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A Study of Dynamic Phase Adaptation Using a Dynamic
Multicore Processor

PAUL-JULES MICOLET, University of Edinburgh
AARON SMITH, University of Edinburgh and Microsoft Research
CHRISTOPHE DUBACH, University of Edinburgh

Heterogeneous processors such as ARM’s big.LITTLE have become popular for embedded systems. They
o�er a choice between running workloads on a high performance core or a low-energy core leading to
increased energy e�ciency. However, the core con�gurations are �xed at design time which o�ers a limited
amount of adaptation. Dynamic Multicore Processors (DMPs) bridge the gap between homogeneous and fully
recon�gurable systems. Cores can fuse dynamically to adapt the computational resources to the needs of
di�erent workloads. There exists multiple examples of DMPs in the literature, yet the focus has mainly been
on static partitioning.

This paper conducts the �rst thorough study of the potential for dynamic recon�guration of DMPs at
runtime. We study how performance varies with static partitioning and what software optimizations are
required to achieve high performance. We show that energy consumption is reduced considerably when
adapting the number of cores to program phases, and introduce a simple online model which predicts the
optimal number of cores to use to minimize energy consumption while maintaining high performance. Using
the San Diego Vision Benchmark Suite as a use case, the dynamic scheme leads to ∼ 40% energy savings on
average without decreasing performance.

CCS Concepts: • Computer systems organization → Recon�gurable computing; Heterogeneous (hybrid)
systems;
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1 INTRODUCTION
Chip Multicore Processors (CMP) are now ubiquitous in embedded computing as single threaded
performance improvements have slowed. CMPs have to be carefully designed, balancing the size of
each core with the total number of cores on the chip. Larger cores are typically good at exploiting
instruction level parallelism (ILP) but might potentially be very power hungry. Smaller cores on
the other hand require less power but o�er limited performance, forcing software developers to
parallelize their code with multiple threads, which is a tedious process. As the size and the number
of cores is �xed at design time, choosing the right balance is di�cult [5, 23].
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Asymmetric Chip Multicore Processors (ACMP) have been proposed [14] to overcome this issue.
These processors feature either di�erent sized cores [10] or di�erent Instruction Set Architec-
tures [24] to e�ciently tackle a multitude of di�erent workloads. Dynamic Multicore Processors
(DMP) push this further by introducing Core Fusion [9]. Similar to ACMPs, Core Fusion allows
the chip to have di�erent sized cores, but this can be changed at runtime. In a DMP, cores can be
fused dynamically to create larger cores similar to a superscalar processor. Any number of cores
can potentially be combined together whenever a workload exhibits a large amount of ILP. When a
program exhibits low ILP, the DMP can decouple fused cores to conserve energy.

While a large number of DMPs have been proposed in the literature [9, 12, 16, 26], these e�orts
focus on the hardware and microarchitectural design. They evaluate the hardware using a �xed
number of fused cores or provide an oracle for dynamic fusion. There exists little [13] to no literature
on predicting core fusion from a software perspective. To the best of our knowledge, there has
been no study on dynamically changing the number of cores fused to better match the phases of a
workload in a homogeneous DMP compared to ahead of time fusion.

We start with an explanation of the theoretical limitations of core fusion and what we can expect
in terms of performance. We then discuss how classical loop optimizations such as unrolling can
have a large impact on performance when fusing cores. Using the San Diego Vision Benchmark
Suite [25] (SD-VBS) as a use case, we show that programs exhibit various phases with di�erent
amounts of ILP. We then perform a limit study on the potential for decreasing energy consumption
while maintaining performance when adapting the number of cores for each program phase. Our
results show that using dynamic core fusion can save up to 42% on average while maintaining the
same level of performance as a �xed number of cores. We also show how latency introduced by
recon�guring the system can in�uence the impact of core fusion. Finally, we build a simple online
model using linear regression that predicts the optimal number of cores per phase for reducing
energy consumption while maintaining performance. This practical model leads to an average of
37% saving in energy with no performance loss.

To summarize, our contributions are:

• We analyze the limits of core fusion using an analytical model.
• We study the loop optimizations required to ensure e�cient use of core fusion.
• We o�er an in-depth comparison of static and dynamic core fusion schemes on the San

Diego Vision Benchmark Suite.
• We show that core fusion has the potential to o�er a large reduction in energy savings.
• We show how a simple linear-regression based model can predict the number of cores to

fuse for di�erent program phases.

2 DYNAMIC MULTICORE PROCESSOR
Dynamic Multicore Processor. DMPs contain hardware which can be modi�ed post fabrication.

Mitall’s survey [14] de�nes three types of modi�able resources: the core count [9], number of
resources that each core has [8] and microarchitectural features [1, 7, 21]. In our paper we focus on
DMPs that modify the core count.

EDGE ISA. We assume a DMP similar to TFlex [12] using an Explicit Data Graph Execution [3]
(EDGE) instruction set architecture (ISA). EDGE ISAs encode dependencies between instructions
at the ISA level. Code is organised as blocks of instructions where all instruction communication
is local to the block [20]. Each block has a single entry point but may have multiple exits. This
enables the architecture to dispatch, speculatively, blocks with low overhead [12, 18], therefore,
increasing exploitation of ILP.
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Fig. 1. Core Fusion Mechanisms for our EDGE-based architecture.

