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Human mesenchymal stem cells derived from the umbilical cord (UC) are a favorable source for allogeneic cell therapy. Here, we
successfully isolated the stem cells derived from three different compartments of the human UC, including perivascular stem cells
derived from umbilical arteries (UCA-PSCs), perivascular stem cells derived from umbilical vein (UCV-PSCs), and mesenchymal
stem cells derived from Wharton’s jelly (WJ-MSCs). These cells had the similar phenotype and differentiation potential toward
adipocytes, osteoblasts, and neuron-like cells. However, UCA-PSCs and UCV-PSCs had more CD146+ cells than WJ-MSCs
(P < 0 05). Tube formation assay in vitro showed the largest number of tube-like structures and branch points in UCA-PSCs
among the three stem cells. Additionally, the total tube length in UCA-PSCs and UCV-PSCs was significantly longer than in
WJ-MSCs (P < 0 01). Microarray, qRT-PCR, and Western blot analysis showed that UCA-PSCs had the highest expression of
the Notch ligand Jagged1 (JAG1), which is crucial for blood vessel maturation. Knockdown of Jagged1 significantly impaired the
angiogenesis in UCA-PSCs. In summary, UCA-PSCs are promising cell populations for clinical use in ischemic diseases.

1. Introduction

Over the last few decades, mesenchymal stem cells (MSCs)
have been widely explored for their potential as a treatment
strategy for disorders caused by insufficient angiogenesis,
including atherosclerosis, stroke, myocardial infarction, and
chronic wounds [1]. These cells have several characteristic
features. First, they can adhere to tissue culture flasks and
are positive for specific markers like CD73, CD90, and
CD105 and negative for hematopoietic markers such as
CD34, CD45, and HLA-DR. Second, they can differentiate

into adipocytes, osteoblasts, and chondrocytes in vitro [2].
MSCs can be isolated from many human tissues such as
bone marrow, adipose tissue, peripheral blood, dental pulp,
placenta, amniotic fluid, umbilical cord (UC), pancreas, and
spleen [3–5]. In recent years, UC has been acknowledged to
be a better source of MSCs. Besides the noninvasive collec-
tion procedure, no ethical issues, and faster self-renewal,
UC-derived MSCs have been shown to be multipotent and
immunomodulatory [6, 7]. Currently, UC-derived MSCs
are isolated primarily from Wharton’s jelly (WJ-MSCs),
which is the mucoid connective tissue in the UC [8].
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Actually, there are three large vessels surrounded by the WJ,
which is enveloped in the amniotic epithelium, including two
umbilical arteries (UCAs) and one umbilical vein (UCV).
Previous reports have found that human UC perivascular
cells, including UCA perivascular stem cells (UCA-PSCs)
and UCV perivascular stem cells (UCV-PSCs), are distinctly
different from WJ-MSCs [9]. In particular, CD146+ UC
perivascular cells have been found to express typical MSCs
markers and could accelerate wound healing by enhancing
angiogenesis [10, 11].

MSCs mainly originate from two types of perivascular
cells, pericytes (CD45−CD31−CD146+CD34−) and adventi-
tial cells (CD45−CD31−CD146−CD34+), which contain the
in situ counterpart of MSCs in human organs and yield
a progeny of multilineage mesodermal progenitor cells
[12, 13]. Recently, osteogenic and adipogenic progenitors
have also been shown to originate from perivascular niches
in vivo and purified pericytes [14–16]. In addition, transplan-
tation of purified pericytes can support vasculature and
repair damaged tissue [17, 18]. These results indicate the
therapeutic capacity of perivascular stem cells in postinjury
angiogenesis/vasculogenesis.

Although many previous studies have identified cell
populations arising from specific cord regions, it remains to
be unknown if UCA-PSCs, UCV-PSCs, and WJ-MSCs from
the same UC differ in terms of proliferation ability, differen-
tiation ability, and especially angiogenic capacity [19–21].
Therefore, we described the basic characterization of UCA-
PSCs, UCV-PSCs, and WJ-MSCs derived from the same
UC and compared their angiogenic potential in vitro which
may provide a new alternative source for cell-based therapeu-
tic applications in ischemia.

