

Edinburgh Research Explorer

Expressiveness benchmarking for system-level provenance

Citation for published version:
Chan, SC, Gehani, A, Cheney, J, Sohan, R & Irshad, H 2017, Expressiveness benchmarking for system-
level provenance. in 2017 Workshop on Theory and Practice of Provenance (TaPP 2017). 9th USENIX
Workshop on the Theory and Practice of Provenance 2017, Seattle, United States, 22/06/17.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
2017 Workshop on Theory and Practice of Provenance (TaPP 2017)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/131080922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/expressiveness-benchmarking-for-systemlevel-provenance(1bbb990f-e3aa-49f1-ae09-d8e0d07104c7).html

Expressiveness Benchmarking for System-Level Provenance

Sheung Chi Chan
University of Edinburgh
s1536869@inf.ed.ac.uk

Ashish Gehani
SRI International

ashish.gehani@sri.com

James Cheney
University of Edinburgh
jcheney@inf.ed.ac.uk

Ripduman Sohan
University of Cambridge

ripduman.sohan@cl.cam.ac.uk

Hassaan Irshad
SRI International

hassaan.irshad@sri.com

Abstract
Provenance is increasingly being used as a foundation for secu-
rity analysis and forensics. System-level provenance can help us
trace activities at the level of libraries or system calls, which of-
fers great potential for detecting subtle malicious activities that can
otherwise go undetected. However, analysing the raw provenance
trace is challenging, due to scale and to differences in data repre-
sentation among system-level provenance recorders: for example,
common queries to identify malicious patterns need to be formu-
lated in different ways on different systems. As a first step toward
understanding the similarities and differences among approaches,
this paper proposes an expressiveness benchmark consisting of tests
intended to capture the provenance of individual system calls. We
present work in progress on the benchmark examples for Linux and
discuss how they are handled by two different provenance collec-
tion tools, SPADE and OPUS.

Keywords completeness, correctness, versioning, benchmarking

1. Introduction
Provenance is increasingly being used as a basis for security,
through forensic audit or online dynamic detection of malicious
behaviour. There are several different systems in the literature,
such as PASS (Muniswamy-Reddy et al. 2006), Hi-Fi (Pohly et al.
2012), SPADE (Gehani and Tariq 2012) (we refer to SPADEv2 in
this paper), OPUS (Balakrishnan et al. 2013) and LPM (Bates et al.
2015) covering a variety of operating systems from Linux and BSD
to Android and Windows. They have similar models for provenance
recording, in which raw operating system events are processed into
high-level provenance graphs that are believed to be suitable for
forensic or online analysis. Some systems offer different “filters”
or configuration options that govern what information is recorded,
motivated by the need to trade off completeness against verbosity
and cost of recording detailed information.

Analysts who wish to make use of such systems to detect ma-
licious behaviour face a daunting task. One complicating factor is
heterogeneity among different systems. At a syntactic level, stan-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page.
Acknowledgments This material is based upon work supported by the National Science Foundation under Grants IIS-
1116414 and ACI-1547467. Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science Foundation. Effort sponsored by the
Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA8655-13-1-3006.
The U.S. Government and University of Edinburgh are authorised to reproduce and distribute reprints for their purposes
notwithstanding any copyright notation thereon. The authors also gratefully acknowledge travel support from GCHQ for
Chan to visit SRI and Cambridge.

TaPP 2017, June 22-23, 2017, Seattle, Washington.
Copyright remains with the owner/author(s).

dards such as W3C PROV can help different systems interoperate
by establishing a common vocabulary for provenance-related data.
However, such standards do not prescribe how information specific
to the operating system security domain should be represented, or
how the provenance record should relate to the actual behaviour
of the monitored system. Moreover, formalizing the relationship
between a modern operating system kernel and its audit logs or
provenance records is non-trivial because the formal model is writ-
ten imprecisely. (One exception is seL4 (Klein et al. 2009), but its
development was a major undertaking that has not been reproduced
for operating systems such as Linux.)

