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Abstract 
A fundamental process during both embryo development and stem cell differentiation 

is the control of cell lineage determination. In developing skeletal muscle, many of the 

diffusible signaling molecules, transcription factors and more recently non-coding RNAs that 

contribute to this process have been identified. This has facilitated advances in our 

understanding of the molecular mechanisms underlying the control of cell fate choice. Here 

we will review the role of non-coding RNAs, in particular microRNAs (miRNAs), in embryonic 

muscle development and differentiation, and in satellite cells of adult muscle, which are 

essential for muscle growth and regeneration. Some of these short post-transcriptional 

regulators of gene expression are restricted to skeletal muscle, but their expression can also 

be more widespread. In addition, we discuss a few examples of long non-coding RNAs, 

which are numerous but much less well understood.  
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1. Introduction 

MicroRNAs (miRs or miRNAs) are short non-coding RNAs, a sub-group of a growing 

number of RNAs with regulatory functions, which also includes long non-coding RNAs 

(lncRNAs). miRNAs were first discovered in the nematode C. elegans where the miRNA, let-

7, controls the timing of cell differentiation during development. Subsequently, miRNAs have 

been found to be widespread in both animals and plants and have revolutionised our 

appreciation of the complexities underlying the regulation of gene expression [1]. 

MiRNAs are involved in post-transcriptional regulation of gene expression [2] and have 

been implicated in many biological processes, including development and adult tissue 

maintenance. Because they are often mis-regulated in pathophysiological conditions, 

miRNAs serve as biomarkers and potential therapeutic targets [3, 4]. Mature miRNAs are 

generated from longer primary transcripts, further processed to yield the short mature 

miRNA, which is then incorporated into RISC (RNA Induced Silencing Complex) [5]. RISC 

guides miRNAs to partially complementary sequences usually found in the 3’-UTR 

(untranslated region) of target mRNAs, although target sequences can be located in 5’-

UTR and even within the open reading frame. Interaction between miRNAs and their targets 

leads to translational block and often, but not always, the degradation of the transcript. A 

high degree of complementarity between the miRNA ‘seed’ sequence (nucleotides 2-8 at the 

5’-end) and its target favours target recognition [6]. 

Several algorithms predict putative target genes for a known miRNA in the genome, but 

experimental validation of targets is critical in order to evaluate functional implications of any 

given miRNA:target gene interaction.  Mathematical modelling of experiments with synthetic 

reporters suggests that miRNAs confer precision to protein expression by reducing noise. 

Noise reduction is enhanced for genes targeted by multiple miRNAs and for genes 

expressed at low levels [7]. Therefore, although miRNA action often leads to only a 

moderate reduction of target gene expression, this can confer robustness to biological 

processes [7-9]. 
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1.1 MiRNA biogenesis 

MiRNAs are small (~18 to 22nt) non-coding RNAs, which are present in different 

genomic contexts (Fig. 1). In animals, many of the known miRNAs are located within a 

protein-coding host gene, usually within an intron but in some cases within an exon [10]. 

Both 'exonic' and 'intronic' miRNAs are transcribed along with the host gene by RNA 

polymerase II. In addition, miRNAs can be produced from within long non-coding transcripts 

[10] (see section 4.). Alternatively, miRNAs can be generated independent from a host gene 

using their own regulatory sequences and promoter, so-called intergenic miRNAs. Often, 

several miRNAs are encoded in close proximity of each other, constituting a polycistronic 

transcription unit [11]. Polycistronic miRNAs from the same cluster generally have 

comparable tissue expression profiles. However, sometimes not all members from a cluster 

share the same expression profile, this is likely due to further regulation of the primary 

transcript to allow differential processing and expression of the miRNAs within the cluster.  

Biogenesis (Fig. 1) begins with the synthesis of the primary miRNA (pri-miRNA) by RNA 

polymerase II [12]. The pri-miRNA has a characteristic hairpin stem-loop structure with 

imperfect complementarity in the stem region, resulting in mismatches and bulges. The pri-

miRNA is cleaved by the Microprocessor complex, which comprises Drosha, a ribonuclease 

III enzyme, and DGCR8 (DiGeorge syndrome critical region 8 in human) or Pasha in flies 

and worms, a double-stranded RNA binding protein [13-18]. 

The basal junction between single-stranded RNA and double-stranded RNA, and the 

apical junction, which links to the terminal loop of the pre-miRNA, are two important regions 

for determining accurate and efficient cleavage by Drosha [19, 20]. The liberated stem-loop 

containing RNA (~60 to 110nt) is known as precursor miRNA (pre-miRNA) and is exported 

to the cytoplasm by Exportin-5, a RanGTP-dependent double-stranded RNA-binding protein 

located on the nuclear membrane [21-23].  

