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Abstract  

Resistance to platinum drugs (used in >50% of cancer chemotherapies) is a 

clinical problem. Other precious metal complexes with distinct mechanisms of 

action might overcome this. Half-sandwich organometallic complexes 

containing arene or cyclopentadienyl (Cp) ligands show promise. We 

screened two iridium(III) complexes [Ir(Cpxbiph)(ppy)Cl] (ZL49, 1, 

ppy=phenylpyridine) and [Ir(Cpxph)(azpyNMe2)Cl]PF6 (ZL109, 2, 

azpyNMe2=N,N-dimethylphenylazopyridine) in 916 cancer cell lines from 28 

tissue types. On average, complex 2 was 78x more potent than 1, 36x more 

active than cisplatin (CDDP), and strongly active (nanomolar) in patient-

derived ovarian cancer cell lines. RNA sequencing of A2780 ovarian cells 

revealed upregulation of antioxidant responses (NRF2, AP-1) consistent with 

observed induction of reactive oxygen species (ROS). Protein microarrays, 
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high content imaging and cell cycle analysis showed S/G2 arrest, and late-

stage DNA damage response without p53 requirement. The triple-negative 

breast cancer cell line OCUB-M was highly sensitive to 2 as were cell lines 

with KIT mutations. Complex 2 exhibits a markedly different pattern of 

antiproliferative activity compared to the 253 drugs in the Sanger Cancer 

Genome database, but is most similar to osmium(II) arene complexes which 

share the same azopyridine ligand. Redox modulation and DNA damage can 

provide a multi-targeting strategy, allowing compounds such as 2 to overcome 

cellular resistance to platinum anticancer drugs.  

 
 
Keywords: 
Organo-iridium complexes, phenotypic screening, RNA sequencing, 
mechanism of action, Reactive Oxygen Species, apoptosis 
 

Significance to Metallomics 

Half-sandwich organoiridium complexes show promising activity, with novel 

mechanisms of action that may combat platinum resistance and side effects 

seen commonly in current anticancer chemotherapy regimes. The field of 

systems pharmacology provides methods to elucidate the often multitargeted 

mechanisms of metallodrugs. Here, we explore the link between 

transcriptomic and phenotypic data in ovarian cancer cells, using state-of-the-

art high-throughput methods, together with data collected from Sanger’s 

Genomics of Drug Sensitivity in Cancer screen and primary tumour cell lines. 

Our studies ultimately reveal not only the subtle effects of ligands on complex 

activity, but unique mechanisms shared only with osmium arene complexes.  

 
. 
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Introduction 

The square-planar platinum drugs cisplatin (CDDP), carboplatin and 

oxaliplatin are now used in over 50% of cancer chemotherapies, but intrinsic 

and acquired resistance represent major clinical problems across cancer 

indications. CDDP has a primary mechanism of action (MoA) which involves 

DNA targeting, induction of DNA bending, and apoptosis.1 Other precious 

metal complexes might be able to overcome resistance if they have different 

MoAs. This appears to be the case for platinum drug oxaliplatin and candidate 

drug phenanthriplatin, which are not cross-resistant with CDDP. Although 

oxaliplatin is classified as a DNA alkylating agent like CDDP, recent evidence 

now points primarily to ribosome biogenesis stress, rather than DNA 

damage.2 

 

Pseudo-octahedral ‘half-sandwich’ organometallic arene and cyclopentadienyl 

complexes also show promise for overcoming platinum resistance. 

Osmium(II) arene complexes and iridium(III) cyclopentadienyl (Cpx) 

complexes [M(arene/CpX)(N,N)(X)]n+ can target DNA when N,N is a chelated 

diamine ligand.3,4 In contrast, when N,N is an azopyridine ligand, the 

complexes can cause redox stress in cancer cells and target mitochondrial 

metabolism.5–8 Azopyridine ligands are strong π-acceptors and withdraw 

electron density from the metal making the M-C bond to the monodentate 

ligand X (e.g. Cl or I) much less reactive. 

 

We have discovered potent antiproliferative activity for organo-Os(II) and 

organo-Ir(III) complexes by phenotypic screening and have shown that 

screening in the National Cancer Institute (NCI-60) and Sanger 800+ panel of 

cancer cell lines when combined with transcriptomics, reactive oxygen 

species (ROS), protein micro-arrays, high content imaging and other assays 

can provide valuable insight into their MoAs.9,10 
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Here we report the results of phenotypic screening and in-depth MoA profiling 

of two organo-iridium(III) complexes (Figure 1) [Ir(η5-Cpxbiph)(ppy)Cl] (ZL49, 1, 

ppy = phenylpyridine) and [Ir(η5-Cpxph)(azpyNMe2)Cl]PF6 (ZL109, 2, 

azpyNMe2 = N,N-dimethylphenylazopyridine) in the Sanger Cancer Genome 

project panel of 916 cancer cell lines with known gene sequences from 28 

tissue types. Time-dependent up- and down-regulation of genes has been 

studied by RNA sequencing, together with the detection of selected proteins 

and quantitative analysis of cell cycle, and apoptosis phenotypes.  

 

These studies point to a unique MoA for organo-iridium complexes with little in 

common with previously-screened agents, except organo-osmium complexes. 

 
  

 

 

Fig. 1. Organo-Ir(III) complexes 1 and 2 and organo-Os(II) complexes 3 and 4 

referenced in this work. 
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Results 
 
Antiproliferative activity 

Initially, we screened organo-iridium complexes 1 ([Ir(η5-Cpxbiph)(ppy)Cl]) and 

2 ([Ir(η5-Cpxph)(azpy-NMe2)Cl]PF6 in the NCI-60 screen.8,11 Complex 1 was 

more active than 2, however both were potent with mean IC50 values of <1 

µM, more potent than the clinical drug CDDP. Both compounds were 

particularly active in colorectal cell line COLO205 and breast cell line MDA-

MB-468, with renal cell lines showing resistance (much lower sensitivity) to 

both.  

 

The higher activity of complexes 1 and 2 towards COLO205 and MDA-MB-

468 can be attributed to redox deficiencies in these cell lines. COLO205 

colorectal cells have reduced levels of glutathione-S-transferase P1 (GSTP1), 

an enzyme which detoxifies drugs by conjugating them to glutathione (GSH) 

often limiting the efficacy of anticancer agents.12 Without this enzyme, there 

may be less conjugation and inactivation by GSH, which could increase the 

sensitivity of cells towards anticancer compounds. 

 

The breast cell line, MDA-MB-468 showed a consistently high sensitivity in the 

NCI-60 screen(IC50 values 17 nM to 1.8 μM). This cell line has a glucose 6-

phosphate dehydrogenase (G6PD) A phenotype, meaning it lacks the proper 

functioning of this enzyme in the pentose phosphate pathway.13 G6PD is the 

rate-limiting enzyme in this pathway; its deficiency blocks the conversion of 

glucose-6-phosphate to 6-phosphoglucono-d-lactone and in the process 

prevents the conversion of NADPH to NADP+, a required step in GSH 

synthesis.14 This suggests that a GSH deficiency may play an important role 

in potentiating the activity, something previously demonstrated when A2780 

cells were co-incubated with low levels of the GSH inhibitor, L-buthionine 

sulfoximine. Multiple studies have shown that this deficiency prevents the 

cells from mediating oxidative stress, and often results in apoptosis and 

necrosis of cells in patients.15 
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Comparison of the patterns of selectivity for both complexes with those of 

>40,000 synthetic compounds and natural products in the NCI database and 

drugs that showed a Pearson’s correlation coefficient (r) > 0.5, revealed only 

3 drugs with similar patterns of selectivity to that of 1 and 2, highlighting their 

novelty. 

 

Now we have screened complexes 1 and 2 in 916 cell lines from 28 tissue 

types in the Sanger Cancer Genome project panel and compared the patterns 

of antiproliferative activity with the 256 compounds in the ‘Genomics of Drug 

Sensitivity in Cancer’ database.16  

 

In Figure 2, the IC50 values for 1 and 2 and CDDP are compared for 809 cell 

lines in the screen using box and whisker plots. On average across all cell 

lines, complex 2 is 78x more potent than complex 1 and 36x more potent than 

CDDP. 
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Fig. 2. Box and whisker plots for log IC50 (µM) values, complex 1 (blue), 2 (green) 

and CDDP (red) in the Sanger screen, separated by tissue type. N denotes the 

number of cell lines of each tissue type in the screen. The red circle denotes the IC50 

value for the breast cancer line OCUB-M that exhibits extreme sensitivity to 2 and, in 

contrast, low sensitivity to both 1 and CDDP. Total number of cell lines included = 

809 (To match the cell lines screened against CDDP). IC50 values which fall outside 

the experimental screening concentrations were calculated using a curve-fitting 

algorithm, and as such have a large confidence interval.16 
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Complex 2 exhibits its highest mean activity in cancers of testicular, 

urogenital, cervical and uterine tissues, although the number of cell lines 

derived from these tissues is considerably lower than for many of the other 

tissue types. Complex 1 shows its highest activity in the SU-DHL-5 lymphoma 

cell line; however, this potency is lower than that of 2 and CDDP. 