Fig. 2. IPC of a typical benchmark (Disparity from SD-VBS) when executing on a fused 4 or 16 cores processor.

Core Fusion. Core Fusion is achieved by fusing a set of physical cores to create larger logical
cores. This does not modify the physical structure of the chip, instead it provides a uni�ed view
of the group of physical cores to the software. For example, fusing two cores generates a logical
core with twice the amount of execution units, register �les and L1 cache. Fusion is a dynamic
modi�cation and may occur during the execution of a program to better �t the workload. Unlike
traditional CMPs, fused cores will operate on the same thread and attempt to extract Instruction
Level Parallelism (ILP) rather than Thread Level Parallelism (TLP) [13, 16]. Figure 1 shows the
di�erent stages and mechanisms of core fusion for a four core system. When creating a new core
fusion a master core informs all other cores about the fusion and submits predicted block addresses
to the cores. When a core mispredicts a branch in a fusion, it informs the other cores which �ush
any younger blocks. When un-fusing, the master core informs all other cores. Once the cores in the
fusion have committed or �ushed their blocks they are turned o� and the master core continues
to fetch blocks from the thread. The extra hardware required to support dynamic recon�guration
is very minimal [12] since most of the machinery already in place can be reused such as the
cache coherence protocol when fusing and un-fusing the cores. We discuss this in further detail in
Section 5.
3 MOTIVATION
This section motivates the use of dynamic core fusion and its impact on performance and energy.
It also shows that loop optimizations have a signi�cant performance impact when fusing cores.

3.1 Dynamic Core Fusion
When discussing core fusion, previous work has focused on delivering speedup results using core
fusion [9, 12] and [13] demonstrated how to predict static core fusion. A static fusion will fuse
cores into a single logical core (LC) and execute a thread on this new core. As evident from that
work, fusion improves the performance of the program by maximizing speed. However, as we will
show, static core fusion may not be the perfect match for all situations.

Figure 2 plots the Instruction Per Cycle (IPC) performance variation over the execution of the
Disparity Benchmark [25] on a fused 4-cores and 16-cores processor. On 4 cores, the performance
oscillates between an IPC of 2 and 6 depending on the phase while on 16 cores the IPC can be as high
as 16. More importantly, for some phases (half of the time), the same level of IPC is achieved (~3)
whether the program runs on 4 or 16 cores. A DMP could exploit this by fusing only 4 cores during
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Fig. 3. Impact of loop transformations on fused cores for the Disparity benchmark.

these low IPC phases and fusing 16 cores during the high IPC phases to maximize performance
while minimizing energy consumption.

3.2 Code Optimizations
When cores are fused they execute blocks of instructions in parallel on each physical core in the LC.
In order to obtain the best results, we must generate large blocks as this leads to a higher IPC on
the LC [13]. The optimizations we apply include aggressive loop unrolling, inlining and replacing
conditional statements with either software predication or architecture-level predication. These
optimizations are well known and do not require any structural modi�cations of the program.

Figure 3 illustrates the impact of applying loop transformations compared to a standard compiler
not speci�cally tuned for an EDGE architecture. As can be seen, the impact of these transformations
can be large in some cases and are absolutely necessary to sustain a high IPC for a long enough
period. More details about the loop transformations are given in section 6 but this example illustrates
the need for careful tuning of the compiler to achieve high performance on such architecture.

3.3 Summary
This section has shown that programs exhibit phases with various amount of ILP available. A
dynamic multicore processor can take advantage of this property to fuse a large number of cores
for the high-ILP phases and fuse a smaller number of cores when ILP drops in order to save energy.
We have also illustrated the importance of �ne-tuned code transformations in order to achieve
sustained performance and increase the potential for fusing cores. The next section will study in
more details the expected impact of core composition using an analytical model.

4 A STUDY OF CORE COMPOSITION
In this section we study the performance limitations of fusing several cores into a single logical core
(LC). This allows us to better understand what leads to good performance and how to determine
regions of code that bene�t from core fusion. The two major obstacles to gaining performance with
core fusion are branch prediction and synchronization costs.

4.1 Branch Prediction
As seen in section 2, DMPs use fused cores by speculatively executing blocks of instructions on
the fused cores [16, 18]. This puts a strain on the branch predictor since e�ciently using the fused
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Fig. 4. Required Prediction Accuracy for a Logical Core Size to be e�icient given an average size of basic
blocks.

cores depends on the miss-prediction rate. The branch predictor has to meet a di�erent accuracy
requirement depending on the size of both the LC and average size of a block being executed.
Given a Logical Core LC of size i, denoted LCi , we can determine the minimum branch prediction
requirement using Formula 1:

minPredLCi =
(BlocksInFliдht × i ) − 1

BlocksInFliдht × i
(1)

where BlocksInFlight represents the number of total blocks being executed on LC. BlocksInFlight
will vary depending on the average size of the blocks, the largest size of a block a lane can carry
(MaxBlockSize) and number of lanes each physical core has.

