

Edinburgh Research Explorer

Linked Data Notifications: A Resource-Centric Communication
Protocol
Citation for published version:
Capadisli, S, Guy, A, Lange, C, Auer, S, Sambra, A & Berners-Lee, T 2017, Linked Data Notifications: A
Resource-Centric Communication Protocol. in E Blomqvist, D Maynard, A Gangemi, R Hoekstra, P Hitzler &
O Hartig (eds), The Semantic Web: 14th International Conference, ESWC 2017, Portorož, Slovenia, May 28
– June 1, 2017, Proceedings, Part I. Lecture Notes in Computer Science , vol. 10249, Springer, Cham,
Cham, pp. 537-553, 14th ESWC 2017, Portoroz, Slovenia, 28/05/17. DOI: 10.1007/978-3-319-58068-5_33

Digital Object Identifier (DOI):
10.1007/978-3-319-58068-5_33

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The Semantic Web: 14th International Conference, ESWC 2017, Portorož, Slovenia, May 28 – June 1, 2017,
Proceedings, Part I

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/131080766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-58068-5_33
https://www.research.ed.ac.uk/portal/en/publications/linked-data-notifications-a-resourcecentric-communication-protocol(c64cadd0-764c-4995-84e6-1c01d3e9dbbe).html

See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/311767879

Linked	Data	Notifications:	a	resource-centric
communication	protocol

Working	Paper	·	December	2016

DOI:	10.13140/RG.2.2.18065.43360

CITATION

1

READS

110

5	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Knowledge	Box	(KBox)	View	project

LiDaKrA	View	project

Sören	Auer

Leibniz	Universität	Hannover

365	PUBLICATIONS			7,603	CITATIONS			

SEE	PROFILE

Tim	Berners-Lee

Massachusetts	Institute	of	Technology

53	PUBLICATIONS			4,089	CITATIONS			

SEE	PROFILE

Christoph	Lange

University	of	Bonn

210	PUBLICATIONS			801	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Sören	Auer	on	20	December	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/311767879_Linked_Data_Notifications_a_resource-centric_communication_protocol?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/311767879_Linked_Data_Notifications_a_resource-centric_communication_protocol?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Knowledge-Box-KBox?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/LiDaKrA?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soeren_Auer?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soeren_Auer?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Leibniz_Universitaet_Hannover?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soeren_Auer?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Berners-Lee?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Berners-Lee?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Massachusetts_Institute_of_Technology?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tim_Berners-Lee?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christoph_Lange2?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christoph_Lange2?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bonn?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christoph_Lange2?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Soeren_Auer?enrichId=rgreq-fb4bce6260be08a8786e92e5015706a8-XXX&enrichSource=Y292ZXJQYWdlOzMxMTc2Nzg3OTtBUzo0NDE0OTE3MTg5NzEzOTVAMTQ4MjI3MTIzNjIzNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Linked Data Notifications: a resourcecentric
communication protocol

Sarven Capadisli1,✊, Amy Guy2,ὂ�, Christoph Lange1,∫, Sören Auer1,⚛,
Tim BernersLee3,ὗ�

1Enterprise Information Systems Department, University of Bonn, Bonn,
Germany, 2School of Informatics, University of Edinburgh, Edinburgh, UK,

3Decentralized Information Group, CSAIL, MIT, Cambridge, US
✊info@csarven.ca, ὂ�amy@rhiaro.co.uk, ∫langec@cs.uni-bonn.de,

⚛auer@cs.uni-bonn.de, ὗ�timbl@w3.org

Identifier: http://csarven.ca/linkeddatanotifications

Abstract. In this article we describe the Linked Data Notifications (LDN)
protocol, which is a W3C Candidate Recommendation. Notifications are sent over
the Web for a variety of purposes, for example, by social applications. The
information contained within a notification is structured arbitrarily, and typically
only usable by the application which generated it in the first place. In the spirit of
Linked Data, we propose that notifications should be reusable by multiple
authorised applications. Through separating the concepts of senders, receivers and
consumers of notifications, and leveraging Linked Data principles of shared
vocabularies and URIs, LDN provides a building block for decentralised Web
applications. This permits end users more freedom to switch between the online
tools they use, as well as generating greater value when notifications from different
sources can be used in combination. We situate LDN alongside related initiatives,
and discuss additional considerations such as security and abuse prevention
measures. We evaluate the protocol’s effectiveness by analysing multiple,
independent implementations, which pass a suite of formal tests and can be
demonstrated interoperating with each other.