 

Complex 2 displays its highest activity in the OCUB-M breast cancer cell line, 

and notably is ca. 5 orders of magnitude more active than CDDP. OCUB-M is 

a triple negative breast cancer cell line with high expression of E-cadherin and 

laminin receptors.17 There are 10 genetic mutations in this cell line, one of 

which is a missense mutation in p53. In previous work it was also shown that 

MDA-MB-468, another triple negative cell line, had significant susceptibility to 

2.8 MDA-MB-468 lacks the appropriate machinery to respond to ROS through 

a deficiency in glucose 6-phosphate dehydrogenase. Triple-negative breast 

cancer is particularly difficult to treat; therefore further studies of 2 in this area 

would seem warranted.  

 

Complex 2 and the organo-osmium complex FY12 (complex 4 in Figure 1), 

which notably contains the same chelated azopyridine ligand, are amongst 

the 15 most potent drugs screened against OCUB-M in the Sanger panel. 

Five others are microtubule-targeting drugs, constituting all the drugs in this 

category in the screen. The successful treatment of OCUB-M with microtubule 

inhibitors may be linked to the over-expression of TUBG1 (tubulin SF) and 

MAP7 (microtubule-associated protein) and the down-regulation of 

MAP1LC3B (microtubule associated protein 1 light chain 3 beta), MICAL-1 

(microtubule associated monooxygenase, calponin and LIM domain 

containing 1) and TTBK2 (Tau tubulin kinase). The over-expressed genes 

mediate microtubule formation and stabilisation. The down-regulated genes 

can cause destabilisation and depolymerisation of tubulin and actin, 

respectively.  

 

Although sensitive to complex 2, OCUB-M is highly insensitive to CDDP. This 

might be linked to mutations in its p53 protein, which has been repeatedly 

correlated with CDDP resistance.18 Figure S1 shows the distribution of IC50 
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values for 1, 2 and CDDP, where boxes show the median, upper and lower 

quartiles. Whiskers extend to whichever is the lower value of the upper/lower 

quartile +1.5x the interquartile range, or the maximum/minimum y value, 

respectively. The red lines mark the threshold for lower sensitivity compared 

to complex 2. Complex 2 shows considerably higher activity than complex 1 

(by 78x) and CDDP (by 36x), as well as being significantly more potent when 

compared to the mean activity over all ca. 200 drugs included in the screen 

(Table S4). The IC50 values for 46 of the 916 cell lines lie above the upper 

whisker threshold for 2. This population of less sensitive cell lines falls within 

the activity ranges of 1 and CDDP. The occurrence of so many cell lines far 

outside the interquartile range for 2 might be due to a common resistance 

feature, although may also reflect the tighter spread amongst values for the 

more sensitive cell lines. 

 

Table 1 lists the 10 cell lines exhibiting the lowest sensitivity to complex 2. 

The tissue types displaying the highest percentages are lymphoma, myeloma 

and leukemia, each with >10% of their population less sensitive to 2 (Figure 

S2). These particular tissues make up the blood-derived cancers. Although 

some factor specific to tissues derived from the embryonic mesoderm may 

contribute to the low sensitivity, other mesodermally-derived tissues, such as 

bone, urogenital and kidney tissue do not exhibit a large proportion of 

resistant cells, making it more likely that some other feature of blood-derived 

cancers confers resistance. Cancers of ectodermally-derived tissues such as 

the skin and nervous system show little or no cell lines in the resistant 

population.  
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Table 1. The 10 cell lines least sensitive to complex 2 (IC50 > 150 µM). The drug in 

the database associated with the lowest sensitivity for each cell line is also shown, 

together with the target of that drug.  

 

Subtype Cell line Resistance drug Drug Target 

Lung 

LU-65 Vorinostat and Piperlongumine HDAC 

NCI-H2081 Piperlongumine Increases ROS Levels 

NCI-H2135 Piperlongumine Increases ROS Levels 

Lymphoma 
WSU-DLCL2 LAQ824 HDAC 

A4-Fuk N/A N/A 

Aerodigestive 
ESO51 Piperlongumine Increases ROS Levels 

OACM5-1 TW 37 BCL-2, BCL-XL 

Leukemia PF-382 Piperlongumine Increases ROS Levels 

Myeloma U-266 NU-7441 DNAPK 

Stomach NCI-SNU-1 BEZ235 PI3K, mTORC1/2 

 

It is apparent that resistance to piperlongumine treatment is common for these 

cell lines: 19 out of 46 cell lines least sensitive to complex 2 can also 

classified as resistant to piperlongumine, an organic natural product isolated 

from the fruit of the pepper plant Piper longum. Piperlongumine has been 

evaluated as a novel senolytic agent, selectively inducing death of senescent 

cells,19 killing cancer cells by targeting the stress response to ROS.20  

 

The level of similarity between 1 and 2 with other drugs in the screen was 

evaluated from differences in their IC50 values. To account for the fact that 

large positive and large negative differences could cancel each other out, the 

standard deviations of these differences were also calculated. A drug was 

considered similar to the index drug if the total mean difference in IC50 was 

close to zero and the SD was low (denoted by the red circle in Figure 3). 
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Fig. 3. Scatter plot of the mean difference in log IC50 values (µM) between all 

screened drugs and complex 2 (ZL109) vs. the SD of these differences. The red 

circle of radius 0.7 standard deviations denotes a ‘region of significant similarity 

where the mean difference and standard deviation are low. The similarity with two 

osmium arene complexes which share the same chelated azopyridine ligand 

(complexes 3 (FY26) and 4 (FY12), Figure 1) is evident. 

 
 

Intriguingly, the data for iridium complex 2 matched most closely those of 

FY12 ([Os(η6-bip)(azpy-NMe2)I]+) and FY26 ([Os(η6-p-cym)(azpy-NMe2)I]+), 

(complexes 4 and 3 respectively, in Figure 1) two organo-osmium compounds 

studied previously in our laboratory.21 FY12/FY26 and 2 share the same 

bidentate azopyridine ligand, but have different C-bound π-donor ligands 

(neutral arene versus negatively-charged cyclopentadienyl), different 

monodentate halido ligands (chloride versus iodide) as well as metal centres 

(Os(II) versus Ir(III)). The much higher similarity of these two matches to 

complex 2 compared to other drugs tested in the screen is evident 

demonstrating novelty in the MoA of complex 2 (Figure 3). 

 

To extract significant correlations between activity and oncogenic behaviour of 

compounds from the Sanger screen, an analysis of variance (ANOVA) test 

can be used. The dependent variable is presented as an n x 2 matrix for each 

ZL109 
FY26 

FY12 
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compound, containing IC50 and b (slope) values, and therefore, a multivariate 

ANOVA (MANOVA) is used for the analysis. For each gene, a linear model 

explains these activity observables with ‘mutation status’ as the predictive 

variable. Only genes mutated in >2 cell lines were included in the analysis, 

and a Benjamin-Hochberg multiple testing correction was used to identify 

significant results (FDR < 0.20). This quantitative assessment of 

pharmacogenomics uses an effect size parameter, calculated between wild 

type and mutant populations. If the effect size is >1, the difference in mean 

value between the mutated and wild-type populations is greater than the 

variance in at least one population, and the effect is therefore large.  

 

Table 2. Mutated genes most significantly correlated to the activity of complexes 1 

and 2. The effect size measures the significance of this correlation between genomic 

status and cell susceptibility, the higher the effect size, the higher the correlation.  

 

Complex Mutated 

gene 

No. cell 

lines 

Effect size FDR 

1 CASP8 17 0.57 0.18 

2 KIT 4 0.83 0.08 

 

It is evident that when the CASP8 gene is mutated, cells become sensitized to 

1. This gene encodes Caspase-8, which is involved in apoptosis and 

signalling cascades through TNF and NFkB. The only other drug in the screen 

for which CASP8 coding mutation confers sensitivity is ABT-888 (veliparib), a 

PARP inhibitor. The PARP family of proteins are involved primarily in DNA 

repair and induction of programmed cell death. Where the DNA damage is 

beyond repair, PARP is inhibited so as to preserve cell ATP. The cell then 

undergoes programmed cell death. 

 

The KIT gene coding mutation is associated with the sensitivity of four NSCLC 

cell lines to complex 2, and encodes the human homolog of the proto-

oncogene C-KIT, a type-III transmembrane receptor for the stem cell growth 

factor. Once bound to growth factor, this protein activates signal transduction 

through the cell, affecting cell survival and differentiation. 
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Matched pairs of patient-derived platinum sensitive and resistant 

ovarian cancer cell models 

Matched pairs of ovarian cancer cells directly isolated from patients before 

and after relapse to platinum therapy are likely to better represent clinical drug 

resistance and relapse mechanism relative to drug resistant cell clones 

generated following in vitro drug exposure. Complexes 1 and 2 were tested in 

the matched patient-derived ovarian cancer cell lines PE01 (patient prior to 

treatment), PE04 (patient after taxane/platinum treatment)22 and also PE01-

CDDP (PE01 cells exposed to low levels of CDDP in vitro to create Pt 

resistance), Table 3. 