2. Materials and Methods

2.1. Preparation of Human UC Sample. Human UC tissue
samples (n = 10) were collected from the Affiliated Drum
Tower Hospital of Nanjing University Medical School and
processed within 12h of natural delivery. The physician
obtained verbal informed consent from the healthy mother
without any pregnancy complication for the use of the umbil-
ical cord in the present research. The experimental procedure
was approved by the Clinical Research Ethics Committee at
the Affiliated Drum Tower Hospital of Nanjing University
Medical School. The UCs were then immersed in sterile
phosphate-buffered saline (PBS, Gibco, Grand Island,
NY, USA) supplemented with 5% penicillin/streptomycin
(Gibco) for further tissue analysis or cell isolation.

2.2. Immunofluorescence Assay. UCA, UCV, and WJ were
immersed in optimum cutting temperature (OCT) com-
pound (Leica, Wetzlar, Germany) and frozen at −70°C until
sectioning. The tissues were serially sectioned to 6μm
thickness using a cryostat (Leica). Expression of PDGF-
Rβ (ab32570, Abcam, Cambridge, UK), NG2 (ab139406,
Abcam), α-SMA (ab5694, Abcam), and CD146 (ab75769,
Abcam) was detected by immunofluorescence staining.
After incubated with primary antibody at 4°C overnight,
the frozen sections were then incubated with Alexa Fluor

488-conjugated goat anti-rabbit IgG (1 : 200, Invitrogen,
Grand Island, NY, USA) or Alexa Fluor 555-conjugated
goat anti-rabbit IgG (1 : 200, Invitrogen). The nuclei were
stained with 4′,6-diamidino-2-phenylindole (DAPI), which
was contained in the Vectashield mounting medium for
fluorescence (Vector Laboratories Inc.). The images were
visualized using fluorescence confocal microscopy (Leica)
under a magnification of 600x. The integrated optical density
(IOD) values of positive staining in five randomly selected
fields of view were tested by Image pro-plus 6.0 software
(Media Cybernetic, Rockville, USA).

2.3. Isolation and Culture of UCA-PSCs, UCV-PSCs, and
WJ-MSCs. Adherent cells were isolated and cultured using
the explant method. Briefly, two UCAs and one UCV were
longitudinally extracted from human UC. The UCA, UCV,
andWJ were then manually minced into 1-2mm3 fragments.
The vessels were cut in the direction perpendicular to the
long axis with a sterile scissor. These fragments were aligned
and seeded regularly on the tissue culture-treated dishes.
As to the fragments minced from vessels, only the outlayer
but not the cross section could touch the dish. Then, the
culture medium containing low-glucose DMEM (LG-
DMEM; Gibco) supplemented with 10% fetal bovine
serum (FBS; Gibco), 1% penicillin/streptomycin (Gibco)
and 10ng/ml basic fibroblast growth factor (FGF2, Gibco)
poured slowly and gently, cultured at 37°C and 5% CO2.
The culture medium was replaced every 3–5 d for 2 weeks
until fibroblast-like adherent cells reach 80–90% confluence.
Then, adherent cells and tissue fragments were rinsed once
with PBS and detached using a 0.05% trypsin/EDTA solution
(TE; Gibco). The three types of stem cells were subpassaged
at every 4-5 d with the ratio 1 : 4.

2.4. Proliferation Assay. Cell-counting kit-8 (CCK-8)
(Dojindo, Kumarmoto, Japan) was used to measure the cell
proliferation. Cells were seeded at 2× 103 cells per well into
96-cell plates, eight parallel wells for each group, which were
conventionally cultured in complete medium (100μl/well)
for every day in one week, respectively. The CCK-8 reagent
(10μl) was added into each well. After incubation for
2 h, the optical density value (OD value) was measured
at 450nm position on a microplate reader (Thermo,
Massachusetts, USA). Each well of cells was counted once.
The growth curve was draw based on the mean value of the
eight counts in each group. The culture medium was taken
as blank control.

2.5. Flow Cytometry Analysis. The specific cell surface anti-
gens of cultured cells (passage 3) were analyzed by flow
cytometry using a FACScan flow cytometer (Becton
Dickinson, USA). Single-cell suspensions were harvested
from MSC cultures with 0.05% trypsin/EDTA (Gibco) and
resuspended in PBS. The cells were filtered through a
70μm filter and incubated for 1 h with fluorescein isothiocya-
nate- (FITC-) or phycoreythrin- (PE-) conjugated antibodies
against human CD13 (eBioscience, Colorado, USA), CD29
(eBioscience), CD34 (BD Pharmingen, San Diego, CA,
USA), CD45 (eBioscience), CD73 (BD Pharmingen),
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CD90 (eBioscience), CD105 (eBioscience), CD146 (BD
Pharmingen), and HLA-DR (eBioscience).

