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ABSTRACT

Nonlinear forces are ubiquitous in physical systems, and of promi-
nent importance in musical acoustics. Though many models exist
to describe such forces, in most cases the associated numerical
schemes rely on iterative root finding methods, such as Newton-
Raphson or gradient descent, which are computationally expensive
and which therefore could represent a computational bottleneck.
In this paper, a model for a large class of nonlinear forces is pre-
sented, and a novel family of energy-conserving finite difference
schemes given. The schemes only require the evaluation of the
roots of a quadratic function. A few applications in the lumped
case are shown, and the robustness and accuracy of the scheme
tested.

1. INTRODUCTION

In many musical instruments, collisions and contact forces are in-
volved at various levels in the mechanism of sound production
[1]. The interaction of strings with a bow, a membrane (like in
the snare drum), a mallet, a finger or a fretboard are all exam-
ples of contact forces. Collisions of the reed in wind instruments
have a major impact on the perceived tonal quality. Prepared pi-
ano string (coupled to rattling elements) are yet another example of
such collisions. Outside of musical acoustics, collisions represent
an important field of study in robotics [2], and of course computer
graphics [3, 4]. The models employed to describe all the above
forces are necessarily nonlinear, and hence they represent a chal-
lenge in terms of numerical simulation. Although many methods
have been used to simulate some specific examples of collisions
(including digital waveguides [5], modal methods [6, 7], and time
stepping methods [8]), a fairly recent general framework was pro-
posed in order to simulate a large class of collisions and contact
forces [1]. In this framework, the forces are generated by a poten-
tial which takes the form of some kind of power law, depending
on one stiffness coefficient, and one exponent. Such framework
allows to simulate collisions of two lumped objects (like a mass
and a spring), of one lumped and one distributed object (like a
mallet and a string), and even of two distributed systems (like a
string and a membrane). For very stiff collisions, the forces are
generated by a spurious interpenetration, which can be made as
small as possible by increasing the stiffness coefficient. Though
extremely versatile, the associated energy-conserving numerical
schemes rely on iterative root finding algorithms, such as Newton-
Raphson, which is most cases represent a computational bottle-
neck. In this paper, a novel family of finite difference schemes is
proposed for the lumped case, which do not require an iterative
root finding method. It should be mentioned that previous works
(see for example [9, 10]) do present numerical schemes able to

simulate collisions without iterative root finding algorithms. How-
ever, this was showed only in the case of linear response of the
barrier with the spurious interpenetration. In this paper, the pro-
posed schemes work for a class of nonlinear potentials. At each
update the nonlinear force can be calculated by simply finding the
roots of a quadratic function, which basically involves the evalua-
tion of a single square root. In section 2, the model is presented in
the form of an ordinary differential equation, and the forms of the
potentials given. Finite difference schemes are presented in sec-
tion 3, derived from a given Hamiltonian depending on one scalar
parameter. Boundedness of the energy will be shown, along with
a discussion of the realness of the roots of the quadratic. Tests for
accuracy are presented at this point. Finally, section 4 shows a few
applications of interest.

2. MODEL EQUATIONS

In the course of this paper, the displacement u(t) of a particle of
mass M is described by an ordinary differential equation of the
following form

Mü = −φ′(u) = − φ̇(u)

u̇
, (1)

where the last equality was obtained by means of the chain rule.
In the equation, the particle is assumed to be subjected to a force
described by the potential φ(u). By multiplying both sides of the
equation by u̇ the following energy identity is obtained

d

dt

(
M

2
u̇2 + φ(u)

)
,

d

dt
H = 0 → H = H0, (2)

and hence the energy H is non-negative if and only if φ(u) ≥
0 ∀u. Various potentials satisfy such requirement. Specific forms
of interest here are the following

φ(u) =
K

α+ 1
uα+1, α = 1, 3, 5, ... (3a)

φ(u) =
K

α+ 1
[u− h]α+1

+ , α ∈ R, α > 1 (3b)

φ(u) =
K

α+ 1
[|u| − h]α+1

+ , α ∈ R, α > 1 (3c)

In the equations, the symbol [x]+ denotes the positive part, i.e.
2[x]+ , x + |x|. The constant K is a stiffness coefficient. The
forces originated by such potentials are depicted in Fig. 1. In mu-
sical acoustics, though often for distributed systems, these poten-
tials are used in modelling large-amplitude nonlinearities, contact
nonlinearities (such as the hammer-string interaction), rattling el-
ements, and other important nonlinear interactions [11].
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From (2), one finds immediately a bound on the growth of the
solution, i.e.

