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Abstract - Human to Human sensorimotor interaction can only 

be fully understood by modeling the patterns of bodily 

synchronization and reconstructing the underlying mechanisms of 

optimal convergence. We designed a cooperative tower-building 

task to address such a goal. We recorded upper body kinematics 

of  dyads engaged in the task, focused on the velocity profiles of the 

head and wrist, and applied Recurrence Quantification Analysis 

to examine the dynamics of synchronization within, and across the 

experimental session, comparing the roles of leader and follower.  

Our results show that the leader was more auto-recurrent than the 

follower to make his/her behavior more predictable. When looking 

at the cross-recurrence of the dyad, we find different patterns of 

synchronization for head and wrist motion. On the wrist, dyads 

synchronized at short lags, and such pattern was weakly 

modulated within a single trial, and invariant across the session. 

Head motion instead, synchronized at longer lags, a phenomenon 

mostly driven by the leader, and increased both within and 

between trials. Our findings point at a multi-scale nature of human 

to human sensorimotor convergence, and provide an 

experimentally solid benchmark to identify the basic motion 

primitives maximizing the coupling between humans and artificial 

agents. 

 
Index Terms — Human-human interaction, Human-robot 

interaction, Body motion capture, Automatic imitation, 

Sensorimotor convergence, Joint action, Mirror neurons, Cross-

recurrence quantification analysis, Dynamical systems 

I. INTRODUCTION 

UMANS are fundamentally tuned to detect human motion 

[1]. Such detection is directly based on biomechanical 

properties of the human body from which motor primitives can 

be extracted and used to temporally coordinate joint actions [2], 

as well as, convey the social dimension underlying the 

interaction taking place [3]. Importantly, motor information is 

obtained through mechanisms of “convergence” or automatic 

imitation unfolding during naturalistic interaction [4]. This idea 

is supported by research on the neurobehavioral mechanisms 
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underpinning such imitative phenomena, i.e., observing other’s 

actions primes similar actions in the observer [5].  

More crucially, perhaps, sensorimotor convergence is 

assumed to facilitate interaction among humans in any goal-

directed coordinative task. However, a key challenge is how to 

evaluate the coordination strategies used by interacting partners 

to achieve effective sensorimotor cooperation. One aspect of 

interpersonal coordination that has been received significant 

interest is the role of signaling [6]. During a joint action task, 

participants modulate position-based kinematic parameters to 

provide partners with hints concerning the specific action to be 

performed, among few alternatives. Imitation is observed when 

the participant acted in the role of follower [7]. An additional 

component is related to how leader–follower sensorimotor 

communication strategies evolve in time. Leaders’ movement 

strongly affect the followers’ imitative behavior, and the 

signaling strategy of the leader improve the dyad performance. 

Interestingly, leaders’ signaling is informed by past interaction 

history [8]. 

Unfortunately, research on Human-Human Interaction (HHI) 

has often provided limited support to the design of Human-

Robot Interaction (HRI) systems. In HHI research, 

experimental control usually imposes task-specific constraints 

on the context of interaction, and behavioral convergence is 

measured on few pre-defined variables (i.e. reaction times, hand 

opening, wrist elevation, etc) matching few selected and very 

specific task characteristics. As a consequence, potential HRI 

applications are constrained by the narrow context and 

measures implemented in the corresponding HHI scenario [9-

10]. In order to extract useful information from HHI paradigms, 

a larger context independency is necessary.  

Context independency may not be easy to achieve, given 

human behavior variability and flexibility. However, it is worth 

mentioning that automatic imitation itself is a multi-level 

phenomenon. Imitation can be centered upon high-level 
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behavioral goals, leaving intact the detailed means to achieve 

them. At the opposite extreme, evidences suggest that fine-

grained kinematic details of an observed action, irrelevant for 

goal achievement, are also automatically encoded and bias 

motor execution [11-12]. For example, the velocity profile of 

participants’ movements can be influenced by the velocity 

profile of a moving dot [13]; an effect which is reduced when 

interacting with a partner who violates the biological laws of 

motion [14]. This suggests that low-level sensory-motor 

matching mechanisms can still affect movement planning and 

execution during joint action. More importantly, velocity 

profiles are independent from position data and thus, far more 

robust to variations induced by the task. At the same time, the 

analysis of velocity profiles can play a key role in characterizing 

movement control parameters that are known to show no 

context dependence [15].  