BlocksInFliдht = NumO f Lanes −

⌊
AveraдeBlockSize

MaxBlockSize

⌋
(2)

When a program is running on an LC, one of the blocks will always be unconditionally executed,
which is why we require one less block to be predicted.

Figure 4 shows the expected prediction accuracy required to ensure the full utilization an LC
given an average size of the blocks in �ight. We can see that adding extra physical cores to an LC
requires an increasingly accurate branch predictor, especially when the size of a block is under 50
instructions. This informs us in two ways; �rst of all large LCs will need to run on code sections
with less control �ow as they are more sensitive to branch misspredictions. Second of all, branch
prediction can be a simple method of evaluating the current e�ectiveness of an LC. Given a certain
number of cores, if the prediction accuracy is under the limits presented in Figure 4 we can easily
determine that the LC is sub-optimal.

4.2 Synchronization Cost
In order for a program to execute correctly, the cores in a logical core (LC) must communicate
when they have �nished executing a block [18]. This ensures that the cores have fetched blocks
from the correct branch path and that the data predictions are correct. This requires that blocks are
committed in a sequential fashion with the non-speculative block committing �rst and the most
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Fig. 5. Synchronization Cost in cycles for a given number of cores in a composition and an average block size.
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dual-issue core system. A higher IPC means be�er performance.

recent speculative block committing last. If all the lanes of a core are full then it must commit a
block before it fetches a new one. A core may have to wait for all other cores to have committed
before fetching a new block, we de�ne the worst-case estimate of this stall as the Synchronization
Cost. The Synchronization Cost, in cycles, is de�ned in equation 3 and is measured by averaging
the overall number of cycles each core in a composition will be waiting until it can continue to
fetch and execute new blocks. As previously mentioned, this is a worst-case estimate as block sizes
will �uctuate during the execution of a program.

SyncCosti =

∑i−1
n=0

(
Lanes −

⌊AveraдeBlockSize
MaxBlockSize

⌋ )
× n

i
(3)

Figure 5 shows how many cycles the Synchronization Cost will be for a given LC and average
block size. As we can see, the larger the block the lower the Synchronization Cost is. This is due
to the fact that cores fetch less blocks, thus they wait less for other cores in the composition to
�nish committing theirs. We can also see that large compositions running small blocks have a high
Synchronization Cost. This clearly indicates that larger LCs must be avoided when dealing with
smaller blocks as the Synchronization Cost outweighs code execution.
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4.3 Summary
Using the information we have gathered we determined the worst-case estimation of IPC for a
composition using Average Block Size, Average Branch Prediction, and Synchonization Cost. We
represent this information in Figure 6 where we can see the worst-case estimate IPC performance
of a composition when we assume that each core can execute a block at an IPC of 2. From what we
previously learned, Figure 6 shows us that in order to obtain optimal performance we will need a
high branch prediction accuracy and large blocks. It also shows us that larger compositions can
easily under-perform; for example we can see that 16 core-compositions often have IPCs under 15,
meaning that each core has an IPC under 1.

5 EXPERIMENTAL SETUP
The previous section studied the performance potential for core fusion using an analytical model.
We now present the experimental setup used for the remaining parts of the paper where we conduct
a thorough evaluation of core fusion with a cycle-level simulator.

5.1 Benchmarks
For this paper we study the performance of a Dynamic Multicore Processor (DMP) on a set of vision
benchmarks designed for hardware and compiler research [25]. The San Diego Vision Benchmark
suite (SD-VBS) is composed of nine single-threaded C benchmarks ranging from image analysis to
motion tracking. These benchmarks represent state-of-the-art applications in image and vision
recognition that are prevalent in embedded systems.

Vision applications have typically very regular and simple control �ow which enables the
formation of large blocks of instructions with a single-entry point. Our processor relies on the
ability to form large blocks to exploit ILP which makes these applications particularly well suited.
As the results will show, the phase length does not have much of an impact on energy savings
when the recon�guration overhead is low.

5.2 Architecture and Simulator
We use a cycle-level simulator of an EDGE-based Dynamic Multicore Processor [19]. The simulator
is con�gured to model a 16 core multiprocessor, with 32 KB private L1 caches and a shared DRAM.
Each core has a 128 entry instruction window and blocks are mapped in 32 instruction chunks
to the window. This allow several combinations of block sizes in the window between one, 128
instruction block, to four, 32 instruction blocks. Each core is con�gured to issue two instructions
per cycle from any of the blocks in the instruction window. When all cores are fused there may be
a maximum of 64 blocks in �ight (16 cores x 4 blocks per core).

The architecture and core fusion mechanics are similar to the work described in [12, 18]. To ensure
the accuracy of the simulator it is validated against an RTL implementation of the processor. This
validation is done by running workloads on RTL either in simulation or an FPGA and comparing
the traces cycle by cycle with the software simulator. The simulator uses Ruby from Gem5 [2] as
its memory subsystem. Parts of the fusion mechanism have been modeled in RTL, allowing us to
also validate it.

