial sheath, and pullback of the 15 cm
of artery proximal to sheath insertion was performed. The
sheath was then inserted to its full length, and the invasive
coronary angiogram was performed. At the end of the
procedure, the sheath was withdrawn to its original insertion
point (2 cm into the vessel) and the artery reimaged as
described earlier.

Vessel dimensions were assessed at 1-cm intervals, with 3
consecutive frames analyzed at each location. Areas of the
internal elastic lamina, external elastic lamina, and radial
artery lumen were manually defined and then automatically
calculated using proprietary software (Lunawave; Terumo).
Mean intimal area was defined as average internal elastic
lamina area minus average luminal area. Structural injury was
assessed qualitatively on a frame-by-frame basis and classi-
fied as intimal tear (a visible flap contained within the intima)
or medial dissection (extending into the media) when present
on at least 3 consecutive frames.

FMD and NMD of the Radial Artery
FMD and NMD were assessed according to international
guidelines.19,20 Briefly, the radial artery was imaged 5 cm
proximal to the radial styloid with a 12- to 15-MHz linear-array
ultrasound transducer (CX50; Phillips) held in place by a
stereotactic clamp. A baseline recording was captured over
60 seconds. A suprasystolic cuff was then inflated to
220 mm Hg for 5 minutes immediately distal to the antecu-
bital fossa. Following release of the cuff, the artery was
imaged continuously for 5 minutes (FMD). After 15 minutes of
rest, the artery was again imaged for 60 seconds. Participants
then received 25 lg of sublingual glyceryl trinitrate, and the
radial artery was imaged for another 5 minutes (NMD).
Assessments were carried out in a quiet, temperature-
controlled (18–25°C) room at the same time of day to
minimize biological variation. Blood pressure and heart rate
were monitored during the resting period and after cuff
release using an oscillometric sphygmomanometer placed on
the contralateral arm. In previous studies, we demonstrated
good reproducibility of these techniques with a mean bias

(between day repeatability for FMD) of �4.3% (95% confi-
dence intervals of �18.3% to 9.7%).21

Image acquisition was ECG-gated with arterial diameter
captured during end-diastole (R-wave triggered). The artery
was initially identified using color-flow Doppler, which also
allowed assessment of radial artery patency at all visits. The
probe position that gave the largest arterial diameter and the
clearest definition of the anterior vessel wall was chosen to
minimize the potential to underestimate lumen diameter. The
focus position of the probe was set to the anterior vessel wall,
as this is the most challenging to resolve.19 Images were
analyzed offline using proprietary software (Brachial Analyzer,
Vascular Tools; Medical Imaging Applications). Baseline and
peak diameters were measured in millimeters, with measure-
ments averaged across 60 and 10 frames for baseline and
peak values, respectively. FMD and NMD were expressed as
percentage change in diameter from baseline.

Characterization of Arterial Sheath-Associated
Cells
Arterial sheaths were examined for the presence of endothe-
lial cells at the end of the procedure in a subset of patients
(n=10). The lumen was flushed to remove blood, and the
sheaths were placed in phosphate-buffered saline and
centrifuged at 400 g for 8 minutes to recover adherent cells.
Cells were incubated with a panel of monoclonal antibodies
specific to the endothelial cell antigen CD31-PE (Phycoey-
thrin), platelets with CD42a-FITC (Flourescin isothyocyanate),
and hematopoietic cells with CD45-APC (Allophycocyanin),
and 40 000 events were acquired using a 4-laser flow
cytometer (LSRFortessa; BD Biosciences).

Circulating EPCs
Venous blood (100 mL) was obtained from all patients
immediately before and 24 hours after cardiac catheteriza-
tion. Fresh blood was stained with panels of preconjugated
anti–human monoclonal antibodies to quantify putative EPC
populations: CD45-V450, CD34-APC/Cy7, KDR (Kinase-
domain receptor)-PE, and CD133-APC. CountBright beads
(ThermoFisher Scientific) were used to quantify absolute cell
numbers. Unstained samples were used as negative controls,
and compensation was performed using commercially avail-
able beads. Samples were processed, and 80 000 events
were acquired on lymphocyte gate using a 4-laser flow
cytometer (LSRFortessa II; BD Biosciences).

