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Cardiovascular imaging has largely focused on identifying structural, functional, and metabolic changes in the heart.

The ability to reliably assess disease activity would have major potential clinical advantages, including the identification

of early disease, differentiating active from stable conditions, and monitoring disease progression or response to therapy.

Positron emission tomography (PET) imaging now allows such assessments of disease activity to be acquired in the

heart, whereas magnetic resonance (MR) scanning provides detailed anatomic imaging and tissue characterization. Hybrid

MR/PET scanners therefore combine the strengths of 2 already powerful imaging modalities. Simultaneous acquisition

of the 2 scans also provides added benefits, including improved scanning efficiency, motion correction, and partial

volume correction. Radiation exposure is lower than with hybrid PET/computed tomography scanning, which might be

particularly beneficial in younger patients who may need repeated scans. The present review discusses the expanding

clinical literature investigating MR/PET imaging, highlights its advantages and limitations, and explores future

potential applications. (J Am Coll Cardiol Img 2017;10:1165–79) © 2017 The Authors. Published by Elsevier on

behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
T he ability to measure disease activity in the
cardiovascular system accurately and at a
low dose of radiation would be a major clin-

ical advance. Indeed, this approach would allow
investigation of the early stages of disease, permit
disease activity to be tracked over time or in response
to therapy, and allow differentiation of active pathol-
ogy from quiescent disease states. The recent advent
of hybrid magnetic resonance (MR) and positron
emission tomography (PET) scanners has therefore
generated intense interest, potentially combining
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Although radiation dose is not necessarily a signif-
icant limitation for routine clinical imaging, these
reductions are likely to be of particular value in the
clinical imaging of younger patients in whom concerns
about radiation exposure are greatest and for poten-
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ABBR EV I A T I ON S

AND ACRONYMS

CT = computed tomography

FDG = fluorodeoxyglucose

LGE = late gadolinium

enhancement

MR = magnetic resonance

PET = positron emission

tomography

SPECT = single-photon

emission computed

tomography

TTR = transthyretin-relate
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simultaneous acquisition of MR and PET data
possible on hybrid scanners provides several
additional advantages, including accurate
co-registration, motion correction, and more
efficient, patient-friendly image acquisition.

Technical challenges remain in applying
this novel technology to the cardiovascular
system; however, solutions are rapidly
being developed, and experience is growing
worldwide. Indeed, a maturing body of
literature has emerged exploring the appli-
cation of this technology to a wide range of
cardiovascular disorders. The present review
discusses these recent clinical studies, highlights
both the strengths and weaknesses of cardiovascular
MR/PET imaging, and explores some of its future
applications.

HYBRID PET/CT IMAGING

PET is a highly sensitive imaging technology that
measures the activity of specific disease processes as
they are occurring in the body. Potentially, any
pathological process may be studied dependent on
the availability of a targeted radiotracer. After injec-
tion into the body, these radiotracers accumulate in
areas where the disease process is active, releasing
radiation that can be detected by the PET scanner.
However, PET imaging is limited by the anatomic
information that it provides and thus needs to be
combined with a second anatomic imaging modality:
CT or MR. These allow the PET data to be localized to
specific structures within the body and also permit
correction for PET signal attenuation by different
tissues in the body (attenuation correction). To date,
PET has largely been performed in conjunction with
CT scanning, or in standalone PET scanners that use a
radioactive source to perform a transmission scan to
measure attenuation. Although the radiation dose
associated with the transmission scan is negligible,
the transmission scan does not provide anatomic
reference data and takes many times longer than CT
imaging. Moreover, the numbers of standalone PET
systems are declining, being replaced by hybrid PET/
CT systems. For this reason, the present review
focused on comparing hybrid MR/PET imaging with
hybrid PET/CT imaging.

Hybrid PET/CT imaging is widely used to study the
heart and large arteries. Currently, the principal
clinical applications are myocardial perfusion and
viability assessments in patients with ischemic heart
disease (1). PET perfusion offers several key advan-
tages compared with single-photon emission
computed tomography (SPECT), including the ability

d

to quantify perfusion and the ability to detect
balanced ischemia and microvascular disease.
11C-labeled fatty acids can be used to assess cardiac
metabolism (2), whereas 18F-fluorodeoxyglucose
(18F-FDG) is used to investigate myocardial viability.
18F-FDG is a glucose analogue, the uptake of
which reflects cellular glucose uptake and phosphor-
ylation. Given that glucose is a major energy substrate
of the myocardium, 18F-FDG uptake can identify
areas of viable myocardium, including areas of
hibernation with impaired systolic function, and can
be used to predict recovery of function after revas-
cularization (3).

An alternative use of 18F-FDG–PET imaging is in the
assessment of cardiovascular inflammation. This
approach relies on a different mechanism, related
to the high uptake of glucose by macrophages and
other inflammatory cells. In the heart, high-fat-no-
carbohydrate dietary preparation can help switch
myocardial metabolism away from glucose to free
fatty acids, suppressing physiological 18F-FDG uptake
by myocytes and allowing regions of inflammation to
be observed. This method has been used to investi-
gate the inflammation associated with myocardial
sarcoidosis (4–6), valve endocarditis (7), and cardiac
device infection. Although these uses are supported
by recent clinical guidelines (8), myocardial sup-
pression of physiological glucose utilization is
unsuccessful in approximately one-quarter of pa-
tients, leading to the potential for false-positive
myocardial 18F-FDG uptake (9).