(u̇)2 ≤ 2H0

M
, (4)

where H0 (a constant) is the total energy.

3. FINITE DIFFERENCE SCHEMES

Solutions to (1) are now sought in terms of appropriate finite dif-
ference schemes, upon the introduction of a sample rate fs and
the associated time step k = 1/fs. The solution is evaluated at
the discrete times nk, where n ∈ Z+, and is denoted un. Finite
difference operators are introduced as:

• backward and forward shift operators
et−u

n , un−1, et+u
n , un+1

• backward, centered and forward first time derivatives
δt− , 1

k
(1−et−), δt· , 1

2k
(et+−et−), δt+ , 1

k
(et+−1)

• averaging operators
µt+ , 1

2
(1 + e+), µt− , 1

2
(1 + e−), µ

(s)
t− , s + (1 −

s)et− (s ∈ R)

• second time derivative
δtt , δt+δt− = 1

k2
(et+ − 2 + et−)

In order to derive a finite difference scheme, a general form for the
Hamiltonian is given here in terms of the generalised averaging
operator defined above, as

hn−1/2 =
M

2
(δt−u

n)2 + µ
(s)
t−φ(un). (5)

Notice that the particular choice s = 1
2

leads to the Hamilto-
nian considered in [1], whose associated finite difference scheme
is second-order accurate, and whose update requires an iterative
root finding method such as the Newton-Raphson algorithm.

In this work, the potential energy is Taylor-expanded around
the point un−1 up to second order, giving

µ
(s)
t−φ(un) ≈ φ(un−1) + s(un − un−1)φ′(un−1)+

s
(un − un−1)2

2
φ′′(un−1) , P

(s)
n−1,n (6)

Hence, the Hamiltonian considered in this work, depending on the
parameter s, is

hn−1/2 =
M

2
(δt−u

n)2 + P
(s)
n−1,n (7)

3.1. Boundedness of Potential Energy

The potential energy defined in (6) is a parabola in un − un−1.
Moreover, for the potentials considered in (3) the following iden-
tities hold

φ′(u) = (α+ 1)
φ(u)

ū
, φ′′(u) = α(α+ 1)

φ(u)

ū2
, (8)

where

ū , u for (3a)

ū , u− h for (3b)

ū ,
|u| − h
sign(u)

for (3c)

Hence, one has

P
(s)
n−1,n = φ(un−1)

[
1 + s(α+ 1)x+ s(α+ 1)α

x2

2

]
(9)

where

x ,
un − un−1

ūn−1
. (10)

The potential energy will be non-negative if and only if the dis-
criminant of the quadratic above is less than or equal to zero, i.e.

s2(α+ 1)2 − 2s(α+ 1)α ≤ 0. (11)

This is a parametric inequality that must be evaluated according
the sign of s and (α+ 1). Notice that, for the potentials in (3), one
must check that the solutions are valid ∀α ≥ 1. This gives

0 < s ≤ 1. (12)

Such values will ensure that P (s)
n−1,n is non-negative, and therefore

that the discrete Hamiltonian (7) is non-negative, ∀α ≥ 1.
In this case, boundedness of the potential energy can be achieved

for values of s which do not guarantee non-negativity of the poten-
tial energy. In fact, given the particular form of the potential energy
(9), if the coefficient multiplying x2 is positive, then the parabola
will always have a minimum regardless of the value of un−1, and
hence ∀n (remember that φ is non-negative by definition). Such
coefficient is s(α + 1)α and, because in this work α ≥ 1, the
potential energy will then be bounded from below ∀s ≥ 0. The
bound depends on the intial conditions, and tends to zero as the
sampling rate is increased, see also Fig. 5.

Summarising, in this work

s > 0, α ≥ 1 (13)

with the particular case 0 < s ≤ 1 guaranteeing non-negativity of
the potential energy.

3.2. Energy conservation. Finite difference scheme

A finite difference scheme can be derived from the Hamiltonian
above by imposing

δt+h
n−1/2 = 0. (14)

Before deriving the scheme, notice that when the potential energy
is non-negative, one immediately finds a bound similar to (4), i.e.