Further aspects of regulation of pri-miRNA processing include transcription factors that 

interact with Drosha and/or certain pri-miRNAs [12, 24]. For example SMAD proteins, 
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transcriptional effectors of TGFb/BMP signaling, can bind to pri-miRNAs to control their 

processing by Drosha [25, 26] (reviewed in [27]). The efficiency of Drosha-mediated 

processing is important for determining miRNA abundance. Thus, several mechanisms exist 

to control Drosha expression, activity and specificity, including the reciprocal regulation 

between Drosha and DGCR8. Post-translational modification of the Microprocessor complex 

regulates stability, nuclear localisation and processing activity [28].  

In the cytoplasm, the pre-miRNA undergoes further processing by Dicer, a Ribonuclease 

III enzyme, and TRBP complex (or Loqs in Drosophila), which removes the terminal loop, 

yielding a short double-stranded RNA molecule (~22nt) with a two-base overhang on the 3’ 

end [29-31]. Dicer/TRBP facilitates activation of the RNA-induced silencing complex (RISC). 

The miRNA duplex is incorporated into RISC, unwound and eventually one strand remains 

as the mature miRNA and the other strand is excluded. The relative thermodynamic stability 

of the two ends of the duplex determines which strand is incorporated; the strand whose 5’ 

terminal nucleotides are less stable is usually preferred and is incorporated more efficiently 

[32, 33]. However, in some cases, sequences derived from both arms of the hairpin can 

have biological function [34, 35]. Moreover, the dominant miRNA produced may switch 

between strands in different developmental stages, tissues or during evolution [36]. 

Therefore, a previous nomenclature where the less predominant form was denoted by an 

asterisk, as miRNA*, has been altered. Instead, miRNAs originating from either the 5’ or 3’ 

ends of the pre-miRNA hairpin are now annotated as the -5p and -3p miRNAs [37]. 

An alternative and less common pathway for miRNA biogenesis bypasses cleavage by 

the Microprocessor complex containing Drosha/DGCR8. Instead these Mirtrons, which have 

been discovered in mammals, C. elegans and Drosophila, are located within introns of 

protein coding host genes and use the splicing machinery to generate miRNAs [38-40].  

 

1.2 Mechanism of action / function 

The small RNA duplex generated by Dicer/TRBP is loaded onto an Argonaute (Ago) 

protein to form the RISC [41, 42]. There are four closely-related Ago proteins (Ago1-4) that 
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form RISC (Fig. 1) [43], which also includes the GW repeat-containing protein GW182, 

known as TNRC6A-C in human [44]. Ago proteins determine which of the miRNA strands, -

5p or -3p, will be incorporated, as indicated above the thermodynamic stability of the duplex 

ends is important. Once the mature miRNA has been incorporated, it guides RISC to target 

complementary sequences usually present in the 3’-UTR of mRNAs [45]. The interaction of 

the miRNA with its target site, mediated by Watson-Crick base-pairing, requires 

thermodynamic stability (i.e. minimal folding free energy) and site accessibility [6, 46]. 

Animal miRNAs typically have imperfect complementarity with their target site, and the 

degree of complementarity influences the outcome of the interaction between the miRNA 

and its target sites. Usually protein translation is repressed and the mRNA is subsequently 

de-capped, de-adenylated and degraded. Although the relative contribution of inhibition of 

translation and degradation of mRNA varies [47], it appears that these processes are linked 

[48-51]. Overall, miRNAs cause post-transcriptional repression of gene expression, with 

mRNA destabilisation the dominant effect of miRNAs [52].  

       To understand the role of miRNAs in different biological systems and contexts, many 

approaches aim to either inhibit or enhance miRNA function (Fig. 1). In zebrafish embryos, 

inhibition of miRNA function is achieved by microinjection of synthetic oligonucleotides, such 

as morpholinos. These can either target Drosha-cleavage sites or target the hairpin loops of 

pre-miRNAs to inhibit Dicer interactions, or they hybridize with target sites in the 3’-UTR to 

prevent interactions with specific miRNAs [53, 54]. Morpholinos that directly target the 

mature miRNA prior to Ago-incorporation have also been used, for example to study muscle 

development in zebrafish [55]. In chick embryos, synthetic miRNA inhibitors, known as 

antagomiRs can be delivered by targeted microinjection to investigate the role of miRNAs in 

a particular tissue. Target-protector morpholinos have also been used to interfere with 

specific miRNA:target interactions in chick somites [56]. In mice, miRNA function can be 

assessed through genetic knockout (examples in section 2.3), or by over-expression of pre-

miRNAs, or the introduction of synthetic miRNA mimics that resemble the mature miRNA 
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duplex [57, 58]. These tools have improved our understanding of the biological function of 

miRNAs in vivo. 

