Edinburgh Research Explorer

Is Big Data Analytics beyond the Reach of Small Companies?

Citation for published version:
Cao, Y, Fan, W & Yuan, T 2017, 'Is Big Data Analytics beyond the Reach of Small Companies?' Data
Analysis and Knowledge Discovery. DOI: 10.11925/infotech.2096-3467.2017.0723

Digital Object Identifier (DOI):
10.11925/infotech.2096-3467.2017.0723

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Data Analysis and Knowledge Discovery

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 05. Apr. 2019

https://doi.org/10.11925/infotech.2096-3467.2017.0723
https://www.research.ed.ac.uk/portal/en/publications/is-big-data-analytics-beyond-the-reach-of-small-companies(0d95c1c0-d8ec-4469-9528-462913a74fcf).html

Noname manuscript No.
(will be inserted by the editor)

Is Big Data Analytics beyond the Reach of Small
Companies?

Yang Cao, Wenfei Fan, Tengfei Yuan

Received: date / Accepted: date

Abstract Big data analytics is often prohibitively costly. It is typically conducted
by parallel processing with a cluster of machines, and is considered a privilege of big
companies that can afford the resources. This position paper argues that big data
analytics is accessible to small companies with constrained resources. As an evi-
dence, we present BEAS, a framework for querying big relations with constrained
resources, based on bounded evaluation and data-driven approximation.

1 Introduction

Big data analytics is expensive. Textbooks tell us that a computation problem is
tractable if there exists a polynomial-time algorithm for it, i.e., its cost can be
expressed as a polynomial in the size n of the input [20]. However, it is no longer
the case when it comes to big data. When n is big, algorithms in O(n?) or even
O(n) time may take too long to be practical. Indeed, assuming the largest Solid
State Drives (SSD) with 12GB/s for read [19], a linear scan of a dataset of 15TB
takes more than 20 minutes. It easily takes hours to join tables with millions of tu-
ples [21]. In other words, many computation problems that are typically considered
tractable may become infeasible in the context of big data.

One might be tempted to think that parallel computation could solve the
problem, by adding more processors when needed. However, small businesses often
have constrained resources and cannot afford large-scale parallel computation.

Is big data analytics a privilege of big companies? Is it beyond the reach of
small companies that can only afford constrained resources?

We argue that big data analytics is possible under constrained resources. As
an example, we consider relational query answering. Given an SQL query @ and
a relational database D, it is to compute the answers Q(D) to @ in D. Relational
data accounts for the majority of data in industry. Moreover, it is nontrivial to
compute Q(D). Indeed, it is NP-complete to decide whether a given tuple ¢ is in
Q(D) when @ is a simple SPC query (selection, projection and Cartesian product),
and is PSPACE-complete when @ is in relational algebra, both subsumed by SQL.

Yang Cao'!, Wenfei Fan!2, Tengfei Yuan!
IUniversity of Edinburgh, 2Beihang University
E-mail: {yang.cao@, wenfei@inf., tengfei.yuan@}ed.ac.uk

2 Yang Cao, Wenfei Fan, Tengfei Yuan

We propose BEAS, a new query evaluation paradigm to answer SQL queries
under constrained resources. The idea is to make big data small, i.e., to reduce
queries on big data to computation on small data. Underlying BEAS are two princi-
pled approaches: (1) bounded evaluation that computes exact answers by accessing
a bounded amount of data when possible [3,5,8,11,12], and (2) a data-driven ap-
proximation scheme that answers queries for which exact answers are beyond reach
under bounded resources, and offers a deterministic accuracy bound [4].

As proof of concept, we have developed a prototype system [7] and evaluated
it with call-detailed-record (CDR) queries at Huawei. We find that bounded eval-
uation improves the performance of CDR queries by orders of magnitude [22], and
is able to reduce big datasets from PB (10®) to GB (10?) in many cases.