(δt−u
n)2 ≤ 2h0

M
, (15)

When the potential energy is not positive, but bounded from below,
such inequality is true up to a correction of the order of k2. Upon
the introduction of the variable y , un+1 − un−1, the scheme is

Ay +B +
C

y
= 0, (16)

where the coefficients A,B,C depend on previous values, and are
given as

A =
M

k2
+ sφ′′(un)

B = −2M

k2
(un − un−1) + 2sφ′(un) + 2s(un−1 − un)φ′′(un)

C = 2P
(s)
n,n−1 − 2P

(s)
n−1,n

Under the assumption y 6= 0, the scheme can be written as a
quadratic in y, i.e.

Ay2 +By + C = 0. (17)
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Figure 1: Nonlinear forces. (a): nonlinear power law, as per (3a), for K = 1, α = 1, 3, 5. (b): one-sided power law, as per (3b), for
K = 1, α = 1, 1.7, 2.8, h = 0.2. (c): center limited power law, as per (3c), for K = 1, α = 1, 1.7, 2.8, h = 0.3.

3.3. Existence and Uniqueness

Scheme (17) requires the knowledge of the roots of a quadratic
function at each update, and is thus very attractive numerically as
one may employ the well-known closed-form solution for quadrat-
ics instead of a nonlinear root finding algorithm. However, exis-
tence of the roots must be checked, and a condition on existence
must be given. Also, if the roots exist, they come in pairs, pos-
ing a question on uniqueness. Existence is first checked, and the
question of uniqueness is discussed later.

3.3.1. Existence

The condition to impose is

∆(α) , B2 − 4AC ≥ 0. (18)

The discriminat ∆(α) depends on the particular choice of the ex-
ponent α. Existence of the solutions will be checked for ∆(1), and
a discussion for larger values of α will be given later. Also, be-
cause potential (3b) and (3c) depend on the positive part of their
argument, various cases must be discussed. These are

1. φ(un) = φ(un−1) = 0. This scenario corresponds to the
particle not being in contact with the barrier/spring. In this
case C = 0 and therefore ∆(1) ≥ 0 .

2. φ(un−1) > 0, φ(un) = 0. This scenario corresponds
to the particle moving away from the barrier/spring, and
this gives C = −2P

(s)
n−1,n and because A > 0 one has

−4AC > 0 and therefore ∆(1) ≥ 0 (remember thatP (s)
n−1,n

under condition (12) is positive-definite).

3. φ(un) > 0, φ(un−1) = 0. This scenario corresponds to
the particle colliding against the barrier/spring, and must be
checked.

4. φ(un) > 0, φ(un−1) > 0. This scenario corresponds to
(3a), as well as to (3b), (3c) when the particle and the bar-
rier/spring are in full contact (spurious interpenetration).
This case must also be discussed.

Hence, the only cases to discuss are 3 and 4.
Case 3. Upon the definition of K̄ = K/M and uh = u − h, this
case gives

∆(1) =
A

k2
(un−1
h )2 + (unh)2

[
1

k4
−AK̄ + sAK̄

]
− 2

k2
Aunhu

n−1
h .

Remembering that for this case unh > 0, un−1
h < 0 one can find a

sufficient condition for positivenenss by imposing

−AK̄ + sAK̄ ≥ 0, → s ≥ 1.

Case 4. Using again the same definition of K̄ and uh, one has (up
to a positive constant of proportionality)

∆(1) = K̄s2(un−1
h )2 +

1

k2
(δt−u

n
h)2

− 2

[
s

k
K̄un−1

h +Ak

(
K̄

2
− sK̄

)
(µt−u

n
h)

]
(δt−u

n
h)

Hence ∆(1) is a parabola in (δt−u
n
h). Also, for s ≥ 1

2
, ∆(1)

could take on negative values only if un−1
h > unh . Under such

assumptions, the discriminant of the parabola is calculated, and
again the requirement is that such discriminant be negative. Using
the fact that un−1

h > unh one finds a sufficient condition on the
time step to be

k2 ≤
s+ 1

2

K̄s(s− 1
2
)

for s >
1

2

unconditionally positive for s =
1

2
.

