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A B S T R A C T

The subcontinental lithospheric mantle (SCLM) constitutes a significant portion of the upper mantle sourcing
magmatic volatiles to the continents above, yet its geochemical signature and evolution remain poorly con-
strained. Here we present new interpretation of noble gas datasets from two magmatic CO2 fields in the SW US,
namely Bravo Dome and Sheep Mountain, which provide a unique insight into the volatile character of the SCLM
sourcing the Cenozoic volcanism in the region. We identify that reduction of 3He/4Hemantle ratio within the
Sheep Mountain CO2 field can be attributed to radiogenic production within the SCLM. Using a Reduced Chi-
Squared minimisation on the variation of derived 4He/21Necrust ratios within samples from the Sheep Mountain
field, combined with a radiogenically raised 21Ne/22Nemantle end member, we resolve 3He/4Hemantle ratios of
2.59 ± 0.15 to 3.00 ± 0.18 Ra. These values correspond with a 21Ne/22Nemantle value of 0.136. Using these
3He/4Hemantle end member values with 21Nemantle resolved from Ne three component analysis, we derive the
elemental 3He/22Nemantle of 2.80 ± 0.16 and radiogenic 4He/21Ne*mantle range of 1.11 ± 0.11 to
1.30 ± 0.14. A second Reduced Chi-Squared minimisation performed on the variation of 21Ne/40Arcrust ratios
has allowed us to also determine both the 4He/40Armantle range of 0.78 to 1.21 and 21Ne/40Armantle of
7.66 ± 1.62 to 7.70 ± 1.54 within the field. Combining these ratios with the known mantle production ranges
for 4He/21Ne and 4He/40Ar allows resolution of the radiogenic He/Ne and He/Ar ratios corresponding to the
radiogenically lowered 3He/4Hemantle ratios. Comparing these values with those resolved from the Bravo Dome
field allows identification of a clear and coherent depletion of He to Ne and He to Ar in both datasets. This
depletion can only be explained by partial degassing of small melt fractions of asthenospheric melts that have
been emplaced into the SCLM. This is the first time that it has been possible to resolve and account for both the
mantle He/Ne and He/Ar ratios within a SCLM source. The data additionally rule out the involvement of a plume
component in the mantle source of the two gas fields and hence any plume influence on the Colorado Plateau
Uplift event.

1. Introduction

The subcontinental lithospheric mantle (SCLM) can be defined as
the basal part of the Earth's outer ridged mechanical boundary layer,
where heat loss occurs by conduction (Day et al., 2015). The SCLM
constitutes a significant portion of the upper mantle, making up ~2.5%
by volume of the total mantle (Pearson and Wittig, 2008). The SCLM
sources magmatic volatiles to the continents above, yet its geochemical
signature and evolution remain poorly constrained. Traditionally,
upper mantle characteristics have been deduced from the more con-
veniently sampled convective mantle, via mid-ocean ridge basalts
(MORB). The SCLM has been physically isolated from this convective
portion of the upper mantle for over 1 × 109 year (Ga) time scales

(McDonough, 1990) as indicated by> 2 Ga Os isotope model ages in
SCLM peridotites (Pearson et al., 1995a; Pearson et al., 1995b; Walker
et al., 1989). This isolation has resulted in the SCLM developing its own
unique isotopic, major and trace element signature (McDonough,
1990). The SCLM potentially contains a significant quantity of noble
gases and other trace elements and re-entrainment of this material into
the deeper mantle may contribute to the characteristic mantle signature
sampled at ocean islands (Gautheron and Moreira, 2002).

Noble gases, and the 3He/4He ratio in particular, provide vital in-
formation about the character and processes controlling the mantle
volatile source. Previous studies have identified that the isotopic ratio
of He within the SCLM is more radiogenic than that of the MORB source
mantle-which is typically cited to be 8 ± 1 Ra (Day et al., 2015; Day
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et al., 2005; Dunai and Baur, 1995; Dunai and Porcelli, 2002; Porcelli
et al., 1987). This is reflected in the latest 3He/4He compilation esti-
mate which cites a range of 6.1 ± 0.9 Ra for the SCLM (Gautheron and
Moreira, 2002). A recent study of exsolving free gases by Bräuer et al.
(2016) measured 3He/4He ratios from 4.95 to 6.32 Ra in the western-
most part of the Pannonian Basin near the Austria/Slovenia border,
corroborating earlier measurements of the more radiogenic than MORB
signature of the SCLM. The origin of this radiogenic He has proved to be
enigmatic and several explanations have been proposed including; al-
teration of the MORB source mantle by either addition of sediments
(Dunai and Baur, 1995); isolation and ageing (Reid and Graham, 1996);
or regional low 3He/4He plume sources (Duncan and Richards, 1991;
White and McKenzie, 1995).

The Ne and Ar isotopic composition of the SCLM are even less well
constrained, with previous studies documenting small anomalies com-
pared to air values (Barford et al., 1999; Matsumoto et al., 1998) but
also a small mantle component similar in character to MORB
(Gautheron et al., 2005). These observations have been explained by
atmospheric contamination or the recycling of an atmospheric com-
ponent back into the lithospheric mantle (Gautheron et al., 2005). A
number of recent studies (Holland and Ballentine, 2006; Kendrick et al.,
2013; Kendrick et al., 2011; Sumino et al., 2010) have proposed that
atmospheric derived noble gases can be recycled into the mantle via
subduction. Matsumoto et al. (2001) proposed that the SCLM can po-
tentially store these atmospheric noble gases. This issue is critical to
rare gas budgets, as the SCLM can be delaminated and recycled back
into the convecting mantle (Seber et al., 1996), and thus potentially
help explain the numerous OIB which exhibit lower or MORB like
3He/4He ratios. These include OIB's observed at the Canary Islands (Day
and Hilton, 2011), the Comores (Class et al., 2005), the Cook-Austral
Archipelago (Hanyu and Kaneoka, 1997; Hanyu et al., 2011), the
Azores (Moreira et al., 2012) and St. Helena (Barfod et al., 1999).