Keywords: Communications protocol • Decentralisation • Linked Data • Social
web

1 Introduction

Notifications are sent over the Web for a variety of purposes, including social
applications: “You have been invited to a graduation party!”, “Tim commented on
your blog post!”, “Liz tagged you in a photo”. The notification data may be displayed
to a human to acknowledge, or used to trigger some other applicationspecific
process (or both). In a decentralised architecture, notifications can be a key element
for federation of information, and application integration. However in centralised
systems which prevail today, this data is structured arbitrarily and typically only
usable by the application that generated it in the first place. Current efforts towards
re-decentralising the Web [1, 2] are moving towards architectures in which data
storage is decoupled from application logic, freeing end users to switch between

http://csarven.ca/
http://rhiaro.co.uk/
https://langec.wordpress.com/about/
http://eis.iai.uni-bonn.de/SoerenAuer.html
https://www.w3.org/People/Berners-Lee/
http://uni-bonn.de/
http://inf.ed.ac.uk/
https://mit.edu/
mailto:info@csarven.ca
mailto:amy@rhiaro.co.uk
mailto:langec@cs.uni-bonn.de
mailto:auer@cs.uni-bonn.de
mailto:timbl@w3.org
http://csarven.ca/linked-data-notifications
https://www.w3.org/TR/ldn/
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Decentralization
https://en.wikipedia.org/wiki/Linked_data
https://en.wikipedia.org/wiki/Social_web

applications, or to let multiple applications operate over the same data. So far,
notifications are considered to be ephemeral resources which may disappear after
transport, and thus are excluded from being designed for reuse.

We argue that notification data should not be locked into particular systems. We
designed the Linked Data Notifications (LDN) protocol to support sharing and reuse
of notifications across applications, regardless of how they were generated or what
their contents are. We describe how the principles of identification, addressability
and semantic representation can be applied to notifications on the Web. Specifying
LDN as a formal protocol allows independently implemented, heterogeneous
applications which generate and use notifications, to seamlessly work together. Thus,
LDN supports the decentralisation of the Web as well as encourages the generation
and consumption of Linked Data.

We build on existing W3C standards and Linked Data principles. In particular,
the storage of notifications is compatible with the Linked Data Platform standard;
notifications are identified by HTTP URIs; and notification contents are available as
JSONLD. A key architectural decision is the separation of concerns between
senders, receivers, and consumers of notifications. Implementations of the protocol
can play one or more of these roles, and interoperate successfully with
implementations playing the complementary roles. This means that notifications
generated by one application can be reused by a completely different application,
accessed via the store where the notification data resides, through shared Linked
Data vocabularies. LDN also pushes the decentralised approach further by allowing
any target resource to advertise its Inbox anywhere on the Web; that is, targets do
not need to be coupled to or controlled by a receiver, and can make use of a third
party 'Inbox as a service'.

LDN is a W3C Candidate Recommendation via the Social Web Working Group
[4]. The first two authors of this article are the coeditors of the specification.

Use cases for decentralised notifications are particularly evident in social
networking (status updates, interactions, games); scholarly communication (reviews,
citations); and changes of state of resources (datasets, versioning, sensor readings,
experimental observations). We describe the requirements which guided the
development of the protocol and discuss related work, including current alternative
approaches and complementary protocols which can work alongside LDN. We
summarise the protocol itself, and specific architectural considerations that were
made. We built a test suite which can be used to confirm that implementations
conform with the specification, and we describe 17 implementations which
interoperate with each other.
As the following terms used throughout this article may be subject to different
interpretations by different communities, we provide some definitions here.

By decentralisation, we mean data and applications are loosely coupled, and
users are empowered to choose where their data is stored or held. We focus on Web
based decentralisation, where content is transported over HTTP, and resources are
identified with URIs. An Inbox is a container or directory (attached to a Web
resource) which is used to store and serve a collection of notifications. A
notification is a retrievable resource which returns RDF. The contents of

https://www.w3.org/TR/ldn/
https://www.w3.org/wiki/Socialwg

notifications are intended to describe a change in state of some other resource, or
contain new information for the attention of a user or process, and may be subject
to constraints of the Inbox it is contained in.

2 Related Work

Here we review previous and ongoing efforts towards delivering notifications in a
decentralised manner. Many systems which make use of notifications operate either
in a completely centralised way, or are decentralised only in the sense that different
instances of the same codebase need to interoperate; we restrict our review to
mechanisms which do not expect the notification to be received or used only by the
same software or platform which sent it.

The contents of a notification is either: 1) URLs, indicating relations between Web
resources, or 2) a ‘fat ping’ containing a blob of information. Semantic Pingback,
Webmention, and Provenance Pingback follow the first form, and are also known as
linkbacks, the suite of protocols that essentially allows Web documents to
automatically reciprocate hyperlinks. This has the advantage that a verification
mechanism can be tightly specified (the URL of the target must appear in the
content of the source), but the disadvantage that notifications are only available for
use cases involving Web publishing.

Semantic Pingback [2] and Webmention [5] both update the original Pingback [6]
mechanism by replacing the XMLRPC transport mechanism by a x-www-form-
urlencoded request with two parameters (source and target). Resources which are
the target for a notification advertise the respective receiving service or endpoint via
a Link relation, either in HTTP headers or HTML. Semantic Pingback additionally
enables discovery of the Pingback service where target is available as RDF. While
the content at source may indicate (in any convention or serialisation format) the
type of relation between the source and target URLs, this information about the
relation is not transmitted to the receiver’s endpoint; only the source and target
URLs are sent. As such, there is also no way to distinguish between multiple
potential mentions of the target at the source; this is left up to the receiver to
interpret. Semantic Pingback does encourage generation of additional semantics
about the relation(s) between the source and the target by processing the source as
RDF if possible, and also defines specific ways for a receiving server to handle
incoming pingback data in order to add the source data to an RDF knowledge base
[2]. Beyond verifying that the source contains the URL of the target, Webmention
does not specify any further requirements of the receiving server; nor is it expected
that “mentions” are retrievable once they have been sent.