Coronary 18F-FDG–PET/CT imaging is also limited
by myocardial 18F-FDG uptake (9,10); however, this
scenario is not a problem for larger arteries remote
from the heart. Indeed, carotid and aortic 18F-FDG–
PET/CT imaging correlates well with macrophage
burden and is used to investigate inflammation
related to atherosclerosis and vasculitis (11,12).
Because the scan–rescan reproducibility is also very
good, demonstration of change in the 18F-FDG signal
requires only modest group sizes (11). As a conse-
quence, vascular 18F-FDG–PET/CT scanning is
increasingly being used in clinical trials to assess the
anti-inflammatory effects of novel atherosclerosis
treatments, demonstrating close agreement with
the results of larger clinical outcome studies exam-
ining clinical outcomes (13).

NOVEL IMAGING TRACERS

Multiple new PET radiotracers are in development
and increasingly being used to investigate different
aspects of cardiovascular disease in the research
setting (Table 1). Most notably, 18F-fluoride–PET/CT



TABLE 1 Novel PET Tracers for Cardiovascular Applications

Target Disease Ref. #

PET tracer
18F-Fluciclatide avb3 and avb5

integrins
Angiogenesis/functional

recovery post–
myocardial infarction

(84)

11C-hydroxyephedrine Denervation in the
myocardium

Ischemic heart
disease/heart failure

(85)

11C-PiB Amyloid Cardiac amyloidosis (1)
18F-florbetapir
18F-flutemetamol
18F-florbetaben
64Cu-DOTATATE Macrophages Vascular inflammation in

atherosclerosis
(86)

68Ga-DOTATATE
18F-sodium fluoride Micro-calcification Atherosclerotic plaque and

aortic stenosis
(10,14,19)

Amyloid Cardiac amyloidosis (54)
18F-MISO Tissue hypoxia Atherosclerotic plaque (87)
68Ga-NOTA-RGD Angiogenesis Atherosclerotic plaque (88)
18F-galacto-RGD
11C-PK11195 Translocator protein Atherosclerotic plaque (89)
11C-choline Macrophages Vascular inflammation in

atherosclerosis
(90,91)

18F-choline

MR tracer

Ultra-small
paramagnetic iron
oxide particles

Macrophages Atherosclerotic plaque (36,62)

Gadolinium-labeled
liposomes

Monocytes Atherosclerotic plaque (92)

Paramagnetic
quantum dots

Targeted cell
internalization

Various targets:
atherosclerotic
plaque/tumors

(93)

Gadolinium-labeled
liposomes

Infarcted
myocardium

Ischemic myocardium (94)

MR ¼ magnetic resonance; PET ¼ positron emission tomography.
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imaging has been used to study microcalcification in
coronary and carotid atheroma (9,10,14) and as a
marker of valve disease activity in patients with
aortic stenosis (15,16). Large prospective studies
are underway assessing whether 18F-fluoride can
improve risk prediction and assess response to ther-
apy in these conditions. Novel MR imaging tracers are
also being developed, such as ultra-small particles of
iron oxide, dual-modality probes, and other nano-
particles, which could be used to image multiple
disease processes together with PET imaging.

MR/PET IMAGING

As with CT imaging, MR imaging provides accurate
anatomic detail but also advanced soft tissue
contrast, allowing improved discrimination of lesions
and pathological changes. MR methods are therefore
more naturally suited to imaging many different
structures in the cardiovascular system than CT
scanning, including the myocardium and carotid ar-
teries. These factors have led many researchers to
explore the potential benefits of the newly available
hybrid MR/PET imaging technology. However,
combining MR and PET into a single scanner has
proved a major technological challenge, primarily due
to difficulties in developing PET detectors that will
operate effectively within a strong magnetic field
(standard PET photo-multiplier tubes do not). Early
MR/PET systems involved separate PET and MR
scanners with a movable patient table (Ingenuity TF
PET/MR, Philips Healthcare, Best, the Netherlands).

However, a major breakthrough came with the
development of avalanche photodiode and silicon
photomultiplier detectors that were capable of
working within the MR scanner (17,18). These paved
the way for the development of truly hybrid systems
that housed the MR and PET scanners within the
same gantry (Biograph mMR, Siemens Healthcare,
Erlangen, Germany; Signa PET/MR, GE Systems,
Waukesha, Wisconsin). Hybrid MR/PET scanners
now offer simultaneous, spatially co-registered im-
aging, precisely combining the molecular specificity
of PET imaging with the anatomy, tissue character-
ization, and functional information provided by MR
imaging. This new generation of MR/PET scanners
potentially provide some advantages compared with
PET/CT options and versus performing PET/CT and
MR imaging individually. Despite the current draw-
backs of cost and complexity (Table 2), a single
MR/PET scan maintains the advantages of the 2
individual imaging approaches while providing
additional potential advantages, discussed in the
following text (Central Illustration).
REDUCED RADIATION EXPOSURE. Levels of radia-
tion exposure in current clinical PET/CT protocols do
not pose a significant health risk to general patient
groups. Nevertheless, reduced radiation exposure is a
key goal in cardiovascular imaging according to the
ALARA (as low as reasonably achievable) principle.
This approach is particularly true in younger patients,
who are most likely to undergo repeated imaging and
are most susceptible to the risks of radiation. In the
clinical arena, MR/PET imaging is therefore most
likely to prove useful in this patient group.