Our current knowledge of the characteristics of the SCLM has been
deduced from magmas derived from melting of this portion of the
mantle and from xenoliths trapped by rapidly rising magmas. However,
typically magmas that reach the surface subaerially are strongly de-
gassed and apart from occasional phenocrysts, do not contain a sig-
nificant quantity of noble gases (Dodson et al., 1998; Dunai and
Porcelli, 2002). Hence, the vast majority of data regarding the SCLM
has been obtained from analysis of ultramafic xenoliths sourced from
continental volcanic provinces (Day et al., 2015). Unfortunately, whilst
some volcanic localities allow local mantle 3He/4He to be determined
from these xenoliths, suitable samples are not always available, and air
contamination of this sample type often precludes resolution of the
heavy mantle-derived noble gases.

Magmatic CO2 well gases provide a resource that enables the
3He/4He, heavy noble gas isotope and relative abundance determina-
tion of the mantle source to be resolved (Ballentine et al., 2005; Holland
and Ballentine, 2006). Primordial noble gas isotopes have been studied
in well gases since 1961 (Boulos and Manuel, 1971; Butler et al., 1963;
Caffee et al., 1999; Hennecke and Manuel, 1975; Phinney et al., 1978;
Smith and Reynolds, 1981; Staudacher, 1987; Zartman et al., 1961), but
until recently their use in investigating the SCLM in detail has been
limited. Here we present noble gas analyses from magmatic CO2 well
gases in the SW US that provide a unique insight into the volatile
character of the SCLM sourcing the Cenozoic volcanism in the region.
For the first time, we have been able to resolve the mantle He, Ne and
Ar ratios of the mantle source beneath these two natural magmatic CO2

reservoirs. Combining our new data from the Sheep Mountain CO2 field
with previous measurements from the Bravo Dome CO2 field
(Ballentine et al., 2005) suggests that the process responsible for re-
ducing the 3He/4Hemantle ratio within the SCLM is radiogenic produc-
tion within the mantle. This permits critical analysis of models pro-
posed to account for the SCLM evolution and volatile origin in greater
detail than has been previously possible.

2. Tectonic setting of Colorado Plateau and Rocky Mountain
natural CO2 reservoirs

The Colorado Plateau is a massive, high-standing tectonic block
located in the south-western US, centred on the Four Corners of the
states of Colorado, New Mexico, Utah, and Arizona. It is abruptly
flanked to the east by the Rio Grande rift and the majestic Rocky
Mountains, the result of at least 2 km of uplift during the Laramide
Orogeny and later Cenozoic uplifts (Parsons and McCarthy, 1995). To
the south it is bounded by the Mogollon Rim and on the west by the
Basin and Range Province, the result of pervasive tectonic extension
that began around 17 Ma in the Early Miocene time.

2.1. Cenozoic volcanism and the Colorado Plateau Uplift event

In the late Cenozoic the cessation of subduction along the Pacific
margin triggered extensive basic magmatic activity and accompanying
lithosphere extension, block faulting and local uplift across the western
US (Becker et al., 2014; Fitton et al., 1991). These events had a dra-
matic effect on the Colorado Plateau which was uplifted some 2 km
(Erdman et al., 2016), with the most recent uplift event raising the
south-western margin of the Plateau by approximately 1 km, between 6
and 1 Ma (Parsons and McCarthy, 1995). However, it is the lack of
significant deformation of the region that is even more significant,
especially given the rapid nature of the uplift event. Both the Rio
Grande rift and the Basin and Range province have experienced similar
degrees of uplift and have suffered extensive compression and internal
faulting, whilst the Colorado Plateau has remained a rigid block, re-
sistant to significant deformation (Becker et al., 2014; Erdman et al.,
2016; Parsons and McCarthy, 1995).

The scale of the uplift event and the dominance of basaltic mag-
matism throughout imply some degree of mantle influence in the pro-
cess, though the exact mechanism remains highly contentious. Several
mechanisms have been proposed including; crustal thickening caused
by horizontal compression (Dilek and Moores, 1999); dynamic topo-
graphy (Moucha et al., 2008), thermal expansion due to a mantle plume
(Fitton et al., 1991; Wilson, 1973); a reduction in the density of the
mantle caused by physical thinning or thermal expansion of the litho-
sphere lid (Roy et al., 2009) or by the presence of a plume component
(Parsons and McCarthy, 1995); and complete or partial lithosphere
delamination of the Farallon Plate following flat slab subduction
(Beghoul and Barazangi, 1989; Bird, 1979; Humphreys, 1995; Levander
et al., 2011; Thompson and Zoback, 1979; Zandt et al., 1995).

2.2. Regional geology of Colorado Plateau and Rocky Mountain reservoirs

Within the Colorado Plateau and surrounding Rocky Mountain re-
gion there are at least nine producing or abandoned gas fields that
contain up to 2800 billion m3 of natural CO2 (Allis et al., 2001; Miocic
et al., 2013; Miocic et al., 2016; NETL, 2014). In this paper we detail
the results from two separate gas fields, namely Sheep Mountain
(Huerfano County, CO), and Bravo Dome (Harding County, NM), both
of which contain extremely high concentrations of magmatic CO2

(> 95% CO2). The background geology and location of these sites is
outlined in detail in Gilfillan et al. (2008).

2.2.1. Sheep Mountain
The Sheep Mountain gas field is located at the northern end of the

Raton Basin, some 45 km northwest of the town of Walsenburg, south
central Colorado. This region was extensively tilted and folded as a
result of uplift to the west during by the Laramide Orogeny in the late
Cretaceous-early Tertiary time (Woodward, 1983). As a result of this
event, large volumes of lava were extruded from vents along the Sierra
Grande arch, within the Raton Basin and on the eastern margin of the
basin. Intrusive activity accompanied these volcanics, producing ex-
tensive sills and laccoliths including the distinctive peaks of Little Sheep
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Mountain, Sheep Mountain and Dike Mountain. The nearest intrusive to
the field is the Sheep Mountain – Little Sheep Mountain laccolith, which
consists of intermediate-acidic igneous rocks and trends north-north-
west covering an area of approximately 13 km2 (Johnston, 1959; Roth,
1983; Woodward, 1983).