In the absence of a tractable approach to formalizing correct
and complete behaviour for provenance recording systems, how are
we to proceed? We propose a pragmatic approach inspired by pre-
vious community efforts such as the Provenance Challenge exer-
cises (Moreau et al. 2008). This paper proposes an “expressiveness
benchmark” for OS-level provenance recording systems. The goal
of such a benchmark is to provide qualitative answers to the fol-
lowing questions about provenance recording systems:

• What does each node/edge in the graph tell us about actual
events reported by sources? (correctness)

• What information is guaranteed to be captured and what are the
blind spots? (completeness)

• How is state and change represented in the data? Are objects
versioned precisely, imprecisely, or not at all?

• How do different systems, or differently configured systems,
compare in these respects?

The goal of such a benchmark is not to produce an absolute
ranking of systems, but rather to help place different systems in
a landscape so that their relative capabilities can be better under-
stood. We hope that the process of benchmarking and compar-
ing provenance recording systems on comparable examples will
help lead to greater uniformity and semantic interoperability among
such systems, or to greater understanding of design decisions.

The structure of the rest of this paper is as follows. Section 2
provides some background on the two provenance collection tools
considered, SPADE and OPUS. Section 3 presents the details of our
proposed expressiveness microbenchmark. Section 4 presents the
results of our microbenchmark using SPADE (Gehani and Tariq
2012) with Linux Audit. Section 5 presents the results of our
microbenchmark using OPUS (Balakrishnan et al. 2013) under
Linux. Section 6 compares the different approaches of the two
systems. Finally, Section 7 concludes and discusses ongoing and
future steps.

2. Background
SPADE and OPUS are two provenance collection tools that were
originally developed with different scenarios in mind. In this sec-
tion, we will discuss the different provenance collection approaches
of the two targeted tools, running in a Linux environment.

First of all, we briefly review their architectures and other char-
acteristics. SPADE is aimed at unified provenance collection in a
distributed setting, and it focuses on relationships among processes
and artifacts across distributed hosts. OPUS is more concerned with
complete representation of operations on different files and artifacts
and aims to abstract those operations from the operating system and
make the provenance collection process portable. It also aims to ex-
plain how a given file came to be in its current state, and who has
changed or handled it. The developers of OPUS provide a Prove-
nance Versioning Model (PVM) as a formal model for recording
both the history of artifacts and of associated meta-data. This can
help to identify and preserve the version history of the artifacts.

SPADE works by observing audit events provided by different
operating systems. SPADE provides multiple ways to record prove-
nance by breaking its functionality into modules. Anyone can write
custom modules for their platform to suit their own needs. Those
modules may include filters, transformers, provenance collectors or
storage handlers. This flexibility makes it possible to run SPADE
across a distributed system. In the Linux environment, the major
provenance collector supported by SPADE is the Audit Reporter,
which depends on the Audit Daemon of the native Linux environ-
ment. When SPADE starts, it supplies audit rules (which can be
defined by users) to the audit daemon. The Audit Dispatcher noti-
fies SPADE (and any other monitoring processes) of any activities
that fulfil the audit rules, and these are also recorded in the audit
log. The audit information is recorded by the kernel, and for our
purposes its completeness and correctness are assumed. SPADE
also has the ability to identify different subactivities of a process
(“units”), but we do not consider this capability in this paper.

OPUS works in a more intrusive way. It redirects standard li-
brary calls to pass through an additional layer for provenance col-
lection. Most C library calls perform a combination of kernel sys-
tem calls. The developers of OPUS have mapped most of the C
library calls to syscall combinations, based on the PVM model.
When a C library call passes through the additional provenance
collection layer, OPUS can record the corresponding system calls
in the resulting provenance graph without the need to monitor the
underlying syscall operations. OPUS makes use of the ability of-
fered in some operating systems (such as Linux) to alter the dy-
namic library linking process (i.e. LD PRELOAD), which overrides
the Global Offset Table (GOT) in the binary memory and points
it to wrapped versions of library calls. Each wrapped call keeps
the original call untouched and unaltered. It only provides an addi-
tional layer to record informations of the original call before pass-
ing it to the lower level. The recorded information is used to gen-
erate appropriate provenance in accordance with the PVM; it runs
in the background so high-priority user tasks are not significantly
slowed. Statically compiled binaries could be patched by adding
in extra calls to OPUS’s provenance collector, but this approach is
not implemented yet. OPUS’s approach does not require adminis-
trator privileges to run, and may be more portable because it only
monitors high level library calls that are platform independent.