2.6. Multilineage Differentiation Assay. The cells at passage
3 were assessed for multipotency by adipogenic, osteogenic,
and neural-like differentiation assays. Cells were seeded at a
density of 5× 103/cm2 in 24-well plates and grown in
monolayer in DMEM low glucose and FBS (10%) until
reaching ~90% confluency, and then the cells were given
the appropriate differentiation medium.

2.6.1. Adipogenesis. Cells were cultured in adipogenic
induction medium (Gibco). On day 14, cultures were stained
with oil red O staining (Sigma) as an indicator of intracellular
lipid accumulation.

2.6.2. Osteogenesis. Cells were grown in osteogenic induction
medium (Gibco) for 21 days. Calcium deposition was shown
by alizarin red staining (Sigma, Steinheim, Germany).

2.6.3. Neurogenesis. Cells were treated with the preinduc-
tion medium containing 10−7mol/L all-trans-retinoic acid
(ATRA, Sigma) and 10ng/ml FGF2 (Gibco) for 18h, and
then with modified neuronal medium (MNM) for 36h.
The expression of neurofilament medium polypeptide
(1 : 100, sc-16143, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) and neuron-specific anolase (1 : 100, sc-292097,
Santa Cruz Biotechnology) in induced MSCs was detected
by immunofluorescence staining.

2.7. Tube Formation Assay. Liquid Matrigel (BD Biosciences,
USA, BD Matrigel Matrix Cat. No. 356234) was added into
96-well tissue culture plates and polymerized for 30min at
37°C. Cells (1× 104/well) were trypsinized, resuspended in
serum-free DMEM, and plated onto the top of the Matrigel.
HUVECs (1.5× 104/well) seeded on theMatrigel bed and cul-
tured in serum-free DMEM containing VEGF (0.3 nmol/L)
were served as the positive control. Following incubation at
37°C for 3–24h, each well was digitally photographed under
a microscope (Leica) with phase contrast (magnification:
100x). The observed tubes and branching points were
counted. Meanwhile, total tubular length was quantified by
ImageJ software (National Institutes of Health, MA, USA)
and calculated as the average of the total tubule length from
three wells, three to five random fields per well.

2.8. Quantitative Real-Time PCR (qRT-PCR). Total RNAs
were prepared from tissues or cells using TRIzol reagent
(Invitrogen, Grand Island, NY, USA) according to the
manufacturer’s instructions. While the quality of the RNA
was evaluated using spectrophotometry and denaturing
agarose gel electrophoresis, a 1μg aliquot of purified total
RNA was reverse transcribed in a total volume of 20μl using
a PrimeScript RT reagent kit (Bio-Rad Laboratories,
Hercules, CA, USA). The specific primers used for qRT-
PCR analysis were as follows: hJagged1, forward 5′-CCT
GAAGGGGTGCGGTATAT-3′, reverse 5′-GGAGTTGACA
CCATCGATGC-3′ and h18S rRNA, forward 5′-CGGCTA
CCACATCCAAGGAA-3′, reverse 5′-CTGGAATTACCGC
GGCT-3′. Each real-time PCR reaction had the following

components: 1μL of RT product, 10μL of SYBR Green
PCR Master Mix (Bio-Rad Laboratories), and 500nM each
of the forward and reverse primers. QRT-PCR was per-
formed on a MyiQ Single Color Real-time PCR Detection
System (Bio-Rad Laboratories) by the below procedure
(95°C, 3min, 94°C 10 s, 60°C 30 s, 72°C 30 s, 40 cycles).
h18S rRNA was used as an internal control for Jagged1
detection. The samples were processed in duplicate using
RNA preparations from 3 independent experiments. The
fold change in Jagged1 expression was calculated using the
2−ΔΔCT method.