A further possibility to achieve greater context independency 

may reside on shifting the study of human motion to a 

dynamical system approach, which deals with both the stability 

and the flexibility of coordinated actions at once [16-17]. This 

approach considers individuals and their interaction context as 

a coupled dynamical system, with coupling being both 

informational and mechanical in nature. Thus, interpersonal 

coordination results from individuals decoding others 

movements by taking into account task and context constraints, 

as well as, the mechanical limitations of their own actions [18]. 

Therefore, joint action is an emergent property arising from the 

informational couplings between individuals, and between 

individuals and the environment.  

In this study we investigate the emergence of lower-level 

sensorimotor coupling, in a complex interactive task. Here we 

aimed at: (1) deriving quantitative measures of behavioral 

coupling; (2) tracking how such measures change over the 

course of few trials and (3) uncovering the behavioral strategies 

of the dyad, which improve joint task performance. In order to 

achieve these goals, we paid special attention to three key 

issues.  

The first one regards task design. Discrete and rigid turn-

taking tasks are often employed in standard joint action 

literature [19-22]. Such tasks have the clear advantage of 

granting perfect experimental control, but they usually focus on 

very specific movement features (e.g. hand-object contact, 

maximal finger aperture, curvature of arm trajectory, arm 

elevation, etc.), thus missing the whole complexity of the 

behavior. We devised, instead, an interactive task allowing 

continuous and temporally overlapping behavior [20]. In fact, 

the turn-taking behavior required in our task involve whole 

upper-body motion including arm reaching, hand grasping, 

body sway etc. More importantly the analyses are centered 

upon the velocity profile throughout the task, as opposed to 

discrete and pre-defined events. 

The second critical issue relates to the features of the 

movement we focus on. Most studies examined the movement 

of a single body part [6-8,19-22] as opposed to capturing the 

overall movement of the dyad. Head motion, for example, is 

often considered an ancillary movement mainly assumed to 

convey emotional states or joint task engagement [22]. Head 

motion can be captured very easily either using dedicated 

motion-tracking systems [23] or applying video-based tracking 

algorithms [24]. Nevertheless, most studies focused on 

movements of body parts that are instrumental to the task 

execution (e.g., wrist) and derived measures of coordination 

constrained by the characteristics of the task. However, 

recording of instrumental movements for certain tasks, such as 

fingers tracking during joint object manipulation, might be 

challenging without specific technologies (e.g., data-glove). 

The tower building task presented in this study instead, solely 

requires active cameras providing distal recording [25]. 

Differently from previous work that has focused on a single 

body part [20], we focus on wrist and the head, and investigate 

whether their synchronization dynamics points at different 

functional roles of these two body parts, evolve along different 

time-scales, and inform us about the leader/follower 

relationship subsumed in our task. 

The third critical issue regards choosing a methodology to 

quantify coordination. Previous work by some authors of this 

study applied Granger’s causality [21,26] to derive patterns of 

cause-effect and obtain an indirect measure of sensorimotor 

information flow. In the current study, our interest is to measure 

kinematic similarity between participants to underpin processes 

of automatic imitation. A simple, and most commonly used 

method is cross-correlation, which we adopted on a previous 

study to show that the time-lags of maximal correlation in the 

wrist velocity profiles of the dyad get shorter across trials. A 

result demonstrating that the coordination of joint actions is 

achieved through the automatic imitation of low-level motor 

control parameters [20]. Here, we decided to utilize Cross-

Recurrence Quantification Analysis (C/RQA), which is often 

referred to as a generalization of lagged cross-correlation and 

provides an additional range of different measures, beyond 

mere correlation, characterizing the non-linear dynamic 

patterns underlying joint interaction [27,28]. Recurrence 

Quantification Analysis [29] (RQA) is a technique originally 

developed in the natural sciences to capture recurrence in 

signals distributed over time (e.g, seismograms). RQA has been 

also used in cognitive science research to examine 

synchronization in behavioral information streams, such as 

body sways or gestures, which are the type of responses 

investigated in the current study [30,31] (for a review see [32]). 

In summary, the main aim of this study is to investigate 

mechanisms of bodily alignment during a collaborative tower 

block-building task, where a leader/follower relationship is 

alternated at every session (the reader is referred to section 

Procedure for more details about the task). In particular, we 

sought to examine whether different parts of the body (e.g., 

head and wrist), would display a similar pattern of alignment, 

whether they vary between leader and follower, as well as, track 

how mechanisms of alignment change due to learning 

experience. Specifically, we formulate two hypotheses. The 

first one is that the leader and follower will modulate their 

predictability across trials and also within a single trial to offer 

social affordances to their collaborator. This hypothesis follows 

from previous literature on interpersonal interaction showing 

that dyads engaged in collaborative tasks tend to align their 
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responses to maximize mutual understanding and optimize task 

performance [8]. Secondly, we predict that such pattern will 

dissociate instrumental movements (Wrist) from ancillary ones 

(Head). This prediction is supported by previous research which 

found partial dissociation between interpersonal coordination at 

the level of keystrokes and body movements (head and torso) 

in piano duet [33]. 