2.2.2. Bravo Dome
The Bravo Dome field (originally named the Bueyeros field) is lo-

cated south of Cortez in Harding County, northeastern New Mexico. It is
a large field (2000 km2) which consists of a northwest trending anti-
clinal nose situated on the spur of the Sierra Grande arch (Baines and
Worden, 2004). The field is bounded by the Tucumari basin to the south
and the Dalhart Basin to the north (Baars, 2000; Johnson, 1983). CO2

from the field has been studied since the 1960s (Boulos and Manuel,
1971; Butler et al., 1963; Hennecke and Manuel, 1975; Zartman et al.,
1961). Phinney et al. (1978) reported the first 3He excess in the gas,
which they attributed to a primordial mantle source. This was con-
firmed by Staudacher (1987) who showed that the noble gas pattern
from CO2 within the field was indistinguishable from that of fresh
MORB glasses and this has been reinforced by the recent studies of
Caffee et al. (1999), Ballentine et al. (2005) and Holland and Ballentine
(2006). CO2 is believed to have migrated from vents associated with the
nearby Rio Grande rift volcanic activity, via deep seated faults that cut
through the fractured basement below the reservoir (Baines and
Worden, 2004). Known volcanic activity in the region was thought to
date from 100,000 to 8000 years ago (Broadhead, 1998), though recent
work has more accurately constrained the latest emplacement of hot
gases into the reservoir to be between 1.2 and 1.5 Ma (Sathaye et al.,
2014) suggesting the field filled relatively recently.

3. Sample collection and analytical techniques

Samples from the two gas fields were collected directly from pro-
ducing wellheads that tap the natural gas reservoirs. Sample localities
were chosen on site from available producing wells to provide a wide
range of depth and spatial distribution across the fields. Samples were
collected via the conventional ¾-inch National Pipe Thread (NPT)
sample port of the well head using ‘Swagelok©’ 300 ml stainless steel
sampling cylinders sealed at both ends with high-pressure valves as
outlined in detail in previous work (Gilfillan et al., 2008; Holland and
Gilfillan, 2013).

4He, 20Ne, 40Ar, 84Kr, 132Xe, 3He/4He, 20Ne/22Ne, 21Ne/22Ne,
40Ar/36Ar and 130Xe/136Xe for Sheep Mountain were determined at the
University of Manchester using an all metal purification line and a MAP
215 mass spectrometer using the procedures outlined in Gilfillan et al.
(2008). Blank levels were negligible compared to original sample size
for all isotopes except 20Ne, which was typically< 1%. The Bravo
Dome samples documented in this study were analysed at ETH (Eid-
genössische Technische Hochschule; Federal Institute of Technology),
and analytical methods are documented in Ballentine et al. (2005).

4. Results

A total of 32 deep CO2 well gas samples from the two gas fields were
analysed as part of a comprehensive study of CO2 reservoirs and natural
seeps in the Colorado Plateau and Rocky Mountain regions (Gilfillan
et al., 2008). Table 1 documents the sample location, producing for-
mation and noble gas isotopic composition and abundance measure-
ments. More recent sample collection and analysis by Holland and
Ballentine (2006) expanded the mantle rich portion of the Bravo Dome
dataset. However, we use earlier values determined at ETH by
Ballentine et al. (2005) which have greater crustal contributions, and
therefore provide a clearer resolution of the crustal end member present
in the field.

4.1. Helium

3He/4He values from the Bravo Dome field exhibit a coherent var-
iation from 0.764 to 4.07 Ra on moving eastwards within the field (4.26
Ra has been measured in a previous study) (Ballentine et al., 2005). This
corresponds with a significant decrease in both 3He (Table 1) and 4He
concentrations (Fig. 1), highlighting that the high mantle 3He/4He
input value is being reduced by the addition of crustal radiogenic 4He to
the west of the field. This is a stark contrast to the 3He/4He values from
the Sheep Mountain field that are remarkably uniform and pre-
dominantly lower, varying from 0.916 up to 1.06 Ra (Fig. 1). No spatial
control on this variation exists indicating that the field has either been
homogenized over time or that crustal radiogenic 4He and mantle de-
rived 3He were well mixed prior to entering the gas field.

Absolute 3He concentrations in both fields are high, ranging from
4.96 to 9.84 × 10−10 cm3(STP)cm−3 within Sheep Mountain and 2.10
to 4.34 × 10−10 cm3(STP)cm−3 in Bravo Dome, with both falling di-
rectly within the pure magmatic CO2 range of 1 × 10−10 and
5 × 10−10 cm3(STP)cm−3 (Ballentine et al., 2001; Marty and Jambon,
1987). Measured CO2/3He ratios from both fields also plot within the
magmatic range of 1 × 109–1 × 1010 confirming that the CO2 con-
tained in the reservoirs has a predominantly mantle origin.

4.2. Neon

Within the Bravo Dome field both the variation in 20Ne/22Ne from
9.93 ± 0.09 to 11.88 ± 0.05 and 21Ne/22Ne values from
0.0501 ± 0.0003 to 0.0579 ± 0.0005 exhibit a similar spatial cor-
relation as that observed in 3He/4He (Fig. 1). Neon isotope measure-
ments from Sheep Mountain exhibit a significantly larger variation than
those observed in the 3He/4He ratios (Fig. 2). Measured 20Ne/22Ne
values vary between 9.84 ± 0.03 and 10.29 ± 0.08. 21Ne/22Ne varies
between 0.031 ± 0.0003 and 0.614 ± 0.0003, illustrating a clear
mixing relationship with the air sourced from the formation water
present in the reservoir. This is indicated by a reduction of the
21Ne/22Ne ratio with a corresponding increase of air-derived 20Ne
concentrations (Table 1).

As Ne is derived from three isotopically distinct sources, (namely
the crust, mantle and air), the contribution of each of these sources to
any sample can be resolved using established techniques (Ballentine,
1997; Ballentine et al., 2002). This is because any sample that contains
a mix of these components must plot within the envelope defined by the
well-known 20Ne/22Ne and 21Ne/22Ne air and crust end members and
the resolved mantle end member values of 12.5 for 20Ne/22Ne and 0.06
for 21Ne/22Ne (Ballentine et al., 2005).

Fig. 2 highlights the distinct crust/mantle/air mixing trends that can
be observed in the Ne isotope data from the two fields. Sheep Mountain
exhibits a clear mixing trend between air and a pre-mixed crust and
mantle component. Bravo Dome, on the other hand, highlights mixing
between an original mantle component and an air/crust mixture.