 
Table 3. IC50 values for complexes 1 and 2 in patient-derived cancer cell lines. PE01 

patient prior to treatment, PE04 patient after taxane/platinum treatment and PE01-

CDDP cells from PE01 exposed to low levels of CDDP in vitro to create Pt 

resistance.  

 

Complex Cell line IC50 (μM) 

1 PE01 22.4 

PE04 64.3 

PE01-CDDP 110.3 

2 PE01 1.21 

PE04 1.65 

PE01-CDDP 1.56 

 

It can be seen from Table 3 that complex 2 maintains high activity in all 3 

patient-derived cell lines. Conversely, 1 has poor activity in PE01 and loses 

activity in cells treated with taxane/CDDP and even more so in CDDP-

resistant cells. This shows that the activity of 2 is unaffected by CDDP and/or 

taxane resistance in these ovarian cell lines, unlike 1, suggesting a lack of 

cross resistance due to its different mechanism of action. Given the rise in 

occurrence of clinical platinum resistance, this is a promising finding for 

complex 2.  

 

Gene expression analysis 

To investigate the MoA of the more active complex 2, A2780 ovarian cancer 

cells were exposed to the IC50 concentration (0.40 μM) and the differential 

gene expression was explored using RNA sequencing across a 48 h time 

series; measuring gene expression after 4, 12, 24 and 48 h exposure. 
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Approximately 30 million 50 bp, paired-end reads were generated per sample, 

and sequence reads were mapped to the hg19 (GRCh37) human genome 

(ArrayExpress accession). Table S1 gives the sequencing statistics for the 

experiment. 

 

Figure S3 shows multidimensional scaling (MDS) plots for complex 2- and 

control-exposed samples across the time series. These plots are a means of 

visualising the level of similarity in sample sets, by placing each of them in N-

dimensional space, where between-object distances are preserved.  

 

The MDS plots show natural separation of the samples into clusters, and 

good agreement between the triplicate measurements. The biggest source of 

variation is by time point, followed by exposure-status, i.e. whether they are 

exposed to a control or to complex 2. Figure S3B provides clear evidence that 

the samples exposed for 48 h are significantly different from those exposed 

for shorter time periods, both in the control and in the compound-exposed 

samples. 

 

Figure S4A shows the number of differentially expressed genes (DEGs) at 4, 

24 and 48 h, and highlights where differential expression overlapped. Figure 

S4B shows the number of those genes that were up- or down-regulated 

across the series. The highest number of differentially expressed genes was 

found after 12 h exposure (746) and 24 h (719), and significant differential 

expression (DE) after just 4 h exposure (349). Figure S4B shows that at 12 h, 

there is significantly more down-regulation than up-regulation, almost a 2:1 

ratio, compared to 24 h, where there is ca. 1:1 ratio of up- and down-

regulation.  

 

We carried out pathway analysis with Ingenuity Pathway Analysis software 

which uses an extensive literature database (Ingenuity Knowledge Base) to 

integrate biological and chemical pathway perturbation information.23 DEGs 

with 1.0 < LogFC > 1.0 and FDR < 0.05 were assigned to biological pathways. 

Table S2 shows the top five upstream regulators of these pathways, across 
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the time series. The tables show the p value as calculated by a 

hypergeometric test of over representation, and the z-score that describes the 

extent of activation/inhibition of each pathway. One of the hurdles with using 

high-content assays is that a drug’s MoA can be swamped by larger cellular 

responses, like cell survival/death and stress signalling which control often 

overlapping downstream processes. This makes it difficult to pinpoint the 

MoA, however, these results show that cells activate stress response 

pathways even after short times of exposure to organo-iridium complex 2.  

 

Since previous studies on complex 2 suggested that oxidative stress may be 

a part of its MoA, we examined the DE of oxidative stress response markers 

(Figure 4).8 The NRF2 transcription factor (encoded by the NFE2L2 gene) is 

involved in an important antioxidant response pathway, binding to the hARE 

(human antioxidant response element) cis-element to transactivate 

detoxifying/antioxidant genes. AP-1 complexes C-FOS/C-JUN and FRA-1/c-

JUN, encoded by FOS, FOSL1 and JUN genes, compete with NRF2 for 

binding to hARE to active antioxidant genes. Two domains of Nrf2 

cooperatively bind CBP, a CREB binding protein, and synergistically activate 

transcription.24 

 

 

Fig. 4. Heat map of DEGs in the oxidative stress response pathway over the 48 h 

exposure of A2780 human ovarian cancer cells to complex 2. Only DEGs with FDR < 

0.10 are included. 
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Even though NFE2L2 is up-regulated throughout the time series in response 

to 2, the MAF co-factor is significantly down-regulated. Of the two AP-1 

complexes, FRA-1 (FOSL1) is up-regulated throughout the time series, 

showing significant DE after just 4 h and highest expression after 24 h. The 

second AP-1 complex, with C-FOS (FOS) is also up-regulated for 2, with the 

biggest response at 4 h, suggesting that the AP-1 complex may play a role 

during early exposure, and the FRA-1 complex a role in later exposure. 

Collectively this shows that all three transcription factors for oxidative stress 

response, NRF2 and the two AP-1 complexes, play a role in the cellular 

response to 2.  

Only a selection of antioxidant genes downstream of the transcriptional 

activators are up-regulated, and those that are up-regulated are not drastically 

so. Antioxidant genes CAT (catalase) and EPHX (epoxide hydrolase), are 

both down-regulated. GSR (glutathione reductase) and NQO (NADP(H) 

quinone oxidoreductase) are both up-regulated. The low-level expression of 

downstream effectors may suggest that A2780 ovarian cancer cells have a 

poor mechanism for responding to ROS.  

Using flow cytometry, measurements were taken to assess the capability of 2 

to generate ROS and superoxide (SO) in A2780 cells after 24 h exposure at 

IC50 concentration at 310 K (Figure S5). Table S3 highlights the results and 

shows a significant production of total ROS and SO in 84% of cells exposed 

to complex 2, with the remaining 16% still showing significant levels of total 

ROS alone.  

Given the similarity of iridium cyclopentadienyl complex 2 and osmium arene 

complex 3 (FY26) in the Sanger screen, the regulation of the ROS response 

pathway, as seen by RNA analysis, was also compared. In previous work, the 

same cell lines were exposed to FY26 at its IC50 concentration with the same 

protocol used here; DEGs were analysed across a 48 h time series (Figure 

S6).  

Interestingly, although both compounds induce an oxidative stress response, 

there are differences in the components of the pathway that are up- and 
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down-regulated. For example, FOS is up-regulated in response to iridium 

complex 2, but down-regulated in response to osmium FY26. This suggests 

that the oxidative stress response to complex 2 activates both AP-1 

complexes, but activates only one in response to FY26.  

Comparison of flow cytometry data for ROS measurements also supports a 

difference in the ROS levels in cells responding to 2 compared to FY26.6 For 

example, when exposed to FY26, 95% of cells showed high total ROS and 

high SO levels, compared to the 84% in response to 2. Yet, the levels of total 

ROS alone were drastically reduced in response to FY26, with only 2.5% of 

cells in this state, compared to 16% in response to 2. 

The apoptotic cell response in Figure S7 shows significant down-regulation of 

effector caspases after 12 h (CASP-9, -6, -2, -3 and -7). Genes for inhibitors 

of apoptosis proteins (IAP), which inhibit the activation of caspase proteins, 

such as BIRC2 and more significantly BIRC3, are up-regulated after 4 h. 

BIRC5, which codes for survivin, another IAP, was down-regulated throughout 

the time series, suggesting specific modulation of apoptotic signals through 

caspase inhibition.  

Protein microarrays 

Zeptosens reverse phase protein microarrays (RPPA) were used to study the 

cellular levels of key proteins in 2-exposed cells versus controls. RPPA 

measures the abundance of total protein levels and phosphorylated proteins 

using epitope-specific antibodies. The Relative Fluorescence Intensity (RFI) 

values obtained for each protein, following secondary fluorescent antibody 

detection, were normalized to a house-keeping protein in each sample 

(prohibitin) before the ratios of RFI between 2-exposed and control samples 

were determined across the time-series (4, 24, 48 and 72 h), to quantify the 

abundance of total protein and phospho-epitopes relative to vehicle (DMSO) 

controls. Given the similarity in the Sanger screen between iridium complex 2 

and the osmium complex 3 (FY26), we compared our previously published 

RPPA data to those of 2 to explore the DNA damage response. 
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During cellular response to DNA damage, ATM, among other proteins, is 

mobilised and auto-phosphorylated to ATM*, which in turn phosphorylates 

CHK2 to CHK2*. At this point, the response pathway branches into a rapid 

response via CDC25A, and a delayed response via p53 and p21. Figure 5 

shows that the protein response reaches a peak at 24 and 72 h exposure, for 

both complex 2 and FY26.  