Late-Outgrowth Endothelial Cells
EOCs were cultured as described by Ingram et al.16 Mononu-
clear cells were isolated from peripheral blood using gradient-
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density centrifugation with Ficoll Paque PLUS (GE Healthcare).
Next, 10 million mononuclear cells were suspended in
endothelial growth medium (EGM II; Lonza) with 10% Hyclone
fetal bovine serum (Lonza) and seeded onto type 1 rat’s tail
collagen-coated 6-well plates. Cells were incubated at 37°C,
5% CO2, and 95% relative humidity. Medium was replenished
twice per week. Late-outgrowth colonies were counted as
they emerged, and cells were harvested using trypsin-EDTA
for further analysis at 3 to 4 weeks.

The migratory potential and cell surface marker profile was
compared at baseline and 24 hours after cardiac catheterization.
Migratory potential was assessed using a standard “scratch”
assay, as described previously.22 A scratch was made with a
sterile pipette tip, and images were acquired at 0 and 16 hours
(Zeiss Observer; Carl Zeiss). Images were analyzed using
automated software (ImageJ; National Institutes of Health).
Wound healing as a measure of the migratory potential of EOCs
was expressed as a percentage of the scratch covered by
16 hours. EOC surface marker expression was assessed (pas-
sage 1–3) using preconjugated antibodies, as described.

Statistical Analyses
Results are expressed as mean�SD or median (interquartile
range [IQR]), as appropriate. Comparisons between normally
distributed variables were made using paired and unpaired t
tests and ANOVA. For nonnormally distributed variables,
populations were compared usingMann–Whitney andWilcoxon
matched pairs tests for paired and unpaired data, respectively.
Kruskal–Wallis tests were used for comparisons between
multiple groups with nonnormal distributions. Correlation was
performed using Spearman or Pearson analyses, as appropri-
ate. Analyses were performed using SPSS version 21.0 (IBM
Corp). Statistical significancewas taken to be a 2-sided P<0.05.

Results
Fifty patients (aged 64�10 years, 70% male) were enrolled, of
whom 18 (36%) underwent follow-on PCI (Table 1). Forty-five
patients completed the full protocol: 1 patient was excluded
because of early repeated transradial cardiac catheterization,
and 2 patients underwent early coronary artery bypass grafting.
Two patients had persistent radial occlusion after the procedure
that precluded further analyses of radial vasomotor function.

Radial Artery Injury
The radial artery was imaged by OCT over an average length of
132�12 mm. The radial artery diameter measured
3.2�0.4 mm with a cross-sectional area of 10.7�2.5 mm2

and an intimal area of 0.6�0.2 mm2. Macroscopic injury

arising from transradial catheterization was observed in 12 of
50 patients (24%). Endothelial disruption limited to the intima
was seen in 8 patients (16%), whereas significant dissection
extending into the media was seen in 4 patients (8%;
Figure 1). Macroscopic injury was observed in the distal
vessel in 6 patients (50%), midvessel in 1 patient (8%), and in
the proximal vessel in 5 patients (42%). Endothelial cells
defined as CD31+, CD42a�, and CD45� were isolated from all
arterial sheaths (1.9�1.29104 cells per sheath) regardless of
the presence or absence of macroscopic injury.

Flow- and Nitrate-Mediated Dilatation
Radial artery diameter at baseline was 2.9�0.4 mm and
2.9�0.5 mm in the catheterized and noncatheterized

Table 1. Characteristics of Study Population (n=50)

Clinical Characteristic
Mean�SD
or n (%)

Age, y 64�10

Male 35 (70)

Hypertension 37 (74)

Diabetes mellitus 7 (14)

Current smoker 10 (20)

Hypercholesterolemia 28 (56)

Family history 38 (76)

Previous radial access 7 (14)

PCI 18 (36)

Total cholesterol, mg/dL 176�8.5

Creatinine, mg/dL 0.9�0.2

C-reactive protein, mg/L 3.7�4.4

Medications

Aspirin 46 (92)

Clopidogrel 30 (60)

Beta-blocker 41 (82)

ACEI/ARB 18 (36)

Nitrate 10 (20)

Statin 48 (90)

Radial artery dimensions

Baseline radial artery diameter (mm)