 

1.3 Target identification 

Target recognition by RISC is largely determined by the miRNA ‘seed’-sequence, six to 

seven nucleotides spanning nucleotides 2-7/8, at the 5’-end of the miRNA [59]. Therefore, 

targets can be predicted by algorithms, which locate sequences complimentary to the seed 

in the 3’-UTR of mRNAs. Complementary sites at the 3’ end of the miRNA, usually 

nucleotides 12-17, are also important [60, 61]. However, there are exceptions and targeting 

of miRNA to non-canonical sites with seed-mismatches has also been reported [62, 63]. 

Thus, understanding miRNA targeting remains a challenge needing further investigation. 

Computational target prediction can identify potential miRNA:mRNA interactions, 

although different databases, such as TargetScan [64], miRanda [65], Pictar [66], miRmap 

[67], utilise different algorithms and produce different lists of predicted targets. These can be 

narrowed down by comparing outputs of different search algorithms and/or using GO-term 

analysis, but ultimately predicted targets include false positives and have to be validated 

experimentally and examined for their biological function. Validation often uses luciferase 

assays to confirm miRNA target interactions in vitro: candidate 3’-UTR sequences are 

placed downstream of a firefly luciferase gene and co-transfection with miRNA mimics leads 

to reporter gene repression [68, 69]. Confirmation of effects on candidate target genes in 

vivo, in a tissue of interest, involves the analysis of endogenous gene expression levels after 

miRNA inhibition or overexpression.  

Experimental approaches to identify targets typically quantify effects on gene expression 

after miRNA manipulation, either enhancing or blocking function (indicated in green or red in 

Fig. 1) (for example [69]. After such manipulations, differential down regulation or de-

repression of candidate target mRNAs or proteins can be assessed by microarrays, RNA 

sequencing or proteomics. Such genome-wide analysis has the potential to capture many 

targets for any given miRNA, although some may be missed if they fall below a threshold of 
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sensitivity (false negatives). In addition, any candidates have to be validated as described 

above. 

Alternatively, miRNA:mRNA target interactions can be identified by isolating mRNAs 

associated with RISC. Several approaches capture miRNA:mRNA complexes by 

immunoprecipitation or pull-down methods followed by sequencing. Co-precipitation with 

Ago identifies the bound miRNA and mRNAs [70]. In addition, UV crosslinking of RNA-

protein complexes combined with an RNase step, so-called HITS-CLIP, accurately identifies 

miRNA binding sites [71]. Similar techniques, such as PAR-CLIP and CLASH, either use 

photo-reactive 4-thiouridine or introduce a ligase step to increase the efficiency of capturing 

interactions [72-74]. Through direct sequencing these approaches identify specific miRNAs 

together with a target mRNA for any given site of Ago binding [73]. Furthermore, 

miRNA:mRNA target interactions can be identified by streptavidin pull-down of biotinylated 

synthetic miRNAs [75].  Unbiased identification of miRNA:mRNA target interactions on a 

genome-wide scale offers major advantages for capturing non-canonical interactions. The 

next challenge will be to utilise the data to confirm the functional significance of specific 

interactions in a biological context.  

 

2. miRNAs in vertebrate muscle development 

2.1 Myogenesis in vertebrate embryos  

Skeletal muscle serves as a paradigm to investigate molecular mechanisms that 

determine cell fate decisions and subsequent cellular differentiation programmes. Genetic 

approaches in mice and zebrafish, together with classic embryology and gene function 

analyses in chick have all contributed to our current understanding of the signals and gene 

networks that are crucial for vertebrate myogenesis [76].  

In vertebrate embryos, skeletal muscle of the trunk and limbs are derived from somites, 

transient paired segments that form in a regular sequence along the axis, on either side of 

the neural tube [77]. In response to extrinsic signaling molecules, including Wnt, Shh and 

Notch, the initially epithelial somite undergoes morphogenetic changes and differentiates 
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[78-80]. On the ventral side, cells dissociate to form the sclerotome, whilst the 

dermomyotome on the dorsal side remains epithelial and contributes myocyte progenitors to 

the myotome. These progenitors express the paired-box transcription factor Pax3, which is 

important for the entry into the myogenic programme [81]. Myotome formation is initiated at 

the epaxial lip of the dermomyotome, abutting the neural tube [82]. Interactions with 

migrating neural crest cells triggers translocation of dermomyotomal lip progenitors into the 

myotome [80], where they upregulate myogenic regulatory factors (MRFs). The MRFs 

initiate the myogenic differentiation programme, of which activation of miRNA expression by 

Myf5 and MyoD is an intricate part [83]  (see below).  