 

 
 
Fig. 5. DDR/Cell cycle investigations. Heat map showing the relative fluorescence 

intensity (RFI) values for a selection of DNA damage response (DDR) proteins in 

cells exposed to 2 across a 72 h time series. Data previously published for osmium 

complex FY26 are also included for comparison.6 RFI values < 1 indicate a drug-

induced decrease in protein levels, RFI = 1 indicates no-drug effect and RFI > 1 

indicates drug-induced increases in protein levels.  

CHK2*, CDC25A and p53* all show increased levels in response to both 

compounds. However, only 2 appears to mobilize a BRCA1 DNA damage 

response after 24 h, and primarily at a low concentration.  

Additionally, after exposure to 2, M-phase markers are detected, something 

not seen for FY26. For example, there is a high level of β-tubulin in response 
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to 0.15 μM 2 at both 24 and 72 h, with an additional increase in the levels of 

CDK1. This suggests that cells still have the proteins available to allow 

progression from G2 to M phase of the cell cycle. At the higher dose of 2, both 

tubulin and CDK1 levels do not change from the control at 24 h. The higher 

levels of Rb* protein at 24 h suggest that cells have passed, or are at least 

able to pass, the G1/S transition point. This is not seen for FY26, for which 

levels of these proteins are lower in compound-exposed cells. Therefore, in 

response to 2, cells may be held in late S phase, or G2 phase of the cell 

cycle, whereas in response to FY26 cells are more likely held in G1 phase.25 

Flow cytometry experiments were performed on A2780 cells exposed to 

complex 2 and compared to those reported for FY26, to detect the 

populations of cells in various stages of the cell cycle (Figure 6). The red 

fluorescence of propidium iodide (PI) dye, which intercalates into DNA, 

correlates with the DNA content of the cells, and is twice as high in G2/M as in 

G0/G1 cells.  

 

 

Fig. 6. Comparison of the effects of iridium complex 2 and osmium complex 3 on the 

population of the various phases of the A2780 cell cycle. Cell populations for control 

samples are shown in blue and those for 24 h 2-exposed samples in green and 3-

exposed in brown. * indicates p < 0.10, ** indicates p < 0.05 and *** indicates p < 

0.01 after a Welch two sample t-test between control- and compound-exposed 

samples in each stage of the cell cycle.  

After 24 h exposure to 2, the population of cells in the S phase of the cell 

cycle had increased, with subsequent G1 and G2/M populations decreasing. 

Conversely, exposure to 3 (FY26) caused G1 arrest, with lower levels of cells 

populating the S-phase. S-phase arrest is often associated with compounds 
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that cause DNA damage, suggesting this could be a more prominent part of 

the MoA for complex 2.  

RPPA was also used to study further the differential levels of eighteen 

apoptotic proteins; five pro-survival proteins and thirteen pro-apoptotic 

proteins, in cells responding to 2 across a 72 h time series. This was 

compared to data previously reported for FY26 (complex 3).  

 

 
Fig. 7. Apoptosis investigations. Heat map showing the relative fluorescence 

intensity (RFI) values for a selection of apoptotic proteins in A2780 cells exposed to 2 

across a 72 h time series. Data reported for 3 (FY26) are presented for comparison.26 

 

Figure 7 shows that complex 2 induced high levels of IAP proteins, survivin 

and XIAP. Osmium complex 3 (FY26) also induced these same proteins, 

however, to a much lower level. BCL-X, which is a pro-survival protein located 
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in the mitochondria, was down-regulated during most of the time series, but 

up-regulated at 24 h, suggesting specific modulation of the apoptotic pathway. 

Of the pro-apoptotic proteins, most were down-regulated, however, BCL-2 

and BAK, which are initiator proteins, were up-regulated at 24 h. In addition, 

PARP cleaved by CASP-3 (PARP*), was present in higher levels after 24 h, 

particularly at the lower concentration of administered compound. 

 

 

Fig. 8. The populations (%) of the various stages of apoptosis/cell death after 

exposure of A2780 human ovarian cancer cells to 0.13 µM (purple) or 0.40 µM 

(green) organo-iridium complex 2 for 24 h (top) and 48 h (bottom). 

Flow cytometry studies were performed to determine the level of apoptotic 

cells after exposure to 2. These experiments measure the fluorescence of 

annexin V and propidium iodide dyes, where the former identifies early 

apoptotic cells and the latter identifies late-apoptotic and/or necrotic cells. 

During early apoptosis, membrane-bound phosphatidylserine proteins, which 

ordinarily face into the cytoplasm, translocate to the outside of the cell 
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membrane and allow annexin V binding. A cell in early apoptosis, will still 

maintain its membrane integrity, therefore the DNA intercalator dye, propidium 

iodide, cannot pass through. Once the cell has lost viability, its membrane 

becomes permeable to propidium iodide, which fluoresces upon binding to 

DNA.  

Figure 8 shows that there are different levels of apoptosis after 24 and 48 h 

exposure to 2. After 24 h exposure, there was a slight decrease in cell 

viability, with a more significant decrease when exposed to a higher dose of 2 

(94.2%) compared to the lower dose (95.1%). There was a higher population 

of cells in early apoptosis at the higher dose compared to the lower (2.0% and 

1.3%, respectively), but a lower number of late apoptotic (1.1% and 1.5%) and 

necrotic cells (2.2% and 2.3%).  

After 48 h there was a more significant drop in cell viability, now down to 

58.0% at 0.13 μM and 56.4% at 0.40 μM complex 2. There were on average, 

a larger population of cells in late apoptosis at the higher dose of 2 compared 

to the lower dose, 41.2% and 30.2%, respectively. However, there were more 

necrotic cells present after exposure to the lower dose of 2, 11.8% and 2.5%. 

Imaging 

High content screening was used to further explore the mechanism of cell 

death in A2780 and OVCAR-3 ovarian cancer cells after 48 h exposure to 

various concentrations of 1 and 2. After this period, adherent cells were 

stained with DAPI, a blue stain for nuclear DNA, and NucviewTM488, a 

caspase 3 biosensor that becomes activated and fluorescent upon 

endogenous caspase activation inside the cell. Figure 9 shows representative 

microscopy images of caspase 3 positive apoptotic cells following exposure to 

2.5 µM 1 and 2 for 48 h. 
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Fig. 9. Fluorescence images showing caspase positive apoptotic A2780 (A) and 

OVCAR-3 (B) human ovarian cancer cells 48 h after exposure to no added 

compound (control), 2.5 μM 1 and 2.5 μM 2. DAPI stains nuclei of cells (blue), and 

NucViewTM reagent stains caspase activity in apoptotic cells (green).  

 

A2780 cells exposed to 1 and 2 show very different levels of apoptosis, with 1 

inducing very little cell death compared to the DMSO control. Complex 2 

shows significantly higher activity in both ovarian cell lines compared to 1, 

particularly at the higher concentration of 2.5 μM (representative images in 

Figure 9). Comparing cell lines provided interesting results and highlights the 

difference in cell selectivity between 1 and 2. In A2780 cells, 1 was inactive 

and 2 was highly active in reducing cell count, however, in OVCAR-3 cells the 

cell count reduction was more comparable (results not shown). In general, the 

activity of complexes at the single cell level27 depends on the metal itself, its 

oxidation state, the types of metal and numbers of bound ligand atoms, and 

the coordination geometry.28,29 Some complexes can be relatively inert and 

might reach the target site intact (as administered), but in general metal 

complexes are pro-drugs and may undergo metal- or ligand-based redox 

reactions as well as ligand substitution reactions before they reach 

targets.30,31  
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Discussion 

Since we have adopted a phenotypic screening approach, attempting to 

optimise the design of complexes based on their chemical properties and their 

activity, the next stage after discovery of active complexes is to elucidate the 

nature of their MoA to guide further chemical optimization and/or patient 

selection strategies. In the present case our approach assessed correlations 

between anti-cancer activity and cell line gene mutations comparing patterns 

of activity with a range of previously screened compounds with known target 

sites. Comparing just the patterns of activity has already been fruitful on the 

smaller scale of the NCI-60 cell line screens.8 In general, metallodrugs are 

likely to be multi-targeted, attack several biochemical pathways 

simultaneously, and require a systems pharmacology approach for analysis of 

activity.32 We also compare these iridium complexes with two organo-osmium 

complexes for which we also have Sanger screening data. This comparison 

highlights the remarkable influence of the azopyridine ligand on activity. 

 

In the present case, the major difference between complexes 1 and 2 is the 

change in the chelated ligand from a negatively-charged C,N-bound 

phenylpyridine (1) to a neutral N,N-bound N-dimethylphenylazopyridine (2). 

Hence the overall charge on the complex changes from 0 (neutral) to +1. 

However, we previously reported that replacing only one atom from the N,N-

chelating ligand 2,2’-bipyridine in the Ir(III) pentamethylcyclopentadienyl 

complexes to a C,N-chelating ligand phenylpyridine leads to a significant 

increase in anticancer activity.28,33 Therefore, the change in charge on the 

complex seems not to play a vital role in the control of their anticancer activity. 

