# Measurement of Osteoanabolic Agents PTH (1-34) and PTHrP (1-36) in Therapeutic Studies and Clinical Diagnosis

## S Al Riyami<sup>1</sup>, J C Y Tang<sup>1</sup>, H Galitzer<sup>2</sup>, W D Fraser<sup>1</sup>

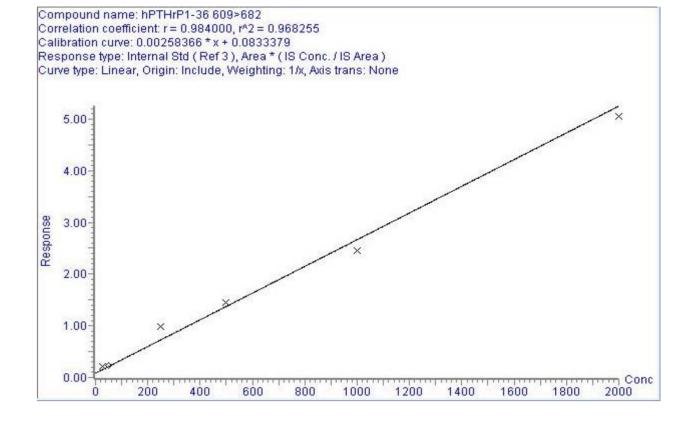
<sup>1</sup>Bioanalytical Facility, Bob Champion Research and Education Building, James Watson Road, University of East Anglia, Norwich Research Park, Norwich, NR4 7UQ, UK <sup>2</sup> Entera Bio Ltd, Hadassah Ein-Kerem, Jerusalem Bio Park, Jerusalem, Israel

### Introduction

Teriparatide, a recombinant human PTH (1-34) is an osteoanabolic agent for treatment of osteoporosis. PTH (1-34) can also be used a replacement therapy in hypoparathyroidism and to accelerate fracture healing. Abaloparatide, PTHrP (1-34) analogue is a novel anabolic drug for treatment of osteoporosis. Measurement of plasma PTH (1-34) has also been used to assess response to PTH in conditions such as pseudohypoparathyroidism (PHP) (Ellsworth-Howard test (EHT)).

### **Aims and Objectives**

- To review the use of PTH (1-34) measurements in drug development studies, and in the diagnosis of patients with PHP.
- To highlight the potential use of measurement of PTHrP (1-36) using our LC-MS/MS method for measurement of intact PTHrP (1-36), intact PTH (1-34) and its respective oxidized forms simultaneously.


### **PTHrP (1-36) Assay Validation**

- Linear calibration curve from 25 to 2000 pg/mL
- Typical linear regression analysis ( $r^2 = 0.968$ )
- Lower limit of Quantification (LLoQ): 25 pg/mL
- Lower limit of detection (LLoD): 2.5 pg/mL

**Imprecision**:



**Corresponding author:** S.Al-Riyami@uea.ac.uk



### **Study Design and Method**

| Sample Collection |       |         |        |  |  |  |  |  |
|-------------------|-------|---------|--------|--|--|--|--|--|
| PTH (1-34)        | was   | analys  | ed in  |  |  |  |  |  |
| EDTA plasm        | na ob | tained  | from   |  |  |  |  |  |
| human subj        | jects | given e | either |  |  |  |  |  |
| single sub        | ocuta | neous   | (sc)   |  |  |  |  |  |
| injection         | of    | 20      | μg     |  |  |  |  |  |
| Tarinaratida      | 1     | 10) 05  | 0      |  |  |  |  |  |

- Teriparatide (n=10) or 0.69 mg (n=5), 2.07 mg (n=10) oral PTH (1-34) (EnteraBio).
- > Baseline samples were taken immediately before drug administration.

Sample preparation 200 μL EDTA plasma + (I.S.) + 500 μL 95:5 (v:v) H<sub>2</sub>O:NH<sub>4</sub>OH In Lo-Bind 1.5 mL tube/2 mL 96-well plate (Waters Oasis<sup>®</sup> HLB µElution 96-well plate) Wash plate with 200 µL 60:40 (v:v) H<sub>2</sub>O:MeOH Elute with 2 x 25 µL 70:30:0.2 (v:v:v) (ACN:H<sub>2</sub>O:FA) and collect eluent LC-MS/MS

Post-dose blood samples were collected every 15 minutes for two hours then hourly for three hours (time course 0-300 min).