Below we give a brief introduction to bounded evaluation (Section 2), fol-
lowed by data-driven approximation scheme (Section 3). Putting these together,
we present BEAS, our resource-bounded query evaluation framework (Section 4).

2 Bounded Evaluation

Given a query @ posed on a big dataset D, bounded evaluation [11] aims to
compute Q(D) by accessing only a bounded subset D¢ of D that includes necessary
information for answering @ in D, instead of the entire D. To identify Dg, it makes
use of an access schema A, which is a set of access constraints, i.e., a combination
of simple cardinality constraints and their associated indices.

Under access schema A, query @ is boundedly evaluable if for all datasets D
that conform to A, there exists a fraction Dg C D such that

o Q(Dg) = Q(D), i.e., Dg suffices for computing exact answers Q(D); and
o the time for identifying Do and hence the size |Dg| of Dg are determined by
Q@ and A only. That is, the cost of computing Q(Dg) is independent of |D|.

Intuitively, Q(D) can be computed by accessing Dg. We identify D¢ by reasoning
about the cardinality constraints in A, and fetch it by using the indices in A.

Example 1: Consider a database schema Ro consisting of three relations:

(a) person(pid, city), stating that pid lives in city,

(b) friend(pid, fid), saying that fid is a friend of pid, and

(c) poi(address, type, city, price), for the type, price and city of points of interest.

An example access schema A consists of the following two access constraints:

o 11: friend(pid — fid, 5000),
o 1)2: person(pid — city, 1).
Here 11 is a constraint imposed by Facebook [18]: a limit of 5000 friends per
person; and 12 states that each person lives in at most one city. An index is built
for 1)1 such that given a pid, it returns all fids of pid from friend, i.e., 11 includes
the cardinality constraint (5000 fids for each pid) and the index; similarly for)o.
Consider a query Q1 to find the cities where my friends live, which is taken
from Graph Search of Facebook [10]. Written in SQL, Q1 can be expressed as:
select p.city
from friend as f, person as p
where f.pid = po and f.fid = p.pid

Is Big Data Analytics beyond the Reach of Small Companies? 3

where po indicates “me”. When an instance Dy of Rg is “big”, e.g., Facebook has
billions of users and trillions of friend links [18], it is costly to compute Q1(Do).
However, we can do better since @1 is boundedly evaluable under A: (a) we
first identify and fetch at most 5000 fids for person pg from relation friend by using
the index for 41, and (b) for each fid fetched, we get her city by fetching 1 tuple
from relation person via the index for 2. In total we fetch a set Dg of 10,000
tuples, instead of trillions; it suffices to compute Q1(Do) by using D¢ only [3]. O

The notion of access schema was proposed in [12], and the foundation of
bounded evaluation was established in [5,11]. The theory of bounded evaluation
was first evaluated using SPC queries [8] and then extended to relational algebra
(RA) [3]. A challenge is that it is undecidable to decide whether an SQL query is
boundedly evaluable under an access schema A [11]. To cope with this, an effective
syntaz L was developed for boundedly evaluable RA queries [3]. That is, £ is a
class of RA queries such that under A,

(a) an RA query @ is boundedly evaluable if and only if it is equivalent to a query
Q' in £; and

(b) it takes PTIME (polynomial time) in the size |Q| of @ and size |A| of A to
check whether @ is in £, reducing the problem to syntactic checking.

That is, £ identifies the core subclass of boundedly evaluable RA queries, without
sacrificing their expressive power. This is analogous to the study of safe relational
calculus queries, which is also undecidable [1]. Based on the effective syntax, we
can efficiently check whether a query @ is boundedly evaluable, and if so, generate
a query plan to answer @ by accessing a bounded fraction D¢g of D [3].

It has been shown that bounded evaluation can be readily built on top of com-
mercial DBMS (database management systems) such as MySQL and PostgreSQL.
It extends the DBMS with an immediate capability of querying big relations under
constrained resources [3]. A prototype system was developed in [7]. We find that
about 77% of SPC queries [8] and 67% of SQL queries [3] are boundedly evaluable.
Better yet, more than 90% of the CDR queries at Huawei are boundedly evaluable.