A Provenance Pingback endpoint is also advertised via the HTTP Link header; it
accepts a list of URIs for provenance records describing uses of the resource [7].
Provenance Pingback does not specify any further behaviour by the receiving server,
but the contents at the URIs listed in the notification body must be semantic data.

Other notification mechanisms send more information than just URLs in the
notification body; due to each mechanism’s focused use case, the payload is
restricted to a particular vocabulary.

https://aksw.github.io/SemanticPingback/
https://www.w3.org/TR/webmention
http://www.hixie.ch/specs/pingback/pingback
http://www.w3.org/TR/prov-aq/#provenance-pingback

DSNotify is a centralised service which crawls datasets and observes changes to
links with the specific use case of preserving link integrity between Linked Open
Data resources. Thirdparty applications can register with the sending service to
receive notifications of changes in the form of a specific XML payload [8]. With the
sparqlPuSH service, users may input a SPARQL query, the results of which are the
specific updates they are interested in. The query is run periodically by the service,
and the results are converted to an RSS feed, which is sent to a PubSubHubbub hub
to which the user can subscribe [9]. The ResourceSync Change Notification
specification also sends update notifications via a PuSH hub, this time with an XML
payload based on the Sitemap format [10]. Each of these mechanisms is triggered by
subscription requests. That is, a user must actively solicit messages from a particular
service, rather than having a way for a service to select a notification target and
autonomously discover where to send notifications to.

3 Requirements and Design Considerations

In this section we discuss our considerations for a Web notification protocol that
conforms to the Linked Data design principles, as well as best practices for
applications. We use these considerations to establish both concrete requirements
and points of implementationspecific flexibility for the protocol.

R1 Modularity

To encourage modularity of applications, one should differentiate between different
classes of implementation of the protocol. Two parties are involved in the creation of
a notification: a sender, generating the notification data, and a receiver, storing the
created resource. We also have the role of a consumer, which reads the notification
data and repurposes it in some way. A software implementation can of course play
two or all three of these roles; the important part is that it need not. A consuming
application can read and use notification data without being concerned about ever
sending or storing notifications.

R2 Reusable notifications

The relationship between the consumer and receiver roles is key to notifications
being reusable. A consumer must be able to autonomously find the location of
notifications for or about the particular resource it is interested in. To achieve this
we place a requirement on the receiver to expose notifications it has been sent in
such away to permit other applications to access them; and specify how any resource
can advertise its receiving endpoint for consumers to discover. To promote fair use or
remixing of notification contents, applications can incorporate rights and licensing
information into the data. Similarly, applications may include additional information
on licensing resources that the notification refers to. The presence of this type of
information is important for consumers to assess the (re)usability of data.

http://www.cibiv.at/~niko/dsnotify/
https://www.w3.org/2001/sw/wiki/SparqlPuSH
http://pubsubhubbub.github.io/PubSubHubbub/pubsubhubbub-core-0.4.html
http://www.openarchives.org/rs/notification/1.0/notification

R3 Persistence and Retrievability

There is a social expectation and technical arguments for ensuring the persistence of
identifiers of Web resources [11]. This is inconsistent with the traditionally ephemeral
nature of notifications. Applications may benefit from referring to or reusing
notifications if the notifications are known to be available in the long term, or
indicate their expected lifespan [12].

A RESTful architecture [13] is well suited for persistent notifications, as it involves
organisation of atomic resources, their discovery and description, and a lightweight
API for the CRUD (create, read, update, and delete) operations [14]. This enforces
the notion that notifications are considered resources in their own right, with their
own dereferencable URIs.

We need to consider both the needs of software systems and humans when large
amounts of notification data are being generated and shared between diverse
applications which may be operating without knowledge of each other. To organise
and manage large amount of notifications over time, mechanisms should be in place
to break representations of collections of notifications into multiple paged responses
that may be easier to consume by applications.

Relatedly, receivers may carry out resource management or garbage collection, or
permit consumers or other applications to do so. For example, an application to
consume messages might let an authenticated and authorised user ‘mark as read’ by
adding a triple to the notification contents.

R4 Adaptability

Linked Data applications benefit from domaindriven designs; that is, functionality
being small and focussed on a particular purpose, rather than generic. We believe a
notification protocol should be adaptable for different domains, but that there is no
need to create multiple domainspecific notification protocols; the fundamental
mechanics are the same.

R4A: Any resource may be the target of a notification. By target, we mean a
notification may be addressed to the resource, be about the resource, or for a sender
to otherwise decide that it is appropriate to draw the attention of the resource (or
resource owner) to the information in the notification body. As such, any Web
resource must be able to advertise an endpoint to which it can receive notifications.
Resources can be RDF or nonRDF (such as an image, or CSV dataset), and may be
informational (a blog post, a user profile) or noninformational (a person).