In the research setting, advanced cardiovascular
PET/CT protocols increasingly use detailed contrast-
enhanced CT angiograms and CT calcium scoring in
addition to attenuation correction scans (9,19). The
radiation doses from CT in these protocols are
therefore high. Moreover, with the recent develop-
ment of multiple novel PET tracers, there is interest
in measuring the activity of multiple processes. This
use of more than 1 PET tracer would result in further
increases in PET-related radiation. The potential



TABLE 2 Summary of the Characteristics of CT, MR, and PET Imaging and the

Combined Modalities

CT MR PET PET/CT MR/PET

Anatomic imaging

Spatial resolution Strong Strong Weak Strong Strong

Soft tissue contrast Weak Strong NP Weak Strong

Molecular and functional imaging

Molecular imaging NP NP Strong Strong Strong

Exogenous contrast tissue imaging Moderate Strong NP Moderate Strong

Tissue characteristics Weak Strong NP Weak Strong

Temporal resolution Moderate Strong Moderate Moderate Strong

Other

Complexity Strong Moderate Moderate Moderate Weak

Scan time Strong Weak Moderate Moderate Weak

Cost Strong Moderate Weak Moderate Weak

Robustness of imaging Strong Moderate Moderate Moderate Weak

Potential

Research potential Moderate Strong Weak Moderate Strong

Translatability Strong Moderate Weak Strong Moderate

CT ¼ computed tomography; FDG ¼ fluorodeoxyglucose; NP ¼ not possible; other abbreviations as in Table 1.

Robson et al. J A C C : C A R D I O V A S C U L A R I M A G I N G , V O L . 1 0 , N O . 1 0 , 2 0 1 7

Cardiovascular MR/PET O C T O B E R 2 0 1 7 : 1 1 6 5 – 7 9

1168
advantages of lower radiation MR/PET imaging are
therefore being considered. There is particular inter-
est in longitudinal studies involving multiple com-
plex MR/PET scans to investigate the activity of
chronic disease processes over time (e.g., athero-
sclerosis, valve disease) or before and after an
experimental intervention (e.g., administration of a
novel therapy). Alternatively, multiple cardiovascular
scans using different radiotracers could be per-
formed, allowing the activity of several different
disease processes to be investigated. As noted earlier,
these MR/PET research protocols would hold greatest
value in the imaging of younger patients and the
earlier stages of disease.

MOTION AND PARTIAL VOLUME CORRECTION. The
combined effect of both cardiac contraction and res-
piratory displacement leads to a complex pattern of
motion, causing artifact and blurring in the cardiac
PET data. Motion correction is therefore an important
goal for researchers working in the field and poten-
tially a major strength of hybrid MR/PET compared
with PET/CT systems. Motion compensation typically
relies on using electrocardiogram gating to accept
only PET data acquired during diastole. Although this
technique has improved visualization of coronary and
valvular PET activity (9,19), it does not account for
respiratory variation and discards the majority of PET
data acquired. More efficient and sophisticated ap-
proaches are, however, feasible. Although cardiac
motion can be estimated using the PET data itself
(20), an alternative approach is to use anatomic MR
imaging to track the motion of the heart directly.
The resulting motion information can then be applied
to the PET data, correcting for motion artifact.
Respiratory motion correction with MR/PET imaging
has been successfully applied to liver and lung
imaging (21,22). Although cardiac motion is more
complex, the basic feasibility has been demonstrated
in phantoms and preclinical and clinical studies
(23–25), with further research ongoing (26,27).

Partial volume errors arise when tracer uptake
bleeds into neighboring voxels causing blurring,
inaccuracies in PET quantification, and impaired
diagnostic evaluation. Correction of partial volume
errors uses sophisticated techniques that incorporate
high-resolution anatomic information into the PET
reconstruction (28). These may be further improved
with the superior soft tissue discrimination provided
by hybrid MR/PET imaging. In addition, simultaneous
acquisition will avoid the errors associated with the
retrospective co-registration of 2 independent scans,
leading to further improvements in partial volume
errors and motion correction.

SUPERIOR SOFT TISSUE CONTRAST. MR scanning
provides improved soft tissue characterization
compared with CT scanning, particularly when im-
aging the myocardium and atherosclerotic plaque.
The ability to easily and accurately co-register this
information with disease activity is a major potential
advantage of hybrid MR/PET imaging. Cardiac MR
cine imaging provides high contrast between the
blood pool and myocardium and excellent temporal
resolution, allowing accurate evaluation of cardiac
volumes, mass, wall motion, and ejection fraction. In
the myocardium, the late gadolinium enhancement
(LGE) approach is used clinically to identify areas of
myocardial injury and cardiac infiltration in a range of
cardiac conditions. More sophisticated techniques are
emerging, including T1-mapping for diffuse myocar-
dial fibrosis; T2-mapping for myocardial edema; and
T2*-mapping for myocardial iron deposition (29).