2.9. Western Blot. The cells at passage 3 were rinsed twice
with precooled PBS, then 1mL of cell lysis buffer
(50.0mmol/L Tris pH=7.6, 150.0mmol/L NaCl, 0.1% SDS,
1.0% NP-40, protease inhibitor cocktail) was added, and
the cells were scraped off. The cells were lysed at 4°C for
30min under rotation and centrifuged at 15000 rpm for
30min, and the supernatant was collected. Protein concen-
trations were determined by the BCA Protein Assay Reagent
(Thermo Fisher Scientific, Rockford, IL, USA), after which
25μg of total proteins was loaded to 10% SDS-PAGE gel
electrophoresis and transferred to a PVDF membrane
(PVDF, Millipore) using the conventional method. The
membrane was immunoblotted with primary antibodies
against CD146 (1 : 500, ab75769, Abcam), Jagged1 (1 : 500,
ab109536, Abcam), DLL4 (1 : 500, ab7280, Abcam), or
GAPDH (1 : 10000, AP0063, Bioworld technology), followed
by incubation with a goat anti-mouse (1 : 10000, BS12478,
Bioworld technology) or goat anti-rabbit (1 : 10000, A0545,
Sigma) secondary antibody. The bands were detected
using an enhanced chemiluminescence kit (Amersham
Biosciences Corp., Piscataway, NJ, USA), and densitometric
analysis of each band was performed with Quantity-one
(Bio-Rad) software.

2.10. Gene Microarray. Isolation and quality of total RNA
were measured according to the above methods. Microarray
analysis was used to screen changes in genome-wide gene
expression patterns in UCA-PSCs, UCV-PSCs, and WJ-MSCs
separated from the same human UC. The changes in 28264
human gene expression patterns were assessed by Phalanx
Biotech gene microarray using the Human HOA7.1 One Array
Plus (Phalanx Biotech Group, San Diego, CA).

2.11. Small Interfering RNA Transfection. Small interfering
RNA (siRNA) was purchased from Ribo Life Science Co.,
Ltd. The three stem cells were transfected with Jagged 1
siRNA (si-Jagged1) (50 nM) or negative control siRNA
(si-NC) (50 nM) in mediation of Lipofectamine™ 2000
Transfection Reagent (Invitrogen Inc., Carlsbad, CA, USA).
Cells in each group were seeded in a 6-well plate and
cultured in an incubator at 37°C with 5% CO2 until 80% con-
fluence. Cell transfection was performed strictly according to
the operation manual of Lipofectamine 2000 Transfection
Reagent. The knockdown efficiency was confirmed at
48 h and 72 h posttransfection by RT-qPCR and western
blot analysis, respectively. Then, in vitro angiogenic
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properties of the three stem cells were determined at 72 h
after transfection.

2.12. Statistical Analysis. Each experiment was repeated at
least 3 times. All values were expressed as the means±
standard error (SE). A two-tailed Student’s t-test was used
to evaluate the differences between two groups. The
statistical significance of the difference among multiple
comparisons was determined by one-way analysis of
variance using Statistics Package for Social Science (SPSS
22.0, SPSS, Chicago, IL, USA). A P value <0.05 was
considered statistically significant.

3. Results

3.1. Expression of PDGF-Rβ, NG2, α-SMA, and CD146 in
Human UC. PDGF-Rβ is a platelet-derived growth factor
receptor which is involved in pericyte formation and
recruitment during blood vessel morphogenesis. NG2 is a
proteoglycan associated with pericytes during vascular
morphogenesis. α-SMA can be reproducibly detected in cells
surrounding the venules and arterioles and is responsible for
regulating microvessel contractility. CD146 is an endothelial
cell antigen expressed at the surface of pericytes [12]. In this
study, immunofluorescence staining was used to visualize the
expression of PDGF-Rβ, NG2, α-SMA, and CD146 in UCA,
UCV, and WJ samples obtained from the same UC. The
results revealed high expression of PDGF-Rβ in the perivas-
cular region while PDGF-Rβ+ cells were scarcely detected in
the WJ (Figures 1(a), 1(b), and 1(c)). NG2+ cells were
primarily distributed in the UCA, followed by the UCV,
while there was almost no NG2+ cells in WJ (Figures 1(d),
1(e), and 1(f)). α-SMA staining revealed a similar distribu-
tion pattern (Figures 1(g), 1(h), and 1(i)). These data
demonstrated that pericyte markers (PDGF-Rβ, NG2, and
α-SMA) were detected primarily in the perivascular region.
CD146 expression was highly prevalent in the perivascular
region, especially in the UCA (Figure 1(j)), followed by
UCV (Figure 1(k)), but CD146 expression in theWJ was very
low (Figure 1(l)). Quantitative analysis of the immunostain-
ing showed that there were more PDGF-Rβ+ (Figure 1(m)),
NG2+ (Figure 1(n)), α-SMA+ (Figure 1(o)), and CD146+

(Figure 1(p)) cells in the perivascular region than in WJ
which suggested that the UCA and UCV walls contained
most pericytes of UC.