R4B: We do not purport to be able to design a notifications ontology which is
appropriate for every domain. Thus we consider the contents of a notification to be
application specific. From a sender’s perspective, we derive two core principles: a
notification can contain any data; a notification can use any vocabulary. From a
consumer’s perspective, interoperability between different applications occurs
through vocabulary reuse, and shared understanding of terms. This is in accordance
with Linked Data principles in general. The practical upshot of this is that a
calendar application which consumes event invitations using the RDF Calendar

https://www.w3.org/TR/rdfcal/

vocabulary is likely to completely ignore notifications containing the PROV
Ontology, even if it finds them all stored in the same place. For two independent
applications operating in the same domain, a shared understanding of appropriate
vocabulary terms is assumed.
However from a receiver’s perspective, exposing itself to receive any blobs of RDF
data from unknown senders may be problematic. Thus, R4C: it should be possible
for the receiver to enforce restrictions and accept only notifications that are
acceptable according to its own criteria (deemed by e.g., user configuration; domain
specific receivers). This can be used as an antispam measure, a security protection,
or for attaining application and data integrity.

Rejecting notifications which do not match a specific pattern in their contents, or
the shape of the data, is one way to filter. For example, if the Inbox owner knows
that they will only ever use a consuming application which processes friend requests,
they can configure their receiver to filter out anything that doesn't match the
pattern for a friend request, helping their consumer to be more efficient. If the
notification constraints are also advertised by the receiving service as structured
descriptions, generation and consumption of the notifications can be further
automated. Possible specifications for doing so are W3C Shapes Constraint Language
(SHACL) [15] or ShEx.

Receivers may wish to filter notifications by verifying the sender, through for
example a whitelist or a Web of trust. This requires an authentication mechanism
and since different authentication mechanisms are appropriate for different
applications, the notification protocol should ideally be usable alongside various
methods such as clientside certificates, e.g., WebID+TLS, tokenbased, e.g., OAuth
2.0, or digital signatures.

As “anyone can say anything about anything” a receiver may choose to resolve any
external resources referred to by the notification, and crosscheck the notification
contents against authoritative sources. This is similar to how Semantic Pingback and
Webmention require fetching and parsing of the source URL to verify existence of
the target link.

R5 Subscribing

In general, applications may require that new notifications are pushed to them in
realtime, or to request them at appropriate intervals. To take this into account, we
expand our definition of senders, receivers and consumers with the following
interaction expectations: notifications are pushed from senders to receivers; and
pulled from receivers by consumers.

Thus, an application which offers an endpoint or callback URL to which
notifications should be sent directly is a receiver, and an application which fetches
notifications from an endpoint on its own schedule is a consumer. Much of the
related work requires notifications to be explicitly solicited to trigger sending. Since
in a decentralised model, receivers may not be aware of possible sources for
notifications, our senderreceiver relationship depends on the sender’s autonomy to
make such decisions by itself. This does not preclude the scenario in which a receiver
may wish to solicit notifications from a particular sender, but as there are already

file:///var/www/linked-data-notifications/www.w3.org/TR/prov-o/
https://www.w3.org/TR/shacl/
https://shexspec.github.io/spec/

subscription mechanisms in wide use on the Web, we do not need to specify it as
part of LDN. For example, WebSub (recent W3C evolution of PubSubHubbub), the
WebSocket Protocol, or HTTP Web Push.

Given our adoption of Linked Data principles and a RESTful architecture, a further
design decision was to ensure minimal compatibility with the Linked Data Platform
(LDP) specification [16]. LDP is a RESTful readwrite API for RDF resources,
which groups related resources together into constructs known as “Containers”. Thus,
existing LDP servers can be used to store notifications, as new notifications can be
created by POSTing RDF to a container.

4 The LDN Protocol

The Linked Data Notifications (LDN) protocol describes how servers (receivers) can
receive messages pushed to them by applications (senders), as well as how other
applications (consumers) may retrieve those messages. Any resource can advertise a
receiving endpoint (Inbox) for notification messages. Messages are expressed in RDF,
and can contain arbitrary data. It is not dependent on a complete implementation of
LDP, but comprises an easytoimplement subset. LDN is a W3C Candidate
Recommendation [4].

4.1 Sender to receiver interactions

The following steps describe the interaction between sender and receiver:
(1) A sender is triggered, either by a human or an automatic process, to deliver a

notification; (2) The sender chooses a target resource to send notifications to; (3)
The sender discovers the location of the target’s Inbox through the ldp:inbox
relation in the HTTP Link header or RDF body of the target resource; (4) The
sender creates the body of the notification according to the needs of application; (5)
The sender makes a POST to the Inbox URL, containing the body in JSONLD or in
another serialisation acceptable by the server; (6) The receiver optionally applies
filtering rules, and sends the appropriate HTTP response code to accept or reject the
notification; (7) The receiver exposes the notification data (according to appropriate
access control) for use by consumers.