MR scanning offers powerful assessment of
atherosclerotic plaque composition, particularly in
the carotid arteries (30,31). High in-plane resolution
imaging with multicontrast T1, T2, and proton-
density weighting has become the gold standard
approach to identifying positive remodeling and
lipid-rich necrotic core. Prospective studies have
confirmed that T1-weighted MR imaging of acute
plaque hemorrhage or intraluminal thrombus forma-
tion accurately identifies culprit and high-risk plaque
in the carotids and coronary arteries, as well as pa-
tients with an increased risk of future cardiovascular
events (31–33). Finally, administration of gadolinium
contrast allows identification of thin or ruptured



CENTRAL ILLUSTRATION Hybrid MR/PET Imaging: The Whole Is Greater Than the Sum of its Parts

Robson, P.M. et al. J Am Coll Cardiol Img. 2017;10(10):1165–79.

Not only can the strengths of each modality shown at the base of the pyramid be achieved in a single scan, but hybrid imaging provides additional advantages,

including perfect co-registration, improved motion correction, and low-radiation imaging compared with positron emission tomography (PET)/computed tomography

(CT) imaging. This combination has the potential to improve the characterization of cardiovascular disease with advantages for patient diagnosis and treatment

monitoring. Lower radiation is likely to be of particular value in the clinical imaging of younger patients but may also allow more complex research protocols

investigating cardiovascular disease at multiple different time points with several different tracers. Magnetic resonance (MR)/PET is already being applied to the

investigation of atherosclerosis and myocardial disease, although further research is required to demonstrate its repeatability, precision, and cost-effectiveness.
18F-FDG ¼ 18F-fluorodeoxyglucose; LGE ¼ late gadolinium enhancement.
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fibrous caps (34) and plaque angiogenesis (35),
whereas ultra-small paramagnetic iron oxide nano-
particles can be used to assess plaque macrophage
infiltration (36).

MULTIPARAMETRIC MULTIORGAN ASSESSMENTS. The
absence of radiation allows for complex MR protocols
to be performed, collecting a wide spectrum of
information about the cardiovascular system and
beyond. This collection might include anatomic as-
sessments of multiple vascular beds, including the
coronary arteries, carotid arteries, and aorta, but also
radiation-free investigation of cardiac function and
flow hemodynamic parameters, as well as the
advanced soft tissue characterization described
earlier. In addition, noncardiac structures can be
imaged to investigate the systemic influences and
consequences of cardiovascular disease. Potential
areas of study include the association of emotional
stress with cardiovascular inflammation (37),
vascular disease with neurocognitive disorders (38),
and vascular calcification with skeletal bone
metabolism (39).

RECENT APPLICATIONS OF

CARDIOVASCULAR MR/PET IMAGING

This section describes the recent exploratory and
feasibility studies that have investigated the poten-
tial clinical utility of MR/PET imaging across a range
of cardiovascular disorders. These studies have
generally involved relatively small numbers of pa-
tients, and confirmation in larger multicenter studies
is therefore required.

AGREEMENT BETWEEN MR/PET AND PET/CT IMAGING.

Two recent studies including a total of 40 patients
(40,41) compared quantification of carotid 18F-FDG
activity using MR/PET versus PET/CT imaging. Stan-
dard uptake values were well correlated but indicated
a small but significant underestimation by MR/PET
scans, likely due to differences in attenuation
correction. Another study investigated myocardial
18F-FDG uptake values using MR/PET and PET/CT
imaging (42). Twenty-seven patients underwent the 2
scans within 1 h of each other after a single injection.
Importantly, only minor differences in the normal-
ized standard uptake values were observed, indi-
cating that myocardial PET tracer quantification on
the 2 scans is broadly similar. Further research is
required to assess the impact of different methods for
MR attenuation correction and whether uptake values
are similar in different disease states.

MYOCARDIAL DISEASE. Ischemic heart disease. 18F-FDG–
PET and MR scanners are widely used to assess
myocardial viability in patients with ischemic heart
disease. Both techniques have shown excellent diag-
nostic accuracy and provide important prognostic
information. In a recent study, 21 patients post–
myocardial infarction were imaged with hybrid
MR/PET scanners (43) to correlate cardiac function,
area-at-risk, glucose metabolism, and infarct size.
The investigators demonstrated close agreement
between the area-at-risk, delineated by 18F-FDG–PET,
and MR T2-mapping, both of which were larger than
that observed with LGE. LGE transmurality and
18F-FDG uptake performed equally well in predicting
myocardial functional recovery. In another study of
28 post–myocardial infarction patients (44), moderate
agreement between MR and PET assessments of
viability was shown (kappa ¼ 0.65), with both
modalities again accurately predicting recovery in
regional wall motion after 6 months. Although these
studies have demonstrated the feasibility of hybrid
MR/PET imaging in patients after myocardial infarc-
tion, the incremental value of MR/PET versus existing
techniques remains to be demonstrated. The same is
true of myocardial perfusion imaging. Further studies
are required in these areas, particularly in younger
patients.
Cardiac sarcoidosis. One of the most exciting potential
clinical applications of MR/PET imaging is in the
assessment of cardiac sarcoidosis. MR imaging in-
forms about myocardial structure, function, and the
pattern of injury on LGE, whereas 18F-FDG–PET
informs about myocardial and extra-cardiac inflam-
mation. Moreover, the ability to easily and accurately
fuse MR/LGE and FDG/PET images facilitates cross-
referencing of the image findings, aiding in the
interpretation of both scans. Finally, both MR and
PET scans are recommended in current clinical
guidelines for the investigation of suspected cardiac
sarcoidosis (45). When both assessments are
required, their completion within a single scan
streamlines the patient pathway and improves cost-
effectiveness.