Whole mount in situ hybridization identified numerous miRNAs expressed in developing 

somites of zebrafish, Xenopus and chick embryos [84-86]. Only a subset of these has been 

investigated in more detail. Interestingly, despite a high degree of sequence conservation, 

the timing and location of miRNA expression is not always conserved across vertebrates 

[87]. For example, miR-1 is expressed in skeletal muscles of zebrafish, medaka, Xenopus, 

chick and mouse; however, its additional expression in cardiomyocytes is seen only in 

amniotes: chick and mouse  [56, 83, 87].  

 

2.2 Cell based models to study the role of miRNAs in myogenesis 

C2C12 cells are a widely used model for skeletal muscle cell differentiation and they have 

been useful to characterize candidate miRNAs and their targets. Undifferentiated C2C12 

cells express Myf5 and MyoD, however the ability of these MRFs to induce differentiation is 

blocked under growth conditions. The removal of growth factors, either through depletion or 

by switching cells into low serum containing medium leads to myoblast differentiation.  

This cell-based system has been used extensively to study the role of myomiRs, a group 

of miRNAs enriched in, or restricted, to striated muscles [88, 89] (Fig. 2). MyomiRs include 

the miR-1 and miR-133 families, comprising miR-1-1/miR-1-2/miR-206 and miR-133a/miR-

133b. These families are encoded by three loci in mouse and human, and by four loci in 

chicken. The members of each family have identical seed sequences and because they 



	 10	

differ in only a few nucleotides outside the seed region, they are assumed to be functionally 

redundant. One member of the miR-1 family is usually co-expressed with one member of the 

miR-133 family, from the same primary bi-cistronic transcript [83]. MRFs regulate expression 

of miR-1, miR-206 and miR-133 in C2C12 myoblasts [90, 91], where they affect the balance 

between differentiation and proliferation through interactions with multiple targets.  

Early work showed that miR-1, miR-206 and miR-133 expression increases during C2C12 

myoblast differentiation [92-94]. The gap junction protein, connexin 43 (Cx43), and histone 

deacetylase 4 (HDAC4), a repressor of muscle gene expression, were identified as direct 

targets for miR-1 [92, 93]. Similarly, miR-1 and miR-206 have been shown to downregulate 

Pax7, in both C2C12 cells and in primary myoblasts, by directly targeting its 3’-UTR. Pax7 is 

co-regulated by miR-486 during myoblast differentiation [95, 96]. Although expression is not 

completely abolished but reduced by approximately 30-60% by individual miRNAs, 

interactions with multiple target genes, some of which have multiple target sites and can 

sometimes respond to multiple miRNAs, provide a mechanism through which miRNAs 

become functionally significant. The example above illustrates how miR-1, miR-206 and 

miR-486 promote myogenic differentiation. 

In addition, miR-133 was found to promote C2C12 proliferation by targeting Serum 

Response Factor (SRF) [93]. More recent reports showed that miR-133 inhibits myoblast 

proliferation by repressing Cyclin D1 (CCND1) and inducing G1 phase arrest [97]. 

Furthermore, proliferation is negatively regulated by miR-133 targeting of FGFR1 and 

PP2AC, which regulate phosphorylated ERK MAP kinase levels [98]. Thus, the roles of miR-

133 with respect to myoblast proliferation may be context dependent; moreover, these 

regulatory interactions need to be confirmed in vivo. 

Differential microarray analyses of C2C12 cells, in which miR-206 was overexpressed or 

inhibited revealed many potential direct targets including a subunit of DNA polymerase alpha  

[94] as well as Meox2, RARB, Fzd7, MAP4K3, CLCN3, NFAT5, and the chromatin 

remodelling factors Smarcd2 and Smarcb1 [69]. The sustained expression of some of these 

validated miR-1 and/or miR-206 targets inhibits C2C12 cell myogenesis and leads to 
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aberrant expression of genes related to alternative cell fates, such as chondrogenesis [69]. 

This is similar to findings in embryonic stem (ES) cells where miR-1 and miR-133 promote 

mesoderm formation and repress non-muscle cell fates, in part mediated by repression of 

Delta-like 1 (Dll-1), a Notch ligand [99].  

Microarray analysis identified miRNAs differentially expressed during C2C12 myogenesis 

[100]. Many of the genes encoding these miRNAs contained binding sites for YY1, a 

ubiquitously expressed transcription factor. Further analysis revealed that YY1 inhibits miR-

1/miR-133 expression in C2C12 myoblasts; YY1 itself is a miR-1 target, thus forming a feed-

back circuit. Taqman low density arrays (TLDA) of human affinity purified myoblasts 

identified additional miRNAs, that are either up- or down-regulated during myogenic 

differentiation. Transcriptomics performed in parallel was combined with bioinformatics to 

identify a number of putative targets [101].  