4.3. Argon

Bravo Dome 40Ar/36Ar vary from 4654 up to 22,492 and also exhibit
the same coherent spatial variation as observed in both 3He/4He and
20Ne/22Ne. 40Ar/36Ar in the Sheep Mountain field vary from 4400 to
21,200. A lowering of the 40Ar/36Ar ratio corresponding to increasing
36Ar concentrations highlights mixing of an air component, derived
from the formation water, with the gas within the reservoir.

Atmospheric contributions to 40Ar can be resolved using the formula
outlined by Ballentine et al. (2002) Eq. (1), assuming that all of the 36Ar
originates from the atmosphere. This is a valid assumption as 36Ar
production in the crust is small compared to the ambient background of
atmosphere-derived 36Ar introduced into the crust dissolved in
groundwater and is usually neglected (Ballentine and Burnard, 2002).
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Air corrected 40Ar constitutes 93.7% to 98.7% of the 40Ar measured

in Bravo Dome, which is comprised of both mantle and crustal con-
tributions. Due to the correlation between crust and mantle ratios
within the field, the mantle and crust contributions to 40Ar can be re-
solved using the methods outlined in Section 5.1.

Air corrected 40Ar concentrations from Sheep Mountain vary from
1.30 × 10−4 to 2.04 × 10−4 cm3(STP)cm−3, constituting 93.3% to
98.6% of the total 40Ar. As there is no consistent variation in the crust
and mantle ratios within the field, contributions of 40Armantle and
40Arcrust cannot be resolved and the air corrected 40Ar must be con-
sidered in terms of 40Arcrust + mantle.

5. Discussion

5.1. Resolving mantle and crust components

5.1.1. Bravo Dome
As previously outlined in Section 4.2, the distinct isotopes of Ne can

be used to resolve the air, crust and mantle components from any
sample. This enables the resolved 21Neair component to be subtracted
from the 21Netotal, leaving ‘air-corrected’ 21Necrust + mantle. Plotting
21Necrust + mantle/4He against 3He/4He (which has a negligible air
component) defines a simple two-component mixing line (Fig. 3(a)).
This can be extrapolated to the well-defined crustal 3He/4He end-
member of 0.005 Ra (Ballentine and Burnard, 2002) allowing the local
4He/21Necrust input value to be resolved as 3.47 ± 0.24 × 107, when a
20Ne/22Nemantle of 12.5 is used (Ballentine et al., 2005). The estimate of
the mantle Ne endmember within the Bravo Dome field has been fur-
ther refined by Holland and Ballentine (2006) to be 12.49 ± 0.04 for
20Ne/22Ne and 0.0578 ± 0.0003 for 21Ne/22Ne. This confirms that use
of a 20Ne/22Nemantle of 12.5 is valid for this field.

This 4He/21Necrust ratio can then be combined with the resolved
21Necrust value to calculate the crustal contributions to 3He and 4He.
This allows a resolved 3He/4Hemantle value to be calculated for each
sample. The 3He/4Hemantle determined in three samples have propa-
gated errors which are< 50% and these provide an error-weighted
average of 5.35 ± 0.36 to 7.4 ± 0.5 Ra for the 3He/4Hemantle end
member as outlined in detail in Ballentine et al. (2005). We determine a
corresponding range of 4He/21Ne*mantle values by combining the re-
solved 4Hemantle values with those of 21Ne*mantle. This 21Ne*mantle value
is calculated using the neon 3-isotope technique outlined in Section 4.2
and then performing a correction for the solar contributions using the
method outlined by Graham (2002).

A plot of 40Arcrust + mantle/4He plotted against 3He/4He also gen-
erates a two component mixing line allowing the 4He/40Arcrust input
value to be determined (Fig. 3(b)). Extrapolation to the 3He/4Hemantle
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Fig. 1. Plot of 3He/4He (R/Ra) against 4He concentration for the samples in this study.
Bravo Dome 3He/4He ratios exhibit clear mixing between a high 3He/4He mantle end
member and a low 3He/4He crust end member. Values within the Sheep Mountain field
show minimal variation. Error bars are smaller than printed symbols.
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Figures reproduced from Ballentine et al. (2005).
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value determined above provides the range of resolved 40Ar/4Hemantle

and allows mantle and crust contributions to be corrected from the air
corrected 40Arcrust + mantle as outlined in Ballentine et al. (2005).

5.1.2. Sheep Mountain
The variation of 3He/4He in the Sheep Mountain field is insufficient

to allow extrapolation to the crustal 3He/4He end member and there-
fore the techniques outlined for Bravo Dome by Ballentine et al. (2005)
cannot be applied in this instance. This means that the crustal input
values in the field cannot be determined directly. However, we have
developed a method to constrain the range of mantle 3He/4He,
4He/21Ne*, 3He/22Ne, 4He/40Ar and 21Ne*/40Ar values within the da-
taset using chi-squared minimisation techniques.

The technique uses the 21Necrust abundance calculated from the air,
crust and mantle Ne end members. Assuming a MORB-like mantle
source of 8 Ra for the well gases allows the resolved MORB
20Ne/22Nemantle and 21Ne/22Nemantle values of 12.5 value and 0.06 to be
used (Ballentine et al., 2002; Ballentine et al., 2005; Holland and
Ballentine, 2006). Note that three samples that are closet to the air end
member are not used (2-9-H, 1-15-C and 5-15-O), as the crust and
mantle components cannot be resolved in these samples, due to the
presence of a large air-derived component from the formation water.

The range exhibited of 4He/20Ne from Sheep Mountain samples of
3200 to 71,100 is significantly above the air ratio value of 0.32 (Kipfer
et al., 2002). Therefore, the 3He/4He ratio can be considered as a sum of
only two components, the crust and the mantle. The contribution of 4He
from the crust can be calculated for different 3He/4Hemantle ratios using
the following formula (Ballentine et al., 2002);

= ×
⎡
⎣

⎤
⎦

− ⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

− ⎡
⎣

⎤
⎦

[ He] [ He]4
crust

4
tot

He
He mntl

He
He meas

He
He mntl

He
He crust

3

4

3

4

3

4

3

4 (2)

As the 4Hecrust is dependent on the 3He/4Hemantle end member, so
too is the 4He/21Necrust ratio as 21Necrust is derived independently from
the He system. Hence, for each sample, 4He/21Necrust values can be
determined as the 3He/4Hemantle is varied from 1 to 8 Ra. For each
3He/4Hemantle ratio used an error-weighted mean 4He/21Necrust (x )
using Eq. (3), and the associated weighted uncertainty Eq. (4) can be
calculated from the dataset as follows:

=
∑
∑

=

=
x

x σ
σ1

i
n

i i

i
n

i

1
2

1
2 (3)

=
∑ =

σ
σ

1
1x

i
n

i1
2

(4)

where:

σi is the uncertainty attributed to each sample.