Several groups have now investigated the feasi-
bility of MR/PET imaging in cardiac sarcoidosis.
Initial studies investigated the benefits of co-
registering scans acquired on separate MR and PET
scanners (46,47), demonstrating improved scan
interpretation compared with side-by-side evaluation
of the independent scans.

Hybrid 18F-FDG–MR/PET imaging in patients with
suspected cardiac sarcoidosis was first described in
case report format, providing early illustration of the
advantages of simultaneous scanning (48,49). First,
accurate co-registration was achieved rapidly in
3 orthogonal planes between the PET data and
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contrast-enhanced 3-dimensional MR angiograms of
the heart. Subsequently, LGE images were fused
with the PET data, demonstrating accurate co-
localization of increased 18F-FDG activity with
areas of myocardial injury observed on LGE. In a
larger cohort of 25 patients with suspected active
cardiac sarcoidosis, patients were categorized into 4
groups (50). MRþPETþ patients demonstrated
increased 18F-FDG uptake co-localizing with regions
of LGE and were considered to have imaging evi-
dence of active cardiac sarcoidosis (Figure 1).
MRþPET– patients had characteristic LGE appear-
ances but no increase in 18F-FDG activity, suggesting
chronic scarring secondary to “burnt-out” sarcoid-
osis, whereas MR–PET– patients had no evidence of
cardiac sarcoidosis involvement. The most chal-
lenging group to interpret were the 8 MR–PETþ pa-
tients, 6 of whom had diffuse uptake throughout the
myocardium. This finding is not consistent with the
patchy nature of cardiac sarcoidosis involvement,
and the myocardial uptake also showed a dynamic
PET profile different from that of patients in the
MRþPETþ group. These patients were therefore
believed to have false-positive 18F-FDG uptake
related to failed myocardial suppression. However, 2
of the MR–PETþ patients had focal increases in
18F-FDG activity localizing to the inferolateral wall
in the absence of any LGE changes. Although such
patterns could relate to myocardial inflammation
visible on PET but not MR imaging, in these
particular subjects, the magnitude and dynamic
profile of the 18F-FDG uptake was the same as
that observed in patients with physiological false-
positive uptake.

Considerable caution is therefore required when
interpreting the results of myocardial 18F-FDG–PET
imaging alone. However, MR/PET imaging seems to
be helpful in this regard, allowing cross-referencing
with MR-LGE images and the dynamic profile of the
uptake to be assessed during the longer bed times.
Additional studies are now required to investigate
these initial findings and to assess whether hybrid
MR/PET scanners improve the diagnostic accuracy
and prediction of adverse outcomes compared with
the current standard of care. Importantly, in both of
the aforementioned studies, 18F-FDG–PET scanning
appeared to outperform T2-mapping in the identifi-
cation of active myocardial disease, supporting the
guidelines and the requirement for an additional PET
scan.
Myocarditis. Patients with myocarditis commonly
present with troponin-positive chest pain but a
normal coronary angiogram. MR scanning is already
widely used to confirm the diagnosis and rule out
myocardial infarction based on the characteristic
pattern of mid-wall LGE. In certain cases, addition of
18F-FDG–PET scanning might prove complementary,
indicating whether the underlying disease process is
active (Figure 2) (48). In a study of 65 patients with
suspected myocarditis, hybrid 18F-FDG–MR/PET
scanning was performed, including LGE and
T2-weighted imaging (51). Eight patients had failed
myocardial suppression despite dietary restrictions,
and 2 were unable to complete imaging due to
claustrophobia. In the remainder, agreement between
18F-FDG–PET and cardiac MR was good (kappa ¼ 0.73)
with the closest association observed between PET
and T2-mapping values. Further studies in this con-
dition are required.

Cardiac amyloidosis. MR scanning is a well-established
tool in the diagnosis of cardiac amyloidosis. How-
ever, MR scanning is unable to differentiate between
the 2 predominant forms of amyloid: acquired
monoclonal immunoglobulin light-chain and trans-
thyretin related (TTR). This clinical distinction is
becoming increasingly important given their different
prognoses and emerging treatments. Recently, SPECT
imaging has been used to address this problem, based
on the increased binding of bisphosphonate bone
tracers to TTR amyloid (52,53). Trivieri et al. (54)
recently showed that, similar to SPECT, patients with
TTR amyloid exhibited increased myocardial activity
of the PET bone tracer 18F-fluoride than patients with
acquired monoclonal immunoglobulin light-chain
amyloid and matched control patients. Moreover,
increased PET activity was observed to co-localize
with the pattern of injury observed on LGE
(Figure 3). An important advantage of using PET
scanning compared with SPECT is that it allows
quantification of uptake, with a tissue-to-background
uptake value of 0.85 appearing to provide clear
distinction between groups. Similar results were also
recently observed in a small 18F-fluoride PET/CT
study (55) and although confirmation is required in
larger patient cohorts, cardiac amyloidosis remains an
exciting area in which MR/PET imaging might rapidly
find a clinical role.