3. An Expressiveness Microbenchmark
The goal of expressiveness microbenchmarking is to identify the
provenance patterns for the smallest meaningful units: syscalls
operating on the OS kernel. Those syscalls combine together in
different permutations to form high level processes. In order to
understand what syscalls have been involved in the processes and

their provenance patterns, we need to understand how each syscall
contributes to the resulting provenance graph. That is, we need to
understand the explicit patterns of provenance for each syscall. This
mapping provides a microbenchmark for each syscall and its effect
on the resulting provenance graph. With this understanding, we
can use the patterns to generate rules to identify the existence of
high level actions (containing different permutation of syscalls) in
a large system by analysing the provenance graph describing its
runtime behaviour. This can help to trace the existence and initiator
of certain actions for security and forensic analysis.

In order to create a microbenchmark for syscalls in the kernel,
we need to create some sample programs that use minimal syscalls
in order to see those patterns without a large amount of noise. Most
syscalls in Linux environment have a one to one mapping to C
library calls, so those microbenchmark programs are written in C.
We do not test all 300+ syscalls in the Linux operating system, only
those syscalls generally believed to relate to sensitive actions have
been used as a starting point. These syscalls have been summarized
in Table 4 in the appendix. There is also a baseline program (Listing
1 in appendix), which does nothing, to form the control result of the
benchmark process. It is used to demonstrate the basic provenance
trace generated by starting a C program that does nothing. This can
help to isolate and filter out the standalone pattern of each syscall.

There are some benchmark programs attached in the appendix.
Each syscall is inserted into the control program separately for
generating the unique patterns of provenance. Each time only one
syscall (or two if we need to test close syscall) will be inserted into
the control program and executed under the provenance collection
tools to generate provenance patterns for that syscall. Two such
example programs, Listing 2 and 3, together with a combined
testing program for multiple syscalls, Listing 4, are also shown in
the appendix. It contains multiple chosen syscalls to demonstrate
provenance pattern combination and to act as the testing target for
queries matching each syscall in a large application. The resulting
graph of this program is shown in the appendix (Figure 1).

In this paper, we concentrate on two of the provenance collec-
tion tools, SPADE and OPUS. Both of them have the ability to out-
put the provenance result in Neo4J graph database format that can
be queried using the Cypher query language. The unique prove-
nance patterns should identify each of the syscall actions. Those
results should be enough to generate rules to determine the exis-
tence of certain syscall (or combination of syscalls) in a large sys-
tem. The resulting provenance patterns are expected to behave the
same when the syscalls happen in different environments.

4. Benchmarking SPADE in Linux
We executed each testing program using SPADE to record the re-
sulting provenance graph and store it in a Neo4J database. The
programs were executed using both static and dynamic loading;
we have focused on the statically linked case because the resulting
graphs involve less noise resulting from dynamic libraries loading.
We compared the resulting graphs with the baseline and with each
other and designed queries to detect the distinctive patterns associ-
ated with each syscall. In the rest of this section, we summarize the
resulting observations about SPADE.

SPADE retrieves information about syscall events directly from
the audit dispatcher, and it preserves the timestamps/event id order-
ing in Linux audit. Sometimes the Linux audit daemon uses multi-
ple log records to keep track of a single syscall event because it may
relate to more than one communication party. These log records are
grouped together by event id and ordered by timestamps. Multiple
audit log records with the same event id are treated as one audit
event by SPADE. Multiple events can happen in a very short time
(e.g. within 1 micro-second) so they might have the same times-
tamps. In this case, the event id provides additional information

about the order of events. The timestamps record the starting time
of a syscall event, while event ids are assigned to syscall events
in the order of their completion. This information helps discover
patterns that are sensitive to event ordering.

In SPADE, artifacts can either be invariant – that is, the same
instance represents an object as it is being modified – or versioned,
in which a new epoch is created each time a related system call
operates on the object. There are settings to track versions of files,
sockets, pipes and other artifacts. Those syscalls that may have
effects on versioning in SPADE provenance results are shown as
bold in Table 1 and 2. There will be an extra operation ‘update’
displayed in the resulting provenance information between the new
version and old version of the artifacts in the resulting provenance
graph, this provides extra patterns for those syscalls.