- > Ellsworth-Howard test procedure was carried on a patient with suspected PHP.
- $\succ$  Urine cAMP and PO<sub>4</sub> were analysed on samples voided every 30 min for 3 hours post PTH (1-34).

| ] (In                             | Rat PTH (1-<br>iternal Star            |                                               |                                                                         | 77.1 > 778                                                                                    | .5 (rPTH1-34)<br>2.13e3                                                                        |
|-----------------------------------|----------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 0                                 | 1.18                                   |                                               | 2.16                                                                    | 2.53                                                                                          | 2.82                                                                                           |
| 0.50                              | 1.00                                   | 1.50                                          | 2.00<br>1.91 58                                                         | 2.50<br>39.2 > 656.                                                                           | 3.00<br>1 (hPTH 1-34)<br>2.83e4                                                                |
| *                                 | Human P                                | PTH (1-34)                                    | $\bigwedge$                                                             |                                                                                               |                                                                                                |
| 0.50                              | 1.00                                   | 1.50                                          | 2.00                                                                    | 2.50                                                                                          | 3.00                                                                                           |
|                                   |                                        | 1.69                                          | 591                                                                     | 4 > 658.8 (                                                                                   | Oxi-PTH1-34)                                                                                   |
| Sin<br>≫hum                       | gle-oxidise<br>an PTH (1-<br>@ Met 8   | A 1 1                                         | Single-ox                                                               |                                                                                               | 7.10e4<br>man                                                                                  |
| Sin                               | an PTH (1-                             | A 1 1                                         | Single-ox                                                               | idised hu                                                                                     | 7.10e4<br>man                                                                                  |
| »-hum                             | an PTH (1-3<br>@ Met 8                 | 34) // \                                      | Single-ox<br>PTH (1-3<br>2.00                                           | idised hu<br>4) @ Me<br>2.50                                                                  | 7.10e4<br>man<br>t 18                                                                          |
| Sin<br>Sin<br>hum<br>0,00<br>0.50 | an PTH (1-3<br>@ Met 8                 | 34) //<br>1.50                                | Single-oxi<br>PTH (1-3<br>2.00<br>593<br>couble-oxid                    | idised hu<br>4) @ Me<br>2.50<br>.7 > 661.5 (<br>dised hur                                     | 7.10e4<br>man<br>t 18<br>.000<br>Oxi-PTH1-34)<br>2.63e5<br>man                                 |
| Sin<br>≈ hum<br>0.50              | an PTH (1-3<br>@ Met 8<br>             | 34) //<br>1.50                                | Single-ox<br>PTH (1-3<br>2.00<br>593                                    | idised hu<br>4) @ Me<br>2.50<br>.7 > 661.5 (<br>dised hur                                     | 7.10e4<br>man<br>t 18<br>.000<br>Oxi-PTH1-34)<br>2.63e5<br>man                                 |
| Sin<br>%-hum<br>0.50              | an PTH (1-3<br>@ Met 8                 | 34) //<br>1.50                                | Single-oxi<br>PTH (1-3<br>2.00<br>593<br>couble-oxid                    | idised hu<br>4) @ Me<br>2.50<br>.7 > 661.5 (<br>dised hur                                     | 7.10e4<br>man<br>t 18<br>.000<br>Oxi-PTH1-34)<br>2.63e5<br>man                                 |
| Sin<br>hum<br>0.50                | an PTH (1-3<br>@ Met 8<br>1.00         | 34) //<br>1.50<br>1.36<br>PTH<br>1.50         | Single-oxi<br>PTH (1-3<br>2.00<br>593<br>ouble-oxid<br>(1-34) @<br>2.00 | idised hu<br>4) @ Me<br>2.50<br>.7 > 661.5 (<br>dised hur<br>Met 8 & 1<br>2.50                | 7.10e4<br>man<br>t 18<br>.00<br>Oxi-PTH1-34)<br>2.63e5<br>nan<br>Met 18                        |
| Sin<br>hum<br>0<br>0.50           | an PTH (1-3<br>@ Met 8<br>1.00<br>1.04 | 34)<br>1.50<br>1.36<br>D<br>PTH<br>1.50<br>27 | Single-oxi<br>PTH (1-3<br>2.00<br>593<br>ouble-oxid<br>(1-34) @<br>2.00 | idised hu<br>4) @ Me<br>2.50<br>.7 > 661.5 (<br>dised hur<br>Met 8 & 1<br>.2.50<br>.5 > 689.2 | 7.10e4<br>man<br>t 18<br>.00<br>Oxi-PTH1-34)<br>2.63e5<br>nan<br>Met 18<br>.00<br>(hPTHrP1-36) |