Ultrasound

Right (catheterized) 2.9�0.4

Left (noncatheterized) 2.9�0.5

OCT

Right (catheterized) 3.0�0.4

ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor
blocker; OCT, optical coherence tomography; PCI, percutaneous coronary intervention.
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arteries, respectively. Vasomotion in the catheterized arm
both in response to glyceryl trinitrate and FMD was reduced
(ANOVA, P<0.05) Bonferroni post hoc tests were used to
compare catheterized and uncatheterized arteries at different
time points. FMD was impaired in the catheterized radial
artery at 24 hours (4.1�3.1%) compared with the non-
catheterized artery (9.9�4.6%, P<0.0001). At 3 months,
FMD was no longer significantly impaired in the catheterized
radial artery compared with the noncatheterized radial artery
(8.1�4.9% versus 10.1�4.9%, respectively; P=0.09; Fig-
ure 2). NMD in the catheterized radial artery at 24 hours
was attenuated compared with the noncatheterized radial
artery (2.9�4.7% versus 8.8�5.4%, respectively; P<0.0001).
This impairment persisted at 1 week but was no longer
present at 1 month (6.6�4.1% versus 8.4�3.4% for catheter-
ized versus noncatheterized radial arteries, respectively;
P=0.12; Figure 2).

EPCs and Vascular Injury
Patients were classified as having acute vascular injury
(n=28) if OCT imaging identified macroscopic injury of the
radial artery (n=12) or if they underwent follow-on PCI (n=18)
or both sustained radial injury and underwent PCI. Those in
the no-injury group (n=20) had diagnostic angiography alone.
There was no change in the number of CD34+ cells from
baseline to 24 hours following cardiac catheterization
regardless of whether the procedure induced vascular injury
(median: 12.0 [IQR: 7.8–19.0] versus 15.0 [IQR: 12.4–32.3]

9106 cells/L; P=0.08) or not (median: 13.0 [IQR: 7.8–23.0]
versus 16.0 [IQR: 11.1–21.0] 9106 cells/L; P=0.50). There
was an increase in CD133+ cells at 24 hours in those with
evidence of vascular injury (median: 2.3 [IQR: 1.2–3.7]
versus 2.8 [IQR: 2.3–6.1] 9106 cells/L; P=0.02) but not in
those without such evidence (median: 1.7 [IQR: 0.7–2.5]
versus 2.6 [IQR: 1.4–4.9] 9106 cells/L; P=0.09). There were
no changes in CD34+KDR+ or CD34+133+KDR+ cells at
24 hours in either group (Figure 3). When patients were
stratified by the extent or type of vascular injury, there were
no differences in CD34+, CD133+ CD34+KDR+, or
CD34+133+KDR+ cell concentrations between groups (cellu-
lar concentrations at baseline and 24 hours as well as
change from baseline were compared across groups; see
Tables S1 through S3).

Late EOCs
Isolated EOCs had a typical “cobblestone” monolayer mor-
phology and consistently expressed CD31 and CD34 (Fig-
ure 4A). Compared with baseline, there was no difference in
the number of EOC colonies isolated at 24 hours (median: 1.0
[IQR: 0.0–3.0] versus 0.5 [IQR: 0.0–2.0] colonies per patient;
P=0.06). There was no difference in the migratory function of
EOCs isolated at baseline and 24 hours (50.0�2.9% versus
49.3�2.9% wound coverage; P=0.82; Figure 4B–4D). Com-
pared with colonies isolated at baseline, there were no
changes in EOC expression of CD34 (69.7�9.1% versus
67.8�9.9%, P=0.80), CD31 (94.1�2.8% versus 98.3�0.4%,
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Figure 1. Radial artery injury following cardiac catheterization. Macroscopic injury was
detectable on intravascular imaging in 12 of 50 patients (20%). Healthy uninjured artery at
sheath withdrawal (A). Small intimal tear at the 7 o’clock position (B). Extensive
circumferential dissection extending into the media (C).
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P=0.61), KDR (61.0�5.3% versus 58.0�8.0%, respectively;
P=0.85) or CD146 (95.4�2.3% versus 98.5�0.5%, respec-
tively; P=0.42) in those colonies isolated at 24 hours
(Figure 4E). There was no difference in EOC phenotype
between patients with and without vascular injury at any time
point (data not shown).