II. METHODS 

A. Participants, task and data 

Forty-six participants (23 males and 23 females) were 

recruited among the Italian Institute of Technology staff 

members (mean age 29.26; SD = 2.92) to take part into a tower 

building task, where 12 colored cubes had to be stacked in a 

tower shape by a dyad of participants (6 each) in a turn-taking 

fashion. Each dyad performed the task 10 consecutive times, 

and each participant of the dyad alternated the role of “leader” 

(i.e., the one who began the cube sequence) or “follower” (i.e., 

the one who “followed” the color chosen by the leader), playing 

a total of 5 trials in each role; please refer to [20] for more 

details. The protocol for this study was approved by the local 

ethics committee (ASL-3, Genova), and the experiment took 

about 10-15 minutes to complete. We recorded the body 

movements using a motion capture system (VICON system) 

with 9 near infrared cameras at a sampling rate of 100Hz. 

Reflective markers were placed on: both shoulders, the 

dominant arm, elbow and wrist, and on the head (see [20]). 

From a total of 230 trials (23 dyads over 10 sessions), 40 trials 

were removed from the analysis due to inability to complete the 

tower. Thus, the results are based on 190 unique trials. 

 

B. Recurrence analyses 

As mentioned above, we use C/RQA to capture the 

sensorimotor dynamics of bodily coordination during dyadic 

interaction. The recurrence plot (RP) is the basic component of 

C/RQA, which is obtained by taking a time series X(t) (e.g., the 

velocity profile of the head), generating delayed copies X(t + τ) 

by introducing a lag τ into it,  and calculating the euclidean 

distance between the original and the delayed time series. Time-

series can also be embedded into higher dimension by simply 

multiplying τ by a constant m, X(t + mτ). Two points are 

considered recurrent if the distance between the original and 

delayed copies fall within a certain radius. From RPs 

constructed either on a single time series (i.e., auto-recurrence) 

or between two different time series (i.e., cross-recurrence, 

CRPs), we can compute several measures characterizing the 

behavior of the system (e.g., the alignment of head movement 

in a dyad). The most general measure that can be computed 

from RPs is recurrence rate (RR), which refers to the amount of 

overall recurrence in the plot. This measure, however, is rather 

general and indiscriminate, because it does not take into 

account the directionality of alignment, which is particularly 

important when examining the pattern of synchronism arising 

between different time-series. In fact, measures computed along 

the diagonal and vertical lines of a C/RP can tell us very 

different things about the dynamics of the system. Along the 

diagonal lines, we can observe the synchronism of a system, 

along the vertical lines, instead, the persistency of the system. 

For this reason, along the diagonals we focus on: (a) the average 

length of the diagonal (L), which reflects the regularity of the 

system (longer lines imply longer synchronization), (b) the 

percentage of recurrence points forming diagonal lines (DET), 

which reflects the predictability of the system (the higher the 

value, the more predictable the system is), and (c) the entropy 

of the line distribution (ENTR), with high entropy indicating a 

more complex pattern of synchronization than low entropy 

(where diagonal lines tend to have the same length). On the 

vertical lines, we focus on (d) the laminarity (LAM), which 

indicates the intermittency of the system, i.e., how likely is the 

system to persist, or not, in the same state (lower laminarity 

higher intermittency). 

Moreover, changes in recurrence can also be tracked along 

the time-course of a session using a windowed approach [34]. 

This approach makes possible to establish how synchronism 

between the two agents develops as their interaction progresses. 

In particular, C/RQA measures are calculated in overlapping 

windows of a specified size for a number of delays smaller than 

the size of the window.  In the context of this study, we use 

windowed cross-recurrence to uncover whether head and wrist 

display the same pattern of alignment, or not, within a single 

session, and how it changes as a result of learning across 

sessions. 