Target

Sender Consumer

Receiver

GET
HEAD

GET
HEAD

POST GET

ldp:inbox

ldp:contains

Inbox

Notification Linked Data Notifications
https://www.w3.org/TR/ldn/

Fig. 1. Overview of Linked Data Notifications

https://www.w3.org/TR/websub/
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/ldn
https://www.w3.org/TR/ldn/#discovery
https://www.w3.org/TR/ldn/#sending
https://www.w3.org/TR/ldn/#consuming
https://www.w3.org/TR/ldn/#receiving
https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.2
https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.2
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.1
https://www.w3.org/ns/ldp#inbox
https://www.w3.org/ns/ldp#contains
https://www.w3.org/TR/ldn/#discovery
https://www.w3.org/TR/ldn/#introduction
https://www.w3.org/TR/ldn/

4.2 Consumer to receiver interactions

The following steps describe the interaction between consumer and receiver:
(1) A consumer selects a target and discovers the location of its Inbox in the same

way as the sender; (2) A receiver responds to GET requests made to the Inbox URL
with a listing of the URLs of notifications that have previously been accepted, linked
to the Inbox with the ldp:contains predicate; (3) The receiver responds to GET
requests made to the individual notification URLs with JSONLD (or optionally
other serialisations); (4) Following the retrieval of notification listings or individual
notifications, the consumer may perform further processing, combine with some
other data, or simply present the results in a suitable humanreadable way.

4.3 Example Notifications

For more example notification payloads, see the LDN specification.

5 Implementations

Here we summarise the 17 LDN implementations we are aware of to date. They are
built by 10 different teams or individuals using different tool stacks (5 clientside
JavaScript, 3 PHP, 3 NodeJS, 3 Python, 1 Perl, 1 Virtuoso Server Pages, 1 Java)
and have submitted implementation reports as part of the W3C standardisation
process. We note that any LDP implementation is a conforming LDN receiver; we
refer here to the ones we have tested. We discuss the value of these implementations
further in the Evaluation section.

{
 "@context": { "sioc": "http://rdfs.org/sioc/ns#" }
 "@id": "",
 "@type": "sioc:Comment",
 "sioc:content": "This is a great article!",
 "sioc:reply_of": { "@id": "http://example.org/article" },
 "sioc:created_at": { "@value": "2015-12-23T16:44:21Z" }
}

Listing 1. A notification about a comment created by a user (JSONLD).

1
2
3
4
5
6
7
8

@prefix as: <https://www.w3.org/ns/activitystreams#> .
@prefix cito: <http://purl.org/spar/cito/> .
<> a as:Announce
 as:object <https://linkedresearch.org/resources#r-903b83> ;
 as:target <http://csarven.ca/dokieli#architecture> .
<https://linkedresearch.org/resources#r-903b83>
 cito:citesAsPotentialReading
 <http://csarven.ca/linked-data-notifications#protocol> .

Listing 2. An announcement of a specific citation relation between two entities (Turtle).

1
2
3
4
5
6
7
8

https://www.w3.org/TR/ldn/
https://github.com/w3c/ldn/tree/master/implementations
https://www.w3.org/wiki/LDP_Implementations

Table 1. LDN Implementations

Implementation Class* DescriptionImplementation Class* Description

Source: https://github.com/w3c/ldn/tree/master/implementations

CarbonLDP R Data storage platform (LDP)

dokielia S,C Clientside editor and annotator

errola S Generic message sending client

Fedora Commons R Open source repository platform (LDP)

IndieAnndroid R Personal blogging platform

Linked Edit Rules S Statistical dataset consistency checker

mayktsoa R Personal data store (LDP)

OnScreena C Notifications display client

pyldn R Standalone Inbox

RDFLinkedDataNotifications R Standalone Inbox

slopha S,R Social publishing & quantified self

Solid Words S Foreign language learning app

solidclient S Clientside library for LDP

solidinbox C Clientside social message reader

solidnotifications S,C Clientside library for LDN

solidserver R Personal data storage server (LDP)

Virtuoso+ODS Briefcase R,C Personal data storage server (LDP)

We highlight social scholarly communication use cases with dokieli, a clientside
editor for decentralised scientific article publishing, annotations and social
interactions [17]. dokieli uses LDN to send and consume notifications: When a reader
comments on a fragment of text in an article, the application discovers the article’s
Inbox and sends a notification about the annotation. dokieli also consumes
notifications from this Inbox to fetch and display the annotation as marginalia
(figure 2). A reader can share a dokielienabled article with their contacts; dokieli
discovers each contact’s Inbox and sends a notification there (figure 3).