3 Data Driven Approximation

For queries @ that are not boundedly evaluable, can we evaluate @) against a big
dataset D under constrained resources? We answer the question in the affirmative.
We propose a data-driven scheme for approximate query answering. It is pa-
rameterized with a resource ratio o € (0, 1], indicating that our available resources
can only access an a-fraction of big D. Given «, D and a query @ over D, it
identifies Dg C D, and computes Q(Dg) and a ratio n € (0,1] such that

(1) |Dg| < a|D|, where |Dg| is measured in its number of tuples; and
(2) accuracy(Q(Dgq),Q,D) > n.

Intuitively, it computes approximate answers Q(Dg) by accessing at most | D|
tuples in the entire process. Thus it can scale with D when D grows big by setting
a small. Moreover, Q(Dg) assure a deterministic accuracy bound 7:

(a) for each approximate answer s € Q(Dg), there exists an exact answer ¢t € Q(D)
that is n-close to s, i.e., s is within distance 7 of ¢; and

4 Yang Cao, Wenfei Fan, Tengfei Yuan

(b) for each exact answer t € Q(D), there exists an approximate answer s € Q(Dg)
that is n-close to t.

”»

That is, Q(Dg) includes only “relevan
It finds sensible answers in users’ interest, and suffices for exploratory queries, e.g.,
real-time problem diagnosis on logs [2].

answers, and “covers” all exact answers.

The objective is ambitious. As observed in [9], approximate query answering is
challenging. Previous approaches often adopt an one-size-fit-all synopsis D. and
computes Q(D.) for all queries @ posed on D. The approaches “substantially limit
the types of queries they can execute” [2], and often focus on aggregate queries
(max, min, avg, sum, count). Moreover, they make various assumptions on future
queries, i.e., workloads, query predicates or QCSs, i.e., “the frequency of columns
used for grouping and filtering does not change over time”. Worse still, they provide
either no accuracy guarantee at all, or probabilistic error rates for aggregate queries
only. Such error rates do not tell us how “good” each approximate answer is.

Nonetheless, data-driven approximation is feasible under access schema.

Example 2: Continuing with Example 1, consider query Q2 to find me hotels that
cost at most $95 per night and are in a city where one of my friends lives:

select h.address, h.price

from poi as h, friend as f, person as p

where f.pid = pp and f.fid = p.pid and p.city = h.city

and h.type = “hotel” and h.price < 95
We can compute Q2(Dg) in a big dataset Do of trillions of tuples given a

small «, e.g., 10~4, i.e., when our available resources can afford to access at most
10~%%|Dy| tuples. This is doable by using an access schema Ao, which includes o1
and @2 of Example 1 and in addition, the following extended access constraints:

o 11: poi({type,city} — {price,address}, 1, (ell,,e}l)),

o m: poi({type, city} — {price, address}, 2™, (ey', eq")), where m = [log, M.

Here M is the maximum number of distinct poi tuples in Dy grouped by (type, city).
We build an index for each 1; in Agp such that for ¢ € [1,m], given any (type,
city)-value (ct,cc), we can retrieve a set T of at most 2° (price, address) values
from Do by using the index for ;; moreover, for each poi tuple (cj, ct, ce, c;,) in
Dy, there exists (cp,ca) € T such that the (price, address)-value (cp,,c,,) differs
from (cp,cq) by distance at most (e}, e}). That is, T' represents (price, address)
values that correspond to (c¢,cc) with at most 2° tuples, subject to distances
(e;,ez). Intuitively, the indices give a hierarchical representation of relation poi
with different resolutions ¢ € [1,m]. The higher the resolution 7 is, the smaller the
distance (eb, e}) is, and the more accurate the index for v; represents Do.