Summarising

• for potential (3a), ∆(1) will be unconditionally positive for
s = 1

2
, otherwise a sufficient condition can be given as:

s > 1
2

, k2 ≤ s+ 1
2

K̄s(s− 1
2

)

• for potentials (3b), (3c), a sufficient condition can be given

as: s ≥ 1, k2 ≤ s+ 1
2

K̄s(s− 1
2

)

3.3.2. Uniqueness

Assuming realness of the roots of (17), at each time step one has
to choose either y+ or y−, defined as

y± =
−B ±

√
∆(a)

2A
. (19)

The choice is made according to the following rule

• if B ≥ 0 choose y−

• if B < 0 choose y+

DAFX-3



Proceedings of the 20th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September 5–9, 2017

To understand why this rule holds, consider the case of a free par-
ticle, i.e. for which the potential is zero at all times. In this case,
scheme (17) reduces to

Ay2 +By = 0, (20)

with solutions

y± =
−B ±

√
B2

2A
=
−B ± |B|

2A
, (21)

but because the solution y = 0 is ruled out, one recovers the rule
above.

3.3.3. Comments on existence, ∆(α>1) and bounds

In this subsection, some comments are given regarding the real-
ness of the roots of (17), for α > 1. A discussion on the sign of
∆(α>1) is somewhat complicated by the fact that unh , un−1

h appear
nonlinearly with rational exponents, or with high-order powers,
and hence it is difficult to carry on a study of the sign of ∆(α>1)

along the same lines as ∆(1). A possible procedure is to consider
a parametric study of the function d∆(α)/dα, and hence find con-
ditions on maxima and minima of ∆(α) for the various signs of
unh , un−1

h . This rigorous approach, though desirable, is somewhat
lengthy and perhaps beyond the scope of the current work. A less
rigorous, though revealing approach is to make use of brute force,
i.e. to launch many simulations testing out large portions of the
parameter space, and to empirically verify the robustness of the
algorithm.

In Fig. 2, the scheme is checked for potential (3a), for s =
1
2
, 1, 3. The particle has mass M = 1 kg, and the spring has stiff-

ness K = 103. Each case presents two subcases, i.e. standard and
very high initial velocities (1 m/s, 20 m/s). The figures report the
minimum of ∆(α), for α ∈ [1, 3, 5, 7, 9, 11, 13]. Each colour is
associated with a different time step. Missing points correspond
to simulations returning complex roots. The time steps are chosen
as ki = 2i−2

√
K̄

, for i = 1, 2, 3, 4. Notice that k3 is the limit of
stability of the classic second-order accurate scheme for the sim-
ple harmonic oscillator, (22). For s = 1

2
, ∆(1) is always positive,

in accordance with the previous observation that for such value of
s, ∆(1) is unconditionally positive. However, the scheme is quite
poorly behaved for higher values of α, especially under extreme
initial conditions. Things look much better for s = 1, where the
scheme always returns real roots for v = 1 m/s, as well as for
v = 20 m/s when α = 1, 3, k = k1, k2, k3. When s = 3, the
scheme always returns real roots, for both v = 1 and v = 20 m/s.
In fact, in this case the minimum of ∆(α) seems to have reached an
asymptote. Notice that the values of α selected for the figures are
unreasonably high for applications in musical acoustics (in prac-
tice, one always chooses 1 ≤ α ≤ 3). However, it is remarkable
that the scheme still works under such extreme conditions, at no
extra computational cost.

A discussion for potentials (3b) and (3c) is not reported here,
but the same conclusions apply.

Similar plots suggest that computability is increased as the pa-
rameter s is increased.

Summarising, empirical observations suggest that scheme (17)
gives real roots in the following cases
• conditional realness for 1 ≤ α ≤ 3 if s = 1, the condition

being (at worst) k ≤ 2√
K̄

• unconditional realness ∀α ≥ 1, if s > 2

s = 1
2

s = 1 s = 3
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Figure 2: Computability of proposed scheme: values of ∆(α)

for the selected values of the free parameter s. Missing points
correspond to complex roots. For the simulations, M = 1 kg,
K = 103, α ∈ [1, 3, 5, 7, 9, 11, 13]. Time steps chosen as

k1 =
√

M
4K

(dark blue), k2 =
√

M
K

(green), k3 =
√

4M
K

(red),

k4 =
√

16M
K

(light blue). Notice that k3 is the largest timestep al-
lowed for the classic simple harmonic oscillator scheme, (22). Top
row: initial velocity v0 = 1 m/s, initial displacement u0 = −1
mm. Bottom row: initial velocity v0 = 20 m/s, initial displace-
ment u0 = −1 mm.
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Figure 3: Simple harmonic oscillator. Comparison of current
scheme, for potential (3a) with α = 1 (solid line), and classic
scheme (22) (dashed line). Top row: time domain. Bottom row:
frequency domain. Free parameter s chosen as indicated on top.
Natural frequency of the oscillator is f0 = 11 Hz. Sampling
rate chosen as fs = 2300 Hz. Initial conditions: v0 = 0.5 m/s,
u0 = −0.1 m.
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4. APPLICATIONS

