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The Contributions of Image Content and Behavioral
Relevancy to Overt Attention
Selim Onat*, Alper Açık, Frank Schumann, Peter König

Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany

Abstract

During free-viewing of natural scenes, eye movements are guided by bottom-up factors inherent to the stimulus, as well as
top-down factors inherent to the observer. The question of how these two different sources of information interact and
contribute to fixation behavior has recently received a lot of attention. Here, a battery of 15 visual stimulus features was
used to quantify the contribution of stimulus properties during free-viewing of 4 different categories of images (Natural,
Urban, Fractal and Pink Noise). Behaviorally relevant information was estimated in the form of topographical interestingness
maps by asking an independent set of subjects to click at image regions that they subjectively found most interesting.
Using a Bayesian scheme, we computed saliency functions that described the probability of a given feature to be fixated. In
the case of stimulus features, the precise shape of the saliency functions was strongly dependent upon image category and
overall the saliency associated with these features was generally weak. When testing multiple features jointly, a linear
additive integration model of individual saliencies performed satisfactorily. We found that the saliency associated with
interesting locations was much higher than any low-level image feature and any pair-wise combination thereof.
Furthermore, the low-level image features were found to be maximally salient at those locations that had already high
interestingness ratings. Temporal analysis showed that regions with high interestingness ratings were fixated as early as the
third fixation following stimulus onset. Paralleling these findings, fixation durations were found to be dependent mainly on
interestingness ratings and to a lesser extent on the low-level image features. Our results suggest that both low- and high-
level sources of information play a significant role during exploration of complex scenes with behaviorally relevant
information being more effective compared to stimulus features.
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Introduction

The allocation of attention under natural viewing conditions is a

complex phenomenon requiring the concerted activity of multiple

neuronal levels, mobilizing a huge number of sensory and motor

areas as well as subcortical structures. The most straightforward

behavioral measure of attentional allocation under natural

conditions is given by the subject’s eye movements. Indeed we

move our eyes nearly effortlessly and mostly unconsciously while

exploring the world. Not surprisingly, eye movements have been in

the focus of scientific investigation for decades [1–3]. Up until

today many different theories have been put forward, which

approach the question from different directions [4].

Several independent factors operating in parallel interact and

add considerable complexity to the study and generation of eye

movements under natural conditions. These include stimulus

properties, the relevance of the information for the human

observer and geometrical aspects [5]. The first two sources of

information are roughly referred to as bottom-up and top-down

allocation in the literature. The first conceptualization, namely

bottom-up or stimulus-dependent vision, exclusively considers the

information content embedded in the stimulus itself. This typically

spans a large spectrum, covering local features from a simple (such

as orientation, luminance contrast, disparity) to complex level

(faces, cars, objects, body parts), but also more distributed features

such as symmetry and arrangement of objects. This wide spectrum

can be roughly divided into low-, mid- and high-level information,

reflecting roughly the cortical hierarchical organization from

primary visual cortex to higher visual areas.

The influence of stimulus features is often captured by the

concept of saliency maps. Indeed, many years after their

introduction saliency models of overt attention have moved back

into the center of interest [6,7]. Based upon the psychophysical

results obtained in the field of visual search [8], the authors

introduced the concept of the saliency map to embody a

generative model of eye movements for the exploration of more

complex, photographic scenes. It attributes a direct role to local

image characteristics in the process of oculomotor response

generation [6,7,9,10]. This view is supported by the fact that

stimulus properties at fixated locations differ significantly from

non-fixated locations [11–15]. Furthermore, these computations

are thought to be mainly externally driven and not task dependent.

Hence, the signals of a hypothetical saliency map are relayed in a

feed-forward (bottom-up) fashion to motor centers. In sum, the use

of saliency is proposed to provide the brain with an efficient and

fast method to extract locations of general relevance in an image

[16,17].
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In parallel to the bottom-up mechanisms of attentional

allocation, the actual intentions of the viewer contribute also to

eye movements. In this view, the viewer selects those locations that

are behaviorally relevant, either for the task at hand, or more

generally, to understand the semantic content of the image. A

large body of evidence supports the view that the human visual

system has a considerable knowledge about the semantic aspects of

the visual scene very early following its onset. For instance, the

human visual system is able to recognize the identity of objects

shown in a rapid serial fashion [18] even at the peripheral part of

the visual field [19]. Even in the near absence of attention,

categorization of natural images is fast at high performance levels

[20]. Furthermore, second-order statistics of natural images,

referring to the relationship between a pair of values, may provide

the visual system with necessary contextual information that can

be exploited for the guidance of overt attention [21]. It has been

shown that these cues are rich enough to potentially direct

attentional resources to appropriate locations starting very early

with the presentation of stimuli [22–24]. For example in an image

with a clear horizon line, prior knowledge about where the

interesting objects are, could be obtained by these contextual cues

without the need of scanning potentially behaviorally irrelevant

locations. These findings suggest that the visual system is able to

very efficiently extract the behaviorally relevant information from

complex natural scenes and use this information to direct

attentional resources in a top-down manner.

In this scenario, locations of an image are mostly fixated in

order to gather highest-quality visual information on behaviorally

relevant parts, using the high spatial resolution of the central visual

field. The driving force underlying fixation point selection may be

the existence of an explicit task [25] or simply the presence of

behaviorally relevant objects in the scene. These include the

spatial location [26] and semantic congruency of objects [27–29],

the informativeness of image locations [5,30–32], multimodal

interactions [33], colocalization of auditory and visual stimuli [34],

the potential or past reward [35], as well as the associated

interestingness of the scene content [36].

However, we have to differentiate between stimulus-dependent

high-level features and allocation of attention guided by behavioral

relevance. On one hand it is possible to voluntarily direct attention

to simple low-level features. Hence, top-down guided attention is

not identical to attention of visually complex high-level features.

On the other hand high-level features like objecthood can

influence the allocation of attention even outside of the context

of an explicit task [26,37]. Thus, it is important not to exclusively

equate bottom-up guided attention to simple low-level visual

features. For example, a recent report demonstrates a high

probability for fixations on objects in a patient suffering from a

deficit in object recognition [38]. This suggests that complex

stimulus features such as objects can also have a direct bottom-up

influence on eye movements despite the patient’s inability to

recognize objects. Hence, bottom-up guided attention is not

identical to attention of simple low-level visual features. These

results highlight the complementarity of bottom-up and top-down

attentional systems and their complex, still ill understood

interactions.

A limitation of many models of overt visual attention is that they

focus primarily on the prediction of fixated positions and neglect

an important parameter of eye movements: the duration of

fixations [4]. The simple fact that fixation durations can vary

significantly suggests that fixations can and should not be treated

equally. Instead, they point to the fact that there is an underlying

on-going perceptual and/or cognitive process during the analysis

of the image. It is not clear to what extent stimulus-dependent

aspects and behavioral relevancy modulates fixation durations.

Previous reports showed that semantic congruency [4,28] and

informativeness of image ratings are important parameters that

modulate fixation durations. Within this scheme, the duration of

fixation points could reflect the time that is required to integrate

the information present in an image region.

Our working hypothesis is that overt attention is a process

whereby humans actively collect information from the external

world and try to construct a coherent, meaningful representation.

The information collected can be tailored according to the

requirements of a given situation or task. However, even in the

absence of an explicitly defined task, it can be argued that humans

nevertheless try to understand what a scene is about. We therefore

excluded any task-specific bias, and aimed to characterize to what

extent stimulus-dependent as well as behavioral saliency contribute

to attentional allocation processes under default, baseline-viewing

conditions. We refer to stimulus-dependent information as any

scalar value derived directly from pixel intensities. And this is

complemented with behaviorally salient information content, as

estimated by the interestingness ratings given by human subjects

(similar to [36]). In the present study, we aimed to quantify to what

extent stimulus-dependent and behaviorally relevant information

account for the observed eye movements and how these different

sources of information are integrated for overt attention.

Materials and Methods

Experimental Paradigm and Stimulus
We recorded eye movements of 48 subjects (25 males, mean age

23.14, range 19–28), who were naive to the purpose of the

experiment. They were either accredited for 1 hour of research

participation or paid 5 Euros. The participants were instructed to

study the images carefully. All participants gave informed written

consent at the start of the experiment. All experimental procedures

were in compliance with guidelines described in Declaration of

Helsinki and approved by the ethics committee of the University of

Osnabrück.

Four categories of colored images belonging to the categories of

natural, urban, fractal and pink noise were presented. Images of

the natural category (selected from McGill Calibrated Color

Image Database) excluded any kind of human artifacts. Photo-

graphs of bushes, trees, forests and flowers were typical of this

category. Photographs making up the urban category were taken

with a high-resolution camera (Nikon D2X, Tokyo, Japan) at

public places in and around Zürich, Switzerland. These were

characterized by cityscapes where man-made artifacts, vehicles,

buildings, humans, scripts and streets were common. Fractal

images were obtained from three different web databases (Elena

Fractal Gallery, http://web.archive.org/web/20071224105354/

http://www.elena-fractals.it/; Maria’s Fractal Explorer Gallery,

http://www.mariagrist.net/fegal; Chaotic N-Space Network,

http://www.cnspace.net/html/fractals.html). Uncompressed im-

ages were requested from the authors of the corresponding

websites. We took care that the axis of symmetry of fractals were

not always overlapping with the middle line of the monitor. To

generate pink noise images, we computed the amplitude spectra of

each single stimulus keeping separate the RGB color channel. This

was done by transforming the original pixel space into frequency

domain using discrete Fourier transformation. To obtain category

specific average amplitude spectra, these were averaged across all

images being member of a given category. To generate single pink

noise images, these category specific amplitude spectra were then

combined with a random phase spectra and transformed back to

pixel space for each color channel separately with discrete inverse

Behavioral Relevancy Prevails Bottom-Up Saliency
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Fourier Transform. The random phase spectra were obtained

using Fourier transformation of a random white noise image and

discarding the amplitude information. This effectively took care of

the symmetrical organization of the phase spectra. All categories

contained 64 images except the pink noise categories that

contained 63 images (21 for each category) making 255 images

in total.