Figure (1). Chromatograms showing the separation of human PTH (1-34) and its respective single- and double-oxidised forms from human PTHrP (1-36) as well as the internal standard rat PTH (1-34) fragment.

#### Figure (2). Typical calibration curve for hPTHrP (1-36) spiked into charcoal-stripped human EDTA plasma. R<sup>2</sup> value is 0.968.

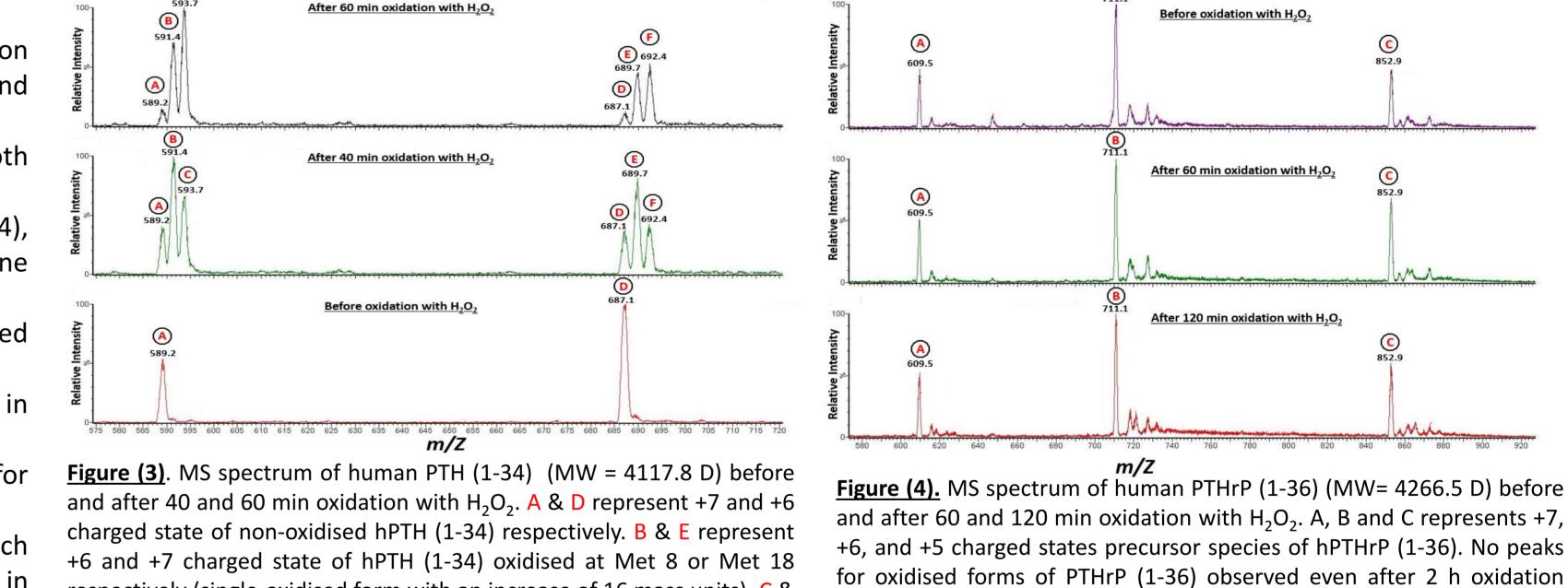
Stock of hPTHrP (1-36) calibrators and controls were prepared in our laboratory by spiking high purity (>98.0%) recombinant hPTHrP (1-36) (Creative BioMart, NY 11967, USA) in charcoal-stripped rat EDTA plasma. Intra-imprecision profile was generated by running all QC samples 10 times within a single run, while inter-imprecision profile was generated by repeated measurements (n=10) of all QCs over a period of a month.