SPADE does not record explicit information about some ac-
tions. Two representative examples are the dup and mknod syscalls,
which do not touch the content of the artifacts. Instead they just cre-
ate or clone the internal path mapping elements. In the viewpoint
of SPADE, these actions do not affect the content of the artifacts
and so they are not recorded explicitly. Nevertheless, they do in-
directly affect the behaviour of subsequent syscalls. For example,
dup creates a new file descriptor of an artifact. This action may
have indirect effects on how subsequent syscalls are recorded since
processes can communicate with the same artifact with different
file descriptor. Another example is the kill command. It has no
immediately observable effect shown in the provenance graph, but
there should not be later events involving the killed process after
the kill syscall. (SPADE does track kill if units are enabled,
but we have not considered this configuration yet.) These examples
show that provenance may not completely reflect all execution at
runtime. Microbenchmarks can help to identify the mappings and
understand how different tools handle each syscall execution.

mprotect mmap read mmap write send sendto
sendfile sendmsg tee read readv
pread preadv recv recvfrom recvmsg
write writev pwrite pwritev

Table 1: I/O related syscalls in SPADE

SPADE allows the use of filters (Gehani et al. 2011) to reduce
the amount of graph information recorded. In a traditional oper-
ating system, I/O related events will contribute a large amount of
noise due to background or graphical processes. To make it eas-
ier to identify patterns for I/O related syscalls from the provenance
graph for microbenchmarking, we have used filters for eliminating
part of the noise in the provenance collection process. Table 1 sum-
marizes a list of I/O related syscall (which belong to category 2 in
the classification) for which we generate benchmarking provenance
patterns with the help of SPADE filtering. We consider file I/O as
well as socket and memory related I/O.

Cat 1 Cat 2 Cat 2a Cat 3 Cat 5
dup(2/3) create fchmod execve pipe

kill close truncate (v)fork pipe2
mknod(at) open ftruncate clone bind

setgid openat Cat 4 setuid connect
setre(s)gid unlink(at) link(at) setreuid listen

chown chmod symlink(at) setresuid accept
fchown(at) fchmodat rename(at) exit accept4

Table 2: Syscalls classification for SPADE

We have classified the syscalls handled by SPADE based on the
patterns they produce in the resulting graph. The classification is

shown in Table 2. Category 1 includes all those syscalls with no ob-
servable patterns from the current implementation of SPADE when
they are tested alone. Category 2 includes syscalls involving one
process and one artifact. Category 2a contains special cases of cat-
egory 2 syscalls that involve versioning information in the SPADE
result. Category 3 includes syscalls that involve inter-process com-
munications. Category 4 includes syscalls involving one process
and two artifacts. Category 5 includes syscalls with irregular prove-
nance patterns that do not fit any of the other categories.

We have written graph database query templates (using Cypher
query language) for category 2, category 3 and category 4, and
they are shown in the appendix (Listing 5, 6 and 7). There is
also a special query (Listing 8 in appendix) for querying syscalls
in category 2a. These patterns illustrate how SPADE generates
provenance graphs for each of the syscall events captured by the
Linux audit daemon. It can be used as a cross reference and testing
guideline to validate the processing behaviour of SPADE.

These results highlight some interesting differences in how
syscalls are handled in the current implementation. For example,
setuid syscall group and setgid syscall group are similar; the
only difference between them is that setuid calls target users and
the setgid calls target the user groups. Intuitively, they should be
treated similarly, but SPADE only records explicit provenance for
setuid calls in our tested version of implementation. (The current
version of SPADE records setgid calls.)

5. Benchmarking OPUS in Linux
We ran each benchmark program using OPUS for provenance col-
lection. As mentioned earlier, OPUS currently cannot operate on
statically linked programs because OPUS works by wrapping dy-
namically linked libraries. OPUS can only records the path of the
binary and other environmental variables when handling static bi-
naries. We therefore ran the benchmarks using dynamically linked
binaries, but this yields larger, noisier provenance graphs. We have
analysed the graphs to discern common patterns from the result set.