The images were presented on a calibrated 21-inch Samsung

SyncMaster 1100 DF 2004 CRT Monitor (Samsung Electronics

Co, Ltd., Korea). The display resolution was set to 12806960 (4:3)

with a refresh rate of 85 Hz. Subjects sat on a stable chair, in

80 cm distance to the screen. The center of the screen was

approximately at the eye level for all subjects.

Eye movements were recorded using the video-based EyeLink II

system (SR Research Ltd., Mississauga, Ontario, Canada). Before

the experiment, a 363 calibration grid and validation procedure

was applied until desired calibration quality was obtained. This

procedure lasted for several minutes, thus allowing subjects to

adapt to the conditions within the experimental room. The image

presentation and eye tracking started only after the absolute mean

calibration error was below 0.3u for at least one eye.

Fixations were defined using the default settings of the eye-link

tracker. We defined fixation points and intervening saccades using

a set of heuristics. A saccade was characterized by an acceleration

exceeding 8000u/s2, a velocity above 30u/s, a motion threshold of

0.1u, and a duration of more than 4 ms. Intervening episodes were

defined as fixation events. The result of applying these parameters

was plotted and was visually assessed to check that they produce

reasonable results.

Each image was shown for 6 seconds and the order of

presentation was randomized for each subject. Each subject

performed only one session that lasted less than an hour. A break

was introduced after the first half of the stimulus set had been

displayed. The eye-tracker was removed from the participants’

head if they wished to. In those rare instances the calibration

procedure was carried out anew as described above. During the

experiment, drift errors were corrected via a fixation point that

appeared in the center of the screen before each stimulus

presentation. If drift errors were high, the eye-tracker was

recalibrated.

Computation of Feature Maps
For analysis of low-level feature values at the fixated locations

stimuli were converted into the DKL color space [39]. This color

representation is based on the fact that there are three different

cone types in the retina, namely short (S), medium (M), and large

(L), which have different wavelength absorbance spectra. In the

DKL space, two color channels are constructed with L and M

channels (Red-Green channel) and S and (L+M) channels (Blue-

Yellow channel). The third channel constructed with (L+M+S)

represents the brightness of the stimuli. All the feature maps were

computed based on these 3 channels.

To investigate the relationship between low-level image features

and fixation locations, we computed an extensive set of feature

maps (Fig. 1). In doing so, we used 3 different mutually exclusive

classes of low-level features: Features that selectively sensitive to

first- and second order characteristics of feature values as well as

features that were selective to the configurational aspects of the

local image content. First-order features capture the local average

intensity of channel values and these included Mean Luminance

intensity (ML), Color Intensity for Red-Green and Yellow-Blue

channels (RGM and YBM) and Saturation (Sat). Second-order

features were used to measure the spread of the channel values

distributions and hence these quantify the local contrast. These

were Luminance Contrast (LC), Red-Green Contrast (RGC),

Yellow-Blue Contrast (YBC), Saturation Contrast (SatC) and

Texture Contrast (TC). We computed configuration specific

features to characterize the content of local patches of images.

Importantly these features are independent of the above-cited

features. We computed cornerness (C), edgeness (E), surfaceness

(S), bilateral and radial symmetry (SymB, SymR) features. These

maps were created for each single stimulus based on the

information present at different DKL channels by computing

the value of a given visual feature within a small circular aperture

for each possible location on the image. Window sizes were

specific for each feature and we chose the one that gave the best

results in terms of the strength of the correlation between fixation

positions and features values. The size of windows was kept

constant for all categories of images.

Mean Luminance feature was computed using pixel values in

the brightness channel by averaging all the pixels within a circular

patch of 0.5u diameter. Red-Green and Yellow-Blue features were

computed similarly using the RG and YB channels (diameter = 2u),
respectively. Within these two feature maps, high intensity

represents Red/Yellow hue and low values the Green/Blue hues.

Saturation feature was created by taking the square root of the

squared sums of each individual color channel as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RG2zYB2
p

. The mean saturation feature was created by

computing the average saturation in a local patch of 1u diameter.

All second-order features, Luminance Contrast, Saturation

Contrast (diameter = 1u), Red-Green Contrast and Yellow-Blue

Contrast (diameter = 2u) were computed by taking the standard

deviation of pixel values within corresponding channels. The

texture contrast feature is defined as the contrast of contrast values.

We therefore computed Texture Contrast maps by computing the

standard deviation of contrast values in a patch of diameter 3.7u in

a previously computed contrast map.

Configuration selective features of Cornerness, Edgeness and

Surfaceness were derived by computing the Intrinsic Dimension-

ality of local image patches ([40], see definition in [41]). Intrinsic

dimensionality characterizes a given image patch according to the

number of dominant orientations present. For example, patches

with high intrinsic dimensionality of level one are defined by a

single dominant orientation. Similarly intrinsic dimensionality of

degree two scores high when the patch contains two dominant

orientations characteristic of corners, junctions and crosses. We

computed the intrinsic dimensionality of degree zero (Surfaceness),

one (Edgeness) and two (Cornerness) within Gaussian patches of 6u
with a standard deviation of 1u. The images were smoothened

slightly with a Gaussian Kernel of a standard deviation of 0.13u.
Importantly intrinsic dimensionality operates independent of the

above features; therefore the detection performance is not

influenced by the luminance contrast or average intensity.

The contribution of symmetrical configurations was character-

ized using Phase Symmetry feature developed by Peter Kovesi

[42,43]. These features quantify each image location according to

phase relationship of different components in the Fourier space

and measure the strength of radial and bilateral symmetrical

configurations in an image locally.

As a next step we gauged the performance of the above-cited

feature maps in predicting the fixation behavior. If a given feature

map predicts perfectly the fixation behavior it should be similar to

the fixation behavior of the subjects and thus it should reflect for

each location in an image the probability of being fixated. Hence,

we made use of the empirical fixation maps and pooled all the

fixation points done on a given image by all subjects and

computed the fixation maps (see next section for details).

Behavioral Relevancy Prevails Bottom-Up Saliency
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Figure 1. Decomposition of stimuli into a set of low- and high-level features. For each category (first row, green background, Natural;
second row, red background, Fractal; third row, black background, Urban; last row, magenta background; Pink Noise) a representative stimulus
(left upper corner) and its associated low-level feature maps are shown. LM: Mean Luminance; RGM: Mean Red-Green Intensity; YBM: Mean Yellow-
Blue Intensity; SATM: Mean Saturation; LC: Luminance Contrast; RGB: Red-Green Contrast; YBC: Yellow-Blue Contrast; SATC: Saturation Contrast;
TC: Texture Contrast; S: Surfaceness; C: Cornerness; E: Edgeness; BiSymm: Bilateral Symmetry; Ra-Symm L/H: Radial symmetry with high or low
spatial frequency selectivity. In addition to these low-level features, interestingness ratings were collected with the help of a pointer device (see
Material and Methods), the topographic distribution of this high-level feature is shown as interestingness maps (iMap: Interestingness Map). Please
note that this data is not collected for the case of Pink Noise category (lowest row). In addition to click data, recorded eye-movements for these four
images are also presented in the same topographic form (fMap: Fixation Map; second row in each panel, last entry). All these maps were are shown
following the histogram equalization step therefore all values occur equally likely.
doi:10.1371/journal.pone.0093254.g001
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It is important to note that the distribution of feature values in

different features maps may well have different global properties.

For example, the distribution of luminance contrast values can

have different second- or higher-order characteristics than the

distribution of another feature channels. As we wanted to test here

the saliency of many different features it is important that the

lower and higher moments of feature distributions are controlled.

Furthermore, distributions of feature values are typically heavy

tailed, making the estimation of saliency at these points difficult.

We thus used a histogram equalization scheme in order to

transform absolute feature values into percentiles. This effectively

removed all differences between distributions of different features.

Image and Category Specific Fixation Maps
The term image specific fixation map (or actual fixation map), FMi,

refers to the spatial distribution of fixations points made by all

subjects on image, i. These maps reflect the probability of each

location in a given specific image to be fixated and therefore they

represent the actual behavior of subjects when viewing an image.

Category specific fixations maps (or control fixation map) are computed

by pooling all fixations done on all images belonging to a given

category, ,FM.i, where ,.i represents the average across

individual images belonging to a given category of images. The

distribution of fixation points on these maps reflects image-

unspecific behavior of subjects resulting from different biases on

the fixation behavior such as for example central bias [44,45].

These maps represent the global behavior of subjects when

different categories of images are viewed. These two types of

fixation maps were created by collecting spatially all the fixation

events and smoothening these with a Gaussian kernel with 1u of

full-width at half maximum.

We treated these maps as probability distributions and

computed their entropy using the following formula, where

H(FMi) is the entropy associated to the ith fixation map, Pi(x) is

the fixation map with unit integral:

H FMið Þ~
X

x

Pi(x)log(Pi(x))

In the case of actual maps, the entropy values were averaged

across different images of the same category, after having

computed the entropy of the individual fixation maps,

,H(FMi).i, where H(FMi) represents the entropy of the actual

fixation map of image i. We also computed the entropy of the

control distribution for each category, H(,FM.i). As the absolute

values of the entropy depend on the precise binning of these maps,

they are irrelevant for comparison; we thus normalized these with

the maximum theoretical entropy value (uniform distribution)

obtained under same binning conditions. As the number of

fixations that contributed to this analysis was high enough we

didn’t need to control for the intrinsic bias that occurs with small

number of fixations [45].