*: Conformance classes: S – sender, C –
consumer, R – receiver.

a: Implementations by the authors

https://github.com/w3c/ldn/tree/master/implementations
https://carbonldp.com/
https://dokie.li/
https://github.com/linkeddata/errol
http://fedora-commons.org/
https://github.com/Kongaloosh/IndieAnndroid
https://github.com/albertmeronyo/linked-edit-rules
https://github.com/csarven/mayktso
https://github.com/rhiaro/onscreen
https://github.com/albertmeronyo/pyldn
https://github.com/kjetilk/p5-rdf-linkeddata-notifications
https://github.com/rhiaro/sloph
https://github.com/melvincarvalho/vocab
https://github.com/solid/solid-client
https://github.com/solid/solid-inbox
https://github.com/solid/solid-notifications
https://github.com/solid/node-solid-server
https://github.com/openlink/virtuoso-opensource
http://ods.openlinksw.com/wiki/ODS/OdsBriefcase
https://dokie.li/

Notifications sent by dokieli can be reused by any consuming applications that
recognise the vocabulary terms; similarly, dokieli can consume notifications sent by
different applications.

Further social use cases are demonstrated by sloph, a personal publishing and
quantified self platform which acts as a node in a decentralised social network. When
new content is created on the server, sloph performs discovery on URLs it finds as
values of particular properties of the new content, as well as any URLs in the body
of the content, and sends notifications accordingly. For instance:

If a Like activity is generated on the server, sloph uses the object of the Like as
the target for a notification. Since dokieli uses the same vocabulary for social
interactions (ActivityStreams 2.0 [18]), if the target is a dokieli article, this Like will
be displayed (figure 4).

If the user publishes a blog post containing a link, which may be semantically
annotated to indicate the reason for linking, sloph sends a notification to any Inbox
discovered at that link.

As a receiver, sloph accepts all incoming notifications, but holds for moderation
(i.e. places behind access control) any that it cannot automatically verify refer to
thirdparty content published on another domain. If an article written with dokieli
publishes a citation of a blog post which advertises a sloph Inbox, sloph will fetch
the article and verify whether the relation matches the contents of the notification
before exposing the notification for reuse.

Linked Edit Rules and Solid Words are specialised senders. Linked Edit Rules checks
the consistency of statistical datasets against structured constraints, and delivers the
consistency report as a notification to the user. Solid Words is a clientside game for
learning new words in a foreign language; it delivers the player’s score for each round
to their Inbox. OnScreen is a (crude) generic consumer; as such, it can display
notifications sent by both of the aforementioned senders (figure 5).

Fig. 2. Video of dokieli Web Annotation

0:00

Fig. 3. Video of dokieli Share

0:00

https://rhiaro.co.uk/sloph
https://www.w3.org/ns/activitystreams-core
http://www.linkededitrules.org/
https://melvincarvalho.github.io/vocab/
https://apps.rhiaro.co.uk/onscreen
https://dokie.li/media/video/dokieli-annotation.webm
https://dokie.li/media/video/dokieli-share.webm

6 Analysis and Evaluation

The LDN protocol describes the discovery of a resource’s Inbox whence notifications
are sent or consumed, and the sending and exposure of those notifications. Here we
analyse how well features of LDN achieve the requirements identified previously, and
compare this to related work.

We have already examined implementations of the specification and described how
they interoperate with each other; this can be further tested by running the test
suite: https://linkedresearch.org/ldn/tests/. We can use this towards an evaluation
of its feasibility and effectiveness at interoperability. Given the relatively early stage
in the standardisation process (LDN entered Candidate Recommendation in 2016
11), the quantity of implementations and diversity of their sources is promising.
Furthermore, during the development of the specification issues have been raised or
discussed by 28 different people (excluding the authors; 21 outside of the Social Web
Working Group, 7 within) and the specification has undergone formal review by
internationalisation, accessibility, and security specialists. We also discuss in more
depth particular challenges that were raised and resolved as part of this process.

6.1 Comparison summary

Here we compare existing notification mechanisms from related work. The criteria
includes our requirements and design considerations (Rx) along with additional
technical information which helps to capture some design differences (Tx).

Fig. 4. A Like notification created by sloph, displayed by dokieli.

Fig. 5. A: Solid Words (a sender), B: Linked Edit Rules (a sender), C: OnScreen (a
consumer) displaying notifications sent by A and B.

https://linkedresearch.org/ldn/tests/

Table 2. Comparison of notification mechanisms

Mechanism T1 T2 T3 R1 R2 R3 R4A R4B R4
Cp

R4Cv R4
Co

R5Mechanism T1 T2 T3 R1 R2 R3 R4A R4B R4
Cp

R4Cv R4
Co

R5

Semantic
Pingback

Linkback POST RDF S
R

/ / Anyr form
urlencodedk

! !
parse
source

Anyr X

Webmention Linkback POST HTML S
R

 Anyh form
urlencodedk

! !
parse
source

Anyh X

Provenance
Pingback

Linkback POST RDF S
R

/ / / URI list / / RDFq X

DSNotify Fat ping POST,
PUT

XML,
PuSH

S
U

/ XML / RDFt !

sparqlPuSH Fat ping POST XML,
SPARQL,
PuSH

S
U

 XMLra / RDFt !

ResourceSync Fat ping POST XML,
PuSH

S
U

/ XMLs / ? !