5.3 Fusing Cores
In this processor, the micro-architecture is distributed: register �les, Load Store Queues (LSQs), L1
caches and ALUs all look like nodes on a network. This means that when we fuse cores together,
this is similar to adding an extra node to our network. When cores are fused, one of the cores will
be executing a non-speculative block from a single thread whilst all other cores execute speculative
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blocks that are predicted from the same thread. We use a simple round robin policy to choose which
core is going to execute a speculative block. Whenever the blocks are committed we also pick a
new core to execute the next non-speculative block. When we start a new thread on a fused core
the OS and runtime write the new core mapping to a system register. The hardware then �ushes
these cores if they are not idle and sets the PC of the �rst block of that thread on one core in the
core fusion and starts executing.

Fusing cores is therefore a very lightweight process. We estimate that switching the size of the
logical-core (LC) results in a delay of 100 cycles on average. The actual time varies based on the
time it takes the cache coherence protocol to move the data around the memory system. Section 8.5
discusses in more details how latency a�ects energy e�ciency and shows that dynamic core fusion
is still highly bene�cial even when considering overheads of 1,000 cycles.

5.4 Compiler
Each benchmark is compiled with Microsoft’s Visual C++ compiler for EDGE, with O2 optimisations
and instruction predication for hyperblock formation [20].

5.5 Measuring Performance and Power
We run 5 simulations per benchmark, one for each LC sizes 1, 2, 4, 8 and 16. For each composition
we record the IPC of the LC at an interval of 640 committed blocks. We selected 640 committed
blocks as it allows each core in an LC to execute enough blocks before taking the measurement.
This is due to the fact that the highest LC of 16 cores can execute up to 64 blocks at a time, thus
recording performance after 640 blocks allows each core to have executed at least 10 blocks. Using
committed blocks as an interval allows us to easily compare each simulation as the total number of
committed blocks does not change even if the compositions are di�erent.

Due to the fact that we use the EDGE ISA [20], we cannot use McPAT to model power consumption
as it di�ers from traditional CISC/RISC cores modeled in McPAT. Instead we use a coarse grained
power model, either a core is turned on or or it is o�.

6 CODE OPTIMIZATIONS
This section describes optimizations focused on reducing control �ow and expanding block sizes
which is necessary for high performance as seen in section 4.

6.1 Loop Unrolling
Loop unrolling is a very common optimization used to reduce the overhead of the loop header and to
better expose Instruction Level Parallelism (ILP). When dealing with very tightly-knit loops, logical
cores may perform poorly due to the fact that they execute many small blocks, thus increasing the
Synchronization Cost. Unrolling loops will both reduce the number of blocks required to execute
the loop and increase the size of the blocks, thus reducing the Synchronization Cost and increasing
ILP. For example, the innermost loop in Figure 7 should be completely unrolled and its outer loop
unrolled partially to increase the block size. There are certain factors which can limit the usefulness
of loop unrolling.Based on our current architecture, we may not have more than 32 load or store
instructions per block. Therefore, if we unroll memory intensive loops, we must ensure we do not
go above this threshold. Going above this threshold leads to creating a new block which will put a
strain on the Instruction Cache. Another issue is that unrolling loops with conditional statements
may not help improve the size of the block as the conditional branches might still segment the new
blocks. So we should avoid unrolling such loops.
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for ( in t i = 0 ; i < 1 0 0 0 ; i ++)
for ( in t j = 0 ; j < 1 0 0 0 ; j ++)

for ( in t k = 0 ; k < 5 ; k ++)
a [ i ] [ j ] = a [ i ] [ j ] ∗ b [ k ] [ j ] ;

Fig. 7. Example of an inner-most loop which should
be completely unrolled.

for ( in t i = 0 ; i < 1 0 0 0 ; i ++)
for ( in t j = 0 ; j < 1 0 0 0 ; j ++)

a [ i ] [ j ] = a [ i ] [ j −1]
∗ b [ i ] [ j ] ;

Fig. 8. Example of a data dependency which can be
removed by interchanging the loops.
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Fig. 10. Speedup from using code-optimizations over baseline source code using the same optimal sized
logical-core.

6.2 Loop Interchange
When dealing with nested loops there is one reason we have determined for interchanging the
loops. The case arises when interchanging the loop removes dependencies in the inner-most loop.
The dependency in Figure 8 can be removed by interchanging the loops. This allows us to unroll the
inner loop e�ciently, but also remove any kind of dependency between blocks; Since two blocks
from the same loop may execute on di�erent cores, we want to reduce any kind of data dependency,
minimizing core communication.

6.3 Predication and Hyperblock Formation
The EDGE architecture must split blocks whenever control-�ow is present [20]. If a loop contains
a conditional statement the loop block has to be split into two if there is no predication. Hyper-
blocks aim to reduce branching by fusing two or more blocks into a single predicated block [20].
Hyperblocks both reduces synchronization cost and branch prediction requirement as discussed
previously. This is especially important in control-�ow intensive loops where unrolling increases
the number of conditional statements.

6.4 Results
While the optimizations described above and their tuning would be easy to implement in the
compiler, we did not, unfortunately, have access to the compiler’s source code. We therefore
manually modi�ed the source code of our benchmarks by manually interchanging or unrolling
loops. In the case of predication and hyperblock formation, we simply converted simple if-then-else
statement into ternary operators whenever possible. We also tried to reorder the statement within
the body of the loop to avoid having control �ow in the middle of the body. We then veri�ed that

, Vol. 1, No. 1, Article 1. Publication date: September 2017.