Bayesian Framework for Deriving Saliency Functions
In this report we concentrate on free viewing conditions. This

implies that fixations are not driven by a specific task, but by

stimulus-dependent effects. We do not differentiate probability vs.

saliency and use the terms ‘‘fixation probability’’ and ‘‘saliency’’

equivalently. Hence a location in an image that has a high

probability of fixation is considered to be a salient location. For

each single image, i, and single subject, s, we quantified the

saliency function p(fixation|feature = X) associated to different

features using the following Bayesian equality:

Ps,i(fixation~1Dfeature~X )~
Ps,i(feature~X ,fixation~1)

Ps,i(feature~X )

where X denotes the feature percentiles and it ranges between 0

and 100, s and i, represents individual subjects and images.

ps,i(feature = X) represents the distribution of features in a given

image and is a constant function of X due to the histogram

equalization process. Fixation = 1 indicates the occurrence of a

fixation at that location. Fixation = 0 indicates the absence thereof.

During the histogram equalization process, we took into

account the central bias of fixation points [12,44] and spatially

weighted feature values with each subjects’ category specific

fixation distributions (control distributions). This is necessary in

order to take into account the strong central bias in the scanning

behavior of subjects. In case a photographer or experimenter bias

leads to an inhomegeneous distribution of image features across

space, the central bias in the viewing behavior may result in a bias

of the feature values at fixation locations. We therefore weighted

feature values depending on their positions in the image using the

control fixation maps. Therefore, following the histogram equal-

ization and weighting process, the distribution of feature values at

all fixated locations, ps,i(feature = X), became a uniform function of

feature percentile. This distribution represents the values of

features at all fixated locations including actual and control

fixations. Importantly, this histogram equalization procedure was

carried out separately for each single image and subject.

The joint distribution ps,i(feature = X, fixation = 1) represents

the probability of features at fixated regions. It was computed by

evaluating the probability of feature percentiles at actually fixated

locations. The ratio of these two terms is equal to the saliency

function ps,i(fixation = 1|feature = X), that is the probability of a

given feature value to be fixated. The constant, p(fixation) is the

probability of a fixation point to be the actual fixation. As it

consists of a constant we can ignore this term. The distributions

were subsequently averaged across all subjects and images that

belonged to a given category. The Matlab toolbox that was used to

carry out this analysis is available at https://github.com/

selimonat/published_code/tree/master/condprob.

In order to quantify the contribution of different features to

fixation behavior we quantified the strength of the correlation

between fixation points and feature values. If fixation behavior

during viewing of an image is not guided by the low-level features

content, one would expect that the distribution of feature values at

fixated locations is a random sample of the distribution of feature

values overall. Therefore, any correlation that exists between

feature values and fixation behavior would result in deviations

between the saliency function, p(fixation = 1|feature), and the

image statistics, p(feature), distributions. Consequently, the

strength of the correlation between overt behavior and low-level

feature values can be characterized by measuring these deviations.

Kullback-Leibler divergence, DKL, captures any deviations present

between two distributions thus can be used to quantify the strength

of the correlation.

DKL(PDQ)~
X

i

P(i)log(
P(i)

Q(i)
)

where P and Q represent feature distributions at control and

actual locations. However, DKL measure is not a symmetric metric

to measure similarities so that DKL(P|Q) is not equal to DKL(Q|P).

We therefore used a symmetric version of DKL using the following

formula,

Behavioral Relevancy Prevails Bottom-Up Saliency
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DKL~DKL(PDQ)zDKL(QDP)

One of the benefits in using information theory derived

measures, such as DKL, over more traditional signal detection

measurement tools, is that within the Bayesian framework we are

using, the generalization of DKL values to more than one feature

dimensions is straightforward. Furthermore, DKL measure is

sensitive not only to linear correlations but to any kind of

correlations and deviations from independence of probability

distributions.

We quantified for each subject the DKL values associated with

different features and categories. Differences in the average DKL

values were evaluated using ANOVA test with repeated measures

using categories, and features as main factors. This was done after

log transformation of DKL values, which effectively normalized

these distributions. We applied Lillie test to evaluate the normality

of log transformed DKL measurements. In all the feature-category

pairs, the log transformed DKL values were found to not

significantly deviate from a Gaussian distribution (p.0.01).

Confidence intervals for DKL values were computed using boot-

strap method, where the distribution of average DKL values were

obtained selecting 1000 times with replacement from the pool of

DKL values where each entry was specific to a given subject.

Interestingness Maps
In order to gather high-level information associated with

different locations in an image, we asked another set of (n = 35)

subjects to click with the help of pointer device on locations of an

image that they found subjectively interesting. The fact that a

different cohort of subjects performed the interestingness evalua-

tion potentially introduces intersubject variations. However, we

have no indication of a significant difference between the two

groups with respect to parameters age and gender. Furthermore, it

is highly preferable that subjects do not view the stimuli more than

once, as repeated presentations of the same stimulus material

introduces systematic biases [46]. Furthermore, the interindividual

effects are typically small and require careful experimental design

to be demonstrated [47]. The probability that unrecognized

systematic differences between the two large cohorts exist can be

considered negligible. Finally, the experimental procedure and

design were kept as similar as possible to the eye-tracking

experiment. The experiment took place in the same room using

the same monitor for image display. They were shown the same

images as in the eye-tracking study and required to select 5 points,

which they found subjectively most interesting. Subjects were

instructed to scan the totality of the image before making any

decisions on the interestingness rating. The experiment was self-

paced so that there was no time pressure on the subjects and the

images stayed on the screen as long as it took for subjects to select

5 interesting points.

Similar to low- and mid- level feature maps, we created

interestingness maps by pooling all the clicks on an image done by

all the subjects and smoothening these with a Gaussian kernel of

2u.

Results

Exploration Strategies
We recorded eye movements of human subjects (n = 48) while

they were freely viewing photographs of natural and urban scenes

as well as complex artificial patterns. We used 4 different

categories (Natural, Fractal, Urban and Pink Noise, see Fig. 1)

each containing 64 images, except Pink Noise category that

contained 63 images. Using a Bayesian framework, we quantified

to what extent eye movements made by human subjects correlate

with low-level image characteristics that are presumably extracted

during sensory processing in the brain. Furthermore, we evaluated

how different bottom-up information channels in isolation or in

pairs are integrated into behavioral saliency and subsequently

compared the saliency of these bottom-up channels to the saliency

of high-level characteristics of the images, as provided by the

interestingness maps. Furthermore, we evaluated how low-level

and high-level information are integrated in the generation of eye-

movements.

First, in order to justify the selection of our image categories and

understand better how the exploration strategies differed among

these categories, we investigated image specific (64 maps for each

category) and category specific (one map for each category)

fixation maps. We treated these maps as probability distributions

and computed their entropy (see Materials and Methods) in order

to evaluate the spatial correlation between fixation positions at the

image- and category-level. Whereas high entropy values signal

uniformly distributed fixation points across space, low values

indicate highly structured maps due to accumulation of fixation

points at similar locations. Therefore in the case of actual maps

(image specific fixation maps), the entropy characterizes the inter-

subject similarity, low entropy values notify high inter-subject

agreement. In the case of control maps (category specific fixation

maps) entropy measures the inter-image similarity. Here high

entropy result when different images of the same category induce

similar fixation patterns.

Overall the entropy of control maps was about 5% higher than

image specific fixation maps. This is expected given that control

maps are much more uniformly distributed, as they result from the

average behavior where the effect of individual images is washed

out. Across categories we found a significant main effect of image

category (F(3,251) = 21.91, p = 1.2610212, ANOVA). The cate-

gory of Urban images lead to highest category specific entropy

(Fig. 2, dashed line) and smallest image specific entropy (Fig. 2, solid

line) values. This shows that the viewing behavior of each single

image was characterized by a high inter-subject agreement. At the

category level, however, this behavior leads to an effective

covering of the whole visual area and thus low inter-image

similarity. There was a significant difference between image

specific entropy values of Fractal and Urban image categories

(two-sample t(126) = 1.98, p = 0.049). Interestingly the image

specific fixation maps in the case of Pink noise images had similar

entropy value as for natural images (two-sample t(126) = 21.65,

p = 0.101). This suggests that the total coverage of the stimulus

area on an individual image basis was similar between these

categories. However the category specific entropy values in the

case of Pink Noise images were much smaller than Naturals. This

suggests that while the total coverage on an individual image basis

was the same between these two categories, subjects tended to look

at similar locations during viewing of different pink noise images

leading to high inter-image correlations.

Overall, these results justify our selection of categories in

behavioral grounds given that most categories induce different

exploratory behaviors. Furthermore, we show that while Urban

and Fractal category lead to highest inter-subject agreement, Pink

Noise and Natural images lead to highest inter-image agreement.

It is also important to note that although Pink Noise images are

devoid of any higher order correlations, they were scanned in a

similar fashion as images belonging to the Natural category.

Behavioral Relevancy Prevails Bottom-Up Saliency
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Saliency Functions of Stimulus-dependent Features
As stated earlier, bottom-up models of overt attention attribute

an important role to low-level image features in the process of

fixation point selection. It is indeed a well-established fact that

fixation points are preferentially directed at locations that have

different feature statistics than non-fixated locations [11–15]. For

example, it has been consistently observed that fixated locations

are characterized with higher luminance contrast values. This

consequently led to the claim that image locations with elevated

contrast are salient in the sense that they increase the probability

of attracting eye-movements. However the precise dependence of

fixation probability on feature levels i.e. feature specific saliency

function, is generally not explicitly investigated.

To elucidate how saliency changes with different feature

percentiles, we used a Bayesian framework. We derived the

saliency function, p(fixation|feature = X) from the two terms of the

Bayesian equality, p(feature = X) and p(feature = X|fixation). P(fea-

ture = X) is the distribution of feature values and therefore describes

the image statistics at all locations in an image including both

actual and control fixation locations. For a given specific image,

feature values at control fixations were obtained using the fixations

on all other images of the same category. The term p(feature = -

X|fixation) is the distribution of feature values at fixated locations.