 

2.3 The role of miRNAs in myogenic development and tissue maintenance  

Genetic approaches in mice first suggested the importance of miRNAs in vertebrate 

muscle development (Fig. 3). The conditional deletion of Dicer in muscle causes perinatal 

lethality with reduced skeletal muscle mass and abnormalities in muscle fibre morphology 

[102]. 

Because of their striking expression, much attention has focused on the miR-1 and miR-

133 families. In both mouse and chick embryos the MRFs regulate their expression, together 

with myocyte enhancer factor-2 (MEF2) [83, 103]. Surprisingly, despite sequence 

conservation and conservation of myomiR expression across vertebrates, including human 

[104], the double-knockout of the miR-1 and miR-133 families has no overt effect on skeletal 

muscle development [105] and muscle is grossly normal in a KO of the miR-206/miR-133b 

cluster [106]. However, mice lacking miR-133a develop an adult onset centronuclear 

myopathy [107].  Furthermore, miR-133 mediated repression of Prdm16 regulates cell fate 

choice between muscle progenitors and brown adipocytes, two related lineages [108, 109].  

In miR-133a1-/-/miR-133a2-/+ mice, the brown and thermogenic gene programs are enhanced 
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in white adipose tissue, leading to increased insulin sensitivity and glucose tolerance [110]. 

In these mice, skeletal and cardiac muscle is not affected, due to the remaining miR-133 

function. More generally, the dysfunction of brown fat in ageing and obesity coincides with 

reduced expression of Dicer leading to global miRNA downregulation. This suggests fine-

tuning gene expression is important for healthy tissue maintenance [111]. 

In zebrafish, morpholino mediated knock-down of miR-1 and miR-133 disrupts actin 

organization and sarcomere assembly during muscle differentiation [55].  The activity of 

miR-1 and miR-206 in muscle also affects angiogenesis by modulating the levels of Vascular 

endothelial growth factor A (VegfA), which signals to adjacent endothelial cells [112]. Thus, 

miRNAs can regulate cross-tissue signaling. In somites of chick embryos, the targeted 

microinjection of antagomiRs revealed that miR-206 modulates the progenitor to committed 

myoblast transition by negatively regulating Pax3 during early myogenesis [56]. AntagomiR-

mediated inhibition also shows that miR-1/miR-206 and miR-133 orchestrate the down-

regulation of BAF60A and BAF60B, enabling preferential incorporation of BAF60C into the 

Brg1/BAF chromatin remodelling complex during myoblasts differentiation [113]. The 

phenotypes resulting from genetic or transient manipulations of the myomiR families in 

different species and tissues highlight their varied and context dependent functions.  

In addition to regulation of VegfA mentioned above, miRNAs have been found to 

regulate other signaling molecules and pathways and may act to refine morphogen gradients 

(reviewed in [114]). For example, interference with miR-30 and miR-214 function in zebrafish 

leads to mis-regulation of the Hedgehog pathway and affects the specification of superficial 

slow-muscle fibres. This results from targeting the transmembrane receptor smoothened 

[115] or su(fu) [116], a negative regulator of Hedgehog signaling. In mouse primary 

myoblasts, polycomb group proteins repress transcription of miR-214, an intronic miRNA. 

Upon differentiation and recruitment of MRFs, miR-214 transcription is activated. miR-214 

targets Ezh2, the catalytic subunit of PRC2 polycomb complex, thus promoting 

differentiation through negative feed-back [117]. 

The Bone Morphogenetic Protein (BMP) signalling pathway, which inhibits myogenic 
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differentiation, is negatively regulated by miR-26a [118]. Exogenous miR-26a promotes 

myoblast differentiation, while miR-26a inhibition delays both, differentiation in neonatal mice 

and regeneration after injury, due to de-repression of Smad1 and Smad4 expression.  

In the zebrafish Myf5 locus an intronic miRNA, miR-3906 or miR-In300, was identified to 

silence dickkopf-3-related gene (DKK3a). DKK3a in turn interacts with the membrane 

receptor integrin alpha 6b (ITGA6b) to activate Myf5 promoter activity via p38 signaling [119, 

120]. In addition, both miR-3906 and miR-203a impair fast muscle differentiation by targeting 

Homer-1b or Dmrt2a respectively [121, 122]. 

Myotube maturation and myofiber hypertrophy is modulated by miR-128a, which is highly 

expressed in developing somites, brain and differentiating skeletal muscle [84] and regulates 

genes involved in insulin signaling, including Insulin receptor (Insr), Insulin receptor 

substrate 1 (Irs1) and Phosphatidylinositol 3-kinases regulatory 1 (Pik3r1) [123]. In muscle 

side population cells, mesenchymal cells with myogenic potential, miR-128a regulates genes 

involved in adipogenic, osteogenic and myogenic fates, including PPARγ, Runx1 and Pax3 

[124]. Thus, it was suggested that miR-128a maintains quiescence in muscle side population 

cells by inhibiting their differentiation into multiple cell types. 