%Accuracy = 
$$[100 - (\frac{100}{n} \sum \frac{Actual - Measure}{Actual})]$$

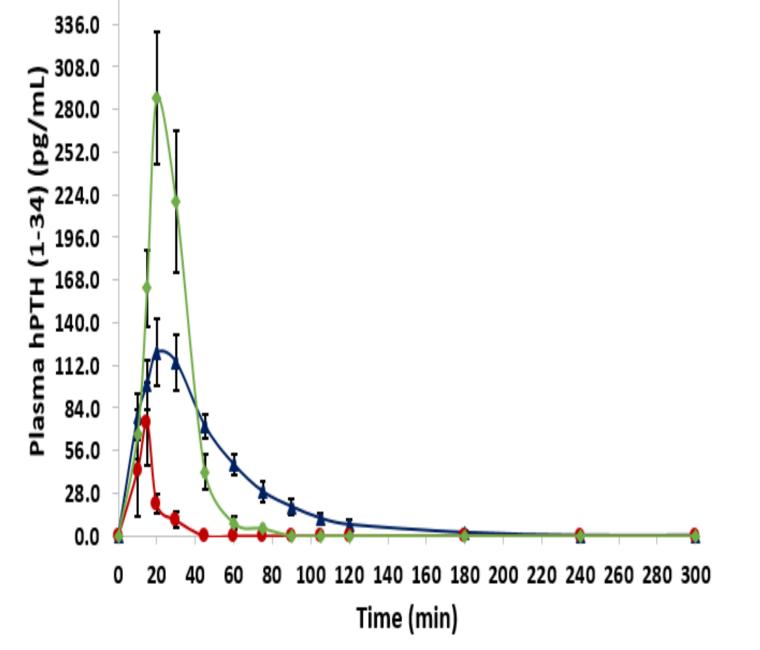
| QC level<br>(pg/mL) | Inter-assay imprecision (n=10) |      |     |      |           | Intra-assay imprecision (n=10) |       |      |     |      |           |
|---------------------|--------------------------------|------|-----|------|-----------|--------------------------------|-------|------|-----|------|-----------|
|                     | Mean                           | SD   | SE  | %CV  | %Accuracy |                                | Mean  | SD   | SE  | %CV  | %Accuracy |
| QC1 (50)            | 51.9                           | 5.6  | 0.6 | 10.8 | 100       |                                | 52.5  | 6.5  | 0.7 | 12.4 | 100       |
| QC2 (100)           | 97.5                           | 11.5 | 1.2 | 11.8 | 100       |                                | 101.5 | 10.0 | 1.0 | 9.9  | 100       |
| QC3 (200)           | 211.9                          | 16.8 | 1.7 | 7.9  | 100       |                                | 203.5 | 15.6 | 1.6 | 7.7  | 100       |
| QC4 (800)           | 803.9                          | 47.4 | 4.7 | 5.9  | 100       |                                | 822.5 | 57.3 | 5.7 | 7.0  | 100       |

### **Recovery efficiency:**

| Endogenous PTHrP (1-<br>36) (pg/mL) | Spiked (pg/mL) | Expected concentration<br>(endogenous + spiked)<br>(pg/mL) | Mean (±SEM)<br>measured PTHrP (1-<br>36) (pg/mL) | %Recovery<br>Mean (%CV) |
|-------------------------------------|----------------|------------------------------------------------------------|--------------------------------------------------|-------------------------|
| 50                                  | 50             | 100                                                        | 113.7 (±7.7)                                     | 113.7 (±27.1)           |
| 50                                  | 500            | 550                                                        | 567.4 (±5.1)                                     | 103.2 (±3.6)            |
| 400                                 | 50             | 450                                                        | 435.3 (±9.8)                                     | 96.7 (±9.6)             |
| 400                                 | 500            | 900                                                        | 951.5 (±15.5)                                    | 105.7 (±6.5)            |
| 800                                 | 50             | 850                                                        | 877.4 (±22.4)                                    | 103.2 (±10.2)           |
| 800                                 | 500            | 1300                                                       | 1297.1 (±20.6)                                   | 99.8 (±6.4)             |