The ratio of these two terms is equal to the saliency function (see

Materials and Methods). These terms were computed for each

individual image and subject separately and averaged afterwards.

As the image statistics, p(feature), was computed based on the

distribution of feature values at all fixation points, rather than at

randomly selected locations, this method took automatically into

account any spatial biases in the distribution of feature values

across the image (for example high contrasted regions to be

consistently centrally located in our stimulus database). Further-

more, this effectively removed the effect of category specific spatial

biases of fixations distributions on the distribution of feature values

(see Fig. 1 insets).

As a next step, we included an extensive set of local, low-level

visual features that operated on luminance, red-green and yellow-

blue channels (Fig. 1). Within these channels we determined the

average intensity (ML: Mean luminance, RGM: Mean Red-

Green, YBM: Mean Yellow-Blue and Sat: Mean Saturation), the

first order contrast (LC: Luminance Contrast, RGC: Red-Green

Contrast, YBC: Yellow-Blue Contrast, SatC: Saturation Contrast)

within small image patches (see Material and Methods for details).

Iterating the same computation on the luminance contrast using a

larger window resulted in the Texture Contrast. This allowed the

detection of changes between regions of images containing

different textures assuming they are defined by changes of local

luminance contrast [48]. In order to understand the dominant

image configuration present in these local patches we computed

the Intrinsic Dimensionality of different orders [40] and obtained

3 different complementary features: Surfaceness (S), Edgeness (E),

and Cornerness (C). In order to evaluate the saliency of

symmetrical configurations, we used Bilateral (BiSymm) and

Radial Phase Symmetry (RaSymm-H and RaSymm-L for low

and high spatial frequencies) features [43]. These features are all

directly derived from the image data and represent stimulus-

dependent saliency. Furthermore, given the limited computational

complexity we consider them as low-level and mid-level charac-

teristics of the image.

The saliency functions, p(fixation|feature = X), associated with

these 15 visual features and 4 image categories (green for Natural,

black for Urban, red for Fractal and magenta for Pink Noise) are

shown in Fig. 3A–D. Panels pertain to different low-level features

and are further grouped according to their sensitivity with respect

to image structure. The first row (Fig. 3A) depicts the saliency

functions for first-order low-level features, which are mainly

sensitive to the local intensity within different channels. Next 3

rows (Fig. 3B–D) regroup features selective for second-order

statistics, intrinsic dimensionality and symmetrical configurations

respectively. In each panel the constant horizontal line represents

the distribution of low-level features at fixated and non-fixated

locations, that is p(feature) (thin black line in each plot). If the eye

movements on an image were not guided by the low-level image

content, the distribution, p(fixation|feature) would not systemat-

ically deviate from the distribution p(feature). Consequently the

saliency function, p(fixation|feature = X), would also be a constant

function of different feature values. In the other case, if certain

features consistently correlated with fixation positions, this would

lead to notable differences between the saliency function and

feature distribution.

Only during viewing of Natural and Pink Noise category of

images, the statistical distribution of the first-order features (Mean

luminance, Mean Red-Green, Mean Yellow-Blue and Mean

Saturation) at fixated locations differed from those of non-fixated

locations (Fig. 3A green and magenta lines, the width of the lines

represents bootstrap derived 95% confidence intervals). Analysis of

the saliency function of Mean luminance feature in the natural

conditions (Fig. 3A, green line, leftmost panel) shows that the

probability of fixation points to be directed on brighter image

locations was higher than darker locations and the saliency

function nearly always monotonically increased with feature

intensity. Interestingly we observed the opposite trend in the case

of Pink Noise category (magenta line) where fixations targeted

preferentially darker spots with a small bias on the very brightest

locations. Saliency curves for mean saturation (Fig. 3A, rightmost

panel) show that in the Natural category, fixation positions were

preferentially made on saturated locations, whereas in the pink

noise condition both saturated and unsaturated locations were

associated to the attentional allocation. The saliency of color

channel intensity (Mean Red-Green and Mean Yellow-Blue)

shows that red and blue hues were more likely to be fixated in

Figure 2. Exploration strategies. Entropy values for category
(dashed line) and image (solid line) specific fixation maps for each
stimulus category (here and in the following Figures, N: Natural; F:
Fractal; U: Urban; P: Pink Noise). In the case of image specific fixation
maps, the average entropy across all images belonging to a given
category is shown. Error bars represents 99% bootstrap confidence
intervals. Inset maps depict category specific fixation maps that
represent the distribution of all fixation points across all images and
subjects.
doi:10.1371/journal.pone.0093254.g002
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comparison to green and yellow hues and this pattern was similar

between these two categories of images.

The saliency of second-order features (Luminance Contrast,

Red-Green Contrast, Yellow-Blue Contrast, Saturation Contrast

and Texture Contrast) revealed that in all categories the statistical

distribution of feature values differed at fixated locations (Fig. 3B,

second row). The saliency functions were generally steeper

compared to the average intensity features. And in all categories

but in the case of Pink Noise the saliency monotonically increased

with feature level suggesting that different categories may have

different saliency functions.

Concerning intrinsic dimensionality features, only in the case of

Cornerness feature a relationship between feature level and

fixation probability increased monotonically (Fig. 3C). Here, the

slope was biggest in the case of Fractal and Urban category. This

shows that the fixation points targeted those regions that are best

described by the presence of more than one dominant orientation

such as corners, crosses etc. Furthermore, the monotonously

declining saliency functions in the case of Surfaceness feature

indicates that the fixated locations are rarely characterized by flat

surfaces. These two observations explain why the image locations

defined purely by a single orientation do not have strong saliencies

because of the interdependency between different intrinsic

dimensionality features. Importantly, within these intrinsic dimen-

sionality features, the category of Pink Noise differed again from

the other three categories with respect to the shape of the slope of

saliency curve. For example, whereas during Natural, Urban and

Fractal categories, fixations were repulsed from the homogenous

locations; those locations were more likely to be fixated during

pink noise conditions.

Among the three features that are sensitive to different kinds of

symmetrical configurations (Fig. 3D), we found that Radial

Symmetry features were more salient than Bilateral Symmetry

features and fixation points were preferentially located at image

locations that had a high radial symmetrical configuration. This

effect was especially strongest for Radial Symmetry tuned to

higher spatial frequencies, where strongest slopes were observed

for Urban and Fractal categories of images.

Quantification of Saliency Functions
The saliency functions for each feature and category were

evaluated by the strength of the correlation between features and

the location of fixation points, quantified by a symmetric version of

the information theory based Kullback-Leibler divergence (DKL)

metric (see Materials and Methods). A larger DKL value indicates a

bigger deviation between feature statistics at fixated and non-

Figure 3. Saliency functions. (A–D) Saliency functions, p(fixation|feature), are shown for Natural (green), Fractal (red), Urban (black) and Pink Noise
(magenta) category of images. Different panels group feature maps according to their selectivity. Features selective for channel intensity (LM, RGM,
YBM, SATM) and for contrast (LC, RGC, YBC, SATC, TC) are shown in A and B, respectively. Only those saliency functions that deviated
significantly from the control distribution are shown, notice that saliency functions corresponding to Urban and Fractal categories are omitted in
panel A. Last two rows (C–D) depict the saliency functions for features of intrinsic dimensionality (S, C and E) and for symmetry related features
(BiSymm, RaSymm-H/L). Shaded areas represent 99.99% bootstrap confidence intervals. Same abbreviations as in Fig. 1. Saliency functions
averaged across features (see text for details) are shown in (E) for each category of stimuli. In all panels, the horizontal line represents the histogram
equalized distribution of feature values, p(feature) after correcting for the central bias of category specific fixations maps.
doi:10.1371/journal.pone.0093254.g003
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fixated locations. We computed 60 DKL values corresponding to 4

categories and 15 visual features for each individual subject.

We found a main effect of low-level feature (F(64,14) = 283.25)

and image category (F(64, 3) = 936.65) as well as a significant

interaction between these two (F(64,42) = 65.3). Analyzing the data

irrespective of image category (Fig. 4A, gray bars), correlations

between fixation points and feature values were strongest with the

feature set of Intrinsic Dimensionality (labels S, C and E). Among

the three Intrinsic Dimensionality values, Cornerness had the

highest DKL values (DKL = [.074 .105], square brackets denote

99.9% bootstrap derived confidence intervals) and Edgeness the

lowest (DKL = [.021 .031]) correlations. Furthermore, comparing

Surfaceness and Edgeness, we found that in order to discriminate

fixated vs. non-fixated points Surfaceness feature performed better

than Edgeness feature (DKL = .026 vs. .058). The second strongest

feature was Red-Green Contrast (DKL = [.06 .08]), which was not

significantly different from Cornerness features (p.0.01) in this

overall quantification. Within other features sensitive to contrast

(LC, YBC, TC, SATC) we did not observe a significant

difference (p,0.01) with the exception of Texture Contrast that

had a relatively smaller DKL value. Across the four features

sensitive to first order statistics, RGM (DKL = [.029 .041]) deviated

significantly from the other features (LM, YBM, SATM). Among

the phase symmetry features highest DKL values of the radial

symmetry feature (DKL = [.021 .029]) were only marginally smaller

than RGM. The lowest DKL value was observed for the bilateral

symmetry feature (DKL = [.003 .005]).

The analysis of the main effect of image category revealed that

DKL values across different categories of images differed significant-

ly. The strength of the correlation between feature and fixation

points was strongest in the case of Urban (DKL = [.059 .069]) and

Fractal (DKL = [.055 .066]) category. These two values were not

significantly different from each other (p.0.01). This is reflected in

the average saliency function computed across all tested feature

channels (Fig. 3E). To compute these, we discarded the average

Red-Green and Yellow-Blue hue channels, as the zero point within

these feature channels is located at the middle of the scale.