1:10 Paul-Jules Micolet, Aaron Smith, and Christophe Dubach

Disparity

Localization

MSER

Multi_NCut

Sift

Stitch

SVM

Texture_Synthesis

Tracking

0

10

0

10

1

2

2

4

0

10

0

5

10

5

5

0

10

Time Tick

IP
C

Fig. 11. IPC as a function of time for each benchmark when run on 16 fused cores.

our source code modi�cation had the intended e�ect by dissembling the binary produced by the
compiler. We modi�ed between 0 and 12 loops depending on the benchmark.

We compare the best static core fusion using the optimized code with the unmodi�ed code, both
version compiled with -O2. Figure 9 shows the resulting IPC for the baseline case and the optimized
benchmarks when run on a core with the optimal number of fused core to maximize performance.
The IPC of the baseline is very low for the majority of the benchmarks which might give the
impression that core fusion is rather ine�cient. However, after applying the simple optimizations
described above, the average IPC is signi�cantly increased in many cases.

Since optimizations change the total number of instructions, we also show the actual speedup
obtained using cycle count in Figure 10. As we can see, benchmarks MSER and Multi-NCut do not
perform any di�erently. This is due to the fact that none of these optimizations can be successfully
applied on these benchmarks. For the other benchmarks we see signi�cant improvements of up to
12× for Sift when the optimizations are applied.

6.5 Summary
Overall, this section shows that classical loop transformations can have a large impact on the
performance of fused cores. Without these optimizations, it would be more di�cult to motivate the
use of core fusion even at a static level as the average IPC does not deviate enough from a single
core.

7 BENCHMARK EXPLORATION
This section explores how core fusion a�ects the performance of the SD-VBS benchmarks. We �rst
perform a phase analysis, followed by a study of the IPC variation for static core fusion. We then
motivate the use of dynamic core fusion using the information gathered.
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Fig. 12. Number of phases determined for each benchmark using kMeans clustering and their distribution.
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Fig. 13. Comparing average, smallest and greatest IPC for each SD-VBS benchmark using logical-core size of
16.

7.1 Phase Detection
Figure 11 present the IPC performance through time for all the benchmarks when using a logical
core (LC) composed of 16 cores. The IPC is calculated for each time tick, which is set at interval
of 640 blocks committed. The IPC varies a lot for some of the benchmarks such as Disparity or
Localization where we expect dynamic fusion to be especially good. For other, such as Multi_NCut,
the execution is dominated by a single long phase with constant IPC, which will clearly show no
bene�t from using dynamic fusion.

To better understand how dynamic core fusion improves performance, either by improving
speedup or reducing energy, we �rst study how each benchmark features di�erent phases during
their execution. For every benchmark we regroup the IPC results of 16,8,4,2,1 fused cores and use
kMeans clustering to determine phases. This process is only done for the purpose of exploring this
set of benchmarks. Intervals that exhibit similar IPC values when run on di�erent core counts are
classi�ed in the same cluster. In order to �nd the correct number of clusters we plot the Sum of
Square Errors (SSE) for a given cluster size from 1 to 15 and determine the optimal cluster to be in
the elbow in the plot [6].

Figure 12 shows us the optimal number of clusters for each benchmark and the frequency of
each cluster. The data can be corroborated with the information found in Figure 11. For example,
benchmarks MSER and Multi_NCut feature two phases, with one dominating phase. This means
that it will be impossible to obtain any kind of performance improvements through dynamic
recon�guration. For all the other benchmarks, they each have at least two dominant phases. Since
each phase is a cluster of similar IPC values, having two or more clusters will result in a higher
chance of bene�ting from dynamic core fusion.

7.2 Static Core Fusion Exploration
Figure 13 shows how the average Instructions Per Cycle (IPC) changes as we increase the size of an
LC, going in powers of 2 from 1 to 16 fused cores. We see that, for most benchmarks, fusing more
cores provides an increase in IPC performance. Benchmarks Disparity, Localization, Sift, Stitch,
Texture Synthesis and Tracking all at least observe a speedup of 2x when using core fusion.
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Fig. 14. Time (x-axis) vs. Energy (y-axis) tradeo�s using Static and Dynamic Composition Schemes.

However increasing the size of an LC is not always bene�cial as can be seen in benchmarks
Localization, MSER, Multi_NCut, Stich, and SVM. For benchmarks Localization and Stitch the perfor-
mance increases when fusing up to 8 cores, where-as MSER and Multi_NCut never bene�t from
core fusion. Referring back to Figures 11 and 12, we can see that MSER and Multi_NCut feature one
dominating long phase, both performing poorly. This explains the lack of scaling for these two
benchmarks.

Figure 13 also shows the standard deviation of the IPC for each given LC size represented by the
grayed out areas. For example, running the Disparity benchmark on a LC of 16 cores, we have an
average IPC of 8.3 with a standard deviation of 5.2. The standard deviation for 16 cores shows that
the performance can drop down to 2.5. An IPC of 2.5 when using 16 cores is very ine�cient as this
represents 0.1 of an instruction per cycle for each core. We can observe that when using a LC of
size 4 for the Disparity benchmark we achieve an average of 4.1 with a standard deviation of 1.2.
Thus, if the logical-core could change size, there is a possibility that we could reduce the overall
energy consumption of the system by switching from 16 to 4.