ATHEROSCLEROTIC PLAQUE. MR/PET imaging is
particularly well suited to atherosclerotic plaque
imaging in the large arteries (carotid, aorta, and
femorals) (56–59). In a study of 16 patients, multi-
spectral MR and CT imaging were used to classify
carotid and femoral atherosclerotic plaques as lipid-
necrotic, collagen-rich, or calcified. Of these, the
lipid-necrotic plaques demonstrated the highest
18F-FDG uptake (58). In another study of 25 patients
undergoing carotid endarterectomy, 18F-FDG–PET



FIGURE 1 MR/PET Imaging in Cardiac Sarcoidosis

A B

C D

E F

G H

Magnetic resonance (MR) and positron emission tomography (PET) images from 4 patients with active cardiac sarcoidosis in whom

characteristic patterns of myocardial late gadolinium enhancement (left column) co-localize with increased 18F-fluorodeoxyglucose uptake

(fused images, right column) (50).
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FIGURE 2 MR/PET Imaging in Patients With Acute Chest Pain

A D

E

F

B

C

MR/PET imaging of a 25-year-old woman with pericarditic chest pain. (A) The late gadolinium enhancement (LGE) images demonstrate linear

mid-wall LGE consistent with myocarditis. (B) Increased 18F-fluorodeoxyglucose (18F-FDG)–PET uptake co-localized with LGE on fusion image

indicating active disease, whereas (C) T2-mapping could not clearly differentiate regions of myocardial inflammation. (D) MR/PET image of a

50-year-old woman presenting with heart failure demonstrating transmural LGE in the anterior wall. (E) No increase in 18F-FDG uptake was

observed in this region, consistent with an old, previously unrecognized myocardial infarction. (F) Again, T2-mapping was inconclusive (48).

Abbreviations as in Figure 1.
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scanning correctly identified all the lesions with a
large necrotic core on histology, whereas T1-weighted
MR scanning demonstrated good accuracy in the
detection of large intra-plaque hemorrhage
(specificity 100%; sensitivity 70%) (59). Several
studies have compared 18F-FDG–PET/CT imaging with
MR assessments of vascular inflammation, including
dynamic contrast-enhanced MR imaging (60,61) and



FIGURE 3 MR/PET Imaging in Cardiac Amyloidosis
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Patient with transthyretin-related amyloidosis (ATTR). (A) Short-axis fused MR/PET image demonstrating increased myocardial 18F-sodium

fluoride uptake co-localizing to areas of LGE (white arrows) in the inferolateral wall. (B) PET uptake in patients with ATTR was 48%

higher than in subjects with acquired monoclonal immunoglobulin light-chain (AL) amyloid and 68% higher than in control subjects (54).

TBRmax ¼ maximum tissue-to-background; other abbreviations as in Figures 1 and 2.
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ultra-small paramagnetic iron oxide nanoparticle
imaging in both carotid atheroma (62) and abdominal
aortic aneurysms (63).

Coronary artery imaging using MR/PET scanners is
challenging due to both the small caliber of these
vessels and their complex motion. Although MR angi-
ography techniques are able to reliably image the
proximal coronary arteries, CT scans remain the
preferred modality (29); thus, coronary PET imaging
has almost exclusively been performed using PET/CT
scanning. Nevertheless, research interest in coronary
MR/PET imaging persists because of the benefits
related to motion correction and radiation exposure
and because MR angiography achieves sufficient
spatial resolution to allow PET activity to bemapped to
the coronary vessels. Recently, in a study of 23 pa-
tients, Robson et al. (64) reported the feasibility of
coronary MR/PET imaging using 18F-fluoride. This
study highlighted extensive PET artifact at the heart–
lung and lung–diaphragm borders when using stan-
dard breath-held, attenuation correction maps that
frequently rendered PET activity in the coronary ar-
teries uninterpretable. However, this artifact was
corrected using a free-breathing, motion-insensitive
MR attenuation correction map (3-dimensional
golden-angle radial, spoiled-gradient-echo), enabling
identification of 18F-fluoride hotspots within the cor-
onary arteries in 7 patients (Figure 4). Increasing the
number of iterations of the PET reconstruction further
improved image quality.
CARDIAC MASSES. Cardiac masses were one of the
first cardiovascular conditions to be investigated with
MR/PET scanners. MR imaging provides anatomic
and functional information, as well as detailed soft
tissue characterization. In some cases, MR imaging
can accurately diagnose specific masses with no need
for further investigation (e.g., cardiac fibroma, ven-
tricular thrombus); however, findings are frequently
nonspecific, and it often remains unclear even
whether a mass is benign or malignant. 18F-FDG–PET
imaging has been widely used in oncological practice
to make this distinction, suggesting that MR/PET im-
aging might prove of incremental value. Yaddanapudi
et al. (65) fused separately acquired MR and PET data
and found that the complementary information from
the 2 scans aided in the diagnosis of 6 patients with
cardiac masses, in particular distinguishing benign
from malignant lesions. In a study of 20 patients who
underwent hybrid MR/PET scanning, 18F-FDG–PET
scanning had a sensitivity of 100% and specificity of
92% for the differentiation of malignant versus benign
cardiac masses (66). MR scans, including functional
cine and T2-weighted imaging, revealed very similar
results, but when the data from the 2 modalities were
combined, 100% sensitivity and specificity were
achieved.