Cellular Predictors of Baseline Arterial Function
and Recovery
Baseline endothelial function (defined as FMD in the right
radial artery) was negatively correlated with baseline CD34+

(r=�0.4, P=0.004) and CD133+ (r=�0.33, P=0.02) cell
concentrations. Recovery of arterial function (defined as the
recovery by 3 months of the deficit seen at 24 hours) was
negatively correlated with baseline CD34+ concentration
(r=�0.33, P=0.04; Table 2). Neither baseline arterial function
nor recovery after injury correlated with the number of late
EOC colonies isolated. There was a positive correlation
between the migratory capacity of EOCs and baseline
endothelial function (r=0.47, P=0.03) but not recovery
following injury (r=0.02, P=0.94).

Discussion
This study is the first to examine the effect of vascular injury
on EPCs in patients in whom the structural and functional
consequences of arterial injury have been rigorously charac-
terized. We demonstrated that vascular injury is common
following transradial catheterization and is associated with
endothelial-dependent and -independent vasomotor dysfunc-
tion that persists for 1 to 3 months, but circulating EPCs are
not affected by the extent of injury, nor do they predict
recovery of function.

Despite using high-resolution intravascular optical imaging,
we demonstrated a low incidence of macroscopic radial artery
injury. This is in contrast with previous intravascular imaging
studies and likely reflects racial differences in radial artery
diameter and the low incidence of repeated transradial
catheterization (a predictor of vessel injury3) in our study.
We observed that sheath insertion was universally associated
with denudation of the local endothelial cell layer, in keeping
with previous work (which has demonstrated endothelial
disruption on resected radial artery specimens after catheter-
ization)9,23 and explaining the functional impairment that we
subsequently demonstrated. In addition to examining the
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Figure 2. Changes in radial artery flow- and nitrate-mediated dilatation after catheter-
ization. Flow-mediated dilatation in the catheterized radial artery was impaired at 24 h and
at 1 and 4 wk compared with the noncatheterized radial artery but recovered by 3 months.
Nitrate-mediated dilatation was impaired at 24 h and 1 wk, but by 4 wk, there was no
longer a significant difference between catheterized and noncatheterized radial arteries.
Red lines represent the catheterized right radial artery, and blue lines represent the
noncatheterized left radial artery. Mean and 95% confidence intervals are displayed.
Vasomotion in the catheterized arm both in response to glyceryl trinitrate and flow-
mediated dilatation was reduced (ANOVA, P<0.05) Bonferroni post hoc tests were used to
compare catheterized and uncatheterized arteries at different time points (*P<0.05 for
catheterized vs noncatheterized comparison).
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number of EPCs in circulation before and after cardiac
catheterization, we characterized their progeny late EOCs,
demonstrating that there was no change in function as a
consequence of vascular injury.

We observed impairment of vasomotor function at
24 hours that partially recovered over a period of several
months. Endothelium-independent vasomotion recovered by
1 month, whereas endothelium-dependent vasomotion
remained impaired at 3 months, albeit with a trend toward
recovery. This disparity likely represents different processes
in the media and intima with mild injury or transient
dysfunction caused by local inflammation in the smooth
muscle layer compared with extensive disruption of the
endothelium. Our findings are consistent with previous
work,5–12 although the time course of recovery varies,
probably reflecting heterogeneity in study design and
populations studied.

In our study, there was no significant change in the
concentration of CD34+ cells or EPCs (defined as CD34+KDR+

or CD34+CD133+KDR+ cells) following transradial cardiac
catheterization. We observed an increase in CD133+ cells at
24 hours in patients with evidence of vascular injury, although
this did not correlate with the extent of injury. Although a
subpopulation of CD34+ cells may exist, EPCs cannot be
identified by expression of CD133 or CD34 expression alone,
as these markers are expressed by numerous na€ıve, hetero-
geneous populations including hematopoietic cells.24