Additionally among the features of intrinsic dimensionality, we

discarded Edgeness and Surfaceness as the Cornerness features

makes the largest contribution to the description of the fixation

locations. High DKL values in the case of Fractal and Urban

categories were caused by the steep increase of saliency as a function

of feature percentile, due to the large deviations between image

statistics at fixated and non-fixated locations. Surprisingly very small

DKL values characterized the overt behavior under Natural

(DKL = [.017 .021]) and Pink Noise (DKL = [.017 .022]) categories

(Fig. 3B). This shows that the correlation between low-level features

and eye movements is subject to drastic modifications under normal

viewing conditions.

Interestingly we observed a difference in the saliency curves

between the Pink Noise and other category of images. The

differences in the saliency functions of Fractal, Urban and Natural

categories were mainly characterized by a modulation of the slope,

but not by the sign of the saliency function. The saliency of a

feature presented in these categories increased always monoto-

nously with the feature percentile. This was however not true in

the case of Pink Noise, where a monotonously decreasing

relationship leading the less contrasted regions to be more salient.

We therefore conclude that the saliency function associated to Pink

Noise category is qualitatively different. Paradoxically, in the case

of these images that are by definition described only by their

second-order statistics, overt attention models based on the

saliency of contrast features would not be expected to perform

satisfactorily given that here low-contrasted regions are more likely

to be fixated.

We observed a significant interaction between features and

image categories (F(64, 42) = 65.3). In the case of Natural category,

average Red-Green feature (DKL = [.047 .074]) was the best

predictor of fixation points and interestingly scored slightly higher

DKL values than Red-Green Contrast feature (DKL = [.040 .054],

Fig. 4A, green dots). The luminance contrast feature, considered

typically to be a good predictor of fixation points, lead to

surprisingly small DKL values (DKL = [.010 .014]) suggesting that

color intensity is a much better predictor of fixation points. In the

Figure 4. The strength of correlation between low-level
features and fixation points. (A) Each bar represents the strength
of correlation between fixation and low-level feature values quantified
with DKL metric and averaged across all categories. For each feature
channel, four symbols show additionally the stimulus-category specific
DKL values (green circle: Naturals; red star: Fractal; black square: Urban;
pink triangle: Pink Noise). Horizontal bar in the abscissa depicts different
clusters of features according to their sensitivity, intensity selective
features, contrast selective, intrinsic dimensionality features and
symmetry sensitive features. (B) For each stimulus category (N, F, U
and P), highest DKL values for one-dimensional (leftmost bar) and two-
dimensional (second bar from left) saliency functions are shown. The
DKL values obtained from the saliency functions of the interestingness
maps are shown in the third place. Last bars represent highest possible
DKL value; these are obtained treating actual fixation maps as feature
maps.
doi:10.1371/journal.pone.0093254.g004
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case of Pink Noise category, Red-Green Contrast (DKL = [.010

.020]), Luminance Contrast (DKL = [.021 .046]) and Surfaceness

(DKL = [.020 .040]) features were the best features in terms of their

predictive strength (Fig. 4A, magenta triangles). With the only

difference of Texture Contrast feature that scored low values in the

case of Fractal, the rankings of features in the category of Urban

and Fractal images were similar (red star and black squares). The

best within these categories is the Cornerness feature (DKL = [.140

.170] for Urban and DKL = [.140 .180] for Fractal) that scored

significantly better than all other features. These results suggest

that the approach of finding a universal feature that has an overall

validity is difficult. Indeed previous rapports have shown that the

strength of correlations between fixation points and feature values

changes with image category [49–51].

Detection of Upper-limit
We reported DKL values as a metric to quantify the correlation

between features and fixation locations (c.f. [45]). In theory, this

metric is bounded from both ends. On the one hand, the more

similar the distribution of feature values at fixated and non-fixated

locations are, the closer is the DKL metric to zero. On the other

hand, in the case of fixations concentrated in a very narrow range

of feature values, the difference would be highest and the DKL

value would approach to the entropy of the distributions. However

in practical terms this level of performance can never be reached

because of continuous rather than binary nature of fixation

probabilities. To evaluate observed DKL values we therefore need

to compute a practical upper bound. To this aim, we reasoned that

a low-level image feature that would optimally detect fixated

locations would need to be closely similar to the actual fixation

maps. We therefore used actual fixation maps (averaged across all

subjects, see Fig. 1 for an example of histogram equalized actual

fixation map) as a substitute for the best hypothetical feature that

would perfectly predict fixation behavior.

The DKL values computed using fixation maps were very high

and we obtained 0.69([.51 .91]), 1.06([.83 1.28]), 1.46([1.16 1.81])

and 0.39([.25 .59]) for the Natural, Fractal, Urban and Pink Noise

categories, respectively (Fig. 4B, fourth bars in each category).

Highest DKL values obtained with low-level image based features

(RGM for Natural and Pink Noise, Cornerness for Fractal and

Urban) corresponded approximately to 10% of the highest DKL

values (Fig. 4B, first bars). The percentages were 12% for Natural,

7% for Fractal and 10% for Urban and Pink noise categories. This

exemplifies the severe limitations of models that are purely driven

by single low-level image-derived features. Still, we show here that

within this small percentage there is a lawful relationship between

feature values and their saliency, which exhibited (except in the

case of Pink Noise) a monotonous relationship.

Integration of Saliency
Models of overt attention working in parallel on multiple feature

channels face ultimately the problem of integrating channel

specific saliency information into a unique representation in form

of a topographic map. This integration process is generally

assumed to occur by a linear integration of individual saliency

values. In order to elucidate how the saliency of different channels

is integrated during free viewing of natural images, we computed

two-dimensional saliency functions and modeled them by linearly

integrating saliency functions of individual features.

Intrinsic correlations between different feature channels within

images make it difficult to test correlations between features at the

fixated locations when more than one feature dimension is

considered. Consider the situation depicted in Fig. 5A, which

shows the joint distribution for two example features (Luminance

Contrast and Saturation Contrast), p(Feature1, Feature2) at control

and actual locations. Please note that although the marginal

distributions are equalized as described above, the 2-D distribution

is not homogeneous. Instead, due to the intrinsic correlation

between these two features, pairs of feature values are mainly

concentrated along the diagonal. In order to understand how these

values are correlated with fixated locations we need to disentangle

the intrinsic pair-wise correlations that exist in natural images from

the distribution of feature values at fixated locations. As our

Bayesian framework effectively takes intrinsic correlations into

account, we can easily overcome this problem by computing the

distribution of feature values at fixated locations, p(Feature1,

Feature2|fixation) (Fig. 5B) and deriving from this the posterior

distribution that represents the saliency function associated with

these two features (Fig. 5C). The two-dimensional saliency

function shows that the probability of fixation increases as a

function of feature values along both feature dimensions and are

highest at those image locations where both Luminance Contrast

and Saturation Contrast are high simultaneously.

This calculation of a joint distribution was performed for each

pair of features (11 different features, 99 different pairs) at control

and actual fixations. We excluded the intrinsic dimensionality

features except the Cornerness feature because the latter was the

strongest feature in the single-feature analysis. Furthermore, in

order to reduce the possibility of having bins without entries we

reduced the number of bins to 8 per feature dimension keeping the

total number of bins at 64 as in the one-dimensional case.

Moreover, as the saliency functions of the Pink Noise conditions

were qualitatively different than the ones taken from other

conditions, we discarded them and performed the current analysis

on the remaining 3 conditions by pooling all the data from

remaining categories, i.e. we did not differentiate between different

categories. The full set of two-dimensional saliency functions is

shown in Fig. 5D. Here the one-dimensional saliency functions of

each individual feature channel are computed at the same

resolution and shown along the diagonal (Fig. 5D, diagonal

panels). These functions are the low-resolution version of the

saliency function that was studied in the previous section (Fig. 3).

To test the hypothesis of independence, we modeled two-

dimensional empirical saliency functions using the saliency of

single channels, i.e. the marginals of the two-dimensional function,

as independent variables. We found the best fitting regression

coefficients and computed the variance explained using the

squared correlation coefficients. The r2 values between the

modeled and empirical saliency functions are shown as a matrix

in Fig. 6A using the same configuration as in Fig. 5C. Mean r2

between predicted and empirical saliency functions was equal to

0.53([.44 .64], 99.9% CI). Adding an extra term that took into

account multiplicative interactions between different feature

channels improved the results only slightly (r2 = 0.54, [.45 .65],

99.9% CI). We therefore conclude that the bulk of the integration

can be explained by independent contribution of different feature

channels and therefore the assumption of different channels of

features in models of overt attention is supported by our data.

Still, a careful inspection of the r2 matrix revealed the linear

model of integration didn’t perform equally well for all feature

pairs (Fig. 6A). The average r2 was 0.36[.28 .47] for all pairs that

included only first-order features. This was much smaller than the

r2 values of all other feature pairs, excluding the first-order

features, where the average value of explained variance was equal

to .82[.76 .90].

Next we elucidated whether the usage of more than one single

feature would improve the discrimination of fixated locations from

non-fixated ones. In order to quantify the incremental
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improvement of considering an additional feature we computed

DKL values between the p(Feature1, Feature2) and p(Feature1,

Feature2|fixation) as analogous to the case of one-dimensional

analysis. We computed the DKL values for two-dimensional

saliency functions shown in Fig. 5D in order to evaluate the

strength of the correlation between pairs of features and fixated

locations (Fig. 5B). Inspection of the DKL matrix shows that DKL

values of 2D saliency functions were higher than the DKL values of

one-dimensional saliency functions (off-diagonal entries vs. diag-

onal entries in the Fig. 5B. Please note that the one-dimensional

saliency functions are the low-resolution versions of Fig. 3, which

obviously influences the computation of entropy and DKL values.).