 

3. miRNAs in adult muscle stem cells 

3.1 Introduction to Satellite cells 

Satellite cells (SCs), a self-renewing population of adult stem cells, facilitate the long-

term regenerative capacity of skeletal muscle [125]. (See review by Zammit in this issue.) 

SCs were initially identified based on their morphology and position using electron 

microscopy. They are located outside the plasma membrane of multinucleated muscle cells 

and beneath the basal lamina surrounding each myofiber [126].  In adult muscle, SCs are 

normally quiescent and characterized by expression of the paired box transcription factor 

Pax7 [127]; although the SC population is heterogeneous and in different anatomical 

locations, i.e. trunk muscles and diaphragm, some of the cells express Pax3 [128-130].  
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In response to stimuli, such as muscle injury, SCs leave their quiescent state, become 

activated and contribute to the muscle repair process. SC activation is accompanied by 

proliferation, expression of MRFs and migration. Some SCs undergo asymmetric cell 

division to generate another stem cell, which re-enters the niche, as well as a committed 

myogenic cell [131, 132]. In ageing or diseased muscle, SC activity is reduced, decreasing 

the regenerative potential of skeletal muscles. This can lead to loss of skeletal muscle mass, 

quality and strength. MiRNAs have been identified as potential therapeutics or therapeutic 

targets which could alleviate some of these effects [3, 4].  

 

3.2 microRNAs in Satellite Cells 

MiRNAs are important for skeletal muscle regeneration as they help to maintain SC 

quiescence, but are also involved in SC proliferation and differentiation [133] (Fig. 4). The 

myomiRs, miR-1, miR-206 and miR-133 are up-regulated in SCs activated in vitro. This 

correlates with enhanced SC differentiation, potentially mediated through direct targeting 

of Pax7 and Pax3 mRNA, as indicated by a 50% reduction in expression of 3’-UTR reporter 

constructs [95, 134]. Interestingly, MyoD−/− SC-derived myoblasts display enhanced survival 

and accelerated growth rates, correlating with delayed terminal differentiation and muscle 

regeneration. The resistance of MyoD−/− SCs, which can self-renew, to apoptosis is at least 

in part due to the impaired activation of miR-1 and miR-206 expression in these cells. As a 

result Pax3, a direct miR-1/miR-206 target, is de-repressed and activates anti-apoptotic 

genes, including Bcl2 [134]. 

SC-derived myoblasts lacking the miRNA biogenesis enzyme, Dicer, have also been 

examined. Not unexpectedly, they display reduced expression levels for several miRNAs: 

miR-1, miR-206, miR-133, miR-22 and miR-24, and their growth in vitro is affected [134]. It 

has also been demonstrated that SCs lacking Dicer escape quiescence and become 

activated precociously [135]. Loss of Dicer affects miR-489 expression, which is highly 

enriched in quiescent SCs; its main function is to maintain the quiescent state by targeting 

the oncogene Dek, thus preventing cell cycle entry [135]. Similarly, miR-195 and miR-497 
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are involved in the maintenance of quiescence and induce cell cycle arrest by targeting cell 

cycle genes, Cdc25 and Ccnd [136]. 

Some quiescent SCs express high levels of Pax3, which becomes resistant to miR-206 

regulation due to alternative polyadenylation and a shorter 3’-UTR [137]. Indeed, SC-specific 

knock-out in mice suggest that miR-1 and miR-206 expression is repressed by TRAF6/c-

JUN signaling to maintain SCs quiescence [138].  Another miRNA important for maintaining 

quiescence is miR-31, which is sequestered in mRNP granules together with mRNAs. The 

storage of miR-31 together with Myf5 mRNA prevents its translation, thus halting myogenic 

commitment but rendering SCs poised for activation [139]. Interestingly, abnormal levels of 

miR-31 are present in activated Mdx-derived SCs	[140].  In dystrophic muscle of zebrafish, 

mice and human the SRF-dependent intronic miR-199a-5p is elevated. Effects on cell size, 

proliferation and differentiation are mediated by miR-199a-5p targeting of WNT pathway 

components, including FZD4, JAG1 and WNT2 [141]. 

At the onset of SC differentiation, Pax3 is negatively regulated by miR-27b [142]. 