Linked Data
Notifications

Fat ping POST JSONLD S
R
C

! !
URI

Any JSONLDj +
app

+ app O
app

6.2 Compatibility with existing systems

Per R1 and R4 we have tried to optimise LDN for use as a module of a larger
system. The success of this is demonstrated by implementations which use LDN
alongside existing protocols according to their specific needs.

T1: Notification type
T2: Delivery method
T3: Dependencies
R1: Modularity (application classes: S Sender, R
Receiver, C Consumer, U Subscriber/User)
R2: Reusability
R3: Persistence required? how?

R4A: Target representation
R4B: Notification body
R4Cp: Payload processing required?
R4Cv: Verification required? how?
R4Co: Requirements for referenced resources?
R5: Subscription

: not applicable, out of scope
/: not specified, in scope
X: explicitly disallowed
app: application specific decision

!: required (MUST)
+: recommended (SHOULD)
O: optional (MAY)
PuSH: PubSubHubbub

h: HTML recommended
j: Alternate RDF formats can be negotiated
k: source and target key–value pairs is required
q: Provenance records with PROV Ontology

r: RDF representation recommended
ra: SPARQL results transformed to RSS/Atom
s: Sitemaps
t: Described in an RDF store or dataset

http://www.w3.org/TR/prov-o/
https://www.sitemaps.org/protocol.html

The Solid suite of tools, Virtuoso+ODSBriefcase, and dokieli use Web Access
Control along with an authentication mechanism to apply fine grained access
controls to restrict who can send notifications, or who can retrieve notifications from
the Inbox. sloph demonstrates an Inbox as a Webhooks callback URL, for requesting
notifications from APIs which post JSONbased payloads. ActivityPub is a W3C CR
for decentralised social media [19]. It uses LDN for delivery of notifications with the
ActivityStreams 2.0 (AS2) vocabulary, and specifies additional specialised receiver
behaviour; also used by sloph. dokieli uses the Web Annotation Protocol, an LDP
based mechanism for creating new content, which acts as a trigger for notifications
to be sent to the Inbox of the annotation target. The Fedora API Specification is in
the process of being formalised (as an extension of LDP) by the Fedora community.
The repository event stream draws upon the LDN specification, allowing LDN
consumers and senders to react asynchronously to repository events.

Any existing LDP implementation can serve as an LDN receiver. Simply
advertising any ldp:Container as the Inbox for a resource is sufficient. We
confirmed this with four LDP servers which were developed independently with
different code bases, prior to the LDN specification (CarbonLDP, Fedora Commons,
Solid Server, Virtuoso).

LDN has been integrated into existing domain specific systems: dokieli, Fedora
Commons, IndieAnndroid, Linked Edit Rules, sloph, solidclient, Solid Words.
Standalone implementations of LDN are also straightforward as a result of this
modularity, ie: errol, mayktso, onscreen, pyLDN, RDFLinkedDataNotifications,
solidinbox, solidnotifications.

6.3 Optimising implementation

We have considered tradeoffs between the HTTP operations receivers and publishers
are required to respond to, and ways in which developers may wish to optimise
senders or consumers by reducing outbound requests.
HEAD requests are low cost, and GET requests may be high cost if the body of the

resource is large. Given that an Inbox may be discovered from the HTTP headers of
a resource, senders and consumers can optimise by attempting a HEAD request for
discovery, and only continuing with a GET request if the HEAD is not successful. On
the other hand, senders and consumers may be attempting discovery upon RDF
resources which they already intend to parse into their own storage. In this case,
there is no need for a HEAD request, as a GET will yield both HTTP Link headers and
an RDF body, either of which could include the Inbox triple. This means that
resources advertising an Inbox must respond to GET requests (even if only with
HTTP headers) and may respond to HEAD requests.

6.4 Data Formats and Content Negotiation

Handling data irrespective of the particular RDF serialisation permits some
flexibility, but can be costly to support. We take into account: (a) application
interoperability, (b) maintenance of RDF parsers and serialisation libraries, (c)
complexity of their inclusion in applications, (d) runtime efficiency.

https://www.w3.org/wiki/WebAccessControl
http://www.webhooks.org/
https://www.w3.org/TR/activitypub/
https://www.w3.org/ns/activitystreams-vocabulary
https://www.w3.org/TR/annotation-protocol/
http://fcrepo.github.io/fcrepo-specification/

To address these issues, LDN requires all applications to create and understand
the JSONLD syntax, both for the contents of Inbox as well as for individual
notifications. Choosing a single serialisation to require is necessary for consistent
interoperability, as well as keeping processing requirements or external code
dependencies minimal. JSONLD is advantageous in being familiar for developers
who are used to JSON-based APIs but not RDF [20], and it is compatible with
existing JSON libraries or in some cases native programming language data
structures. Optionally, applications may attempt to exchange different RDF
serialisations by performing content negotiation (receivers can expose Accept-Post
headers for senders, and consumers can send Accept headers to receivers).