In all cases DKL values of two-dimensional saliency functions were

higher than the highest DKL value associated with one of the

individual features.

In this image category blind quantification the combination of

Cornerness and Red-Green Contrast features yielded the highest

DKL value. This demonstrates that considering more than one

feature simultaneously has a positive effect in discriminating

fixated locations from non-fixated ones. However, the increase of

the DKL value of 0.11 bits relative to the upper bound was only

18%. As the dominant feature was different for different

categories, we next analyzed the two-dimensional saliency

functions for each category separately and evaluated for each

case the performance with respect to the upper bound. For the

case of Natural stimuli the best combination of features that lead to

Figure 5. Computation of two-dimensional saliency maps. (A) Joint distribution of two example features F1 (luminance contrast, LC) and F2
(saturation contrast, SATC) is presented. This data doesn’t include Pink Noise category. Most of the points are located along the diagonal with a
considerable accumulation of density at the lowest feature values. This joint distribution represents the co-occurrence of feature values at both actual
and control fixation locations (including those that were not done on the shown image), consequently this joint distribution takes into account the
central bias. (B) Distribution of the same feature pairs only at actually fixated locations. (C) The posterior probability distribution corresponding to the
saliency function, p(fixation|F1, F2), is computed according to the Bayesian equality (see Materials and Methods). (D) Two-dimensional saliency
functions are presented for a selected set of feature. The diagonal entries correspond to one-dimensional saliency functions presented in Fig. 3 but
computed using only 8 bins. Features are ordered from left to right according to their DKL values. To compute the saliency functions the data from
Natural, Fractal and Urban categories were pooled. The data obtained during presentation of Pink Noise images was discarded. Abbreviations as
presented in Fig. 1.
doi:10.1371/journal.pone.0093254.g005
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highest DKL values was Mean Red-Green and Red-Green

Contrast features where a DKL value of .061 bits was observed.

For the category of Fractal and Urban, the same combinations

gave the best results and DKL values of 0.16 and 0.18 bits were

obtained for the combination of Cornerness and Red-Green

Contrast features. In the case of Pink Noise category, the strongest

feature combination was Mean Red-Green and Luminance

contrast features (DKL = .034). These DKL values corresponded

to 16%, 26%, 20% and 26% for categories of Natural, Fractal,

Urban and Pink Noise, respectively (Fig. 3B). We therefore

conclude that the incremental improvement by considering pairs

of feature over single features on average only has a small effect.

In order to quantify this improvement, we compared DKL

values of the two-dimensional saliency functions to the sum of the

corresponding DKL values of one-dimensional saliency functions

and expressed the difference as a percentage of predicted DKL

values (Fig. 5C). The observed DKL values were most of the time

smaller than the predicted DKL values suggesting a sub-additive

improvement in the discrimination of a fixated location from non-

fixated ones. A synergistic supra-additive improvement occurred

only at pairs of features where the mean luminance and mean

saturation features were associated. These synergistic effects were

mostly observed for feature pairs where each individual feature

didn’t have high DKL values. Furthermore these were also those

pairs where the linear integration model didn’t give satisfactory

results. This suggests that the stronger a feature pair was correlated

with fixation points, the better a linear model explained this

integration process. Therefore these results are compatible with a

model of linear integration of low-level saliencies suggesting that

no complex interaction schemes are needed in order to combine

the saliency of different image feature channels.

The Saliency of Behavioral Relevant Features
Having quantified the correlation between attended image

locations and their low-level attributes, we next focused on the

question of to what extent a high-level feature would be correlated

with selected fixation points. In order to quantify high-level

content associated with a spatial location in an image we required

an independent set of subjects (n = 35) to click on locations that

they found interesting in an image with the help of a pointer

device. We excluded the Pink Noise condition as these were devoid

of any high-level information that needs to be processed. By

accumulating all the click events for each single image (see

Materials and Methods), we created maps that represented

spatially the interestingness rates across subjects. Example stimuli

(belonging to Natural and Urban) are depicted in Fig. 7A (upper

row) together with the fixation and interestingness maps (middle

and lower rows). Interestingness maps were very similar to fixation

maps. However there were also notable differences between these

two maps.

DKL values derived from the saliency functions of interesting-

ness feature were typically high and values of 0.28, 0.47 and 0.66

bits were obtained for the categories of Natural, Fractal and

Urban. These DKL values corresponded to 45, 48 and 41% of the

estimated upper limit of DKL values, respectively (Fig. 3B).

Therefore independent of category of images, interestingness

maps explained approximately a constant proportion of the

fixation behavior. Most importantly, compared to the low-level

features there was a drastic increase in the DKL values, meaning

that the interestingness ratings are a much better candidate for

predicting locations of fixations than any other single or pair of

low-level features.

Complex images such as those we used in this study are typically

characterized by strong intrinsic correlations between different

feature channels. For this reason, interestingness ratings that we

here obtained might well be correlated with a hidden low-level

image feature and therefore it is in principle possible that the

subjective interestingness ratings include underlying low-level

image features. – Such an argument is often put forward to

question correlations of low-level features with high-level features

that might truly determine selected fixation points. However, it

works in both directions. – By constructing two-dimensional

saliency functions of interestingness and another low-level feature

we can dissect the contribution of these two and evaluate their

relative contributions on the process of fixation point selection. We

therefore computed two-dimensional saliency function of interest-

ingness ratings and the best single low-level visual feature

(Cornerness feature). The joint distribution of the best low-level

visual feature and interestingness ratings was characterized by a

Figure 6. Integration of saliency functions. (A) The goodness-of-fit
presented as a matrix for each pair of feature combination using a linear
model for the data presented in Fig. 5D. Color codes for the strength of
the correlation between empirical saliency maps (shown in Fig. 5D) and
a model that linearly combines one dimensional saliency values. The
ordering of the features follows DKL values of one-dimensional saliency
functions. Diagonal entries are omitted in this representation. (B) DKL

values extracted from two-dimensional saliency functions shown in Fig.
5D. Diagonal entries represents DKL values of the one-dimensional
saliency functions shown in Fig. 5D. (C) DKL values of two-dimensional
saliency functions shown in (B) are compared to the sum of
corresponding uni-dimensional saliency functions (shown in the
diagonal in (B)). 100% represents the case where the sum of the DKL

values of one-dimensional saliency functions equal to the DKL value of
the joint saliency function.
doi:10.1371/journal.pone.0093254.g006
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strong correlation (Fig. 7B, left panel). This distribution shows how

the feature values and interestingness ratings are distributed at

control and actual locations. This correlation has been previously

interpreted as the basis for bottom-up models to detect automat-

ically interesting locations in an image [17]. When the joint

distribution of interestingness and low-level features at fixated

locations is considered, it is clearly visible that fixation points were

preferentially directed at highly interesting locations (Fig. 7B,

middle panel). Additionally, the probability density increased

slightly with increasing low-level feature percentile. In order to

compute the joint saliency function, p(fixation|Feature1, Feature2),

we took the ratio of these two functions. The two-dimensional

saliency function shows that the saliency was to a large extent

modulated by the level of interestingness (see parallel contour lines)

and saliency increased steeply with increasing interestingness. This

indicates independent contributions of the individual low-level

feature (here Cornerness) and high-level feature (interestingness).

These results show that the interestingness rating of that

location largely determines whether a location is to be fixated or

not, while the contribution of low-level image features to the

process of selection is significant but smaller. In order to further

quantify this, we divided the saliency function (Fig. 7B right panel)

into 4 quarters representing all combinations of weak and strong

high/low-level saliency, and computed the accumulative saliency

within each quarter. The accumulative saliency of regions with

weak feature intensity and interestingness rates was small (10.2%).

Figure 7. Computation of Interestingness maps. (A) 3 different stimuli are shown together with their actual fixation and interestingness maps
(second and third rows). The first row depicts three stimuli belonging to Natural and Urban categories as they were shown during the experiment.
Second and third rows depict the empirical saliency and interestingness maps overlaid on the gray scale version of the stimulus. Empirical saliency
maps are probability maps that show the probability of a given location to be fixated. Similarly interestingness maps represent for a given location
the probability of receiving an interestingness rating. These were obtained with the help of a pointer device by an independent set of human
subjects (n = 35). These maps were treated the same way as low-level feature maps in order to compute DKL values. (B) Joint distribution of
interestingness values and a low-level feature (Cornerness) that was most strongly correlated with fixation locations (Left panel). This distribution
shows the co-occurrence of a low-level image based feature with interestingness ratings of human subjects at all fixated and non-fixated locations.
Middle panel represents the distribution of same variables at exclusively fixated locations. The posterior distribution represents the two-dimensional
saliency function (right panel). Notice that the saliency increases nearly completely as a function of interestingness ratings (contour lines) and only
marginally as a function of low-level feature values. The saliency is therefore mainly modulated by the interestingness value of a location.
doi:10.1371/journal.pone.0093254.g007
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Locations with weak interestingness ratings but which had

nevertheless strong low-level feature values were only slightly

more salient (14.2%). However, those locations with weakest low-

level feature values, which were however judged to be very

interesting, were approximately three times more salient (33.6%).

The incremental effect of an increase in the low-level feature level

for those locations that were rated interesting was 8.3%, leading to

an accumulated saliency of 41.9% for those locations with strong

low-level values and interestingness ratings. Therefore, the low-

level image features had a significant effect, and this was strongest

for those points where the interestingness ratings were already

high.