Overall, most benchmarks that bene�t from large logical-cores will also be met with important
standard deviations of IPC performance. The high standard deviation is evidence of performance
phases found in each application which are likely to bene�t from dynamic adaptation.

8 DYNAMIC CORE FUSION
Having studied the behavior of our program under a �x number of cores, we now study the impact
of varying the number of fused cores throughout program execution. We �rst describe how we
generate traces for the dynamic core fusion schemes. Before we begin the analysis we de�ne two
types of static core fusion:

• Static Benchmark: A �xed fused-core which is optimal for the benchmark at hand (SB).
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• Static Suite: A �xed fused-core which represents the average best for the entire suite of
benchmarks. This represents our baseline for the paper (SS).

We then compare the static fused-core scheme with the results obtained for the dynamic one for the
SD-VBS benchmarks. This is followed by a closer analysis for two dynamic core fusion objectives:
one that optimizes speed and another that optimizes for e�ciency.

8.1 Creating Dynamic Core Fusion Traces
With dynamic core fusion, we have the ability to change the number of cores for each time tick (an
interval of 640 blocks) during program execution. In order to explore the di�erent performance and
energy trade-o� that is possible to achieve with this technique, we collect traces of execution for
the whole application. We run the whole application on 1,2,4,8 and 16 fused cores and record for
each time tick the cycle count. Using these 5 traces, we can then reconstruct any arbitrary dynamic
execution and generate dynamic traces.

To simplify the exploration process, time ticks of the same phase will always be attributed
the same number of cores. This is done to reduce the search space as on average we have 48494
ticks which would result in an average of 548,494 di�erent possible executions.Since the maximum
number of clusters found is 6 (for SVM), we only build a maximum of 56 = 15625 di�erent dynamic
execution traces. When we switch the size of the logical core (LC), we use the performance of that
LC from its respective trace �le and add an extra 100 cycle penalty for switching the size of an
LC. With all these di�erent dynamic core fusion traces, we can now �nd the optimal schemes for
maximizing speed or maximizing e�ciency.

8.2 Dynamic Core Fusion
Figure 14 shows the trade o� between time and energy using either a static scheme �xed once
at the beginning of the program or a dynamic scheme. The dotted line represents the static core
fusion scheme whilst the solid line represents the Pareto Front of all the dynamic core fusion traces.
The vertical line represents the amount of energy that can be saved from using a dynamic core
fusion scheme that matches the same speed as the best static scheme.

Figure 14 demonstrates how static core fusion fails to maintain good energy e�ciency as we
improve speed. For example, Disparity (Figure 14a) is fastest on 16 fused cores, but has an 1.63x
increase in energy consumption for a 1.22x improvement in speed. When using the dynamic scheme,
it is clear that energy consumption increases at a slower rate when increasing speed. In this case
the number of cores is adapted to the current program phase, using just enough cores to maintain
high performance without wasting energy.

8.3 Optimizing for Speed
In this section we de�ne our dynamic scheme to be one that matches the same speed performance
as the fastest static core fusion for the benchmark: DSpeed. This is equivalent to the vertical line
found in Figure 14. This scheme enables us to maintain good performance whilst reducing energy
consumption drastically.

Figure 15 shows the speedup of DSpeed and SB and the respective energy consumption. The
results are normalized against the performance of SS, which is 8 cores fused. The SS core count is
obtained by averaging the number of cores for each benchmark using the SB scheme. The speed
performances are the same for SB and DSpeed as the dynamic scheme is designed to match the
static speed. We can see that some benchmark perform better when using benchmark speci�c core
fusions rather than SS. Both Disparity and Sift obtain a 1.25x speedup when using the SB scheme
whilst Tracking bene�ts from a 1.10x speedup.
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Fig. 15. Maximizing speed for all the SD-VBS benchmarks. For Speedup, higher means be�er, for Energy,
lower is be�er.
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Fig. 16. Maximizing e�iciency for all the SD-VBS benchmarks.

When looking at the Energy graph of Figure 15, we can clearly notice where the SS scheme
fails. Benchmarks MSER and Multi_NCut feature very little improvements when using core fusion,
therefore the SS will perform very poorly when it comes to energy consumption for the bench-
marks. SB does not always perform well neither; as we can see, for the benchmarks Disparity,
Sift, Texture_Synthesis the energy consumption is much higher. This is due to the fact that these
benchmarks perform best on a 16-core system, however as we saw in Figure 13, the variation in
performance always increases when fusing this many cores. The DSpeed scheme always performs
better than the SB scheme and can even match the SS scheme on energy consumption whilst
improving speed such as in the Sift benchmark. For the Localization benchmark, the DSpeed
matches the performance of both the SB and SS whilst reducing energy consumption by 65%.

Overall, by using DSpeed, we can reduce energy consumption by 42% compared to both SB and
SS without impacting performance. This illustrates the greatest advantage of using a DMP since
the number of fused core can be adapted continuously depending on the amount of ILP available
for each phase.