OPUS aims to provide completeness in two dimensions of
provenance collection: runtime context and versioning. In order
to provide more understanding about the state changes of objects
in the operating system, OPUS maintains a framework for record-
ing object versioning changes. When an object has changed and
a new epoch of that object is created, the provenance information
of that object splits into two series. The Provenance Versioning
Model (PVM) acts as the backbone for the OPUS tools when col-
lecting provenance in runtime. This makes OPUS more capable
to collect provenance for version changes of an object, providing
detailed information about the history of an object. OPUS groups
the provenance around an artifact and its related epoch.

Consider a situation in which multiple processes access the
same artifact concurrently. If a new syscall action is executed on
this artifact, it may affect the artifact’s status from the perspective
of other processes working on it. If so, then a new version of the
artifact should be created for the purpose of subsequent actions.
Also, the PVM makes it possible to determine ordering relation-
ships among actions because syscalls executing on older version of
an artifact always execute earlier than syscalls executing on a newer
version. On the other hand, OPUS does not follow a heavyweight
version-on-write model; new versions are only created when nec-
essary to reflect changes visible to other processes.

The classification of OPUS (shown in Table 3) is similar to
SPADE, except the additional elements describing those version-
ing information. The classification is done by treating multiple
version of the sample artifacts as one. Category 1 includes all
syscalls with no observable patterns using OPUS. Category 2 in-
cludes syscalls that operate on artifacts directly. Category 2a in-
cludes category 2 syscalls which affects meta data and content of

artifacts, which produces standard versioning information. Cate-
gory 3 includes syscalls that act on processes only. Category 4 in-
cludes syscalls affecting multiple artifacts and one process. Cate-
gory 5 includes all other syscalls that affect the artifacts themselves
but do not fit the patterns of the other categories. These categories
match the OPUS team’s own classification (OPUS Project).

Cat 1 Cat 2 Cat 2a Cat 3
dup pipe(2) tee pread(v) chmod setuid
dup2 listen send pwrite(v) chown setre(s)uid
dup3 connect recv sendto (f)truncate setgid
fork accept read sendmsg create setre(s)gid

vfork accept4 write sendfile close Cat 5
clone execve readv recvmsg open(at) rename(at)
kill mprotect writev recvfrom Cat 4 mknod(at)
exit mmap read fchmod fchmodat symlink link(at)
bind mmap write fchown fchownat symlinkat unlink(at)

Table 3: Syscalls classification for OPUS

Similar to SPADE result, we are only concerned with how the
category 1 syscalls affect the later events so we do not provide a
query for this category alone. For category 2, 2a, 3 and 4 a simple
matching query can discover the associated processes and artifact
or artifacts (taking versioning into account). Category 5 is the most
difficult category to query because each syscall has a different
pattern. Rules for identifying patterns for all categories are still an
on-going task for the benchmarking process. Versioning behaviour
for syscalls in category 2a, 3, 4 and 5 are all preserved by OPUS,
while category 1 and 2 are not related to versioning.

6. Comparison between SPADE and OPUS
The provenance results of SPADE and OPUS are different because
they aim to explain different perspectives of runtime behaviour.
OPUS concentrates on changes in the file system. It maps multiple
library calls into lower-level operations as specified by the PVM.
This helps to minimise information since actions with no observ-
able effect on the resulting provenance graph will be ignored. On
the contrary, SPADE concentrates on communication between pro-
cesses and artifacts across distributed hosts, and by default cap-
tures these operations without version updates. This setting illus-
trates the different goals of the two provenance collection tools,
and the resulting provenance graphs show different information.
SPADE’s provenance graph shows processes’ communications and
actions on artifacts, while OPUS’s provenance graph shows more
details on which process has contributed to which version of each
artifact and can answer more detailed questions on the ordering of
actions or which process contributed to each change. On the con-
trary, OPUS lacks distributed environment handling and initiator
recording so cannot answer questions regarding accountability of
actions if those requests are from another trust domain.