6.5 Precision

In placing no constraints on the contained information, LDN enables a sender to be
precise and lossless with the data it is transmitting. Approaches which send only
URLs rely on the receiver interpreting a thirdparty resource, which may or may not
contain structured markup or be under the control of the sender. Approaches which
offer additional guidance to aid the receiver in interpreting the source document(s)
nonetheless still restricts the sender. LDN therefore offers flexibility to senders,
increasing the potential uses for the notification mechanism. LDN compensates for
increased complexity on the receiver’s end by recommending filtering mechanisms,
and moving some of the burden of understanding notifications to the consumer role.
As such LDN can cover a broader variety of use cases.

6.6 Accommodating different targets

Per R4 Adaptability, we want LDN to be available for all resources in any publishing
context. We consider lowering the bar for publishers of target resources to be a
worthwhile tradeoff against slightly increased complexity for senders and consumers.
This is why we require that senders and consumers must be equipped to discover
Inboxes through both HTTP headers and RDF content.

Since binary formats such as images and video cannot contain an RDF relation,
the HTTP header is essential for including them. It also allows the inclusion of
resources for which it is undesirable or impractical to add individual Inbox relations,
such as to elements in a dataset; or circumstances where the developer responsible
for the Inbox relation is unable to modify the content. Conversely, noninformational
resources (represented with fragment URIs or 303 redirects) are unable to express
HTTP headers. Their relation to an Inbox must be expressed in an RDF source.
However, if a sender or consumer has a domainspecific requirement to only ever
target noninformational resources, they are exempt from the requirement of
discovery via HTTP headers.

7 Conclusions

In this article we describe LDN, a protocol for decentralised semantic notifications,
currently undergoing standardisation at the W3C. Key elements are:

http://manu.sporny.org/2014/json-ld-origins-2/

Notifications as retrievable, reusable entities with their own URIs.
Distinct conformance classes for senders, receivers, and consumers.
Deliberately not defining the vocabulary of notification contents to allow for use

in a range of different application domains.
Flexibility of authentication and verification, for the same reason.

We outlined design requirements, describe how LDN meets these, and compare this
with related work. We consider LDN to have greater modularity and adaptability to
different scenarios, as well as good conformance with Linked Data principles. This
specification has potential to have high impact in increasing interoperability between
decentralised Linked Data applications in related domains, as well as generating new
discoverable content for the LOD Cloud. This is evidenced by 17 diverse
implementations which can be shown to interoperate with each other, including
generic libraries and datastores, and domainspecific applications. Being on the W3C
standards track increases the likelihood of further adoption.

References
1. Mansour, E., Sambra, A., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A., Aboulnaga,

A., BernersLee, T.: A Demonstration of the Solid Platform for Social Web Applications,
WWW, Demo, 2016,

2. Tramp, S., Frischmuth, P., Ermilov, T., Shekarpour, S., Auer, S.: An Architecture of a
Distributed Semantic Social Network, Semantic Web Journal, 2012,

3. Arndt, N., Junghanns, K., Meissner, R., Frischmuth, F., Radtke, N., Frommhold, M.,
Martin, M.: Structured Feedback, WWW, LDOW, 2016,

4. Capadisli, S., Guy, A.: Linked Data Notifications, W3C Candidate Recommendation, 2016,
5. Parecki, A.: Webmention, W3C Proposed Recommendation, 2016,
6. Langridge, S., Hickson, I.: Pingback 1.0, 2002,
7. Klyne, G., Groth, P.: PROV-AQ: Provenance Access and Query, W3C Note, 2013,
8. Haslhofer, B., Popitsch, N.: DSNotify – Detecting and Fixing Broken Links in Linked Data

Sets, WWW, 2010,
9. Passant, A., Mendes, P.N.: sparqlPuSH: Proactive notification of data updates in RDF

stores using PubSubHubbub, CEUR Workshop Proceedings, Vol. 699, 2010,
10. Klein, M., Van de Sompel, H., Warner, S., Klyne, G., Haslhofer, B., Nelson, M., Lagoze,

C., Sanderson, R.: ResourceSync Framework Specification – Change Notification, 2016,
11. BernersLee, T.: Cool URIs don't change, W3C, 1998,
12. Archer, P., Loutas, N., Goedertier S., Kourtidis, S.: Study On Persistent URIs, 2012,
13. Fielding, R. T.: Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation, University of California, Irvine, 2000,
14. Page, K.R., De Roure, D.C., Martinez, K.: REST and Linked Data: a match made for

domain driven development?, WWW, WSREST, 2011,
15. Knublauch, H., Kontokostas, D.: Shapes Constraint Language, W3C Working Draft, 2016,
16. Speicher, S., Arwe, J., Malhotra, A.: Linked Data Platform, W3C Recommendation, 2015,
17. Capadisli, S., Guy, A., Auer S., BernersLee, T.: dokieli, 2016,
18. Snell, J., Prodromou, E.: Activity Streams 2.0, W3C Candidate Recommendation, 2016,
19. Webber, C., Tallon, J.: ActivityPub, W3C Candidate Recommendation, 2016,
20. Sporny, M.: JSON-LD and Why I Hate the Semantic Web, 2014,

View publication statsView publication stats

https://www.researchgate.net/publication/311767879