FIGURE 4 MR/PET Imaging of Coronary Atherosclerosis

A
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B

C

D

E

F

Patient with breathlessness underwent 18F-sodium fluoride-MR/PET imaging. (A) Standard breath-held attenuation correction leads to artifacts at the diaphragm (*),

heart–lung boundary (white arrowhead), and bronchus (white arrow). (B) These artifacts were corrected with a free-breathing MR sequence for attenuation

correction, (C,D,F) allowing an area of increased 18F-fluoride uptake to be visualized overlying an obstructive plaque (black arrowhead) in the left anterior descending

artery. Additional uptake was observed in the aortic wall and mitral valve annulus (black arrows). (E) Transmural LGE was observed in the perfusion territory of this

lesion, suggesting recent plaque rupture and myocardial infarction (64). Abbreviations as in Figures 1 and 2.
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FUTURE POTENTIAL APPLICATIONS

There are a number of other cardiovascular applica-
tions in which hybrid MR/PET technology is antici-
pated to be advantageous, although these
applications have yet to be investigated. Multiple
different cardiomyopathies are under investigation
with existing radiotracers (67), while the develop-
ment of new PET and MR tracers, targeting different
pathological processes, seem set to rapidly expand
our ability to measure disease activity in the
myocardium (Table 1).

Both MR and PET scans are increasingly being
applied in research studies to patients with heart
valve disease. In aortic stenosis, MR imaging can
provide assessments of both the valve (peak aortic
valve jet velocity and planimetered aortic valve area)
and the remodeling response of the left ventricle
(hypertrophy, function, and myocardial fibrosis)
(68,69). Cardiac MR imaging is also used to quantify
aortic and mitral regurgitation, particularly eccentric
jets and paraprosthetic lesions, which are difficult to
assess with echocardiography. PET imaging has been
explored in valvular heart disease using 2 tracers:
18F-fluoride PET/CT scanning as a marker of calcifi-
cation activity (15,70) and 18F-FDG to investigate
patients with endocarditis. The feasibility of MR/PET
imaging in aortic stenosis has recently been
shown (71).

Similarly, there is research interest in using
MR/PET imaging in patients with congenital heart
disease, in whom cardiac MR is considered the
gold standard anatomic imaging technique. PET
might be useful in detecting calcific degeneration
and endocarditis of the implanted valves and
conduits.

The wide spectrum of available MR measurements
will also spur more novel MR/PET applications. For
example, Gullberg et al. (72) used MR/PET imaging to
investigate cardiac efficiency in heart failure by
relating total mechanical work (measured with func-
tional MR scans) to chemical energy consumption
(measured by using 11C-acetate PET scans). Similarly,
dynamic PET and MR spectroscopy could be used to
image cellular metabolism (73) or metabolite synthe-
sis. Moreover, advanced hyperpolarized 13C MR



TABLE 3 Summary of Potential Cardiovascular Uses of MR/PET

MR Assessment PET Assessment Potential Clinical Use Ref. #

Myocardial perfusion Contrast-enhanced stress perfusion 82Rb chloride, 13N ammonia, 15O water
(stress perfusion)

Cross-validation
Younger patients

(1)

Myocardial viability LGE (myocardial tissue characterization) 18F-FDG (viability) Cross-validation
Younger patients

(43,44)

Cardiac sarcoidosis Cine imaging (LV structure and function)
LGE and T1/T2 mapping (myocardial

tissue characterization)

18F-FDG, 68Ga-dotatate (inflammation) Assess disease activity
Monitor response to therapy

(46–50)

Cardiac amyloid Cine imaging (LV structure and function)
LGE and T1 mapping (myocardial tissue

characterization)

18F-fluordide (TTR vs. AL amyloid)
18F-fluorbetapan (amyloid deposition)
18F-FDG (inflammation)

Differentiate AL from TTR amyloid
Monitor response to therapy

(54)

Other cardiomyopathies Cine imaging (LV structure and function)
LGE and T1/T2 mapping (myocardial

tissue characterization)

18F-FDG, 68Ga-dotatate (inflammation)
18F-fluciclatide (angiogenesis)
Novel tracers for fibrosis activity

Improve diagnostic accuracy
Assess disease activity
Monitor response to therapy

(48,51,67)

Atherosclerotic plaque MR angiography (anatomy and stenosis)
Multispectral black blood and T1-

weighted plaque imaging (plaque
burden and plaque characterization)

18F-FDG, 68Ga-dotatate (inflammation)
18F-fluoride (microcalcification)
18F-fluciclatide (angiogenesis)

Assess disease activity
Monitor response to therapy
Improve risk prediction

(57–64)

Heart valve disease Flow mapping (severity of
regurgitation/stenosis)

Cine imaging (LV remodeling and
function)

LGE and T1 mapping (myocardial tissue
characterization)

18F-FDG, 68Ga-dotatate (inflammation)
18F-fluoride (microcalcification)

Simultaneous assessment of disease
activity in the valve and LV
remodeling

Improve risk stratification
Assessment of endocarditis

(15,68–70)

Congenital heart disease Cine imaging (LV structure and function)
Flow mapping (severity of regurgitation/

stenosis)