₿

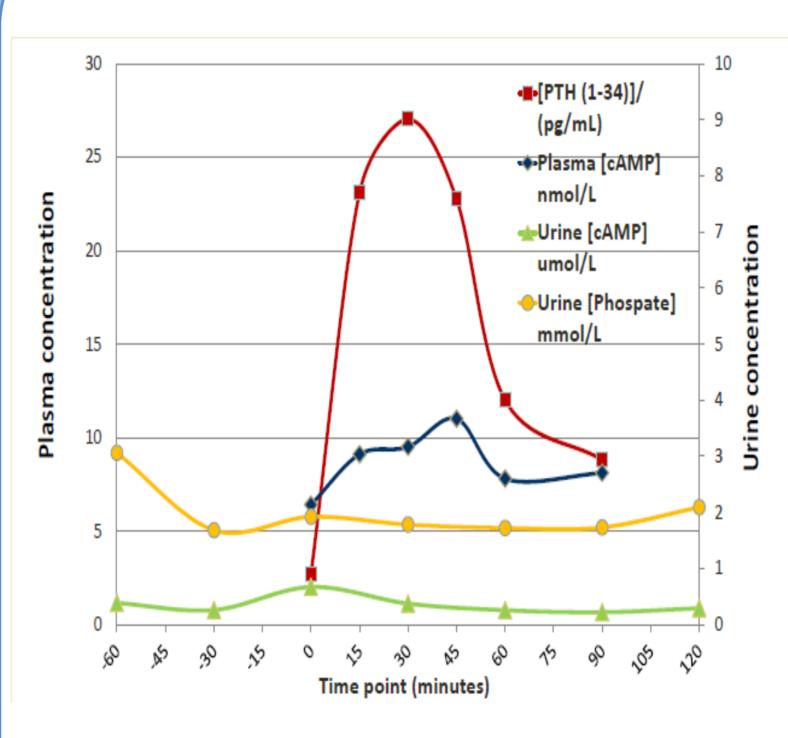
### **Oxidation of PTH (1-34) and PTHrP (1-36)**


 $\bigcirc$ 

mass units)

- > Oxidation of the sulphur atom in methionine residues by peroxides is one of the major degradation pathways of therapeutic peptides. PTH (1-34) contains two methionine groups at position 8 (Met8) and position 18 (Met18).
- > Three oxidized PTH (1-34) products were isolated, namely Met8 sulfoxide, Met18 Sulfoxide, and both positions Met Sulfoxide
- $\succ$  Oxidation of the methionine residues causes a change in the secondary structure of PTH (1-34), especially oxidation of Met8. The change in the secondary structure is greater when both methionine residues are oxidised
- > Double oxidized forms of PTH (1-34) possess reduced biological activity, which consequently reflected on the potency of the treatment
- > In contrast to human PTH (1-34), human PTHrP (1-36) peptide does not contain methionine residue in its structure. We found that PTHrP (1-36) is not oxidised by hydrogen peroxide  $(H_2O_2)$ .
- > Our data showing that oxidation contributes by (23.9 ± 6.1%) to bias between our LC-MS/MS method for PTH (1-34) and immunoassay results.
- > Due to the absence of methionine residues in human PTHrP (1-36) and analogues of hPTHrP (1-34) such as Abaloparatide they are resistant to oxidation, hence this may explain some of the difference in efficacy observed in Abaloparatide preclinical/clinical studies. However, further investigations are required to confirm this possibility.




**The Use of PTH (1-34) Measurement in Pharmacokinetics Studies** 



**Table:** PK parameters for PTH (1-34) of 20 μg subcutaneous Forsteo<sup>®</sup> injection and oral (0.69 and 2.07 mg) administration.