In addition, we found that potency toward cancer cells increased with 

additional phenyl substitution on the Cp* ring: Cpxbiph > Cpxph > Cp* for the 

cyclopentadienyl Ir(III) complexes.10 Complex 1 also has an additional phenyl 

substituent on the cyclopentadienyl ring, which not only enhances lipophilicity 

but can also intercalate between DNA bases if that is an attack site. However, 

interestingly, the Cpxph complex 2 displayed a more potent antiproliferative 

activity than the Cpxbiph complex 1. It seems that the azopyridine ligand plays 

a major role in the anticancer activity.9 The azopyridine ligand is a strong π-

acceptor, withdrawing electron density from the metal. This makes complex 2 
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(as well as 3 and 4) more inert towards hydrolysis than complex 1, which 

more readily undergoes aquation (replacement of monodentate chloride with 

water) in aqueous media and leads to deactivation before reaching its 

biological targets.30  

 

We have also shown previously for Os complexes 3 and 4, that the additional 

phenyl group in 4 increases activity, but does not play a key role in the MOA. 

It is likely to increase cell uptake, resulting in a more potent compound.34 This 

has also been shown for Ir complexes.9 

 

Our previous work has shown the difference in activity between neutral 

complex 1 and a charged analogue, [Ir(η5-Cpxbiph)(ppy)py]+, in which the Cl 

ligand is substituted by pyridine. The charged complex has a higher potency, 

however, this was linked to the slower hydrolysis of the Ir-py bond, which 

affected the downstream MOA. However, in contrast, the Ir-Cl bond in 

complex 2 does not readily undergo hydrolysis. Thus even though previous 

work has demonstrated the importance in the Ir-Cl bond, the bidentate ligand 

seems to have a dominant effect, in line with the high activity of the Os-

azopyridine complexes 3 and 4.34 

 
Pharmacogenomic screening 
 
The antiproliferative potency of organo-iridium complexes 1 and 2 compared 

to CDDP towards the wide variety of cancer cell lines in both the NCI-60 and 

Sanger-ca. 900 cell lines follows the order: 2 > 1 > CDDP. Both the 

lipophilicity and overall charge on a complex can have a major effect on its 

biological activity. This trend is also apparent for patient-derived cancer cell 

lines which display distinct sensitivities to platinum agents (Table 2), where 1 

has poor activity in all 3 cell lines, particularly in CDDP-resistant cell lines with 

IC50 values > 100 μM. Complex 2 and not 1 would therefore be a candidate 

for combating platinum resistant cancers and suggests that complex 2 might 

have a non-DNA-based mechanism of action, unlike CDDP. 

 

The Sanger screen was used to identify cell lines of interest and to correlate 

activity with similarities in cell line genetics to explore the MoA. It is apparent 
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that 2 has a novel pattern of activity compared to other drugs in the Sanger 

screen for which data are available (Table 2). It is the only drug to have a 

sensitivity association with mutations in the KIT gene, primarily found in 

NSCLC. KIT encodes C-KIT, an important cytokine receptor commonly 

associated with blood and bone cancers. Once the receptor is activated it 

controls signalling for cell survival, proliferation and differentiation. KIT 

mutations have been associated with an increased sensitivity to imatinib and 

has been proposed as an important biomarker in imatinib treatment.37 

Functional C-KIT often confers chemoresistance by augmenting the 

expression of DNA repair genes. The mutated KIT gene may therefore render 

cells more sensitive to DNA damage, consistent with DNA attack being partly 

responsible for the activity of 2, as discussed further below.38 

 

Interestingly, the Sanger screen highlighted a significant similarity between 2 

([Ir(η5-Cpxph)(azpy-NMe2)Cl]+) and two previously studied Os complexes: 

FY12 ([Os(η6-bip)(azpy-NMe2)I]+) (4) and FY26 ([Os(η6-p-cym)(azpy-

NMe2)I]+), (3), Figure 1, suggesting that their activity is closely linked to the 

azpy-NMe2 ligand, which is conserved across all three compounds. Moreover 

since Ir(III) and Os(II) are isoelectronic (outer shell electronic configuration 

5d6) and the complexes have similar 3D structures, global charges and 

probably log P values, it might be expected that they have similar profiles of 

biological activity. Although the activity of 2 does not correlate with that of any 

other drugs screened, those of organo-osmium complexes FY12 and FY26 

do. Particularly noteworthy is the similarity in activity between FY26, 

bleomycin and SN-38 (the active metabolite of irinotecan, Camptosar), where 

cell lines with R184 amplifications are more resistant to all three compounds. 

Bleomycin, used in the treatment of testicular, cervical, lymphoma and 

cancers of the head and neck, causes both single- and double-DNA strand 

breaks in cancer cells.39 It can chelate iron, bind to DNA and react with 

oxygen to produce ROS, which damage DNA. 

 

Topoisomerase enzymes are required for the unwinding of supercoiled DNA 

and the cutting and re-ligation of DNA during replication and protein synthesis. 

The active metabolite of irinotecan, SN-38, is a topoisomerase I (TOP1) 
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inhibitor.40 TOP1 relaxes supercoiled DNA during replication and transcription, 

and generates and ligates cleaved single strands. Inhibitors of TOP1 prevent 

the ligation of cleaved strands, maintaining DNA breaks and activating cell 

death mechanisms in cancer cells. 

 

Oxidative stress 

The mitochondrion is the biggest source of ROS production in the cell, and 

mutations in OXPHOS machinery in A2780 cells perpetuate ROS 

production.41 NRF2 is up-regulated in response to 2, and we have shown by 

flow cytometry that this compound induces a significant ROS response. SO is 

normally converted to oxygen and H2O2 by superoxide dismutase (SOD), 

which is then broken down by catalase (CAT) to water and oxygen.42 Neither 

CAT nor SOD genes were up-regulated after exposure to 2. In fact, CAT was 

expressed in higher levels in the control samples, highlighting the oxidatively-

stressed nature of A2780 cells, and that no response to H2O2 was mobilised 

after compound exposure. Disruption of CAT and SOD function has been 

shown to have a knock-on effect on the function of other antioxidant enzymes, 

potentiating the damage caused by ROS.43 The down-regulation of key 

response genes suggests that 2 induces ROS production and also reduces 

the ability of A2780 cells to respond to excessive ROS. 

 

The production of ROS from mitochondria has a cyclic effect on the function 

of mitochondria, potentiating the production of higher levels of ROS.44 These 

ROS can damage mtDNA and proteins within the mitochondria, in addition to 

disrupting the polarisation of the mitochondrial membrane.45 Mitocans, which 

target the bioenergetics of cancer cells and increase ROS, are becoming a 

focus of anticancer drug development.46 ROS generation by 2 may also occur 

by other mechanisms, as well as through mitochondria, ROS production 

during cell stress is well documented, and occurs indirectly in response to 

many drugs, including CDDP.47 

 

Complex 2 shared similarity in its stress response to the organo-osmium 

complex FY26, 3. The Sanger screen points to close similarities in their MoAs. 

Previous experiments on FY26 have likewise demonstrated induction of ROS 
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in A2780 cells.6 It seems clear that the azpy ligand plays a central role in 

inducing ROS by both these organo-iridium and organo-osmium complexes, 

however, the differences between the two structures causes a difference in 

ROS responses at the gene and the cellular level, with complex 2 resulting in 

high levels of total ROS but reduced levels of SO compared to FY26, and 

subsequently different transcriptional responses being activated. 

 

Recently we have shown that although organo-osmium complex 3 is relatively 

inert in aqueous chemical solutions, it is activated in cancer cells and the 

iodide ligand is rapidly pumped out, and studies by nanofocussed x-ray 

fluorescence spectroscopy show that osmium from complex 3 localises in the 

mitochondria of human ovarian cancer cells.48,49 

 

DNA damage and cell cycle arrest 

Cells are equipped with mechanisms to repair DNA damage, however, 

ovarian cancers often lack the proper tools for DNA damage repair (DDR).50 

Resistance to conventional platinum therapy often originates from the ability 

of cancer cells to repair DNA lesions caused by CDDP, even in cell lines with 

DDR deficiencies.51 DNA damage caused by CDDP is often not selective for 

cancer cells, and can be just as damaging to normal cells, especially with 

high-dose CDDP. In contrast, it is also possible to damage DNA through 

indirect mechanisms, and DNA is a well-known target for ROS, particularly 

guanine bases.52 DNA damage caused indirectly by anticancer compounds, 

through selective ROS generation, could provide a more targeted approach to 

achieving this MoA. 

 

There was measurable protein activation of DDR through the ATM-CHK2-

p53-p21 pathway, however, there was also activation of the BRCA1 protein. 

RPPA suggested either S or G2/M phase arrest was possible in cells exposed 

to 2, with S and G2/M phase protein markers up-regulated at 24 and at 72 h. 

Flow cytometry experiments confirmed S phase arrest after 24 h exposure 

(Figure 6). BRCA1 is an important protein in the S phase of the cell cycle 

during DNA damage and is required for homologous recombination and DNA 

damage-induced S and G2/M phase arrest.53 It could therefore follow that 2 
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does not require functional p53 for its MoA, as it does not require cells to be 

held in G1. 