It is also important to study the filtering functionality of the
tools. The inclusion of all events in the audit log in the resulting
provenance graph will make it large and hard to analyse. In order
to avoid this problem, SPADE has provided two approaches to filter
results and narrow down the resulting provenance graph to a suit-
able size for analysis. These approaches are named filters (Gehani
et al. 2011) and transformers (Gehani et al. 2016). They share some
characteristics, but operate in different stages within SPADE. Fil-
ters work at collection time which allows SPADE to ignore part
of the audit log while generating the provenance graph. Trans-
formers work at the querying stage after the provenance graph has
been generated, and only the part concerned will be returned when
querying for the result. On the contrary, OPUS handles noise in a
different way. OPUS tries to abstract application behaviour from

the underlying operating system and provides a set of transforma-
tions that define every operation. The definition aims to identify
the key parts of each operation which contribute to its versioning
behaviour. Noise with no effect on the artifact’s versioning is ig-
nored. However, the versioning from PVM may be inflexible and
may lead to false alarms and result in missing information in the re-
sulting provenance graph. We can see that the different approaches
used by SPADE and OPUS aim to filter out different information
and thus give different perspectives on runtime behaviour.

7. Conclusions and Future Work
In this paper we present an expressiveness microbenchmark ap-
proach for provenance-tracking systems in the Linux environment.
The captured provenance patterns of syscalls provide a foundation
for generating formal rules to identify complicated process pat-
terns consisting of multiple syscalls in any permutations. By for-
mulating such rules using queries, we can automatically determine
whether such patterns exist in the runtime provenance of a large
application. This constitutes a step toward formalization of map-
pings in different settings, such as the mapping from Linux Au-
dit to SPADE provenance results or from C library calls to PVM
operations in OPUS. Such formalisms could help to validate the
provenance collection stages in these systems. In this paper, we tar-
geted two provenance-aware systems (both running in user space)
in order to demonstrate the feasibility of our approach. It could also
be useful for understanding and comparing other systems that use
kernel-based provenance recording such as Hi-Fi, LPM, or PASS.
Lessons learned from benchmarking on OPUS and SPADE could
be applied to improve such systems and make their behaviour more
uniform, or to develop provenance models for new platforms; ex-
tending our approach to handle other tools may help improve the
completeness of these systems or reveal further opportunities for
aligning or “normalizing” provenance across systems.

References
N. Balakrishnan, T. Bytheway, R. Sohan, and A. Hopper. OPUS: A

lightweight system for observational provenance in user space. In TaPP
2013, 2013.

A. M. Bates, D. Tian, K. R. B. Butler, and T. Moyer. Trustworthy whole-
system provenance for the Linux kernel. In USENIX Security 2015,
pages 319–334, 2015.

A. Gehani and D. Tariq. SPADE: support for provenance auditing in
distributed environments. In Middleware 2012, pages 101–120, 2012.

A. Gehani, D. Tariq, B. Baig, and T. Malik. Policy-based integration of
provenance metadata. In POLICY 2011, pages 149–152, 2011.

A. Gehani, H. Kazmi, and H. Irshad. Scaling spade to “big provenance”. In
TaPP 2016, Washington, D.C., 2016. USENIX Association.

G. Klein et al. seL4: Formal verification of an OS kernel. In SOSP 2009,
pages 207–220, New York, NY, USA, 2009. ACM.

L. Moreau et al. Special issue: The first provenance challenge. Concurrency
and Computation: Practice and Experience, 20(5):409–418, 2008.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer.
Provenance-aware storage systems. In USENIX Annual Technical Con-
ference, pages 43–56, 2006.

OPUS Project. POSIX mapping in PVM. http://www.cl.cam.ac.uk/-
research/dtg/fresco/opus/posix-pvm.pdf.

D. J. Pohly, S. E. McLaughlin, P. D. McDaniel, and K. R. B. Butler. Hi-
fi: collecting high-fidelity whole-system provenance. In ACSAC 2012,
pages 259–268, 2012.