Assume a|Dg| > 10000, as in Facebook dataset Do. Then under Ag, we can
find hotels by accessing at most a|Dg| tuples as follows: (a) fetch a set T1 of fid’s
with po by accessing at most 5000 friend tuples using ¢1; (b) for each fid in T,
fetch 1 associated city with @2, yielding a set T of at most 5000 city values; (c) for
each city ¢ in T, fetch at most 2% (price, address) pairs corresponding to (“hotel”,
¢) by using vy, where ko = |log,(a|Do|—10000) |; and (d) return a set S of those
(price, address) values with price at most (95 —l—e’;‘*), as approximate answers to Q2
in Do. The process accesses at most 5000 + 5000 + 2%« < a|Dg| tuples in total.

Is Big Data Analytics beyond the Reach of Small Companies? 5

The set S of answers is accurate: (1) for each hotel ho(cp,cq) in the exact
answers Q(Do), there exists (c,, c,) in S that are within ek and ek of ¢, and c,,
respectively; and (2) for each hotel h'(c), c},) in S, its price ¢}, exceeds 95 by at
most ef, e.g., eke = 4 and ¢}, = 99, and ¢, is the address of hotel h’. Moreover,
the larger « is, the smaller e’;‘* and ek~ are, and the more accurate S is. O

It has been shown [4] that for any dataset D, there exists such an access
schema A such that D conforms to A, and for any resource ratio o € (0, 1] and
SQL queries Q over D, aggregate or not, there exists a dataset Do C D identified
by reasoning about A and a deterministic accuracy bound 7 such that |Dg| < a|D|
and accuracy(Q(Dg), Q, D) > n. Moreover, the larger « is, the higher 7 is.

As opposed to previous approximate query answering approaches, the data-
driven approximation scheme is able to answer SQL queries @ that are (1) un-
predictable, i.e., without assuming any prior knowledge about @, (2) and generic,
aggregate or not, with (3) deterministic accuracy n in terms of both relevance and
coverage.

We find that the approximation scheme computes approximate answers to SQL
queries, aggregate or not, with accuracy n > 0.82 for SQL queries, even when « is
as small as 5.5 x 10™* [4]. That is, it reduces D of PB size to Dg of 550GB.

4 A Resource Bounded Query Evaluation Framework

We are now ready to present BEAS (Boundedly EvAluable Sql), a resource-
bounded framework for querying big relations. For a big dataset D in an ap-
plication, BEAS takes a resource ratio o € (0,1] as a parameter, and discovers an
access schema A. Given an SQL query @) posed on D, BEAS works as follows:

(1) it checks whether @ is boundedly evaluable under A, i.e., exact answers Q(D)
can be computed by accessing Do C D such that |Dg]| is independent of |D|;

(2) if so, it computes Q(D) by accessing a bounded fraction D¢ of D;

(3) otherwise, BEAS identifies Dg with |Dg| < a|D|, and computes Q(Dq) with
a deterministic accuracy bound 7, based on data-driven approximation.

That is, under the resource constraint «, BEAS computes exact answers Q(D)
when possible, and approximate answers Q(Dq) otherwise with accuracy 7.

As opposed to conventional DBMS, BEAS is unique in its ability to (1) comply
with resource ratio a, i.e., it can scale with arbitrarily large datasets D by adjusting
a based on available resources, (2) decide whether @ is boundedly evaluable, (3)
answer unpredictable and generic SQL queries, aggregate or not, with deterministic
accuracy 7, and (4) be plugged into commercial DBMS and provide the DBMS with
an immediate capacity to query big relations under constrained resources.

In light of these, BEAS is promising for providing small companies with the
capability of big data analytics and hence, to benefit from big data services. It
can also help big companies such as Huawei to reduce the cost and improve effi-
ciency [22]. Moreover, parallel processing is not a silver bullet for big data analytics.
Indeed, one might expect a parallel algorithm to have the parallel scalability, i.e.,
the algorithm would run faster given more processors. However, few algorithms
in the literature have this performance guarantee. Worse yet, some computation

6 Yang Cao, Wenfei Fan, Tengfei Yuan

problems are not parallel scalable, i.e., there exist no algorithms for them such
that their running time can be substantially reduced by adding processors, no
matter how many processors are used [13,23]. For such computation problems,
bounded evaluation and data-driven approximation offer a feasible solution.