Variable correction on each sample for the mantle component will
leave differing crustal 4He/21Necrust residues. If we make the assump-
tion that the field has been subjected to a constant crustal 4He/21Necrust
input, as evidenced by the low variance of 3He/4He observed, then we
would expect the ‘correct’ mantle 3He/4He value to exhibit the least
deviation of the residual 4He/21Necrust from the error weighted mean
value. We can then determine the ‘best fit’ mantle 3He/4Hemantle end
member using a Reduced Chi-Squared minimisation (xmin

2 ), with con-
fidence limits on this determination providing an assessment of the
statistical significance of the fit.

∑= −x O x
σ

( )
min

i

i

2
2

2 (5)

where Oi = individual observed calculated 4He/21Necrust ratio for each
sample.

Fig. 4 shows the Reduced Chi-Squared minimisation for the
3He/4Hemantle range of 1 to 8 Ra. Whilst the dataset exhibits a mini-
misation at 1.95 Ra, the 1σ confidence limits defined by χ2

min + 1
produces a range of possible 3He/4He values of 1.66 to 2.64 Ra. The
wide range of derived 3He/4Hemantle and high Chi-Squared value of 9
(for 14 degrees of freedom) implies there could be another variable in
the dataset that is not accounted for in this simple minimisation.

As the resolved 3He/4Hemantle is significantly below that of MORB,
using the mantle Ne end members corresponding to an 8 Ra mantle
source may be inappropriate. As previously highlighted many He iso-
tope studies have identified that the isotopic ratio of He within the
SCLM is more radiogenic than that of the mid ocean ridge (MORB)
source mantle. Gautheron et al. (2005) report a homogenous
3He/4Hemantle for the European SCLM of 6.32 ± 0.39 Ra that they at-
tribute to two potential mechanisms that allow asthenospheric helium
to invade the lithosphere: recent, local metasomatism or global, con-
tinuous metasomatism in a steady state for helium. This work also in-
ferred that the Ne systematics of the SCLM beneath Europe is also more
radiogenic than that of MORB. Recent work by Bräuer et al. (2013) has
reported a SCLM Ne composition in the Eifel area that represents
mixing of a MORB-like Ne component with a fractionated atmospheric
component, but also shows evidence of the presence of a small radio-
genic Ne component in a number of samples.

Radiogenic ingrowth in the mantle source could also account for the
low 3He/4Hemantle resolved in the Sheep Mountain reservoir. In order to
test this theory, we model the increase in 21Ne/22Ne that will result
from radiogenic production of 21Ne, which will be proportional to the
amount of 4He required to reduce the 3He/4Hemantle from 8 Ra to 2 Ra.
This can be achieved as the 3He concentration of the convecting mantle
is known, from a combination of the 3He flux from mid ocean ridges
(Craig et al., 1975) and MORB popping rock measurements, to be
4.4 × 10−11 cm3 STP g−1 (Moreira et al., 1998), assuming 10% partial
melting (Porcelli and Ballentine, 2002).

Hence, using the MORB 3He/4He of 8 Ra, the 4He concentration of
the convecting mantle can be calculated as 3.93 × 10−6 cm3 STP g−1.
Combining this with the measured 4He/21Ne* value of MORB of
1.68 × 107 (Moreira et al., 1998) gives a 21Ne* concentration of
2.34 × 10−13 cm3 STP g−1. Using these values, the amount of 4He
required to reduce the 3He/4Hemantle ratio by radiogenic ingrowth from
8 Ra to 2 Ra can be calculated to be 1.57 × 10−5 cm3 STP g−1.

This can be combined with estimates of the present day 4He/21Ne*
production rates in the mantle which vary between 2.22 × 107

(Yatsevich and Honda, 1997) and 2.79 × 107 (Leya and Wieler, 1999)
to determine the amount of 21Ne produced. This is directly proportional
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to the quantity of radiogenic 4He excess required to lower the
3He/4Hemantle to the resolved value. Adding this to the original 21Ne
concentration of the mantle, allows the 21Ne/22Nemantle corresponding
to the lower 3He/4Hemantle to be calculated (Fig. 5). We use estimates of
mantle noble gas concentrations derived from popping rock, which
have been recently cited to be above other estimates (Bianchi et al.,
2010). However, it should be noted that the increase in the 21Ne/22Ne
ratio corresponding to the reduction in 3He/4Hemantle is solely depen-
dent on the 4He/21Ne* mantle production ratio used and is therefore
independent of absolute concentrations.

Using the same method as previously outlined we now perform a
Reduced Chi-Squared minimisation for lower 3He/4Hemantle values, but
now couple it with the corresponding increase in the mantle 21Ne/22Ne
end member. We perform this minimisation for both of the current
estimates of 4He/21Nemantle production. These two separate minimisa-
tions produce much lower χ2

min values of 2.13 for a 4He/21Ne* of
2.22 × 107 and 2.12 for a 4He/21Ne* of 2.79 × 107, for 14 degrees of
freedom, indicating a more statistically significant resolution of the
3He/4Hemantle value.

This highlights that radiogenic production within the SCLM source
which supplies volatiles to the field, could be responsible for reducing
both the 3He/4Hemantle and a corresponding increase in the
21Ne/22Nemantle end member. The two minimisations give a range of
values for 3He/4Hemantle of 2.59 ± 0.15 to 3.00 ± 0.18, and a cor-
responding range of weighted mean 4He/21Necrust values of
2.86 ± 0.30 and 3.08 ± 0.32 × 107, respectively (Fig. 6(a) & (b)).
Confidence in this procedure is reinforced by the fact that resolved
4He/21Necrust values are similar to those measured in Bravo Dome of
3.47 ± 0.24 × 107 (Ballentine et al., 2005).