Mobilization of CD34+ and CD133+ cells has been reported
previously in response to large nonspecific inflammatory
insults25–27 and myocardial infarction28,29 whereas cellular
response to discrete vascular injury is less readily demon-
strable.30,31 Acute mobilization of CD34+ populations has,
however, been described after PCI, with higher concentrations
predicting restenosis.28,32 Alongside the disappointing
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Figure 3. The effect of vascular injury on circulating progenitor cells. Patients were classified according to whether they sustained vascular
injury. This was defined as having either macroscopic radial artery injury on optical coherence tomography (n=10), percutaneous coronary
intervention (PCI; n=16), or both (n=2). Those in the no-injury group had cardiac catheterization alone with no radial artery injury or PCI
(n=20). There was no significant change in peripheral blood CD34+ cells at 24 hours after angiography in either group (A). There was a
modest increase in CD 133+ cells at 24 hours after angiography that was significant in those with evidence of vascular injury but not in those
without (B). There was no significant increase in CD34+KDR+ or CD34+CD133+KDR+ cell concentration in either group (C). Values shown are
median with interquartile range. The Wilcoxon matched pairs test was used for comparisons between baseline and 24 h.

DOI: 10.1161/JAHA.117.006610 Journal of the American Heart Association 7

Radial Artery Function and Endothelial Progenitors Mitchell et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

 by guest on N
ovem

ber 1, 2017
http://jaha.ahajournals.org/

D
ow

nloaded from
 

http://jaha.ahajournals.org/


experience of CD34+-capture stents,33 this supports a
nonspecific inflammatory role for these cells after injury.

Despite an increase in circulating CD133+ cells at
24 hours in those patients with vascular injury, we observed
no difference in rates of EOC isolation, supportive of previous
work suggesting that EOCs—the presumed progeny of
circulating EPCs—cannot be isolated from the CD133+

fraction of peripheral blood.34,35

Circulating concentrations of EPCs have been correlated
with improved vascular function and decreased cardiovascular
events.14,36,37 However, controversy surrounds the correct
definition of a bona fide EPC, and the role of EPCs in vascular
repair remains unclear. In our study, baseline CD133+ and
CD34+ cell concentrations were inversely correlated with

endothelial function, and higher CD34+ concentrations pre-
dicted less complete recovery of endothelial function, again
suggesting that these populations, when taken as a whole, are
not important contributors to vascular repair.

We demonstrated a positive correlation between EOC
migratory capacity and baseline endothelial function, although
EOC migration did not predict recovery after injury. Consistent
with previous work in uremia,38 obesity,39 and following in vitro
exposure to oxidized low-density lipoprotein,40 our finding of a
positive correlation between EOC migration and baseline
endothelial function suggests that characterization of EOC
biology may provide information about vascular health at a
cellular level that is complementary to information provided by
those assessing blood flow and vascular physiology. Late EOCs
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Figure 4. Late-outgrowth endothelial colony and wound healing analysis. Colonies of late-outgrowth endothelial cells were isolated and
characterized. Immunofluorescence for DAPI (diamidino-2-phenylindole; nuclei [blue]), CD31 (fluorescein isothiocyanate; green), and CD34
(Alexa 568; red) was performed. Cells had a comparable phenotype to vascular endothelial cells with ubiquitous expression of CD31 and CD34.
Scale bars = 100 lm. A, Assessment of endothelial outgrowth cell migratory capacity was assessed using a “scratch” wound healing assay
between 0 and 16 h (B). There was no significant difference in the number of endothelial outgrowth cell colonies isolated (C), their migratory
potential (D), or cell-surface marker profile (P>0.05 for all comparisons) (E) between colonies isolated at baseline and 24 h after angiography.
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are thought to play a central role in vascular regeneration16,17

and, in contrast to early outgrowth and CD34+ cells, are capable
of incorporating into native vessels following transplantation in
animal models of angiogenesis, increasing capillary density and
reducing neointimal hyperplasia.41–43 Given these regenerative
capabilities, it is perhaps not surprising that late EOC function
in vitro correlates with radial artery vasomotor function. Further
studies of late EOCs may provide insight into the cellular
mechanisms that mediate vascular dysfunction.