We apply RQA and CRQA on velocity profiles obtained 

from two body markers, one placed in the front of the head, and 

the other one placed in the wrist of the two participants. First, 

we interpolate (down-sample, up-sample) all the velocity 

profiles for the head and wrist data, such that we standardize the 

duration of all trials. Then, we use RQA to measure the patterns 

of auto-recurrence, separately for leader and follower, so that 

we can compare whether follower and leader differ in how they 

adapt to the task. We apply C/RQA between leader and follower 

to capture their pattern of synchrony. We focus, and report, the 

four measures of L, DET, ENTR, LAM, detailed above. When 

dealing with continuous valued time-series, such as body 

sways, the parameters of radius, embed and delay have to be 

estimated from the data, by following principles of phase-space 

reconstruction (refer to [35] for more details). Briefly, delay is 

computed using mutual information, the embedding dimension 

using false nearest neighbors, and a radius yielding a recurrence 

rate between 3-5%, as suggested by [36]. In this study, we 

estimated these parameters from the data, separately from wrist 

and head, and obtained a delay of 88 (wrist) and 89 (head), a 

radius of 120.7 (wrist), 14.1 (head), and an embedding 

dimension of 2 in both body parts. We computed windowed 

cross-recurrence to track how the recurrence rate observed 

between the two participants, changes over the course of a 

single trial. Note, in this analysis, recurrence rate is computed 

only along the diagonals of the RP, which convey information 

about the synchronization, as said above.  In order to control for 

the variability induced by the turn-taking task, we divide the 

time-course of a trial into 6 intervals, and run windowed-cross 

recurrence in each interval. Each interval is calculated from the 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

4 

moment the leader grasps the block to be stacked until the 

follower puts his/her block afterwards. As there are 12 blocks 

to be put, there are 6 of such intervals. Finally, we also examine 

the recurrence rate observed at the main diagonal of the C/RP 

(Line of Coincidence) and its close surrounding, which reflects 

the two time-series (e.g., the velocity profile for the head of the 

follower and the leader) visiting the same state at the same time 

(at the LOC), or on a small range of lags around it (the diagonals 

off the LOC). The diagonal-wise recurrence is used to show 

whether there is a leading-follower pattern within a certain 

time-frame [32]; and, for our purposes, establish whether there 

are differences between head and wrist. We utilize the R 

package crqa [28], which shows perfect comparability with the 

widely known crptoolbox (MATLAB) by Norbert Marwan. 

 

C. Statistical analyses 

In order to assess statistical significance, we utilize linear-

mixed effect models, a hierarchical regression accounting for 

the variability of random variables related to sampling [37], 

e.g., Dyads.  We build mixed-effects models with full fixed 

effects structure (i.e., all main effects and their interactions) 

with maximal random structure (i.e., random variables included 

as intercepts and uncorrelated random slopes) an approach 

known to result in the lowest rate of Type 1 error [38].  

The linear predictors included in our models are Session (a 

continuous variable, ranging from 1 to 10), and Body-Part (a 

categorical variable with 2 levels, Wrist and Head). When 

comparing the auto-recurrence between leader and follower, we 

add a categorical variable Role (coding for Leader and 

Follower). All variables are centered to reduce co-linearity. For 

the windowed cross-recurrence instead, we add a continuous 

variable to account for the Time along which recurrence is 

tracked.  In the tables, we report the coefficients, standard 

errors, t-values and derive p-values for the fixed effects in the 

LME models, as calculated from F-test based on Satterthwaite 

approximation to the effective degrees of freedom [39]. 

III. RESULTS 

A. RQA measures, comparing auto-recurrence, between 

leader and follower 

We computed auto-recurrence on the wrist and head velocity 

profile, separately for the follower and leader, and obtained 4 

indexes (L1, DET, ENTR, LAM) characterizing their dynamics 

(See Table 1 and Figure 1). 

 

 

 
1 We decided not to report RR because, as said above, it gives an estimate of 

indiscriminate alignment, i.e., there is no directionality, while especially for 

C/RQA directionality plays a major role 

Table 1. Auto-recurrence: comparing individual parameters of synchronism 

between leader and follower, on head and wrist across sessions. Coefficients of 

mixed-effects models with maximal random structure (intercept and slopes on 

Dyads). Each RQA dependent measure, L, DET, ENTR and LAM, is organized 

across columns, is modeled as a function of the centered and contrast coded 

predictors: Bodypart (Head = -.5, Wrist = .5), Role (Follower = -.5, Leader = 

.5) and Session (a continuous variable from 1 to 10). We report the β with the 

associated p-value, and the t-value from which it was derived. 

 

 
Fig 1: Bar plots for the RQA measures of L (length of the diagonal line), 

DET (percentage determinism), ENTR (entropy) and LAM (laminarity) mean 

and 95% CI, characterizing the movement dynamics of head and wrist 

(represented as a velocity profile) separately for Follower (light gray) and 

Leader (dark grey). 