Using the derived range of 3He/4Hemantle values, a similar Reduced
Chi-Squared minimisation can be performed to constrain the
4He/40Armantle of the Sheep Mountain field. The 40Armantle contribution
can then be simply determined through multiplication of the previously
calculated 4Hemantle concentration by the resolved 4He/40Armantle ratio.
This in turn permits the 40Arcrust to be determined through subtraction
of the calculated 40Armantle contribution from the 40Arcrust + mantle

value. The independently calculated 21Necrust value obtained in-
dependently from the Ne three isotope method can then be combined
with the 40Arcrust to provide the 21Ne/40Arcrust of each sample.

Therefore, for each sample, 21Ne/40Arcrust values can be determined
as the 4He/40Armantle is changed. This allows an error-weighted mean
21Ne/40Arcrust to be calculated from the dataset. If we assume that the
field has been subjected to a constant crustal 21Ne/40Arcrust input, si-
milar to the assumption made for 4He/21Necrust, then the ‘correct’
mantle 4He/40Armntl end member should result in the least deviation in
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21Ne/40Arcrust values from the error-weighted mean. This minimisation
is shown in Fig. 7 and enables us to derive a 4He/40Armantle range of
0.85 (+0.20, −0.07) to 1.00 (+0.21, −0.09). Multiplication of the
inverse of the 4He/21Nemantle range with the 4He/40Armantle values al-
lows the range of 21Ne/40Armantle values to be derived. All of the re-
solved mantle ratio ranges are documented in Table 2.

5.2. Resolved mantle components

We now consider the resolved mantle ratios, specifically
3He/22Nemantle, 4He/21Ne*mantle, 4He/40Armantle and 21Ne/40Armantle.

5.2.1. 3He/4Hemantle and 3He/22Nemantle ratios
We first investigate the relationship between 3He/4Hemantle and the

elemental 3He/22Nemantle. As neither isotope is significantly produced
by radiogenic mechanisms, the measured ratio should be unaffected by
the radiogenic lowering of the 3He/4Hemantle within the gas fields. It is
therefore significant that the resolved range of 3He/22Nemantle in both
fields is lower than that of MORB (Fig. 8). This implies that there is a
process in addition to radiogenic ingrowth that is fractionating the
3He/22Nemantle in both settings.

In the Bravo Dome field, values vary from 2.56 to 2.77, 1.8–1.9
times lower than the measured MORB popping rock value of 4.90
(Burnard et al., 1997; Moreira et al., 1998). Importantly, the small
range of resolved 3He/22Nemantle in Sheep Mountain of
2.80–2.81 ± 0.16 is indistinguishable from the range of values re-
solved in Bravo Dome, some 1.75 times lower than the MORB value.
This shows that the Sheep Mountain field, after correction for radio-
genic production in the mantle through use of a higher 21Ne/22Ne end
member, has an identical elemental 3He/22Nemantle to that of Bravo
Dome. This implies that a similar process could be responsible for
lowering the 3He/22Nemantle in both fields. These values are similar to
the ratio of 1.91 previously resolved from a comprehensive suite of well
gases (Ballentine et al., 1997).

Tucker and Mukhopadhyay (2014) have recently reported

equatorial Atlantic MORBs derived from a heterogeneous source with
3He/22Nemantle ratios of 6.1 to 9.8. They observed that the most de-
pleted MORBs are derived from a mantle with the highest
3He/22Nemantle ratios, whilst more enriched MORBs corresponded to
lower 3He/22Nemantle values. Average 3He/22Nemantle ratios of
10.2 ± 1.6 were reported by (Honda and McDougall, 1998) from 20
measurements and a value of 8.8 ± 3.5 was compiled by (Graham,
2002) from an average of 85 measurements. Jalowitzki et al. (2016)
report higher than depleted MORB 3He/22Ne ratios for the local SCLM
endmember beneath Southern Patagonia of 12.03 ± 0.15 to
13.66 ± 0.37.

However, direct measurements of 3He/22Ne ratios in mantle-derived
basalts are not believed to represent the mantle value as the ratio can be
readily changed by magmatic degassing during eruption and ubiquitous
shallow-level air contamination (Tucker and Mukhopadhyay, 2014).
Therefore, the ranges cited above were calculated from combining
measured He and Ne isotope ratios in basalts, after the methods out-
lined by Honda and McDougall (1998) and Porcelli and Ballentine
(2002). Further, the values reported by Graham (2002) and Honda and
McDougall (1998) were calculated assuming a mantle 20Ne/22Ne ratio
of 13.8.

The average 3He/22Nemantle ratios of Honda and McDougall (1998)
and Graham (2002) recalculated using a20Ne/22Ne = 12.5 are
7.3 ± 1.2 and 6.1 ± 2.4, respectively (Tucker and Mukhopadhyay,
2014), close to, or within, the MORB popping rock value of 4.9 that we
use. Further, a higher MORB 3He/22Nemantle ratio makes our dataset
more difficult to explain and hence we use what we believe to be the
most accurate unfractionated value. The higher 3He/22Ne ratios re-
cently reported from Southern Patagonia are believed to indicate that
the SCLM here experienced a different evolution from a MORB source
than other SCLMs (Jalowitzki et al., 2016). These higher ratios were
attributed to greater compatibility of He relative to Ne during melt
extraction linked to a vertical delamination process related to subduc-
tion in the area and hence are not directly relevant to our observations.

5.2.2. Equilibrium partitioning
Previous studies have shown that equilibrium partitioning of He and

Ne between a melt and gas phase can decrease the He/Ne ratio in the
gas phase (Jambon et al., 1986; Lux, 1987). The magnitude of this
fractionation, F[He/Ne]gas, is defined by the He/Ne ratio in the gas
phase, [He/Ne]gas, divided by the original He/Ne ratio in the melt, [He/
Ne]melt, prior to the formation of the gas phase. Equilibrium parti-
tioning between He and Ne can be modelled using their respective
Henry's solubility constants. The absolute solubilities of noble gases in a
silicate melt are only weakly affected by temperature and therefore are
typically calculated as a function of the percentage ionic porosity
(Carroll and Draper, 1994). When the gas/melt volume ratio ap-
proaches zero, He and Ne in the gas phase are fractionated pro-
portionally to their relative solubilities in the melt and F(He/Ne)gas
reaches a maximum (where F[He/Ne]gas → KNe/KHe when KHe and KNe

are the respective Henry coefficients for He and Ne). Fig. 9 shows the
maximum F[He/Ne]gas against percent ionic porosities of 45–52%.