18F-FDG, 68Ga-dotatate (inflammation)
18F-fluoride (microcalcification)

Assess degeneration of prostheses
Endocarditis

(7)

Aortic aneurysm disease MR angiography (anatomy)
USPIO imaging (inflammation)
4D flow mapping (shear stress

mechanical stress)

18F-FDG, 68Ga-dotatate (inflammation)
18F-fluoride (microcalcification)

Measure disease activity
Improve risk prediction

(63)

4D ¼ four-dimensional; AL ¼ acquired monoclonal immunoglobulin light-chain; FDG ¼ fluorodeoxyglucose; LGE¼ late gadolinium enhancement; LV ¼ left ventricular; USPIO ¼ ultra-small paramagnetic iron
oxide; other abbreviations as in Tables 1 and 2.
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imaging and spectroscopy could be considered for
imaging metabolites in the heart (74). The current
and future cardiovascular applications of MR/PET
scanning are summarized in Table 3.

Future avenues for development in MR/PET im-
aging are 2-fold. First, technical developments are
underway to solve remaining problems (see the
following discussion) and to investigate the leverage
of the advantages of motion correction and partial
volume correction. Second, clinical studies are
needed to explore the potential applications dis-
cussed here and to evaluate their clinical role
together with existing MR and PET/CT protocols.

DISADVANTAGES OF MR/PET IMAGING AND

BARRIERS TO FUTURE ADOPTION

Despite the numerous potential advantages of
MR/PET imaging, substantial obstacles remain to its
widespread adoption in both the clinical and research
arenas (Table 2).

TECHNICAL OBSTACLES. The primary technical
challenge for MR/PET imaging is attenuation correc-
tion, which is the process by which the collected PET
data are corrected for attenuation by the tissues of
the body and the components of the MR scanner. The
MR receiver coils sit between the PET detectors and
the body, potentially attenuating the PET signal and
introducing artifact. However, research has shown
that the impact of this effect on cardiovascular uptake
is in practice minimal because of the low absorption
cross-section of the coils and their distance from
cardiovascular tissue (75). In contrast, accurate
attenuation correction for surrounding tissues in the
body is essential. CT scanning offers accurate atten-
uation correction because the Hounsfield unit of
X-ray attenuation is readily transformed into the
equivalent linear attenuation coefficient for PET
photons.

The approach for MR/PET imaging is more com-
plex. An MR image must first be segmented into
different tissue classes, which are then assigned an
attenuation coefficient based on their known CT
characteristics. Typically, 4 tissue classes (air, lung,
fat, and soft tissue) are assigned on images acquired
using multi-echo gradient-echo MR imaging (76).
Bone is not included in these attenuation correction
maps because it is effectively invisible on conven-
tional MR imaging. This issue is a potential problem
when examining tissue in close proximity to bony
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structures given their strong attenuation of PET
photons. The development of advanced ultra-short
and zero-echo time MR techniques to image bone
may solve this significant problem (77).

Estimation of attenuation correction at the edge of
the field of view is another issue because the mag-
netic field becomes inhomogeneous in these areas.
Image fidelity and attenuation estimates of the arms
are therefore degraded, particularly in obese patients.
Advanced PET reconstruction algorithms that simul-
taneously estimate attenuation and activity based on
the nonattenuated PET signal might solve this prob-
lem (78) as might MR-based techniques (79).

Metallic implants, including coronary stents and
prosthetic valves, cause more severe artifact in MR
imaging than in CT imaging. These affect attenuation
correction as well as anatomic and functional imag-
ing. Although MR sequences are available to mitigate
some of these effects (80), this factor may prove a
major limitation for MR/PET imaging in patients with
advanced cardiovascular disease and previous
percutaneous or surgical intervention.

OPERATIONAL OBSTACLES. MR/PET imaging is
associated with several operational obstacles,
including the small bore size of MR/PET scanners,
which might increase the likelihood of patient claus-
trophobia. Moreover, MR/PET systems are currently
not widely available, and there is a lack of cardiolo-
gists, radiologists, and technologists with training in
both modalities. There are also important financial
considerations: MR/PET scanners are both expensive
to purchase and run while uncertainty persists about
the level of reimbursement that insurance companies
will offer for hybrid MR/PET examinations. These
systems are therefore unlikely to generate clinical
revenue from cardiac imaging in the short term.
However, MR/PET scanners can also be used to image
other organ systems, demonstrating particular
promise in the investigation of neurodegenerative
disorders (81) and common cancers such as head,
neck, and prostate cancer (82,83). This potentially
broad application has encouraged an expanding
number of health care providers to invest in this
cutting edge, yet expensive, imaging technology.

CONCLUSIONS

MR/PET scanning is an exciting novel imaging
modality that can assess disease activity together
with assessments of cardiac anatomy, function, and
tissue composition during a single scan. The lower
associated radiation doses may be particularly
important for the clinical imaging of younger pa-
tients. In the research arena, beyond the ability to
easily combine and co-register already established
MR and PET imaging techniques into a single scan,
many researchers are seeking novel complex appli-
cations that may further advance the state-of-the-art.
Although technological and operational obstacles
persist, these are rapidly being overcome, positioning
MR/PET scans as a useful new imaging modality for
the investigation of cardiovascular disease. Further
clinical trials are now required to explore the poten-
tial of this technique.
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