We fitted the following function, a?Interestingness + b?Fea-

ture = Saliency, in order to quantify the contribution of different

independent sources of information. A simple linear model

without an interactive term accounted relatively well the observed

integration (r2 = 0.63). Importantly, the relative contribution of

Interestingness feature was 4.57 times stronger than the best low-

level feature (a= 0.28; b= 0.06). Including an interaction term in

the form of c?Feature?Interestingness, didn’t have a major impact

on the quality of the model (r2 = 0.64). Because of the steep

increase in the saliency function, an expansive non-linearity,

a?Interestingnessx + b?Featurex improved considerably model

prediction. For x = 2 and x = 4, we obtained r2 = 0.77 and 0.91;

inclusion of a term that took into account interaction had again

only minor effect (r2 = 0.79 and 0.93). Our results suggest that

interestingness ratings do operates nearly independently of low-

level image feature and have the best predictive power relative to

single low-level features for the detection salient locations in an

image.

Time Course of Low-level and High-level Contributions
It is important to understand how fast these interesting locations

are detected by human subjects under free viewing conditions and

especially how this detection performance relates to the temporal

course of low-level feature vs. fixation correlations. In one scenario

detection of interesting points could require some time. According

to this view subjects would need to scan the picture completely

before detecting what is interesting in an image. This scheme

matches the instruction of the second cohort of subjects, marking

interesting locations in the images. The predictive power of

interestingness, and therefore the DKL values would then display

an increasing trend along the stimulus presentation time.

Alternatively, the information concerning the location of interest-

ing points could be quickly available to human subjects based on

the gist of the scene, and fixation points could initially be directed

at those locations in order to extract the most relevant

information. Subsequently, details and low-priority locations could

be selected to complement the processing of the image. These two

hypotheses predict very different dependencies of the DKL values

on the presentation duration.

To investigate these hypotheses, we computed DKL values for

each fixation separately (Fig. 8A, red lines). During these

calculations, the control and actual fixation maps were accordingly

modified. We observed that the DKL values peaked as early as 3rd

fixation and subsequently decreased monotonically and reached

values approximately 1/3 of peak values. We conclude that

locations, which were rated interesting, are as early as within the

first second of stimulus presentation detected and the scanning

behavior following this initial scanning shifts towards less

interesting regions. Therefore the detection of interesting locations

do not occur at a glance, i.e. with the very first fixation, but still

surprisingly early after stimulus onset.

The DKL time-course in the case of low-level image character-

istics could in principle be independent of the DKL value of

interestingness and may follow increasing, decreasing or a constant

trend. A decreasing trend would be an evidence for a fixation

behavior that initially selects locations with strong low-level feature

values, and later, locations with weak low-level saliency. We

computed the time-course of DKL values for Cornerness feature

which had the highest DKL values (Fig. 8A, green lines). In the left

panel, the time-course of absolute DKL values are shown, because

of the large difference of DKL values the precise structure of DKL

values of low-level features are not well resolved. In the right panel

these data are separately normalized to the peak value of each

curve in order to allow a better comparison. Time-courses were

alike and all characterized with a decay starting from the third

fixation. However, the initial rise and later decay is smaller in the

case of Cornerness feature as compared to the Interestingness.

Analysis of Fixation Duration
It is a well-established fact that not all fixations last equally long.

Yet this fundamental property of eye movements is often neglected

in studies of overt attention and no model of overt attention so far

does account for this variability [4]. Average fixation durations

varied considerably across both subject (M = 302 ms, S = 55 ms,

Kruskall-Wallis Test, Chi-247 = 9372, p,1025) and categories

(Kruskall-Wallis Test, Chi-22 = 544.1, p,1025). Fixation dura-

tions for the Urban category was approximately 9% significantly

shorter than the fractals and naturals (312 and 310 ms,

respectively), corresponding to 26 ms +/217 ms (t-test, p-

value = 0.0024), there were no other differences between different

categories.

It is also important to understand the variability at the single

subject level. This variability originates in a number of sources,

e.g. the saccadic momentum [52]. We next assessed how fixation

durations correlate with low- and high-level image characteristics

respectively. And we computed the fixation durations jointly as a

function of different percentile of interestingness and best low-level

feature (Mean Red-Green for Natural and Cornerness for Fractals

and Urban). This was done for all three categories where we

recorded interestingness ratings (Fig. 8B; left Natural, middle

Fractal, right Urban). However, in order to discount the large

variability of fixation durations between subjects, fixation dura-

tions were z-score transformed beforehand for each subject, this

was done for each category separately. This allowed us to

disregard inter-individual differences, and focus on how fixation

durations changed as a function of low- and high-level image

values.

These figures show a clear effect of interestingness on fixation

durations and a less pronounced impact of low-level feature values.

As in the previous case, we computed the regression coefficients in

order to compute the contribution of different factors (Fig. 8C).

The quality of the fits was higher than 0.9 in all cases. Whereas the

contribution of interestingness was, as detected by the regression

analysis, 0.09, 0.11, 0.18 for Natural, Fractal and Urban

categories, these values were equal to 0.032, 0.02, 0.06 for the

best low-level feature. Therefore the impact of interestingness was

about 2.8, 4.8 and 2.9 times stronger than best single low-level

feature. These results show that the variability in the fixation

durations can be accounted by the interestingness ratings of

different image locations and to a lesser extent by the low-level

structure of the images.
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Figure 8. (A) Time course of DKL values for high- and low-level features; these were computed for each fixations separately starting
from the second fixation on. Cornerness feature was used to illustrate the time-course of a low-level feature. While, absolute DKL values are shown
in the left panel, the curves were normalized to their peak value (second fixation) in order to have a better comparison of the temporal evolution. (B)
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Discussion

Eye-movements, the reliable mirror of attentional allocation,

are second nature to humans and many other animals. Undoubt-

edly many different sources of information contribute during this

process [3]. Bottom-up attentional allocation results from the

elements of a scene directly attracting the spotlight of attention

[53]. This relates to a whole hierarchy of visual features that may

be combined linearly or non-linearly [34,54–56]. Additionally,

attentional resources can also be directed in a top-down manner

by the task and meaning of different image components [2]. This

relates to people, objects, their configurations and relationships

etc. Whether these two processes draw on joined or separate

mechanisms is an issue of current debate [32]. Indeed, recent

evidence from lesion and TMS studies indicate the parallel

operation of distinct attentional systems, one of these being well

described by a saliency map [57,58]. Furthermore, the relative

contribution varies with age in the form of a high contribution of

stimulus-dependent information at young age and a reduced

contribution in elderly subjects [59,60]. It is clear that everything

that adds a value to the visual scene on the eye of the active

observer attracts fixations, as it is the case in the presence of an

explicit task. Current models of overt-attention founded on the

concept of saliency are either limited to the former contribution or

are based upon the assumption that these two information sources

co-occur in a visual scene, that is salient low-level aspects of a

scene are de facto those that are also significant and meaningful to

an organism.

The present study starts with a decision which visual features to

include and which not to include [61]. In previous studies a large

number of features has been shown to correlate with visual

saliency to varying degrees: luminance contrast [11], texture

contrast [48,62], edges [63], color contrast [50,64], intrinsic

dimensionality [40], symmetry [65], disparity and disparity

contrast [15,66], motion [67–69], faces and text elements

[70,71]. Of these, the latter three were not compatible with the

design of the study. Disparity had to be excluded, as the images

were not available in stereoscopic pairs. Presenting videos would

lead to one fixation per subject on each frame and hence to highly

sparse data. As a consequence, the analysis as performed here

would not have been possible. Furthermore, although motion is a

salient cue [67], recent studies compared eye movements of

actively moving observes to eye movements under lab conditions

with videos or still images presented [68,72–74]. Although motion

emerges as an important cue it is not a critical factor in models of

visual saliency. Another study reports the high saliency of faces

and text elements [70]. However, in the present study neither

individual faces nor text elements were numerous in the stimulus

set. Considering these boundary constraints we tried to compile an

as inclusive list as possible. Furthermore, an earlier study Kienzle

et al. [75] reports optimal features being characterized by a center

surround organization. This is reminiscent of receptive fields

observed in the early visual system and can be conceptualized as

luminance contrast detectors at specific spatial frequencies. This

argues that the selected set of image features captures the majority

of relevant low-level cues and that there is no yet unknown feature

to be discovered that will dramatically tilt the balance in favor of

the low-level features.

A considerable amount of clicks were directed at the middle of

the tunneling patterns of fractal images. Somewhat similar to this

observation, during viewing of natural scenes many fixations were

accumulated at the center of the circular patterns such as for

example flowers, which were also rated interesting. This suggests

that the symmetry features play an important role. We tested 2

different symmetry features, even though Radial symmetry feature

lead to relatively high DKL values, overall their contribution was

limited. Recently in a report dedicated to the saliency of

symmetrical configurations, Koostra et al. [65] proposed that

symmetry features are as important as luminance contrast derived

features and should also be included in the implementation of

saliency models.

In order to control for differences in units and properties of

image features we use a histogram equalization scheme. Different

features come in varying units, posing the question of a natural

scale for comparison. Worse, non-linear scaling of a feature has a

large effect qualitatively changing its contribution in a linear

combination of all features. As a consequence, investigations of

properties of integration of different features [34,55,56] depend on

the chosen scale. For example, is the standard deviation or the

variance (square of standard deviation) of luminance in a local

region the better measure for luminance contrast? In case the

linear combination of the variance of luminance and red/green

axis is a good model of saliency, then the linear combination of the

respective standard deviations is not necessarily a good model.

This problem may be addressed by machine learning techniques

[76]. The histogram equalization scheme proposed here is

invariant under monotonous warping of a feature. This takes into

account all the peculiarities of different feature maps and equalizes

the distribution of all values to a uniform distribution. Hence it is a

natural choice for the scale and unit of features contributing to a

model of saliency.

Previous studies report a qualitative influence of context and

image class on the allocation of overt attention [7,22,50]. We used

4 different categories (Natural, Urban, Fractal and Pink Noise) of

images and quantified eye-movement behavior in the absence of a

specific task. Using a Bayesian approach we characterized the

relation of low-level and high-level stimulus based information

sources, their saliency and integration. Out of the 4 stimulus

categories used exploratory eye-movements on Natural Images

and Pink Noise images yielded comparable results. Total coverage

of individual images, intersubject similarity, the category specific

fixation patterns were alike within these two sets of categories.