Assuming initial MORB mantle values of 4.9 for 3He/22Nemantle as
explained above, the fractionation factor (F[He/Ne]) required to

Table 2
Resolved mantle elemental and isotopic ratios.

Source 3He/4Hemantle (Ra) 4He/21Ne*mantle (×107) 3He/22Nemantle
4He/40Armantle

21Ne/40Armantle (×10−8)

Popping rock
(Moreira et al., 1998; *Burnard et al., 1997)

8.22 ± 0.15*
8.54 ± 0.12

1.68 4.90 1.52 6.31
9.05

Bravo Dome
(Ballentine et al., 2005; ‘Holland and Ballentine, 2006)

5.35 ± 0.36
7.40 ± 0.50’

1.45
1.23’

2.77
2.56’

0.844
1.09’

5.82
8.86’

Sheep Mountain 2.59 ± 0.15
3.00 ± 0.18

1.30 ± 0.14
1.11 ± 0.11

2.80 ± 0.16
2.80 ± 0.16

1.00 + 0.21, −0.09
0.85 + 0.20, −0.07

7.70 ± 1.54
7.66 ± 1.62

21Ne* indicates 21Ne corrected for solar contribution (Graham, 2002).
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account for the 3He/22Nemantle of 2.80 measured in the Sheep Mountain
field is ~0.57, almost identical to the F[He/Ne] range of 0.52 to 0.56
required to account for the Bravo Dome range of 2.56–2.77. These
fractionation factors can be accounted for by ionic porosity in the de-
gassing melt of ~48.3% for both datasets (Fig. 9). Ionic porosity is
crudely anti-correlated to melt density and a melt density of
2.6 g cm−3, can account for the derived ionic porosity, provided that
the gas/melt ratio is small. Higher ionic porosities and lower melt
densities than these cannot account for the minimum fractionation
observed within the fields. These values are comparable with the lower
end of the density range of typical mafic melts (10–20% partial melt) of
2.6–2.7 g cm−3 (Ballentine, 1997).

5.2.3. 3He/4Hemantle and 4He/21Ne*mantle ratios
As radiogenic ingrowth of 4He can account for the reduction of the

Sheep Mountain 3He/4Hemantle, it is straightforward to calculate the
amount of 4He required to lower the values measured in the field. Using
the calculated mantle production ratio range for 4He/21Ne* of
2.22 × 107 (Leya and Wieler, 1999) and 2.79 × 107 (Yatsevich and
Honda, 1997) enables the amount of 21Ne corresponding to this 4He
excess to also be calculated. This allows a range of predicted
4He/21Ne*mantle ratios that correspond to the 3He/4Hemantle reduction
to be determined. In the Bravo Dome field the highest 3He/4Hemantle

value measured of 7.40 Ra is extremely close to that of MORB and
therefore radiogenic production should not significantly alter the
4He/21Ne*mantle. Applying the same methodology to the Sheep Moun-
tain field, the reduction of the 3He/4Hemantle to between 2.59 and 3.00
Ra would result in an increase of the 4He/21Ne*mantle to between 2.01
and 2.30 × 107 and 1.98–2.24 × 107, respectively (Fig. 9).

However, the actual 4He/21Ne*mantle range resolved in the Bravo
Dome field of 1.23–1.45 × 107 is between 1.2 and 1.4 times lower than
the measured MORB popping rock value. 4He/21Ne*mantle resolved in
the Sheep Mountain field range from 1.11 ± 0.11 to
1.30 ± 0.14 × 107, between 1.3 and 1.5 times lower than the MORB
value and only slightly below the Bravo Dome value (Fig. 10). This
reduction could be explained by the same phase partitioning process
outlined to account for the reduction in 3He/22Nemantle. Applying the
same maximum fractionation factor of 0.52 observed in the
3He/22Nemantle produces two fractionation lines that can account for
one of the set of values measured in Sheep Mountain (Fig. 10). The
resolved range from the other Sheep Mountain value and from Bravo
Dome, are however, somewhat above the predicted line, implying that
fractionation of the 4He/21Ne*mantle has not been as severe as that ob-
served in the 3He/22Nemantle within the field.

5.2.4. 3He/4Hemantle, 4He/40Armantle and 21Ne/40Armantle

The radiogenic production ratio of 4He/40Armantle is ~3 (Ballentine
and Burnard, 2002). Using this value with the calculated 4He con-
centration corresponding to the individual field 3He/4Hemantle and the
MORB value allows us to predict the increase of the 4He/40Armantle

values that would result from radiogenic production in the mantle
(Fig. 11). It can be clearly seen that the 4He/40Armantle ratios measured
in both fields are considerably lower than both MORB and the predicted
4He/40Armantle fractionation trend, implying that radiogenic production
alone cannot account for the Bravo Dome and Sheep Mountain values.

However, as previously outlined, phase fractionation between a gas
and melt can account for the lower He/Ne ratios measured in both
fields. It is therefore probable that a similar process could be re-
sponsible for the reduction of the He/Ar ratios. As Ar is considerably
less soluble in a melt than Ne, it is more readily degassed from the melt,
resulting in a higher degree of fractionation within the He/Ar ratios of
the exsolved gas (Carroll and Draper, 1994). This results in a high F
[He/Ar] value of 0.19 as opposed to the F[He/Ne] value of 0.52 for a
melt with an ionic porosity of 48.3% (Fig. 9). However, this degree of
fractionation is too severe to account for the 4He/40Armantle resolved in
both gas fields (Fig. 11). This implies that there is an additional frac-
tionation process acting on the noble gases within the field.

The model outlined by Gilfillan et al. (2008) could provide an ad-
ditional process to account for the fractionation observed in the fields.
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In this model magmatic degassing emplaces mantle derived CO2 and
noble gases into the formation water in the gas fields. Both are subse-
quently degassed from the formation water upon reaching the gas/
water contact. This degassing process will result in an increase in the
He/Ar ratios, as He is less soluble than Ar in water, and is therefore
preferentially degassed from the formation water. For the conditions in
the Sheep Mountain field, the predicted F[He/Ar] for this process is
2.11 and within for Bravo Dome the predicted F[He/Ar] is 2.55. The
trends that would result from this fractionation are also plotted on
Fig. 11 and importantly they can account for the range of
4He/40Armantle values observed in both fields.