The idea of resource-bounded query answering is not limited to relations. It has
been shown that bounded evaluation improves the performance of graph pattern
matching via subgraph isomorphism, an intractable problem [20] that is widely
used in social media marketing [15,16] and knowledge base expansion [17], by 4
orders of magnitude on average [6]. For personalized social search via subgraph
isomorphism, data-driven approximation retains 100% accuracy (i.e., n = 1) when
« is as small as 1.5+ 107° [14], i.e., when processing graphs G of 1PB, they access
only 15GB of data, i.e., reducing G from PB to GB while retaining high accuracy!

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB: Queries
with bounded errors and bounded response times on very large data. In: EuroSys (2013)
3. Cao, Y., Fan, W.: An effective syntax for bounded relational queries. In: SIGMOD (2016)
4. Cao, Y., Fan, W.: Data driven approximation with bounded resources. PVLDB 10(9),
973-984 (2017)
5. Cao, Y., Fan, W., Geerts, F., Lu, P.: Bounded query rewriting using views. In: PODS
(2016)
6. Cao, Y., Fan, W., Huang, R.: Making pattern queries bounded in big graphs. In: ICDE
(2015)
7. Cao, Y., Fan, W., Wang, Y., Yuan, T., Li, Y., Chen, L.Y.: BEAS: bounded evaluation of
SQL queries. In: SIGMOD, pp. 1667-1670 (2017)
8. Cao, Y., Fan, W., Wo, T., Yu, W.: Bounded conjunctive queries. PVLDB (2014)
9. Chaudhuri, S., Ding, B., Kandula, S.: Approximate query processing: No silver bullet. In:
SIGMOD, pp. 511-519 (2017)
10. Facebook: Introducing Graph Search.
https://en-gb.facebook.com/about/graphsearch (2013)
11. Fan, W., Geerts, F., Cao, Y., Deng, T.: Querying big data by accessing small data. In:
PODS (2015)
12. Fan, W., Geerts, F., Libkin, L.: On scale independence for querying big data. In: PODS
(2014)
13. Fan, W., Wang, X., Wu, Y.: Distributed graph simulation: Impossibility and possibility.
PVLDB 7(12) (2014)
14. Fan, W., Wang, X., Wu, Y.: Querying big graphs within bounded resources. In: SIGMOD
(2014)
15. Fan, W., Wang, X., Wu, Y., Xu, J.: Association rules with graph patterns. PVLDB 8(12),
1502-1513 (2015)
16. Fan, W., Wu, Y., Xu, J.: Adding counting quantifiers to graph patterns. In: SIGMOD,
pp. 1215-1230 (2016)
17. Fan, W., Wu, Y., Xu, J.: Functional dependencies for graphs. In: SIGMOD (2016)
18. Grujic, 1., Bogdanovic-Dinic, S., Stoimenov, L.: Collecting and analyzing data from e-
government Facebook pages. In: ICT Innovations (2014)
19. ITPro Newsletter: Samsung reveals ’largest ever’ SSD at 15TB.
http://www.itpro.co.uk/ssds/26175/samsung-reveals-largest-ever-ssd-at-15tb (2016)
20. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)
21. Stack Overflow: SQL: Inner joining two massive tables.
http://stackoverflow.com/questions/1750001 /sql-inner-joining-two-massive-tables
22. University of Edinburgh: Huawei deal to advance expertise in data science.
http://www.ed.ac.uk/news/2017/huawei-deal-to-advance-expertise-in-data-science (2017)
23. Xie, C., Chen, R., Guan, H., Zang, B., Chen, H.: SYNC or ASYNC: time to fuse for
distributed graph-parallel computation. In: PPoPP, pp. 194-204 (2015)