 

First, we look at the average length of the diagonal (L), 

which, to reiterate, indexes the temporal duration of the time-

series to be in synchrony with itself (or with another series in 

the cross-recurrence case), for the leader and follower as 

independently considered (i.e., auto-recurrence). Here, we find 

a main effect of Session, whereby the lines get longer the more 

trials have been completed, which indicates that participants 

learn to overall better synchronize along the experimental 

session. We also observe a main effect of Bodypart, whereby, 

we observe longer lines for the wrist as compared to the head. 

This result is not surprising as the wrist is the body part more 

directly engaged, and strictly constrained by the task. More 

interesting results concern the interactions between Session, 

Role and Bodypart. In particular, we find that over the 

experimental session, lines get longer for the Wrist than for the 

Head (two-ways Session:Bodypart), the Leader becomes more 

synchronous than the Follower over the session (two-way 

interaction Session:Role), especially on the Wrist (three-ways 

interaction Session:Bodypart:Role).  

When looking at the determinism (DET), which indexes the 
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predictability of behavior, we find a main effect of Session, 

meaning that both leader and follower become more predictable 

during the course of their interaction. We also observe a main 

effect of Bodypart, whereby the Wrist is less predictable than 

the Head, and a main effect of Role, where the Leader is more 

predictable than the Follower. When looking at the interactions, 

we find that the Wrist becomes more predictable as a function 

of the Sessions (two-ways interaction Session:Bodypart), 

especially for the Leader (three-ways interaction 

Session:Bodypart:Role; Figure 2). We also observe a two-way 

interaction between Bodypart and Role, whereby, the Leader is 

more predictable than Follower, on its Wrist movement. 

 

 
Fig 2: RQA scatter-plot of DET (y-axis) as a function of the number of 

Session (x-axis). We use point and line type to mark the Leader (triangle-

dashed) and the Follower (circle-solid), divided in the two panels according to 

the body part (Head – left panel; Wrist – right panel). The lines represent the 

mean estimates (and standard errors as shaded bands) of a generalized linear 

model fit to the data. 

 

On the Entropy, we find that the Wrist has a more entropic 

pattern than the Head, the Leader is more entropic than the 

Follower, especially as the Session progresses and on the Wrist 

more than on the Head. When looking at laminarity, i.e., how 

repetitive is the system, we largely corroborate the results on 

determinism: more repetitive responses as a function of the 

sessions, the head more repetitive than the wrist, the leader 

more repetitive than the follower. The wrist becomes more 

repetitive as a function of the session, especially in the leader. 

 

B. C/RQA measures 

Moving to the Cross Recurrence analyses (Table 2), on L we 

observe that the dyads coordinate more strongly on their Wrist 

movement, than on their Head movement, but their Head 

coordination increases over the experimental Session. On DET, 

we corroborate the main effect of Session, with dyads becoming 

more predictable as a function of the experimental progress, and 

the overall higher predictability of the Wrist over the Head. 

When looking at the Entropy, we find the Wrist to be more 

entropic than the Head, even though, entropy for the Wrist 

decreases over the experimental Session (i.e., the two-way 

interaction Session:Bodypart). 

 
Table 2. Cross-recurrence: quantifying the dyad’s synchronism on head and 

wrist across sessions. Coefficients of mixed-effects models with maximal 

random structure (intercept and slopes on Dyads). Each C/RQA dependent 

measure, organized across columns, is modeled as a function of the centered 

and contrast coded predictors: Bodypart (Head = -.5, Wrist = .5) and Session (a 

continuous variable from 1 to 10). We report the β with the associated p-value, 

and the t-value from which it was derived. 

 

Finally, when looking at the stability of the system (LAM; 

Figure 3), we confirm that dyads become more repetitive as a 

function of the experimental session, especially on the Head, 

even though, they are overall more stable on their Wrist.  

 

 
Fig 3: C/RQA scatter-plot of the LAM (y-axis) of the Leader and Follower 

dyadic interaction, as a function of the number of Session (x-axis). We use point 

and line type to mark the Wrist (triangle-dashed) and the Head (circle-solid). 

The lines represent the mean estimates (and standard errors as shaded bands) of 

a generalized linear model fit to the data. 

 

C. Windowed and diagonal cross-recurrence profiles 

Here, we look at how dynamical properties of the interaction 

change as a function of the time-course within a single trial. In 

Figure 4, we plot the windowed cross-recurrence across the 6 

turn-taking intervals (i.e., from the leader taking the block, till 

the follower puts his block, please refer to Method for more 

details about the time-course normalization). It is rather evident 

from the plot that the Wrist and Head undergo a very different 

pattern of synchronization across the trial.  