Given that this process can account for the He/Ar ratios in both
fields, the effect of the degassing process on the He/Ne ratios must also
be considered. As the solubility of He and Ne in water is extremely
similar (Crovetto et al., 1982) the F[He/Ne] under the reservoir con-
ditions in Sheep Mountain and Bravo Dome will be 1.05 and 1.09, re-
spectively, and therefore the groundwater degassing process will not
significantly alter the resolved He/Nemantle in the fields.

Importantly, using exactly the same model, the resolved range of
21Ne/40Armantle values from Sheep Mountain and the lower value from
Bravo Dome can be accounted for. However, the upper values resolved
in Bravo Dome for both the 4He/40Armantle and 21Ne/40Armantle ratios
are less fractionated compared with the popping rock value than this
model predicts. This corresponds to the high 3He/4Hemantle value of
7.40 ± 0.50 that is within the lower range of MORB, suggesting that
the He/Ar and Ne/Ar ratios of the mantle rich portion of the Bravo
Dome field are not significantly fractionated from MORB. At the mo-
ment it is unclear as to why the resolved 3He/22Nemantle in this portion
of the field are significantly lower than MORB, whilst these values are
not.

5.3. Implications to models of SCLM evolution

5.3.1. Mantle plume model
It has been suggested that a mantle plume could be the primary

cause of the Cenozoic volcanism and associated high heat flow in the
southwest US (Fitton et al., 1991). Several workers have also proposed
that the Colorado Plateau Uplift event could be explained by the pre-
sence of a mantle plume (Parsons and McCarthy, 1995; Wilson, 1973).
This has been strongly argued against by Dodson et al. (1998) and we
support this argument. There is no evidence of a primitive high
3He/4Hemantle component within our data such as that observed in
Yellowstone or Hawaii, and in fact, our derived 3He/4Hemantle values
from the Sheep Mountain field are significantly more radiogenic than
those of MORB. This is reinforced by more radiogenic than the MORB
range 3He/4He measured from SCLM in extensional regions around the
world including Europe (Bräuer et al., 2016; Bräuer et al., 2013; Dunai
and Baur, 1995; Dunai and Porcelli, 2002; Gautheron and Moreira,
2002; Gautheron et al., 2005), the continental Cameroon Line (Barford
et al., 1999), the East African Rift and in Canada (Day et al., 2005).

5.3.2. Closed system evolution of MORB mantle
Our results highlight that closed system radiogenic production can

account for the low 3He/4Hemantle resolved from the Sheep Mountain
field. Closed system radiogenic ingrowth models for the south-western
US have been previously proposed by both Reid and Graham (1996)
and Dodson et al. (1998). Reid and Graham concluded that the litho-
spheric mantle in the region is not a highly degassed reservoir con-
taminated by He derived from the asthenosphere. They argued that it is
a reservoir which has a slightly elevated (U + Th)/3He ratio (and
therefore lower 3He/4He) compared to the depleted upper mantle
source, which has remained unmodified for 1.7 Ga. The 3He/4Hemantle

range resolved in our Sheep Mountain sample suite of 2.59–3.00 Ra can
be explained by radiogenic production of between 6.55 and
8.26 × 10−6 cm3 STP g−1 of 4He, assuming an initial mantle ratio of 8
Ra and a 4Hemantle concentration of 3.93 × 10−6 based on the mantle

3He concentration of 4.40 x 10−11 resolved by Holland et al., (2006).
Using the present day mantle 4He production ratio of
4.13 × 10−15 cm3 STP g−1 per year (Ballentine and Burnard, 2002)
requires that the upper mantle source has been isolated for a period of
1.59–1.99 Ga, comparing favourably with the value derived by Reid
and Graham (1996). However, as both the 3He/4He ratio and the crustal
production ratio of the mantle would presumably have been higher in
the past, the isolation periods calculated represent absolute maximum
isolation times.

However, our results also advocate that closed system radiogenic
ingrowth is not the only process required to account for mantle ratios
measured. For the first time we have been able to resolve both the
mantle He/Ne ratios and the He/Ar ratios of the SCLM source.
Importantly, in both the Sheep Mountain and Bravo Dome fields, both
of these isotope pairs are depleted relative to the MORB mantle values.
This can only be explained by partial degassing of small melt fractions
from asthenospheric melts that have been emplaced into the SCLM after
radiogenic ingrowth.

6. Conclusions

We have identified that reduction of 3He/4Hemantle ratio within the
Sheep Mountain gas field in central Colorado can be attributed to
radiogenic production within the SCLM. Using a Reduced Chi-Squared
minimisation on the variation of derived 4He/21Necrust, combined with
a radiogenically raised 21Ne/22Nemantle end member, we have resolved
3He/4Hemantle ratios of 2.59 ± 0.15 to 3.00 ± 0.18 Ra within the
field. These values correspond with a 21Ne/22Nemantle value of 0.136.
Using these resolved 3He/4Hemantle end member values with 21Nemantle

resolved from Ne three component analysis, has enabled a derivation of
the elemental 3He/22Nemantle of 2.80 ± 0.16 and radiogenic
4He/21Ne*mantle range of 1.11 ± 0.11 to 1.30 ± 0.14. A second
Reduced Chi-Squared minimisation performed on the variation of
21Ne/40Arcrust ratios has allowed us to also determine both the
4He/40Armantle range of 0.78 to 1.21 and 21Ne/40Armantle of
7.66 ± 1.62 to 7.70 ± 1.54 within the field.

Using the known mantle production ranges for 4He/21Ne and
4He/40Ar has allowed us to determine the radiogenic He/Ne and He/Ar
ratios that correspond to the radiogenically lowered 3He/4Hemantle ra-
tios. Comparing these values with those resolved from both the Sheep
Mountain field and the Bravo Dome field located in north western New
Mexico by Ballentine et al. (2005) has allowed us to identify a clear and
coherent depletion of He to Ne and He to Ar. This depletion can only be
explained by partial degassing of small melt fractions from astheno-
spheric melts that have been emplaced into the SCLM. This is the first
time that it has been possible to resolve and account for both the mantle
He/Ne and He/Ar ratios within the SCLM source. We can also rule out
the involvement of any plume component in the mantle source of the
two gas fields and therefore also any plume influence on the Colorado
Plateau Uplift event.
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