Conclusion
The radial artery is an accessible model of vascular injury and
repair in humans and offers opportunities to gain mechanistic
insight into the pathophysiology of vascular disease and to
examine the effects of novel therapies in translational
research. Transradial cardiac catheterization causes reversi-
ble impairment of endothelium-dependent and -independent
vasomotor function, but recovery does not appear to be
mediated by circulating EPCs or outgrowth populations.
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Table S1. Absolute cell numbers in peripheral blood at baseline prior to angiography. Cell numbers are expressed in numbers of 
cells per litre of peripheral blood. Krusal-Wallis tests were used to compare cell numbers between injury groups. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Population 

 
No injury 
(n=20) 

 
PCI only 
(n=15) 

 
Radial injury 
(n=10) 

 
Radial injury and 
PCI  (n=3) 
 

 
P 

45+or-ve 
34+ 
133+ 
34+133+ 
34+KDR+ 
133+KDR+ 
34+133+KDR+ 

 
13.1 (7.7–22.7) 1.7    
(0.7–2.6) 
1.1    (0.1–2.1) 
0.2    (0.2–0.9) 
0.1    (0.1–0.6) 
0.1    (0.1–0.3) 

 
12.8 (7.9–18.1) 
2.6    (1.1–3.6) 
1.3    (0.6–3) 
0.4    (0.2–0.9) 
0.2    (0.3–0.6) 
0.1    (0.2–0.3) 

 
11.8 (6.8–23.0) 
2.6    (1.4–3.8) 
1.6    (1.1–3.2) 
0.4    (0.2–1.3) 
0.2    (0.1–0.8) 
0.3    (0.0–0.6) 

 
6.8 (5.6–12.0) 
1.2 (0.5–3.7) 
1.2 (0.5–3.2) 
0.3 (0.0–0.5) 
0.0 (0.0–0.8) 
0.0 (0.0–0.04) 
 

 
0.69 
0.61 
0.97 
0.60 
0.39 
0.59 

45- 
34+ 
133+ 
34+133+ 
34+KDR+ 
133+KDR+ 
34+133+KDR+ 
 

 
0.4    (0.2–1.7) 
0.2    (0.0–0.4) 
0.1    (0.0–0.3) 
0.1    (0.0–0.1) 
0.0    (0.0–0.1) 
0.0    (0.0–0.1) 
 

 
0.6  (0.2–1.8) 
0.2  (0.1–0.6) 
0.1  (0.1–0.4) 
0.1  (0.0–0.2) 
0.0  (0.0–0.1) 
0.0  (0.0–0.1) 

 
0.5    (0.3–2.8) 
0.3    (0.1–1.5) 
0.1    (0.1–1.2) 
0.1    (0.0–0.2) 
0.0    (0.0–0.1) 
0.0    (0.0–0.1) 

 
0.6  (0.6–0.7) 
0.1  (0.0–2.3) 
0.1  (0.0–0.2) 
0.2  (0.0–0.2) 
0.0  (0.0–0.7) 
0.1  (0.0–0.2) 

 
0.31 
0.30 
0.40 
0.98 
0.51 
0.57 
 

45+ 
34+ 
133+ 
34+133+ 
34+KDR+ 
133+KDR+ 
34+133+KDR+ 
 

 
13.7 (7.1–23.0) 
2.6    (1.3–6.5) 
1.2    (0.9–3.8) 
1.4   (0.6–2.9) 
0.3    (0.1–0.6) 
0.2    (0.1–0.6) 

 
12.6 (4.2–20.0) 
3.8   (1.8–5.3) 
1.9   (0.7–3.4) 
0.5   (0.3–1) 
0.4   (0.2–1.4) 
0.2   (0.2–0.4) 

 
11.1 (4.1–18.5) 
2.4    (1.4–5.6) 
1.3    (1.1–3.4) 
0.4   (0.2–0.9) 
0.6    (0.1–0.8) 
0.3    (0.1–0.6) 

 
6.5 (1.3–11.8) 
1.3 (0.5–2.4) 
1.1 (0.5–2.1) 
0.1 (0.1–0.4) 
0.1 (0.1–0.2) 
0.1 (0.1–0.2) 

 
0.29 
0.45 
0.75 
0.02 
0.39 
0.69 
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Table S2. Absolute cell numbers in peripheral blood at 24 hours post angiography. Cell numbers are expressed in numbers of 
cells per litre of peripheral blood. Krusal-Wallis tests were used to compare cell numbers between injury groups. 
 