In particular, on the Head, we observe synchronization to 

increase over time, as highlighted by the significant interaction 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

6 

between Bodypart and the linear term of Time1 in Table 3. On 

the Wrist instead, we observe a clear convex dynamics of 

synchronization, where the dyad loses coordination and get to a 

plateau over which adaption to each other’s action is learned. 

Once such convergence is obtained, their coordination sharply 

increases until the end. This effect is seen in Table 3, as an 

interaction between BodyPart and the quadratic term of Time. 

 

 
Fig 4: Windowed cross-recurrence analysis of dyad’s movement dynamics 

over a time-course of 6 normalized intervals. The intervals are obtained by 

windowing the velocity profiles according to the turn-taking intervals between 

the leader putting his/her block, and the follower putting his/her block 

afterwards. As there are 12 blocks in total, there are 6 of such intervals. The 

shaded bands represent the standard-error from the observed mean, whereas the 

lines are the estimate of the LME model (reported in Table 4) to the data. 

 

 
Table 3. Windowed-cross-recurrence: time-course analysis of recurrence 

rate during the individual trial, as predicted by Time (1- 6 intervals) represented 

as an orthogonal polynomial of order two (Linear, Time1; and Quadratic, 

Time2) and Bodypart (Head = -.5 and Wrist = .5). Random intercepts of Dyads 

and Random slopes for main effects were included in the model. We report beta, 

standard error, t and p-values of our predictors. 

 

When looking more in depth at the measures characterizing 

this pattern (refer to Table 4), we find that the dyads display 

longer average diagonal length in their Wrist than in their Head, 

and overall longer over the course of the trial, as indicated by 

the main effect of Time. Interestingly, the length of their 

synchronization gets stronger for the Wrist than for the Head 

within the trial (two-ways interaction, Bodypart:Time), even 

though, across the Session, it is on the Head, rather than on 

Wrist, that we observe a more prominent strengthening of such 

synchronization (three-ways interaction 

Session:Bodypart:Time). On determinism, we largely confirm 

the results observed on L. In fact, the Wrist is more predictable 

than the Head, even though, the Head becomes more 

predictable within the trial, and across the sessions. On the 

Entropy, we observe more entropic phases of synchronization 

for the Wrist than the Head, and the latter becomes more 

entropic across the trials. Finally, on the Laminarity, we 

confirm again that the Wrist is more repetitive than the Head, 

but the Head becomes more repetitive within, and across the 

sessions (refer to Table 4 for the model coefficients). 

 

 
Table 4. Windowed-cross-recurrence: C/RQA measures of the dyad’s 

interaction as a function of the time of trial, and across the sessions, comparing 

head and wrist across sessions. Coefficients of mixed effects models with 

maximal random structure (intercept and slopes on Dyads). Each C/RQA 

dependent measure, organized across columns, is modelled as a function of the 

centred and contrast coded predictors: Bodypart (Head = -.5, Wrist = .5), 

Session (a continuous variable from 1 to 10). Time (a continuous variable 

indicating the normalized time course of the trial). We report the b with the 

associated p-value, and the t-value from which it was derived. 

 

We conclude our examination of the synchronization 

dynamics underlying the interaction of the dyad on the head and 

the wrist by looking at the diagonal-wise cross-recurrence 

profile (150 normalized time-lags around the LoC), which 

provides us with the directionality of synchronization within the 

dyad. We find stronger synchronism on the wrist and maximal 

recurrence is observed at short lags. This indicates that there is 

not a particularly prominent leader-follower dynamic on this 

movement, which reflects the rigidly turn-taking nature of the 

block-stacking task. On the Head, instead, we observe greater 

recurrence on the side of the leader (i.e., positive lags), which 

indicates that the follower tends to reactively respond to the 

leader’s head movement.  
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Fig 5: Diagonal-wise cross-recurrence of the velocity profiles of the leader 

and follower as a function of the lag (±150), for Head (light-gray, solid), and 

Wrist (black-dashed). Recurrence ranges from 0 to 1, with 1 indicating perfect 

recurrence between leaders and followers. Lines represent means, and the 

shaded bands the standard errors around the means. 

IV. DISCUSSIONS 

C/RQA measures the regularity and stability of a dynamical 

system, such as the bodily-movement of an individual (auto-

recurrence), or the coupling dynamics between two interacting 

individuals (cross-recurrence). In this study, we investigated the 

dynamics of sensorimotor convergence of a dyad engaged in a 

turn-taking block-stacking task. We examined whether 

dynamics differ between body parts (wrist Vs head velocity 

profiles), vary according to the role performed in the task 

(leader Vs follower) and especially whether synchronization 

changes as a function of experience with the task, both within a 

single trial and across the entire experimental session. Among 

the most important findings, we found that the auto-recurrence 

in the wrist movement of the leader increases more than the one 

of the follower throughout the task (Figure 1 and 2). These 

results confirm our previous study showing larger auto-

correlation in leaders’ wrist behavior [20] and is in agreement 

with similar research showing reduced variability in the 

leader’s performance [40]. Stronger auto-recurrence (L, DET 

and LAM indexes) in the leader’s movement implies that he/she 

was more consistent in his/her arm-reaching action, and that 

this consistency was refined already with just few trials. 