Here, the total coverage was small and the central bias had a large

impact, reaching high levels during viewing of pink noise images.

Exploration characteristics of Urban and Fractal images were

similar to each other. Steeper saliency functions hence a stronger

correlation between fixations and low-level features were observed

in the case of fractal and urban images yielding a moderate total

predictive power. This held even when multiple features were

taken into account. These results demonstrate and extend previous

reports of largely varying properties of the spatial bias and

predictive power of low-level stimulus features as a function of

image category [50].

The grouping of Fractal and Urban on the one hand and

Natural and Pink Noise images is an interesting one and similar

grouping was also observed for the analysis of exploration

strategies. Fractal images are rich in low and mid-level informa-

tion, however in contrast to urban sceneries, they are completely

devoid of any meaning for that common objects and people

characteristic of natural and urban scenes do not exist in fractal

Joint distribution of fixation durations computed separately for Natural (left panel) and Urban (right panel) categories. (C) For different image
categories, each bar represents the contribution of low- and high-level information on the variability of duration of fixations.
doi:10.1371/journal.pone.0093254.g008
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images. On the other extreme, pink noise images are perfectly

defined by second-order statistics and neither semantic nor high-

level image features are present. Human subjects were consistent

in their interestingness judgments for fractal images; suggesting

that even at the absence of objects as encountered in an urban or

natural sceneries humans can subjectively find interesting locations

consistently. Furthermore, in those categories of images where the

inter-subject correlation was high (such as fractals and urban) the

correlation between fixations and feature values were found to be

high. In contrast, for those images where the fixation patterns were

dissimilar between subjects (natural and pink noise), the depen-

dence on features was also weaker. We conclude that different

category of images, not only induce different spatial fixations

patterns resulting in different exploration strategies, but also

simultaneously in different feature-fixations correlations, suggest-

ing that these two are tied together.

We find that the strength of different features is noticeably

different for different image categories. This emphasizes the

impact of context or image gist in the allocation of attention.

Furthermore, in the case of Fractal and Urban category,

Cornerness feature was the most predictive feature, and Red-

Green Luminance intensity was best for the Natural and Pink

Noise. It is notable that within these two categories the raw

intensity, rather than the contrast was more strongly correlated

with fixations. We also note that saliency functions in the case of

pink noise category of images were qualitatively different, in the

sense that they were not monotonously increasing functions of

feature intensity. This demonstrates the problems to find a feature

set that has an overall validity is difficult. Interestingly, recent

studies demonstrate the impact of contextual information on

object recognition [77], a process thought to follow the allocation

of attention. This suggests that the predictive power of a general

stimulus driven attentional mechanism should integrate contextual

information in order to achieve satisfactory performance.

The analysis of fixation durations uncovered significant

differences between image categories. Fixations on urban images,

where the predictive value of features was high, fixation durations

were shorter than in the other image categories. This demonstrates

that in the case of a rich image structure exploration is not

necessarily slowed down to allow in depth processing. Instead, the

competition to scan other image regions might more than

compensate such an effect and lead to reduced fixation durations.

We have to note however, that the predictive power of stimulus

features is high in the case of fractals as well, yet the fixation

durations are noticeably longer. Hence, the current data do not

allow the formulation of a mechanistic model of fixation duration

and this must be left for future work.

We resorted to interestingness ratings of an independent set of

human subjects collected with the help of a pointer device and

derived topographical maps of interestingness. Here, the correla-

tion levels as measured with DKL metric were very high. This

suggests a strong contribution of semantic processing to guidance

of eye-movements and in turn limiting the contribution of low-

level characteristics of the image. These two sources of informa-

tion, namely low-level and high-level features were estimated to

have independent impacts on the eye-movements with a low-level

of integration.

The interest in the role of high-level aspects of a scene in

guiding eye-movements is not recent and many reports aimed to

characterize the influence of high-level scene content on overt

behavior under free viewing or different task conditions [26,78].

One of the most used high-level metric is the semantic congruency

of objects located in a visual scene [27,28,30]. For example by

including an object, which would normally not be located at a

given context (e.g. a car on a sofa), the effect of high-level factors

on allocation of attention can be characterized. The detection

performance of such incongruent targets in a change blindness

paradigm, duration of fixations as well as the position of fixation

points seems to be modulated by these high-level factors [29],

which is in accord with the results presented here. However during

such experimental paradigms, the precise evaluation of semantic

incongruency is not parametric, difficult to quantify and depends

on the experimenter’s judgment.

Interestingly the upper-limits for DKL values were different for

each category of images and the way in which the upper bound

depended on the category was very similar to the inter-image

agreement as quantified by the entropy of the category specific

feature maps (compare fourth bar in Fig. 4B and dashed line in

Fig. 2A, Please note that low entropy implies high inter-image

similarity here.). This similarity can be explained by the fact that

when inter-image agreement is high (as in the case of pink noise

images), the similarity between the category specific and image

specific maps should necessarily be high also. This in turn

influence the maximum DKL values that can be obtained given

that feature distributions at fixated points are very similar to

control points. In fact, the upper maximum DKL value is a good

measure of how much image-specific behavior there exist to be

explained. As expected, the behavior during Pink noise images

being rather stereotypical, there is not much image-specific

information that is to be explained. Furthermore this also justifies

the use of a practical rather than a theoretical upper bound.

In our report, we used a direct evaluation method by collecting

interestingness ratings of human subjects with the help of a pointer

device. Interestingness is a handy concept that summarizes well

high-level aspects associated to different portions in an image. This

technique, similar to Antes et al. [30] and more recently to

Masciocchi et al. [36], results in two-dimensional maps of

interestingness. Similar to low-level image features, these maps

provide topographic distribution of image locations with high-level

significance. We showed that interestingness ratings of human

subjects correlated well with fixation locations. Locations with high

interestingness ratings are found to be highly salient and efficiently

attract eye-movements. Specifically, although subjects had unlim-

ited time to explore the visual stimuli, the geometrical properties of

saccades to salient points and the distribution of interesting points

are very similar. Furthermore, we found that humans are able to

detect these interesting spots in a scene relatively quickly after the

stimulus onset. Overall these results show that high-level aspects of

a scene as capture by the interestingness metric are highly efficient

in guiding eye movements.

Recently, the position of objects in a visual scene [26], the

informativeness [5], and the interestingness ratings [36] have been

used to empirically derive topographic maps of high-level

information directly from a scene. Einhäuser et al. [26] used a

model taking into account exclusively the position of objects to

predict fixation positions. This model performed much higher hit

rates than a model considering only low-level attributes [26].

Similarly, Kollmorgen et al. [5] measured the contribution of low-

level features (stimulus-dependent information), informativeness

(task dependent information) and localization (spatial constraints)

to the guidance of eye movements in four different tasks. They

report a consistent and high contribution of the spatial properties.

The influence of task dependent information was more variable

and slightly lower. Stimulus-dependent properties had a still

smaller and variable, but nevertheless significant contribution.

Importantly, the contribution of the three different types was

largely independent. Furthermore, Einhäuser et al. [78] report

that in complex visual stimuli task demands may override stimulus
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driven saliency almost immediately. These results indicate that the

question ‘‘Are low-level stimulus-dependent features or high-level

task dependent information more important in guidance of eye

movement?’’ might be ill posed and be denied of a simple one-

dimensional answer [79].

It is certain that the saliency based approach to overt-attention

and its elaborated versions provide a clearly defined formal

scheme for the investigation of eye movements, and still today

provides a major impetus to the field of overt attention.

Furthermore, the saliency model and its derivatives are currently

used as the benchmark model upon which different hypotheses

can be tested. Already early on it has been argued in favor of

complementary systems on one hand supporting focus on the task

at hand and on the other hand switching attention to unexpected

potentially relevant events. Further exploration of this relation will

deepen our understanding of this central mental ability as well as

contribute to the development of helpful technical artifacts [80].

The concept of a saliency map thrives on stimulus-dependent

information and in its most common form is ignorant on the task

context. Hence, it is best suited to model the latter, purely

stimulus-dependent component. This, however, does not imply

that it needs to incorporate only low-level image properties.

Instead, including progress of our understanding of high-level

image features (objects) and modulation of contextual information

(image categories) are expected to further improve models of the

stimulus-dependent component of overt attention.
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51. Açık A, Onat S, Schumann F, Einhäuser W, König P (2009) Effects of

luminance contrast and its modifications on fixation behavior during free

viewing of images from different categories. Vis Res 49: 1541–1553.

doi:10.1016/j.visres.2009.03.011.

52. Wilming N, Harst S, Schmidt N, König P (2013) Saccadic momentum and

facilitation of return saccades contribute to an optimal foraging strategy. PLoS

Comput Biol 9: e1002871. doi:10.1371/journal.pcbi.1002871.

53. Jordan MI, Kearns MJ, Solla SA, Neural Information Processing Systems

(Conference), editors (1998) Advances in neural information processing systems

10: proceedings of the 1997 conference. Cambridge, Mass.; London: MIT Press.

54. Nothdurft H (2000) Salience from feature contrast: additivity across dimensions.

Vision Res 40: 1183–1201.

55. Zhao Q, Koch C (2011) Learning a saliency map using fixated locations in

natural scenes. J Vis 11. doi:10.1167/11.3.9.

56. Engmann S, ’t Hart BM, Sieren T, Onat S, König P, et al. (2009) Saliency on a

natural scene background: effects of color and luminance contrast add linearly.

Atten Percept Psychophys 71: 1337–1352. doi:10.3758/APP.71.6.1337.

57. Ossandón JP, Onat S, Cazzoli D, Nyffeler T, Müri R, et al. (2012) Unmasking
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