 

 
Population 

 
No injury 
(n=20) 

 
PCI only 
(n=15) 

 
Radial injury 
(n=10) 

 
Radial injury and PCI  
(n=3) 
 

 
P 

45+or-ve 
34+ 
133+ 
34+133+ 
34+KDR+ 
133+KDR+ 
34+133+KDR+ 
 

 
16.6 (12.0 – 22.2) 
2.6    (1.4   – 4.9) 
1.6    (0.5   – 3.5) 
0.4    (0.1   – 1.1) 
0.2    (0.0   – 0.8) 
0.1    (0.0   – 0.6)  

 
15.1 (1.3 – 23.5) 
4.4    (2.0 – 6.5) 
2.0    (1.3 – 4.7) 
0.8    (0.2 – 1.2) 
0.6    (0.1 – 1.0) 
0.5    (0.1 – 0.9) 

 
13.2 (9.5 – 30.0) 
3.9    (2.0 – 7.8) 
2.0    (1.3 – 4.8) 
0.4    (0.2 – 1.3) 
0.4    (0.1 – 1.6) 
0.3    (0.1 – 1.0) 

 
15.1 (5.3 – 36) 
2.3   (1.0 – 2.4) 
2.0   (1.0 – 2.0) 
0.2   (0.0 – 0.2) 
0.1   (0.0 – 0.2) 
0.1   (0.0 – 0.1) 
 

 
0.71 
0.44 
0.36 
0.15 
0.49 
0.73 

45- 
34+ 
133+ 
34+133+ 
34+KDR+ 
133+KDR+ 
34+133+KDR+ 
 

 
0.5  (0.1  –  0.8) 
0.1  (0.0  –  0.3) 
0.1  (0.0  –  0.2) 
0.1  (0.0  –  0.1) 
0.0  (0.0  –  0.1) 
0.0  (0.0  –  0.0) 

 
0.4 (0.1 – 1.2) 
0.1 (0.0 – 0.3) 
0.1 (0.0 – 0.2) 
0.1 (0.0 – 0.1) 
0.0 (0.0 – 0.0) 
0.0 (0.0 – 0.0) 

 
0.3 (0.1 – 0.7) 
0.2 (0.1 – 0.9) 
0.1 (0.0 – 0.6) 
0.1 (0.0 – 0.2) 
0.0 (0.0 – 0.2) 
0.0 (0.0 – 0.1) 

 
0.3 (0.0 – 0.5) 
0.0 (0.0 – 0.1) 
0.0 (0.0 – 0.1) 
0.0 (0.0 – 0.0) 
0.0 (0.0 – 0.0) 
0.1 (0.0 – 0.1) 

 
0.72 
0.22 
0.16 
0.70 
0.43 
0.74 

45+ 
34+ 
133+ 
34+133+ 
34+KDR+ 
133+KDR+ 
34+133+KDR+ 
 

 
15.3 (9.9 – 20.0) 
2.7    (1.6 – 5.3) 
1.9    (0.8 – 3.3) 
0.9   (0.6 – 2.1) 
0.2   (0.1  – 0.8) 
0.1   (0.1  – 0.7) 

 
15.7 (12.2 – 26.4) 
4.3    (2.1   – 6.2) 
2.0    (1.2   – 4.6) 
0.8   (0.2   – 1.1) 
0.6    (0.1   – 1.0) 
0.5    (0.1   – 0.8) 

 
11.1 (4.8 – 21.7) 
2.5    (2.1 – 6.0) 
1.9    (1.2 – 3.8) 
0.3   (0.2 – 0.9) 
0.5    (0.1 – 1.5) 
0.5    (0.1 – 0.8) 

 
14.8 (10.0–  36.0) 
2.6    (1.3  –  2.4) 
1.9    (1.9  –  4.1) 
0.2   (0.2  –  0.2) 
0.1    (0.1  –  0.2) 
0.1    (0.0  –  0.11) 

 
0.78 
0.28 
0.53 
0.04 
0.62 
0.65 
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Table S3. Absolute change in cell numbers in peripheral blood at from baseline to 24 hrs post-angiography. Cell numbers are 
expressed in numbers of cells per litre of peripheral blood. Krusal-Wallis tests were used to compare cell numbers between 
injury groups. 
 