8.4 Optimizing for E�iciency
In this section we de�ne our dynamic scheme to maximize the e�ciency metric EDD, which is
de�ned as Enerдy × Delay × Delay where Delay is the execution time. This metric attempts to
optimize speed whilst remaining energy e�cient; we call the scheme DE�. Figure 16 shows the
speedup performance of DE� and SB and their respective energy consumption. The results are
normalized against SS which is a �xed-composition of 4 fused cores.

Unlike the previous results in Figure 15, we can see that there are di�erences in the speedup
obtained by DE� and SB. For benchmarks Disparity, Sift and Tracking the DE� scheme is 1.30x
faster than the SB scheme and at least 1.75x faster than the SS scheme. It is important to note that
this extra speedup does not incur great increases in energy consumption compared to SB: only
1.10x for Disparity and Sift. In fact, for Tracking DE� saves 20% in energy compared to SB. When
comparing to SS DE� is 1.75x times faster for only 19% more energy for the Tracking benchmark.

Overall, DE� results in a 1.25x speed increase compared to SB and SS whilst consuming 25% less
energy than SS. This shows how dynamic core fusion’s �exibility allows us to get better speedups
whilst not drastically increasing our energy consumption.
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Fig. 17. Average number of cycles without switching.
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Fig. 18. Energy savings and number of switches as a function of the switching latency in cycles.

8.5 Reconfiguration Latency
Up until now, the paper has assumed a recon�guration latency of 100 cycles whenever dynamic
recon�guration occurs as explained in section 5.3. This section studies the impact of a larger
recon�guration overhead on energy savings. First, �gure 17 shows the average phase length for
each benchmarks when maximizing energy savings while maintaining performance (DSpeed). As
can be seen, the majority of the benchmarks run for long period of several ten of thousands cycles
before any switching occurs. Therefore, we expect that even if the recon�guration latency would
be increased to larger value (e.g., 1,000 cycles), its impact might be minimal.

Furthermore, we always have the option to recon�gure less often, in the case where a change in
con�guration only brings marginal reduction in energy. In such case it might be more bene�cial
to keep running on the slightly less optimal con�guration than paying a cost for recon�guration.
Figure 18 illustrates perfectly this scenario, showing how energy behaves as a function of the
recon�guration overhead (averaged across benchmarks). For each latency value, we determine the
best trace of recon�guration to keep performance constant while minimizing energy (DSpeed).
The left y-axis expresses the energy savings relative to the static scheme, while the right y-axis
shows the total number of switches. The energy savings remains high up to a latency of 1,000
cycles, with a noticeable decrease in the number of switches. For latency values over 1,000 cycles,
the energy savings drop considerably, with very few switching occurring. This data shows that
even if the recon�guration overhead is 1,000 cycles, average energy savings of 38% are possible
compared to 42% when the overhead is 100 cycles.

8.6 Summary
Overall, we have seen that whether we optimize for speed or e�ciency, dynamic core fusion will
always lead to higher speedup or lower energy consumption than a �xed con�guration. This is due
to the presence of phases in applications that the dynamic scheme can exploit to reduce wasting
energy in low ILP phases. We have shown that maximizing speed can be highly energy ine�cient
when using a static LC and that a dynamic scheme can help reduce energy consumption by 42% on
average. When optimizing for e�ciency, we have shown that a dynamic scheme can help improve
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Fig. 19. Performance results for maximizing speed for the SD-VBS benchmarks using our linear regressor
(LR) model.

both speed and energy consumption, for example in the case of Tracking, and overall we can
improve speed by 1.25x whilst saving 25% energy.

9 LINEAR REGRESSION MODEL
Having shown the potential that a DMP has to o�er, we now present a simple scheme that is
used to exploit the large energy savings available. The main idea is to monitor at runtime some
performance counters and make a decision at a regular interval on how to recon�gure the cores.
For this purpose, we train a model o�ine using the data collected and presented earlier in the paper.
Once trained, the model predicts the optimal number of cores based on the performance counters
from the previous time interval and recon�guration occurs if it is di�erent from the current number
of cores.

9.1 Model
We use a linear regressor which makes predictions using a simple weighted sum of the input
features, which is very lightweight and easy to integrate in hardware. The model is trained o�ine
using the traces gathered from our prior analysis for the DSpeed scenario which maximizes energy
savings while maintaining performance. The dataset consists of a set of four input features (average
block size, and percentage of integer, �oating point and load operations) and the optimal number
of cores for each time tick for each program. These features were chosen as they are easy to extract
from the hardware. To speedup the learning process, we create a single data point per phase,
averaging the features of all the ticks in a phase, resulting in a total of 34 pairs of optimal core
number and features.