A. Syscall Table

dup dup2 dup3 mknod mknodat
kill fork vfork clone exit

open openat pipe pipe2 execve
create close chmod fchmod fchmodat
link symlink linkat symlinkat setuid

setreuid setresuid setgid setregid setresgid
rename renameat truncate ftruncate unlink
unlinkat send sendto sendmsg sendfile

recv recvfrom recvmsg tee mprotect
mmap read mmap write chown fchown fchownat

bind connect listen accept accept4
read readv pread preadv
write writev pwrite pwritev

Table 4: Syscalls considered in this paper

B. The microbenchmark programs

Listing 1: Control Program

void main () {
/ / s y s c a l l goes here

}

Listing 2: Testing Program (Open / Close)

i n c l u d e <s t d i o . h>
i n c l u d e < f c n t l . h>

void main () {
c l o s e (open (” t e s t . t x t ” , O RDWR)) ;

}

Listing 3: Testing Program (Rename)

i n c l u d e <s t d i o . h>

void main () {
rename (” t e s t . t x t ” , ” n e w t e s t . t x t ”) ;

}

Listing 4: Combined Program

i n c l u d e <s t d i o . h>
i n c l u d e < f c n t l . h>
i n c l u d e <u n i s t d . h>

void main () {
i f (f o r k ()) {

s e t u i d (1 0 0 0) ;
c l o s e (c r e a t (” t e s t . t x t ” , S IRWXU)) ;
rename (” t e s t . t x t ” , ” o l d t e s t . t x t ”) ;
l i n k (” o l d t e s t . t x t ” , ” t e s t . t x t ”) ;
u n l i n k (” o l d t e s t . t x t ”) ;
chmod (” t e s t . t x t ” , S IRUSR | S IWUSR) ;
i n t fp = open (” t e s t . t x t ” , O RDWR) ;
w r i t e (fp , ”TEST” , 4) ;
r e a d (fp , NULL, 4) ;
c l o s e (fp) ;
t r u n c a t e (” t e s t . t x t ” , 0) ;

}
}

C. Cypher query example

Listing 5: Cypher query for Category 2 of SPADE

MATCH
(n1 :VERTEX)−[r :EDGE]−>(n2 :VERTEX)

WHERE
(
(n1 . t y p e = ’ P r o c e s s ’ AND n2 . t y p e = ’ A r t i f a c t ’)
OR
(n1 . t y p e = ’ A r t i f a c t ’ AND n2 . t y p e = ’ P r o c e s s ’)
)
AND r . o p e r a t i o n =’< s y s c a l l >’

RETURN
n1 , n2 , r

Listing 6: Cypher query for Category 3 of SPADE

MATCH
(n1 :VERTEX)−[r :EDGE]−>(n2 :VERTEX)

WHERE
n1 . t y p e = ’ P r o c e s s ’
AND n2 . t y p e = ’ P r o c e s s ’
AND r . o p e r a t i o n =’< s y s c a l l >’

RETURN
n1 , n2 , r

Listing 7: Cypher query for Category 4 of SPADE

MATCH
(n1 :VERTEX)−[r1 :EDGE]−>(n2 :VERTEX) ,
(n3 :VERTEX)−[r2 :EDGE]−>(n1 :VERTEX) ,
(n3 :VERTEX)−[r3 :EDGE]−>(n2 :VERTEX)

WHERE
n1 . t y p e = ’ P r o c e s s ’
AND n2 . t y p e = ’ A r t i f a c t ’
AND n3 . t y p e = ’ A r t i f a c t ’
AND r1 . o p e r a t i o n =’< s y s c a l l > r e a d ’
AND r2 . o p e r a t i o n =’< s y s c a l l > w r i t e ’
AND r3 . o p e r a t i o n =’< s y s c a l l >’

RETURN
n1 , n2 , n3 , r1 , r2 , r3

Listing 8: Cypher query for syscall with versioning of SPADE

MATCH
(n1 :VERTEX)−[r1 :EDGE]−>(n2 :VERTEX) ,
(n3 :VERTEX)−[r2 :EDGE]−>(n1 :VERTEX)

WHERE
n1 . t y p e = ’ A r t i f a c t ’
AND n2 . t y p e = ’ P r o c e s s ’
AND n3 . t y p e = ’ A r t i f a c t ’
AND r1 . o p e r a t i o n =’< s y s c a l l >’
AND r2 . o p e r a t i o n = ’ upda te ’

RETURN
n1 , n2 , n3 , r1 , r2

Figure 1: Provenance graph of Combined Program