 
Population 

 
No injury 
(n=20) 

 
PCI only 
(n=15) 

 
Radial injury 
(n=10) 

 
Radial injury and 
PCI  (n=3) 
 

 
P 

45+or-ve 
34+ 
133+ 
34+133+ 
34+KDR+ 
133+KDR+ 
34+133+KDR+ 
 

 
+2.9  (-8.4 – 11.9) 
+1.2  (-0.5 – 3.0) 
+0.4  (-0.4 – 1.9) 
-0.1   (-0.2 – 0.4) 
+0.1  (-0.1 – 0.4) 
+0.1  (-0.9 – 0.2) 

 
+6.6 (-1.8 – 10.5) 
+1.6 (-0.6 –3.8) 
+1.0 (-0.4 – 0.5) 
-0.0  (-0.4 – 0.5) 
  0.0  (-0.2 – 0.3) 
+0.1 (-0.2 – 0.4) 

 
+1.6 (-4.0 – 5.5) 
+1.3 (-0.5 – 8.0) 
+0.9 (-0.0 – 2.3) 
+0.2 (  0.0 – 0.6) 
+0.2 (  0.0 – 0.4) 
+0.1 ( -0.5 – 0.6) 

 
+8.3 ( 7.2 – 24.1) 
 -1.1 (-1.4 – 1.2) 
-0.8  (-1.3 – 0.7) 
-0.2  (-0.2 – 0.6) 
  0.0  ( 0.0 – 0.5)    
+0.1  ( 0.1 – 0.9) 
 

 
0.81 
0.67 
0.28 
0.63 
0.22 
0.76 

45- 
34+ 
133+ 
34+133+ 
34+KDR+ 
133+KDR+ 
34+133+KDR+ 
 

 
+0.1 ( 0.2– 0.4)              
-0.1  (-0.1– 0.2) 
  0.0 (-0.2 – 0.1) 
  0.0 (-0.1 – 0.1) 
  0.0 (-0.0 – 0.0) 
  0.0 (-0.0 – 0.0)  
 

 
-0.1  (-0.1 –  0.4) 
-0.1  (-0.7 – -0.1) 
-0.1  (-0.4 –  0.0) 
-0.0  (-0.1 –  0.0) 
-0.0  (-0.1 –  0.0) 
-0.0  (-0.1 –  0.0) 

 
-0.2 (-1.8 – -0.1) 
 0.0 (-0.1 –  0.2) 
 0.0 (-0.1 –  0.1) 
 0.0 (-0.1 –  0.1) 
  0.0 ( 0.0 –  0.1) 
  0.0 ( 0.0 –  0.0) 

 
-0.4 (-0.6 – -0.2) 
-0.1 (-2.3 –  0.2) 
-0.2 (-0.2 –  0.0) 
  0.0 (-0.1–   0.1) 
  0.0 (-0.0 – 0.0) 
  0.0 (-0.0 – 0.0) 

  
0.29 
0.08 
0.31 
0.44 
0.12 
0.32 

45+ 
34+ 
133+ 
34+133+ 
34+KDR+ 
133+KDR+ 
34+133+KDR+ 
 

 
+3.2 (-9.1 – 13.6) 
 -0.2 (-1.9 – 0.9) 
+0.1 (-1.2 – 0.9) 
 -0.4 (-0.7 – 0.2) 
  0.0  (-0.2 – 0.1) 
  0.0  (-0.2 – 0.1) 

 
+2.5 (-4.1 – 18.5) 
 -0.4 (-1.0 – 0.6) 
+0.2 (-0.8 – 1.8)  
 -0.0 (-0.3 – 0.5) 
 -0.2 (-0.4 – 0.1) 
 -0.5 (-0.6 – 0.3)  
 

 
+0.9 (-8.0 – 2.1) 
+0.1 (-0.9 – 0.9) 
+0.6 (-0.6 – 0.7) 
+0.0 (-0.2 – 0.3) 
+0.1 (-0.0 – 0.5) 
 -0.1 (-0.1 – 0.2) 

 
 -1.8 (-6.5 – 2.9) 
 -0.1 (-0.5 – 1.0) 
+0.3 (-0.2 – 0.8) 
 -0.1 (-0.2 – 0.1) 
  0.0  ( 0.0 – 0.1) 
 -0.1 (-0.1 – 0.1)  

 
0.74 
0.62 
0.39 
0.27 
0.14 
0.98 
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