Scheme (17) is now tested against various benchmark schemes.
First, the problem of the simple harmonic oscillator is considered.
Then the dynamics of a particle colliding against a stiff barrier is
studied, followed by the cubic oscillator.

4.1. Simple Harmonic Oscillator

In order to assess the properties of scheme (17), the simple har-
monic oscillator is numerically simulated under various choices of
the parameter s, and comparated against a second-order accurate
benchmark scheme (see [11] for details) given by

un+1 = (2− k2K̄)un − un−1, k ≤ 2√
K̄
. (22)

Fig. 3 presents a few such comparisons, for s = 1
2
, 1, 3. The ques-

tion of accuracy for the current scheme is an interesting one. For
the case of the simple harmonic oscillator considered here there
are two sources of error: the first one is numerical dispersion (in
fact, this is known as phase errors for the lossless case); the second
one is due to the truncation of the Taylor series (6) to second or-
der. Frequency domain analysis (i.e. z-transform techinques) are
in this case out of hand, because for scheme (17) the values of the
solution at the times n+1, n, n−1 appear nonlinearly even under
linear conditions for the potential (3a).

There are some interesting facts about Fig. 3. First of all, the
scheme is less and less accurate as s is increased. This observation
is somewhat in contrast with the observation on existence of the
roots of (17) (see also Fig. 2): there is a trade-off between accu-
racy and computability. In particular, for s = 1, 3 the fundamental
frequency is higher than the one obtained with the classic scheme,
resulting in the sinusoids shifting apart in the time domain. The
second interesting fact is that ∀s 6= 1

2
the simulated system is non-

linear, even though the model equation of the simple harmonic
oscillator is completely linear. Nonlinearities appear as odd har-
monics in the spectra of the cases for s = 1, 3. Even though such
peaks are much lower in energy than the fundamental (for s = 1
the second harmonic is lower than 60 dB in amplitude), as s is
increased they become more and more prominent. However, the
amplitude of such peaks is insensitive to the initial conditions (in
particular they do not grow when higher inital velocities or dis-
placements are used).

It is of course the case to point out that scheme (17) is prob-
ably not very well suited for the problem of the simple harmonic
oscillator, at least ∀s 6= 1

2
. This is because in general the scheme

does not make a distinction between linear and nonlinear cases, so
long as the potential φ is positive-definite and therefore the prop-
erties of existence of the roots and of positiveness of the discrete
Hamiltonian are preserved. In other words, the scheme offers a
general way to treat a large class of nonlinear problems, including
the linear case as some sort of “sub-case”, but where the scheme
remains nonlinear.

4.2. Colliding Mass

In this subsection the dynamics of a colliding mass against a stiff
barrier is simulated. Fig. 4 presents the comparison of the current
scheme, under various choices of the parameter s, and a bench-

(a)

29.95 30 30.05 30.1

100

100.5

101

t (ms)

u
(m

m
)

(b)

29.95 30 30.05 30.1

−20

0

20

t (ms)

u̇
(m

/s
)

Figure 4: Collision of a fast particle against a stiff barrier. Com-
parison of benchmark scheme (blue) (23) and proposed scheme,
for s = 1

2
(green), s = 1 (red), s = 3 (cyan). Particle has mass

M = 1 kg, and is started at u0 = −0.5 m with initial velocity
v0 = 20 m/s against a barrier located at h = 0.1 m; barrier param-
eters are K = 5 · 109, α = 1.3. For both figures, solid lines and
dashed lineds are obtained using, respectively, fs = 44100 and
fs = 441000. (a): Particle displacement during collision (spuri-
ous interpenetration). (b): Particle velocity during collision.

mark scheme presented in [1], which reads

y+
k2

My

[
φ(y + un−1)− φ(un−1)