 

Collectively this could suggest that organo-iridium complex 2 has a more 

directed effect on DNA by exerting its activity either during DNA replication (S 

phase) or after the DNA content has been doubled (G2 phase). Organo-

osmium complex FY26 appears to be most effective prior to DNA replication 

(G1 phase), and therefore may not have a DNA-focussed MoA. 

 

Apoptosis 

Modes of cell death can often be distinguished using whole cell imaging 

techniques.54 However, specific protein and gene markers can also be 

studied. For example, apoptosis is normally characterised by caspase 

production, and by distinct budding of cell membrane structures into so-called 

apoptotic bodies. In contrast, oncosis involves swelling and not shrinking of 

the cell and is caused by non-specific cell injury.55 Necrosis is commonly 

identified as its own mode of cell death, but in fact necrosis is the last stage in 

any cell death pathway, i.e. both oncosis and apoptosis lead to necrosis and 

cell death. 

 

Most anti-cancer agents aim to activate apoptosis in cancer cells, simply 

because this is the most controlled form of cell death, involving phagocytosis 

in the final stages. However, cancer cells often develop mechanisms to evade 

apoptotic cell death which serves to highlight the merits of alternative 

mechanisms, like pyroptosis, an immune-induced mechanism of cell death.56 

RNAseq data suggested poor transcriptional activation of apoptotic caspase 

markers by 2, but some transcription of apoptotic initiators. RPPA further 

supported this conclusion, with waves of apoptotic initiation towards the 

middle of the time course, followed by recovery towards the end (Figure 7). By 

comparison, FY26 showed even less up-regulation of apoptotic components. 

Late apoptosis was detectable by flow cytometry for 2-exposed cells at the 48 

h time point. However, by 72 h, the cell population had recovered viability. 

This supports an occurrence of a wave of cell death. Using high content 
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screening (HCS) to detect levels of caspase-3, the effector-phase of 

apoptosis was explored. HCS proved to be a useful method in visualising cell 

death for multiple compounds; it was possible to extract compound- based 

trends and make predictions about the level of apoptosis at higher 

concentrations, where there was a significant increase in apoptotic cells at 

higher concentrations for 2 compared to 1. ROS release has been shown to 

modulate apoptosis and may therefore play a central role in delaying 

apoptosis.57 

Conclusions 

Screening of two organo-iridium complexes in the Sanger screen of 916 

cancer cell lines revealed a remarkably high potency for the 

phenylazopyridine complex 2 compared to the phenylpyridine organo-iridium 

complex 1 and the clinical platinum drug cisplatin (CDDP). 

The screen also revealed a particularly high susceptibility of triple negative 

breast cell lines to 2, and potential correlations to ROS-inducing drugs. 

Notably the pattern of activity of 2 towards the wide range of cancer cell lines 

was different to 253 previously screened drugs suggesting an unusual 

mechanism of action, but remarkably similar to organo-osmium complex FY26 

which shares the same N,N-chelated phenylazopyridine ligand. 

The MoA for both iridium complex 2 and osmium complex 3 appears to 

involve the rapid generation of ROS in cells, and can achieve selectivity for 

cancer versus normal cells since cancer cells have defective mitochondria, 

the usual source of ROS. However, more interesting is the difference in the 

exact nature of the ROS response triggered; with complex 2 inducing less of a 

superoxide response. This difference in the induction of ROS caused cells to 

arrest in S/G2 phase in response to 2, whereas for 3 cells arrested in G1. 

Apoptosis seemed to be apparent after longer exposure periods, with 

interesting pro- and anti-apoptotic protein dynamics measured across the time 

series.  
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Ultimately this study provides a clear example of the benefits of combining 

different theoretical and experimental methods to explore novel and complex 

MoAs. In particular the combination of such methods can allow the separation 

of intricate differences in activity between compounds to interpret phenotypic 

response at molecular and cellular levels, which inform further preclinical 

development and clinical translation. 
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Materials and methods  
 
Compound synthesis and characterisation 

All compounds were synthesised and characterised as described 

previously.8,21,33 

 

Antiproliferation assays 

Complexes 1 and 2 were screened under the ‘Genomics of Drug Sensitivity in 

Cancer’ project at the Sanger Institute (Cambridge, UK). 

 

Briefly, cells were seeded in 96 well plates at ca.15% confluency and left to 

incubate for 24 h at 310 K, 5% CO2, 95% air and 100% relative humidity. 

Cells were treated with nine concentrations of each compound and returned 

to the incubator for 72 h. For suspension cell lines, cells were treated with 

compound immediately following plating, and returned to the incubator. Cells 

were stained and quantitation of fluorescent signal intensity was performed 

using a plate reader. IC50 values were returned to The University of Warwick 

for downstream analysis. MANOVA analysis was performed by the Sanger 

Bioinformatics Institute.  

 

Primary cancer cell screening  

Primary patient cell lines were seeded in 96 well plates with ca. 5000 cells per 

well in RPMI-1640 with 1% (v/v) 2 mM glutamine. The plates were incubated 

at 310 K for 48 h. Stock solutions of each compound were prepared and cells 

exposed across a dose range for a further 48 h. Cells were extracted and the 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (Life 

Technologies) was used to determine cell viability. 

 
RNA sequencing 

TruSeq kits (Illumina) were used to prepare samples for sequencing as per 

the manufacturer’s guidelines. From total RNA, mRNA samples were purified, 

fragmented and reverse transcribed to cDNA. Sequencing libraries were 

produced, with incorporated barcodes to allow multiplexing. Samples were 

sequenced on an Illumina Hiseq2000 instrument across 5 lanes (6 samples 
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per lane). 50 base pair, paired-end reads were recorded producing ca. 60 

million reads in total, per sample. 

 

A2780 cells were seeded at 3 x 106 cells per 100 mm petri dish. Plates were 

incubated for 24 h at 310 K, 5% CO2, 95% air and 100% relative humidity. 

Complex 2 (400 nM) and vehicle control solutions were added and after 4, 12, 

24 and 48 h cells were collected and whole-cell RNA extracted (RNeasy plus 

mini kit, Qiagen). Samples were run on a NanoDrop 1000 spectrophotometer 

machine and the absorbance at 230, 260 and 280 nm recorded to calculate 

the 260/230 and 260/280 ratios. Samples with A260/230 >2.0 and A260/280 

>1.9 were passed. The concentration of RNA in each solution was also 

estimated using the NanoDrop and was verified using a 2100 Agilent 

Bioanalyzer and an RNA 6000 Nano Kit (Agilent), and the Qubit assay (Life 

Technologies). All samples had a RNA integrity number (RIN) > 9.50. A 

minimum of 1 μg RNA for each sample was transferred to Oxford Genomics 

Centre (Wellcome Trust Centre for Human Genetics) in a total of 30 μL 

RNase free water in skirted 96 well plates. 

 

Data deposition: The sequences reported in this paper have been deposited 

in ArrayExpress (accession E-MTAB-5991). 

 
Data analysis 

Preliminary filtering was performed on the data to remove all samples with 

quality scores (Q) < 20. FASTQ files for the forward and reverse reads were 

integrated and aligned to the hg19 (GRCh37) human genome using TopHat2. 

Files were returned to The University of Warwick in BAM format. Samtools 

(version 0.1.19-44428cd) was used to explore the raw BAM files, extracting 

chromosomal reads and summary statistics. BAM files were sorted by read 

name and then converted to SAM format. HTSeq (version 0.5.4p5) was used 

to map the read locations to genomic regions using the hg19 genome 

construct with the intersection-nonempty program option. Resulting mapped 

files, were then analysed for differential gene expression using the edgeR 

package (version 3.1.10) in the R statistical programme (version 3.0.2). A list 

of differentially expressed genes was obtained for each time point (4, 12, 24 
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and 48 h) and used together with Ingenuity Pathway Analysis software to 

assign significantly expressed genes to biological pathways.  

 

Reverse phase protein microarrays (RPPA) 

4 x 105 A2780 cells were seeded per well and cells were pre-incubated in 

drug-free media for 48 h. After this, cells were treated at 150 nM and 450 nM 

for 4, 24, 48 and 72 h. Control samples were treated with media containing 

0.1% DMSO. Cell lysates were collected and deposited onto a Zeptosens 

chip. Chips were blocked and washed prior to performing a dual antibody 

immunoassay comprising of a 24 h incubation of primary antibodies followed 

by 2.5 h incubation with secondary Alexa-Fluor 647 conjugated antibody 

detection reagent. The immunostained arrays were imaged using the 

ZeptoREADER instrument and analysed using ZeptoView 3.1 software. Local 

normalisation of sample signal to a reference BSA grid was used to 

compensate for any intra- or inter-array/chip variation. RFI values were further 

normalised to a house keeping protein (Prohibitin) and to the negative control, 

to provide the final RFI to represent the relative abundance of total, 

phosphorylated and cleaved proteins in compound-treated samples relative to 

the DMSO control for each time point. 