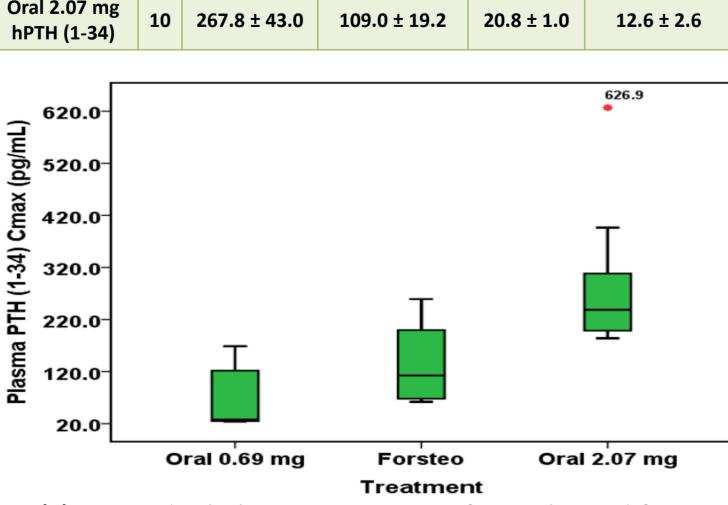
| Treatment                                 | N  | C <sub>max</sub> (pg/mL)<br>(Geometric<br>mean ± SEM) | AUC <sub>0-last</sub><br>(pg.h/mL)<br>(Geometric<br>mean ± SEM) | T <sub>max</sub> (min)<br>(Geometri<br>c mean ±<br>SEM) | T <sub>1/2</sub> (h)<br>(Geometric<br>mean ± SEM) |  |
|-------------------------------------------|----|-------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|--|
| Forsteo <sup>®</sup> 20µg<br>sc injection | 10 | 124.5 ± 21.3                                          | 105.7 ± 9.3                                                     | 16.0 ± 2.5                                              | 37.7 ± 6.8                                        |  |
| Oral 0.69 mg<br>hPTH (1-34)               | 5  | 56.2 ± 27.4                                           | 11.5 ± 7.4                                                      | 14.7 ± 1.4                                              | 11.3 ± 4.8                                        |  |
|                                           |    |                                                       |                                                                 |                                                         |                                                   |  |

### The Use of PTH (1-34) Measurement in the Diagnosis of PHP



respectively (single-oxidised form with an increase of 16 mass units). C &

F represent +6 and +7 charged state of hPTH (1-34) oxidised at both Met


8 and Met 18 respectively (double-oxidised form with an increase of 32

PHP disorders are characterized by impaired signalling of various hormones (mainly PTH) that activate cAMP-dependent pathways via  $G_{s}\alpha$ protein. Ellsworth-Howard test or

with 0.1 M  $H_2O_2$  due to absence of Methionine residues in its structure.

→ SC 20 ug Teriparatide → Oral 0.69 mg PTH (1-34) → Oral 2.07 mg PTH (1-34)

**Figure (5).** Concentration-time profiles of participants treated with 20 µg teriparatide, and oral PTH (1-34) (0.69 and 2.07 mg) Time course of samples collection was 0-300 minutes. Each point represent (mean±SEM) of plasma PTH (1-34) concentration.



**Figure (6).** Box and Whisker representation of C<sub>max</sub> obtained for standard Forsteo<sup>®</sup> injection and oral (0.69 and 2.07 mg) administration. Asterisk represents outlier ( $C_{max}$  = 626.9 pg/mL) recorded for one participant given 2.07 mg oral PTH (1-34) dose. Forsteo's C<sub>max</sub> is bracketed by the two oral doses  $C_{max}$ . The  $C_{max}$  of oral treatment is proportional to dosage.

**Figure (7).** Ellsworth-Howard test results on a patient suspected of PHP. Note the blunted plasma cAMP response and the lack of urine cAMP excretion despite the sharp increase in plasma PTH (1-34) level. Phospateuric response is also deficient.

PTH loading test has been used traditionally confirm PHP. to Measurement of serum and urinary cAMP concentrations after the injection of exogenous PTH plus PO4 confirmed the measurement diagnosis of PHP type 1 (PHP1), in which a blunted cAMP response is observed, from PHP type 2 (PHP2) in which the cAMP response to PTH is conserved but the phosphaturic response is deficient.

### Conclusions

Our method for measurement of non-oxidised and oxidised forms of PTH (1-34) as well as for PTHrP (1-36) may:

- 1) offer new insights into the physiology and pathophysiology of PTH
- 2) help investigate the therapeutic use/efficacy of osteoanabolic agents

3) help in development of combination therapy with other anti-resorptive/ anti-remodelling agents.