Expression of miR-27b in turn is inhibited by Pitx2c, the most highly expressed isoform of 

the transcription factor Pitx2 in myoblasts and a mediator of canonical Wnt signaling [143-

145]. Interference with miR-27b function results in continued Pax3 expression, more 

proliferation and delayed onset of differentiation [142].  The exquisite regulation of Pax3 in 

SCs mirrors the fine-tuning of this key myogenic regulator during the progenitor to myoblast 

transition by miR-206 or miR-27b in chick and mouse embryos respectively [56, 142]. 

Additional miRNAs that are negatively regulated by Pitx2c include miR-15b, miR-23b, 

miR-106b and miR-503. This promotes cell proliferation in early-activated SCs as it allows 

the expression of key cell cycle regulators, including CyclinD1 and CyclinD2, in myogenic 

cells. Moreover, Pitx2c enhances Myf5 expression in SCs by regulating miR-106b, 

promoting the commitment to a myogenic cell fate [146]. In addition, the mTOR-regulated 

miR-125b, which declines during myogenesis has been shown to negatively modulate 

muscle regeneration in mice by targeting IGF-II (insulin-like growth factor 2) [147]. 
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Muscle regeneration is impaired in MEF2A knockout mice due to mis-regulation of the 

largest known mammalian miRNA cluster, the Gtl2-Dio3 locus. Two miRNAs in this locus, 

miR-410 and miR-433, enhance skeletal muscle regeneration by targeting secreted Frizzled-

related proteins (sFRPs), inhibitors of WNT signalling [148]. In injured Mef2a knockout 

muscle sFRP expression is upregulated and Wnt activity is attenuated. Subsequent 

conditional knockouts of three of the four MEF2 genes in SCs [149] showed that MEF2A is 

not absolutely required for regeneration, although its role in SCs is revealed by the 

observation that a double knockout of C and D does not have a regenerative 

phenotype, whereas a triple knockout of A, C and D does. In addition, MEF2A may be 

important in non-SCs where it could elicit non-cell autonomous effects during the 

regeneration process, including modulation of Wnt signaling. 

In differentiated myofibres two intronic miRNAs, miR-208b and miR-499, control the slow 

myofiber gene programme (Fig. 4) at the expense of fast muscle gene expression by 

inhibiting Sox6, a transcriptional repressor. Double knockout mice, miR-208b−/−; miR-499−/−, 

display substantial loss of β-MHC and type I (slow) myofibers and a concomitant increase of 

fast type myosin isoforms [89]. In zebrafish, miR-499 mediated repression of Sox6 also 

governs the slow muscle programme. Deletion of target sites in the Sox6 3’-UTR in the 

context of a transgenic EGFP reporter gene led to its ectopic expression in slow-twitch 

fibres. Conversely ectopic expression of miR-499 resulted in reduced Sox6 protein in fast-

twitch fibres, although the consequence for fast/slow specific gene expression, or a loss-of-

function phenotype, was not investigated [150].  

The myogenic capacity of myoblasts decreases with age and expression of 

numerous miRNAs is disrupted in ageing muscle [151, 152]. Comparative analysis of miRNA 

expression profiles identified reduced abundance of miR-431 in aged myoblasts. Smad4, a 

downstream effector of TGFβ signalling, which inhibits myogenesis, is a direct target. 

Injections of miR-431 improved regeneration in a muscle injury model in mice, whereas miR-

431 inhibition impaired the myogenic capacity of human skeletal myoblasts [151]. Thus, miR-
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431 acts alongside miR26a, which promotes differentiation of myoblasts, both in vitro and in 

vivo, by targeting the transcription factors Smad1 and Smad4 [118]. In addition, expression 

of miR-181a and its target gene, sirtuin1 (Sirt1), are disrupted in skeletal muscle from old 

mice [152]. Similarly, expression of miR-143, a regulator of the insulin growth factor-binding 

protein 5 (Igfbp5), is reduced in SCs from old mice. It is proposed that downregulation of 

miR-143 may act as a compensatory mechanism during aging to improve myogenesis [153]. 

Overall it seems that the dysregulation of miRNA:mRNA target interactions contributes to the 

age-related changes in SC function. 

 

4. Long noncoding RNAs in skeletal muscle 

Long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression, 

they are numerous but are often poorly conserved at sequence level [154]. They have 

different modes of action and their functions in muscle development, differentiation and 

disease are currently emerging (reviewed in [155, 156]).  

The classic lncRNA, H19, which is imprinted and expressed exclusively from the 

maternally inherited allele, is strongly expressed in mesoderm and endoderm during 

embryogenesis. After birth, H19 is maintained in skeletal muscle, where it generates the 

conserved miR-675-3p and miR-675-5p. These target Smad transcription factors, mediators 

of BMP signaling and inhibitors of muscle differentiation [157, 158]. 