Notably, auto-recurrence significantly increases 

notwithstanding the fact that roles alternated within the 

experimental session. This shows that this effect is particularly 

powerful and substantially driven by the specific role played in 

each individual trial. Indeed, the follower had to choose the next 

cube depending on the behavior of the leader, and this might 

have introduced a larger uncertainty in his/her motor-planning 

resulting into a flat auto-recurrence across the experimental 

session. At the same time, however, the increase in auto-

recurrence in the leader may have resulted in a better 

predictability of his/her behavior [41], thus implicitly helping 

the follower to synchronize with him/her [42]. This interesting 

result suggests that the two body parts are subject to a quite 

different pattern of time-dependent learning based on the task 

role. In fact, when looking at the synchronization dynamics of 

the dyad within a single trial, as well as across the experimental 

session, we observe a remarkably different evolution for the 

head and the wrist. 

In particular, a C/RQA analysis of the leader and follower 

movements quantifying their joint synchronization shows that 

the dyad improves their head synchronization over the 

experimental session more than the wrist, as indicated by L, 

DET and LAM measures in Table 2 and Figure 3, even though 

it became more entropic. Moreover, when synchronism is 

tracked within a single trial using windowed-cross recurrence, 

we find that the dyads’ head motion steadily increases over the 

time-course, whereas wrist motion displays an initial decrease, 

it stabilizes mid-course, and presents a sharp increase during the 

final phase (see Figure 4). Considering that head motion is not 

directly necessary for the task, and thus relatively free to vary 

across trials and participants, it is interesting to observe such 

increase in synchronism. In fact, if task performance is 

optimized uniquely on instrumental movements (hand grasping 

and arm reaching movements) then, we would not have 

observed entrainment in the heads of the dyad. However, as 

discussed in the introduction, head movements index ‘supra-

segmental’ aspects of sensorimotor interaction such as 

emotional and affective states, as well as, joint task engagement 

[22]. In the context of this task, head synchronization might 

have served the dyad to manifest consensus about the moves 

used to build the tower, as well as, construct mutual trust. 

Synchronization on the wrist, instead, was more independently 

construed by the leader and the follower, as shown in the RQA 

analysis above mentioned, and important at the beginning and 

the end of each individual trial, as shown in the windowed 

cross-recurrence analysis.  

When we examined the directionality of synchronism by 

looking at the diagonal-wise cross recurrence profile, we 

observed another interesting dissociation between head and 

wrist (Figure 5). The wrist motion showed maximal recurrence 

around very short lags, whereas the head was characterized by 

a rather uniform distribution across both short and long lags, 

and was on average larger on the leaders’ side. This fact further 

corroborates the idea that head motion is potentially capturing 

“supra-segmental” aspects of sensorimotor interaction, which 

are supposed to promote entrainment of larger and slower 

behaviors (i.e. whole body sway as opposed to arm reaching).  

Taken together, these results seem to suggest that the dyad 

employed a variety of different coordination strategies to 

produce a successful cooperation. On one hand, the leader 

produced a predictable wrist signal to facilitate the follower, in 

line with previous results [6-8,20,40-42]. On the other hand, the 

follower tended to reactively align his/her head motion with the 

leader, with the likely goal of building consensus with him/her. 

This idea is supported also by the increased head motion 
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synchronism within the time-course of a single trial. 

These results strongly suggest that dyadic interaction in a 

complex and ecologically valid task happens at multiple levels 

and time-scales. Here, we described the dynamics of interaction 

between a leader and follower at two time-scales: instrumental 

movements (wrist) and ancillary movements (head). However, 

there are several other levels arising from interpersonal 

interaction, such as its context, the task goals entailed, 

motivational factors and individual differences, which make the 

investigation of human-to-human interaction an almost 

intractable problem. A classic approach to simplify such 

complexity is to assume a fix scenario and task constraints (or 

free to vary in a predictable manner) and let individual 

differences be the “only” free parameter. Despite this solution 

can shed light on joint-actions, and can be successfully used to 

test specific hypotheses, it is an approach that does not grant 

any form of generalization, i.e., context-independence. 