 

Apoptosis assays 

A2780 cells were seeded at 1 x 106 cells per well in 6-well plates. Cells were 

preincubated in drug-free media at 310 K for 24 h in a 5% CO2 humidified 

atmosphere. Drug/compound solutions were added and the cells left to 

incubate for a further 24, 48 or 72 h. Following exposure, the drug-containing 

medium was removed, and cells were washed, harvested and stained with 

Annexin V FITC and propidium iodide (Biovision, Annexin V-FITC Apoptosis 

Kit) according to the manufacturer’s instructions. Control samples stained with 

just propidium iodide or Annexin V FITC were also included for compensation 

purposes. The samples were analysed using Beckton Dickinson FACScan 

with fluorescence detection running Cell Quest software (20000 events were 

collected from each sample). Data were processed using Flowjo software 

(version 7.2.5). 
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Cell cycle analysis 

A2780 cells were seeded at a density of 1 x 106 cells per well in a 6-well plate 

and pre-incubated in drug-free media at 310 Kfor 24 h in a 5% CO2 humidified 

atmosphere. Drug solutions were added and the cells left to incubate for a 

further 24 h. Cells were collected and washed twice with PBS. Cells were 

fixed with 70% ethanol and stored at -293 K for 24 h. For analysis, cells were 

transferred into PBS, incubated with RNase (0.2 mg/mL) and propidium iodide 

(0.05 mg/mL) for 40 min at 310 K and then analysed by flow cytometry using 

a Beckton Dickinson FACScan with fluorescence detection. The resulting 

DNA histograms were quantified using the FlowJo software (version 7.2.5). 

 

High content screening (HCS) 

Compounds 1 and 2 were imaged by HCS at The Edinburgh Cancer 

Research Centre. Cells were seeded in a 96-well plate at 5000 cells/well and 

incubated for 48 h before treatment with each compound for a further 48 h. 

Prior to image acquisition, cells were incubated with 4 μg/mL DAPI (Sigma 

D8417), and 1 μM NucViewTM (Biotium) reagent for 0.5 h. Microscopic images 

of DAPI and NucViewTM stained cells were acquired with a 10x objective and 

appropriate optical filters using the Olympus ScanR high-content imaging 

microscope. Merged images of DAPI and NucviewTM cells were created using 

the Olympus ScanR imaging software Cell-IRTM. 
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Methods 
 
Roswell Park Memorial Institute (RPMI-1640) medium, as well as foetal 

bovine serum, L-glutamine, penicillin/streptomycin mixture, trypsin, 

trypsin/EDTA, phosphate buffered saline (PBS) were purchased from PAA 

Laboratories GmbH. HPLC grade ethanol, β-mercaptoethanol, PI (>94%), 

Annexin V-FITC Apoptosis Detection Kit and RNAse A were obtained from 

Sigma Aldrich. For RNA sequencing, cell shredders and mini-prep kits were 

purchased from Qiagen. 

 
Cell maintenance 

The A2780, human ovarian carcinoma cell line was obtained from the 

European Collection of Cell Cultures (ECACC). Cells were grown in RPMI-

1640 medium supplemented with 10% (v/v) foetal calf serum, 1% (v/v) 2 mM 

glutamine and 1% (v/v) penicillin (10 k units/mL)/streptomycin (10 mg/mL). All 

cells were maintained in 75 mL culture flasks at 310 K with 5% CO2 

humidified atmosphere. Cells were grown as adherent monolayers and split 

when 80-90% confluent, using 0.25% trypsin. 

 

Screening in the Sanger cell panel 

Briefly, cells were seeded in 96 well plates at ca.15% confluency and left to 

incubate for 24 h at 310 K, 5% CO2, 95% air and 100% relative humidity. For 

adherent cell lines, cells were treated with nine concentrations of each 

compound (2-fold dilution series over 256-fold concentration range) and 

returned to the incubator for 72 h. Cells were then fixed with 4% formaldehyde 

for 30 min and stained with 1 μM Syto60 for 1 h. Quantitation of fluorescent 

signal intensity was performed using a plate reader at excitation/emission 

wavelengths of 630/695 nm. For suspension cell lines, cells were treated with 

compound immediately following plating, and returned to the incubator for 72 

h. Cells were stained with 55 μg/mL Resazurin, prepared in glutathione-free 

medium, for 4 h. Quantitation of fluorescent signal intensity was performed 

using a plate reader at excitation/emission wavelengths of 535/595 nm. 

MANOVA analysis was performed by the Sanger Bioinformatics Institute. All 

Figures presented here were reconstructed using the R statistical programme. 
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RNA sequencing 

Experimental  

A2780 cells were seeded in P100 Petri dishes at 3 x 106 cells per plate in 10 

mL RPMI-1640 medium. Plates were incubated for 24 h at 310 K, 5% CO2, 

95% air and 100% relative humidity. Stock solutions of each compound and of 

the vehicle control were prepared in 5% (v/v) DMSO, 10% (v/v) saline, and 

85% (v/v) RPMI-1640 medium. Cells were exposed to complex 2 at a final 

concentration of 400 nM. The final DMSO concentration for all cell samples 

did not exceed 0.05% v/v. After compound addition, cells were incubated for a 

further 4, 12, 24 and 48 h. Medium was aspirated from cells and cells were 

washed twice with PBS before trypsinising and collection. To each sample, 

600 μL RLT lysis buffer (Qiagen) was added and the samples vortexed. 

Lysate was pipetted directly into QIAshredder spin columns (Qiagen) and 

centrifuged. Lysate was transfered to gDNA eliminator spin columns (RNeasy 

plus mini kit, Qiagen) and centrifuged. Columns were discarded and 600 uL of 

70% ethanol was added to each sample flow-through. Samples were 

transfered into RNeasy spin columns (RNeasy plus mini kit, Qiagen) and 

centrifuged. Column-bound RNA samples were washed with RW1 and RPE 

buffer (RNeasy plus mini kit, Qiagen) before RNA collection in 70 μL RNAse-

free water. Samples were stored at 193 K for no more than 2 months. 

Samples were diluted 1:10 fold in RNAse-free water and run on a NanoDrop 

1000 spectrophotometer machine and the absorbance at 230, 260 and 280 

nm recorded to calculate the 260/230 and 260/280 ratios. Samples with 

A260/230 >2.0 and A260/280 >1.9 were passed. The concentration of RNA in 

each solution was also estimated using the NanoDrop and was verified using 

a 2100 Agilent Bioanalyzer and an RNA 6000 Nano Kit (Agilent), and the 

Qubit assay (Life Technologies). All samples had a RNA integrity number 

(RIN) > 9.50. A minimum of 1 μg RNA for each sample was transferred to 

Oxford Genomics Centre (Wellcome Trust Centre for Human Genetics) in a 

total of 30 μL RNAse-free water in skirted 96 well plates. 

 
Reverse phase protein microarrays (RRPA) 

4 x 105 A2780 cells were seeded per well in 6-well plates, with samples in 

duplicate. Cells were pre-incubated in drug-free media for 48 h at 310 K in a 



S4 
 

5% CO2 humidified atmosphere. After this, cells were treated at 150 nM and 

450 nM of complex 2 for 4, 24, 48 and 72 h. Control samples were treated 

with medium containing 0.1% DMSO. Following exposure, drug-containing 

medium was removed, and cells were washed twice with PBS and lysed with 

CLB1 buffer (Zeptosens-Bayer) according to manufacturer’s instructions. Cell 

lysates were normalised to a uniform protein concentration of 2 mg/mL with 

CLB1 buffer (Zeptosens-Bayer) prior to preparing a final 4-fold concentration 

series of; 0.2; 0.15; 0.1 and 0.75 mg/mL in spotting buffer CSBL1 (Zeptosens-

Bayer). The diluted concentration series of each sample was printed onto 

hydrophobic Zeptosens protein microarray chips (ZeptoChipTM, Zeptosens-

Bayer) under environmentally controlled conditions (constant 50% humidity at 

287 K) using a non-contact printer (Nanoplotter 2.1e, GeSiM). A single 400 pL 

droplet of each lysate concentration was deposited onto the Zeptosens chip. 

A reference grid of Alexa Fluor 647 conjugated BSA was spotted onto each 

sub-array, each sample concentration series was spotted in between 

reference columns. After array printing, the arrays were blocked with an 

aerosol of BSA solution using a custom designed nebuliser device 

(ZeptoFOGTM, Zeptosen-Bayer) for 1.5 h to prevent non-specific antibody 

binding. The protein array chips were subsequently washed in double 

deionised water (DDW) and dried prior to performing a dual antibody 

immunoassay comprising of a 24 h incubation of primary antibodies followed 

by 2.5 h incubation with secondary Alexa Fluor 647 conjugated antibody 

detection reagent (anti-rabbit or anti-mouse 647 Fab, Invitrogen). Following 

secondary antibody incubation and a final wash step in BSA solution, the 

immunostained arrays were imaged using the ZeptoREADER instrument 

(Zeptosens-Bayer). For each-sub-array, five separate images were acquired 

using different exposure times ranging from 0.5-10 s. Microarray images 

representing the longest exposure without saturation of fluorescent signal 

detection were automatically selected for analysis using the ZeptoViewTM 3.1 

software. A weighted linear fit through the 4-fold concentration series was 

used to calculate the relative fluorescence intensity (RFI) value for each 

sample replicate. Local normalisation of sample signal to the reference BSA 

grid was used to compensate for any intra- or inter-array/chip variation. RFI 

values were further normalised to a house keeping protein and to the negative 
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control, to provide the final RFI to represent the relative abundance of total, 

phosphorylated and cleaved proteins in compound-treated samples relative to 

the DMSO control for each time point. 
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Table S1. Summary statistics for RNA sequencing experiment.  
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Table S2. Pathway analysis showing the top five most-mapped processes for DEGs 

with -1.0 < LogFC > 1.0 and FDR < 0.05 after exposure to 2. IPA has identified 

pathways of interest, with associated significance p- and z-values.  