The training consists of �nding the weights that minimize the error when predicting the optimal
number of cores to use across all time ticks and benchmarks. Since we have only considered core
con�gurations which use a power of two number of cores, the linear model is built to predict the
logarithm (base 2) of the number of cores. The prediction is rounded up to the nearest integer in
the interval [0, 4]. The following equation represents the trained linear model which can be used to
make prediction:

loд2 (#cores) = − 7.7 + 0.028 · avgBlkSze + 0.075 · %int_ops +
0.069 · %fp_ops + 0.21 · %ld_ops

For instance, if we observe at runtime an average block size of 6 instructions, and 77%, 1% and 18%
of integer, �oating point and load operations, respectively, then the predicted value will be 2.092.
Rounded up to the nearest integer value, 2, the optimal number of cores predicted will, therefore,
be 4. As can be seen, the largest weight is on the percentage of loads operations. This is due to the
fact that loads can be �red independently to the Load-Store Queue. Unlike stores that depend on
previous memory instructions blocks being committed, loads can be �red with less overhead. As
data can be speculatively fetched, loads instructions can receive data from other cores before the
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data is stored, speeding up the load instruction. By increasing the core count on load heavy blocks
this will improve performance more reliably due to cores being able to issue loads in parallel.
9.2 Results
To evaluate the performance of our model, we use leave-one-out cross-validation, a standard
machine-learning methodology which tests the model using not seen during training. For instance,
if we want to test the model for one program, let say Disparity, we train the model using the dataset
from all the other programs combined. We then use the resulting trained linear model to predict
the optimal core number for each time tick of the disparity program and report the performance
achieved.

Figure 19 shows the performance in terms of speed and energy that is achieved using our linear
model normalized by a �xed static con�guration. The �xed con�guration maximized performance
across all the benchmarks using 8 cores and is the same as in the previous results presented in
�gure 15. On average, our linear regressor model is able to consume 37% less energy compared to
the 8 cores �xed con�guration and is able to exactly match its speed.

The performance is also compared with the best possible choice of dynamic recon�guration,
DSpeed which acts as an Oracle. As can be seen, the linear model is able to exploit similar energy
savings to the Dspeed scheme in most cases. On average it reduces energy by 37%, which is within
5% of the 42% achievable by the Dspeed scheme. These results show that it is possible to implement
a simple realistic lightweight scheme which o�ers large energy savings.

10 RELATED WORK
Recon�gurable Processor. ElasticCore [21] proposes a morphable core. They present a core that

uses both dynamic voltage/frequency scalign (DVFS) and microarchitectural modi�cations such as
instruction bandwidth and capacity. They propose a linear regressor model to determine recon-
�guration, however it uses more runtime information than ours, such as branch prediction and
cache misses. Overall Tavana et al’s architecture is 30% more energy e�cient than a big.LITTLE
architecture. In [4] they also propose a similar core architecture that modi�es microarchitectural
features. They provide extensive analysis of SPEC 2000 benchmarks and demonstrate that with
machine learning and dynamic adaptation they can double the energy/performance e�ciency
compared to a static con�guration. MorphCore [11] focuses on recon�guring a core for thread level
parallelism. It switches between out-of-order (OoO) when running single threaded applications
and an in-order core optimised for simultaneous multi threading (SMT) workloads. This provides
an opposite solution to our DMP: providing a large core made for ILP that can be modi�ed to better
�t TLP workloads. MorphCore outperform a 2-Way SMT OoO core by 10% whilst being 22% more
e�cient.

All these projects focus on uni-core modi�cations, and traditional CISC/RISC like architecture
which di�ers from our work.

Dynamic Multicore Processors. Previous work on Dynamic Multicore Processors includes Bahu-
rupi [16, 17], and CoreFusion [9]. These architectures use a standard ISA and either fetched �xed
sized instruction windows [9] or an entire basic blocks [16]. Other DMPs such as TFlex [12] and
the E2 DMP [18] use the custom ISA called EDGE [20].

Dynamic Core Fusion. In the work of Pricopi et al. [17], they show how dynamic recon�guration
is bene�cial when it comes to scheduling tasks. However, they do not discuss any method of
automatically deciding the optimal core-composition beyond a 4 core fusion. Instead they use
speedup functions determined from pro�le executions of applications to determine how to schedule
tasks. They also do not discuss what software characteristics help determine when to recon�gure
the cores, or how to optimise software. Work on using machine learning to automatically choose a
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composition was achieved in [13]. However this work does not involve changing the core fusion
during the execution of the benchmark. Also, the machine learning model focuses on using high-
level information from StreamIt’s [22] language constructs.

Voltage Scaling. Voltage scaling is another method of reducing energy consumption [15], however
this approach is orthogonal to DMPs. Whilst both methods adapt to programs phases, DMPs can
also be used to speed up the execution of programs.

11 CONCLUSION
In this paper we have shown that whilst static core fusion already demonstrates promising results,
it becomes harder to be e�cient when increasing the size of logical cores. We explained theoretical
limitations of static core fusion; without high branch prediction and large blocks, it under-performs.
This was followed by a study of a suite of benchmarks, showing how performance varies greatly
on a static logical core.

We then created two dynamic schemes: DSpeed that matches the speed of the fastest static core
fusion and DE� that maximizes e�ciency. Using these schemes we saw that DSpeed saves on
average 42% energy compared to the optimal static logical core for a given benchmark. We also
showed that DE� can improve speed performance by up to 1.30x and reduce energy consumption
by 1.20x on some benchmarks. Finally, we developed a simple linear regressor model that can be
used to decide on the number of core to fuse at runtime in order to optimize for performance,
leading to a 37% drop in energy while maintaining the same level of performance as a static scheme.
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