]
+ 2un−1− 2un = 0, (23)

where y , un+1 − un−1. The scheme is second order accurate,
and unconditionally stable provided that one is able to calculate y
which appears implicitly in the argument of φ. In order to solve
for such scheme, one must employ a nonlinear root finding algo-
rithm, such as Newton-Raphson. Considering Fig. 4, it is seen
that the current scheme departs more and more from the bench-
mark scheme as s is increased; this observation is consistent with
what was already noted for the case of the harmonic oscillator.
In particular, for s = 1

2
the proposed scheme is virtually undis-

tinguishable from the benchmark scheme, whereas for s = 1, 3
differences can be noticed. When the sampling rate is increased,
such differences are reduced, providing evidence that the bench-
mark scheme and the proposed scheme display the same dynamics
in the limit of infinite sampling rate, and ∀ s.

From this simulation, it is interesting to plot the energy com-
ponents for the benchmark scheme and for the proposed scheme.
This is done in Fig. 5. In accordance to what was noted previously,
for s = 3 the potential energy is not non-negative, but remains
bounded from below and thus stability is guaranteed. When the
sampling rate is increased, the minimum of the potential energy
tends to zero.

4.3. Cubic Oscillator

Another interesting system is offered by the cubic oscillator, de-
scribed by an equation of the type

ü = −K
M
u3, (24)

and for which a second-order accurate, unconditionally stable scheme
is offered by (see [11])

un+1 =
2

1 + K
2M

k2(un)2
un − un−1. (25)
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Figure 5: Collision of a fast particle against a stiff barrier, energy components. Comparison of benchmark scheme (23) and proposed
scheme, for s = 1 and s = 3. For all plots, red line is total energy, green is kinetic, and blue is potential. (a)-(c): fs = 44100, (d)-(f):
fs =441000. The energy components are taken from the same simulation as Fig. 4

This benchmark scheme is compared in Fig. 6 to the proposed
scheme for various values of s. As in the previous examples, the
choice s = 1

2
gives results that are virtually undistinguishable

from the benchmark scheme, with more and more discrepancies
as s is increased. As for the case of the simple harmonic oscillator,
several spectral peaks appear for s 6= 1

2
in the higher frequency

range, and also the oscillations of the solution in the proposed
scheme are a little faster than for the benchmark scheme. With
respect to the case of the simple harmonic oscillator, in this case
the spectral content of the solution is sensitive to the initial con-
ditions, and in particular the oscillator displays a hardening effect
(i.e. shift of the spectrum to higher frequencies for higher ini-
tial velocities and displacements). Unlike the case of the simple
harmonic oscillator, the spurious spectral peaks appearing in the
spectrum for s 6= 1

2
also display such hardening effect, resulting

in some high frequency spectral content which can be quite clearly
heard when comparing against the benchmark scheme. Increasing
the sampling rate reduces this perceptual effect.

5. CONCLUSIONS

Nonlinear forces, and in particular collisions, are of prime impor-
tance for many applications in musical acoustics. In this paper, a
novel family of finite difference schemes was presented for colli-
sions in the lumped case, as well as for nonlinear oscillators of any
odd power. With respect to previous numerical models, the current
scheme requires only the evaluation of a square root at each up-
date, therefore no iterative root finders are needed. The scheme is
energy-conserving, and conditions for boundedness of the nonlin-
ear energy can be given in terms a free parameter in the Hamilto-
nian. The robustness of the algorithm was tested for a large number
of cases, showing very good computability properties ∀α ≥ 1 for
a choice of the free parameter s ≥ 1. The choice of s = 1

2
gives

the most accurate results, however preliminary brute force analy-
sis shows that such case is also the least computable (i.e. the roots
of the quadratic are complex in many cases). Although brute force

s = 1
2
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Figure 6: Cubic oscillator. Comparison of current scheme, for po-
tential (3a) with α = 3 (solid black line), and benchmark scheme
(25) (dashed blue line). Top row: time domain. Bottom row: fre-
quency domain. Free parameter s chosen as indicated on top. Stiff-
ness of the oscillator is K = 1010, and mass is M = 1 kg. Sam-
pling rate is fs = 44100. Initial conditions: v0 = 5 m/s, u0 = 0
m.
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analysis cannot be exhaustive, there is strong evidence that higher
values of s do increase the overall robustness of the algorithm, at
the expense of accuracy. It is hoped that the current algorithm can
be extended to the case of collisions of one lumped and one dis-
tributed object (for example, a string and a rattle), for real-time
applications.
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