 

 



S8 
 

 
Table S3. Generation of total ROS and superoxide by complex 2 in A2780 ovarian 
carcinoma cells exposed to IC50 concentrations. Values obtained from triplicate 
experiments. Determination of statistical significance by two-sample independent 
Welch t-test assuming unequal variance: p ≤ 0.05 *, p ≤ 0.01 **, p ≤ 0.001 ***, p ≤ 
0.0001 ****. 

 
 

 

High 
Superoxide 

High ROS 
and 

Superoxide 
High ROS 

Low ROS 
and 

Superoxide 

 

FL1-FL2+ FL1+FL2+ FL1+FL2- FL1-FL2- 

  Q1 Q2 Q3 Q4 

Neg 
CTL 

0.17 ± 0.07 0 0 99.82 ± 0.07 

Comple
x 2 

0.1 ± 0.1 84 ± 1 **** 16 ± 1 **** 0.3 ± 0.5 
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Table S4. List of publicly-released compounds tested by the Sanger Institute in the 
cell line screen 
 
681640 
(5Z)-7-Oxozeaenol 
17-AAG 
A-443654 
A-770041 
ABT-263 
ABT-869 
ABT-888 
AC220 
AG-014699 
AICAR 
AKT inhibitor VIII 
AMG-706 
AP-24534 
AR-42 
AS601245 
AS605240/KIN001-173 
AT-7519 
ATRA 
AUY922 
AV-951 
AX11492 
Axitinib 
AZ628 
AZD-0530 
AZD-2281 
AZD2281 
AZD6244 
AZD6244 
AZD6482 
AZD6482 
AZD7762 
AZD8055 
BAY 61-3606 
Bexarotene 
BI-2536 
BIBW2992 
Bicalutamide 
BIRB 0796 
BIX02189 
Bleomycin 
BMN-673 
BMS-345541 
BMS-509744 
BMS-536924 
BMS-708163 
BMS-754807 
Bortezomib 
Bosutinib 
Bryostatin 1 
BX-795 
CAL-101 

Camptothecin 
CAY10603 
CCT007093 
CCT018159 
CEP-701 
Cetuximab 
CGP-082996 
CGP-60474 
CH5424802 
CHIR-99021 
CHIR-99021 
CI-1040 
Cisplatin 
CMK 
CP466722 
CP724714 
CUDC-101 
CX-5461 
Cyclopamine 
Cytarabine 
Dasatinib 
DMOG 
Docetaxel 
Doxorubicin 
EHT 1864 
EKB-569 
Elesclomol 
Embelin 
Epothilone B 
Erlotinib 
Etoposide 
EX-527 
FH535 
FK866 
FR-180204 
FTI-277 
GDC-0449 
GDC0941 
GDC0941 
Gefitinib 
Gemcitabine 
Genentech Cpd 10 
GNF-2 
GSK-1904529A 
GSK-650394 
GSK1070916 
GSK1120212 
GSK2118436 
GSK2126458 
GSK269962A 
GSK429286A 
GSK690693 

GW 441756 
GW843682X 
HG-5-113-01 
HG-5-88-01 
HG-6-64-1 (KIN001-
206) 
I-BET 
Imatinib 
INCB-18424 
IPA-3 
JNJ-26854165 
JNK Inhibitor VIII 
JNK-9L 
JQ1 
JQ12 
JW-7-24-1 
JW-7-52-1 
KIN001-055 
KIN001-102 
KIN001-135 
KIN001-167/ZSTK474 
KIN001-175/BX-912 
KIN001-201/TAK-715 
KIN001-236 
KIN001-242/FMK 
KIN001-244 
KIN001-260 
KIN001-266 
KIN001-270 
KU-55933 
Lapatinib 
LAQ824 
Lenalidomide 
LFM-A13 
LY317615 
Masitinib 
Methotrexate 
MG-132 
Midostaurin 
Mitomycin C 
MK-2206 
MLN4924 
MP470 
MPS-1-IN-1 
MS-275 
NG-25 
Nilotinib 
NPK76-II-72-1 
NSC-207895 
NSC-87877 
NU-7441 
Nutlin-3a 
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NVP-BEZ235 
NVP-BHG712 
NVP-TAE684 
Obatoclax Mesylate 
OSI-027 
OSI-906 
OSI-930 
OSU-03012 
PAC-1 
Paclitaxel 
Parthenolide 
Pazopanib 
PD-0325901 
PD-0332991 
PD-173074 
PF-02341066 
PF-4708671 
PF-562271 
PHA-665752 
PHA-793887 
PI-103 
PIK-93 
piperlongumine 
PLX4720 
PLX4720 (for rescreen 
control) 
"PXD101, Belinostat" 
Pyrimethamine 
QL-VIII-58 
QL-X-138 
QL-XI-92 
QL-XII-47 
QL-XII-61 
QS11 
Rapamycin 
RDEA119 
RDEA119 
RO-3306 
Roscovitine 
rTRAIL 
S-Trityl-L-cysteine 
Salubrinal 
SB 216763 
SB-505124 
SB-715992 
SB52334 
SB590885 
Shikonin 
SL 0101-1 
SN-38 
SNX-2112 
Sorafenib 
STF-62247 
Sunitinib 
T0901317 

Tamoxifen 
Temozolomide 
Temsirolimus 
TG101348 
TGX221 
Thapsigargin 
THZ-2-102-1 
THZ-2-49 
Tipifarnib 
TL-1-85 
TL-2-105 
TPCA-1 
Tubastatin A 
TW 37 
UNC0638 
UNC0638 
Vinblastine 
Vinorelbine 
VNLG/124 
Vorinostat 
VX-11e 
VX-680 
VX-702 
WH-4-023 
WZ-1-84 
WZ3105 
XAV 939 
XL-184 
XL-880 
XMD11-85h 
XMD13-2 
XMD14-99 
XMD15-27 
XMD8-85 
XMD8-92 
Y-39983 
YK 4-279 
YM155 
YM201636 
Z-LLNle-CHO 
ZG-10 
"Zibotentan, ZD4054" 
ZM-447439
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Figure S1. Box and whisker plot showing the distribution of log IC50 values for 
complexes 1 (ZL49) (blue), 2 (ZL109) (green) and CDDP (red) in all cell lines as well 
as the distribution of the mean log IC50 values for 202 drugs in the screen (grey). Cell 
lines which are less sensitive to 2 are highlighted in a red box. Data for osmium 
complexes 3 (FY26) and 4 (FY12) are also shown for comparison. For structures see 
Figure 1. 
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Figure S2. Bar plot of the number of cell lines in each tissue type screened against 

organo-iridium complex 2. Cell lines significantly insensitive to 2 highlighted in green 

with the corresponding % of total cell lines of that type. Tissue groups where no 

percentage is given contained no cell lines resistant to 2. 
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Figure S3. Multidimensional scaling (MDS) plots for RNA sequencing data. (A) 
Samples grouped as control (blue) and 2-exposed (orange), demonstrating a 
differential drug-induced response. (B) Grouping of samples across the time series, 
with 4 h control and 2-exposed samples in blue, 12 h in green, 24 h in orange and 48 
h in red The contrasting behavior of the 48 h datasets compared to earlier time points 
is evident.  

Figure S3 shows natural separation of the samples into clusters, and good 

agreement between the triplicate measurements. The biggest source of 

variation is by time point, the second by exposure-status, i.e. whether they are 

exposed as a control or to a compound.  
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Figure S4. (A) Venn diagram showing the number of differentially-expressed genes 
at 4, 24 and 48 h after exposure to 2. Only those genes with -1.0 < LogFC > 1.0 and 
FDR < 0.05 are included. (B) Graph showing the number of up- (red) and down-
regulated (green) genes at each time point. Only those genes with -1.0 < LogFC > 
1.0 and FDR < 0.05 are included. 
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Figure S5. Generation of reactive oxygen species (ROS) and superoxide (SO) 
analysis by flow cytometry of A2780 ovarian carcinoma cells exposed to complex 2 
for 24 h at IC50 concentration at 310 K.  Cells stained with orange/green fluorescent 
reagents. Pyocyanin was the positive control (orange). 
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Figure S6. Heat map of DEGs In the oxidative stress response pathway in response 
to FY26 (complex 3) published previously.1 Only DEGs with FDR < 0.10 are 
included.  
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Figure S7. Heat map of DEGs for ZL109 (complex 2) in the apoptotic pathway. Only 
DEGs with FDR < 0.10 are included. 
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