Another muscle-specific long noncoding RNA, linc-MD1, acts as a competing 

endogenous RNA (ceRNA) by sequestering miR-133; thereby it regulates muscle-specific 

gene expression during myoblast differentiation [159]. An intergenic lncRNA encoded next to 

the MyoD gene, LncMyoD, is directly activated by MyoD and plays a role in myoblast 

differentiation. LncMyoD binds to IGF2-mRNA-binding protein 2 (IMP2) and negatively 

regulates IMP2-mediated translation of proliferation genes [160]. Similarly, MUNC (MyoD 

upstream noncoding) is located upstream of MyoD and specifically expressed in skeletal 

muscle. MUNC acts in trans on multiple promoters to increase myogenic gene expression 

during differentiation [161]. Another MyoD induced lncRNA is Dum, which promotes 
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myoblast differentiation and muscle regeneration by silencing its neighbouring gene, Dppa2, 

in cis, via intrachromosomal looping between the Dum locus and the Dppa2 promoter [162]. 

It turns out that some RNAs originally categorised as non-coding actually encode short 

peptides. For example, myoregulin (MLN) is a micropeptide encoded by a skeletal muscle-

specific, putative long noncoding RNA. MLN interacts directly with SERCA, a pump that 

regulates Ca(2+) uptake into the sarcoplasmic reticulum, and inhibits its function [163]. 

Another peptide called DWORF (dwarf open reading frame), also encoded by a long 

noncoding RNA, enhances SERCA activity by displacing inhibitors, including myoregulin. 

Together, these two antagonistic peptides are crucial for the regulation of skeletal muscle 

contractility [164]. 

Overall, regulatory RNA molecules, whether short, long, non-coding or producing short 

peptides, are certain to have more surprises in store and their importance for development, 

differentiation and regeneration should not be underestimated. 
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Figures and legends 

 

Figure 1. miRNA biogenesis, experimental approaches to modulate miRNA activity and 

principles of miRNA-mRNA interactions. MiRNAs are transcribed by RNA polymerase II from 

intergenic, intronic or polycistronic loci to form primary miRNAs (pri-miRNAs) which are 

cleaved by Drosha/DGCR8 to form precursor miRNAs (pre-miRNAs). Mirtrons by-pass 

Drosha/DGCR8 and are spliced to form pre-miRNAs. Pre-miRNAs are exported by Exportin-

5 out of the nucleus into the cytoplasm and cleaved by Dicer/TRBP to form mature miRNA 

duplexes. These are incorporated into Argonaute (Ago) protein to form an RNA-induced 

silencing complex (RISC). The duplex is unwound and a single miRNA strand is retained, 

which guides RISC to target mRNAs, resulting in translational repression and/or mRNA 

destabilisation/degradation. Multiple approaches are used to modulate miRNA activity: 

inhibition of miRNA production or function with Drosha-site blockers, Dicer-site blockers, 

target-site blockers or anti-sense miRNA olionucleotides.  miRNA activity can be enhanced 

by over-expression of pre-miRNA or by introducing miRNA mimics. Metazoan miRNAs 

interact with mRNA targets by imperfect complimentary base pairing usually to the mRNA 3’-

UTR. Perfect pairing of nucleotides 2-8 in the 5’ of the miRNA, the ‘seed’ region, is important 

for miRNA-mRNA interaction. Bulges in the central region, mismatches in the seed region, A 

or AU nucleotides at positions 1 or 9 and 3’ complimentary sites at 12-17 nucleotides can 

greatly affect miRNA function. For more details see references cited in section 1. 

 

Figure 2. Schematic of miRNAs and their targets in C2C12 myoblasts, with a focus on the 

myomiRs. Target genes that enhance proliferation in absence of miR-1, miR-206 and miR-

133, which are not expressed in growing C2C12 cells, are indicated in the left panel.  After 

cells reach a high density, growth factors are depleted and the MRFs become activated. 

This leads to expression of miR-1, miR-206, miR-133 and miR-486, suppression of the 

target genes indicated and to differentiation. See section 2.2 for references and more 

details. 
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Figure 3. miRNAs in embryonic myogenesis, four vertebrate model species, mouse, chicken, 

frog and fish, have been used to study miRNAs in muscle development. miRNAs and their 

validated targets are indicated, together with the biological effect. Pointed arrows represent 

activation and blunt arrows represent inhibition. See section 2.3 for references and more 

details. 

 

Figure 4. miRNAs in SCs and myofibre differentiation. Muscle homeostasis and regeneration 

depends on SCs whose quiescence and activation is tightly controlled. miRNAs and their 

respective targets are shown, as well as some upstream transcriptional regulators. Sharp 

arrows represent activation and blunt arrows represent inhibition. See section 3.2 for 

references and more details. 
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