In fact, generalization across tasks and contexts can occur 

solely by digging out principles of social interaction. In the 

present paper, we precisely looked at sensorimotor convergence 

as a promising approach to tackle the complexity of social 

interaction, and achieve context independence. We based this 

idea on neuroscientific evidences suggesting that the 

sensorimotor level provides the building blocks for high-levels 

cognitive mechanisms [43]. Indeed, the neural circuits of the so 

called mirror system [44] seem to be a necessary prerequisite to 

turn other (motor) behavior into motor representations usable to 

plan cooperative behavior [45]. Furthermore, there are growing 

behavioral evidences suggesting that sensorimotor convergence 

is automatic, and happens on movement parameters, which are 

rather independent from task and context constraint [13-14-20]. 

In this study, we follow this route, and showed that this could 

be a promising solution to obtain a more integrated 

understanding of the principles dominating behavioral 

coordination among human agents. 

Additionally, we have grounded our measurements of 

behavioral coordination within an ecologically valid scenario. 

We devised a game-like scenario where participants actively 

engaged in a task fostering a natural cooperative behavior. The 

task was natural because it did not require training of 

participants, nor the use of well-constrained instructions, and it 

was short enough to maintain them engaged with it (about 20 

minutes including setting it up). Moreover, the data recording 

was minimally invasive, nor affected participants’ movements 

(small reflective markers and no cabling), and can be 

potentially obtained with cheaper and even less intrusive 

technologies (i.e. Kinect). Beside its relevance for investigating 

interpersonal coordination at sensorimotor level, the proposed 

task may be also useful to evaluate whether and to which extent 

subjective dimensions of partners’ engagement, such as the 

experience of “flow” [46] and social presence (i.e. feelings of 

mental connectedness), modulate dyadic movement dynamics 

and performance [47].  

Furthermore, the simplicity of our task, i.e., a block-stacking 

task, offer the practical advantage of tapping into sensorimotor 

interaction during ecological joint action while being easy to 

standardize across different computational methods and/or 

recording equipment. This step is necessary to extrapolate 

insights from HHI that can be directly applied in HRI research. 

In fact, some characteristics of our task also allow a clear 

transition between HHI and HRI research. First of all, the visual 

features of the objects used in the task, can be easily recognized 

by computer vision systems Also, object affordances are 

compatible with the grasping dexterity of most robotic hands. 

Arm range of motion is designed to fit the reaching capabilities 

of most robotic platforms. The task space is not ambiguous, as 

it can be represented with a hierarchical plan where the final 

goal is to obtain a tower by placing single cubes (i.e. sub-goals). 

Finally, a clear success metric is present and it is based on the 

time to execute the tower. We believe that results on such a 

standardized HHI task could offer an invaluable benchmark to 

investigate HRI across robotic platforms and algorithmic 

implementations. In particular, as there are multiple ways to 

read parameters of human action, and several ways to plan 

appropriate cooperative behavior, different HRI control 

schemas can be tested to find the one eliciting an output directly 

comparable with HHI benchmarks. 

We also foresee alternative, perhaps more ambitious, uses of 

such a HHI baselines. In first approximation, the automatic 

system reads human motion data and, with the shortest lag 

possible, plans its own action to be optimally timed and coupled 

to that of the human participant. The robotic system, here 

merely interprets human activity but does not try to exert any 

influence on his/her behavior. In fact, a more ambitious 

research program would instead try to make such 

communication bidirectional and dynamical. Behavioral and 

neurophysiological research on humans tell us that we are 

particularly sensitive to others’ action kinematic modulations 

[20]. This capacity is critical during joint action, and used to 

predict others’ action goals [48] or intentions [3]. More 

importantly, these small kinematic modulations are used to 

signal to the interactive partner, critical task information [6]. 

Based on our current results we could imagine that small 

modulations in the velocity profiles of the robotic action may 

be used to encode useful information to optimize the 

cooperation with humans [14-49]. In fact, the dynamic 

modulation of the velocity profiles between human and robots 

would mean the establishment of a basic sensorimotor 

communicative bi-directionality, of the same kind we 

quantified here between humans. Importantly, the same robotic 

controller may be adopted and the amount of Human Robot 

coupling (as measured with C/RQA for example) could be 

tracked and used to fine-tune its parameters on a trial-by-trial 

basis via reinforcement learning. In fact, based on the 

optimality of HHI, it might be possible to have a bottom-up 

synthesis of the most efficient robotic arm trajectory, by 

optimizing/maximizing the amount of bidirectional 

sensorimotor information transfer between human and artificial 

agents. 
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