3.2. Phenotypes of UCA-PSCs, UCV-PSCs, and WJ-MSCs.
UCA-PSCs, UCV-PSCs, and WJ-MSCs were isolated from
human UC using tissue explants. The obtained UCA, UCV,
and WJ tissue samples were cut into small fragments and
plated in dishes (Figures 2(a), 2(b), 2(c), 2(d), 2(e), and
2(f)). On days 7–10 after incubation, fibroblast-like cells
migrated out of the tissues (Figures 2(g), 2(h), and 2(i)).
The morphology of stem cells derived from the three
different tissues was similar (Figures 2(j), 2(k), and 2(l)).

CCK-8 assays showed that UCA-PSCs, UCV-PSCs, and
WJ-MSCs had similar proliferation tendency at passage 3
(Figure 3(a)). However, on days 4 and 5, UCA-PSCs had a
significantly higher growth rate compared to UCV-PSCs.

Flow cytometric analysis of cells at passage 3 revealed
that all these three cell populations were positive for CD13,
CD29, CD73, CD90, and CD105 but negative for CD34,
CD45, and HLA-DR (Figure 3(b)), which was consistent with
the previous reports on MSC surface markers [1]. However,
UCA-PSCs and UCV-PSCs had more CD146+ cells than
WJ-MSCs (P < 0 05; Figures 3(b), 3(c), 3(d), 3(e), 3(f), 3(g),
and 3(h)). CD146+ cells in many human tissues have been
identified as MSC origin in vivo and have higher multilineage
differentiation potential [22].

3.3. Multilineage Differentiation Potential of UCA-PSCs,
UCV-PSCs, and WJ-MSCs. To study whether the MSCs
derived from perivascular regions and WJ had similar
multilineage differentiation capacity, cells from passage 3
were cultured under various conditions for adipogenic,
osteogenic, and neural-like differentiation. For adipogenic
differentiation, lipid-containing cells were detected earlier
in UCA-PSCs and UCV-PSCs than in WJ-MSCs (day 10,
day 10, and day 12, resp.; data not shown). At 14 days after
induction, the three stem cell populations were all capable
of differentiating into adipocytes containing lipid droplets
(Figures 4(a), 4(b), and 4(c)). For osteogenesis, bone nodules
were first detected in UCA-PSCs and UCV-PSCs but not in
WJ-MSCs after the cell populations were cultured under
osteogenic conditions on day 10 (data not shown). Three
weeks later, alizarin red S staining revealed a greater
extent of mineralization with detectable bone nodules in
all three stem cell populations (Figures 4(d), 4(e), and 4(f)).
The neural-like differentiation of the stem cells was con-
firmed by NF-M (Figures 4(g), 4(h), and 4(i)) and NSE
(Figures 4(j), 4(k), and 4(l)) using immunofluorescence
staining. There were no differences in neural differentia-
tion capacity among the three MSCs. These results sug-
gested that UCA-PSCs, UCV-PSCs, and WJ-MSCs all
had multilineage differentiation potential, but UCA-PSCs
and UCV-PSCs clearly had a higher ability toward meso-
derm lineage differentiation.

3.4. UCA-PSCs Exhibited Better Angiogenesis Capacity In
Vitro. To compare angiogenesis capacity between UCA-
PSCs, UCV-PSCs, and WJ-MSCs, tube formation assays
were carried out to investigate the capacity of differentiation
into a capillary-like structure. As shown in Figures 5(a), 5(b),
and 5(c), UCA-PSCs, UCV-PSCs, and WJ-MSCs were
cultured on Matrigel-coated plates for 3 h. Microscopic
observation revealed that the number of tubules per random
field was apparently higher in UCA-PSCs and UCV-PSCs
than in WJ-MSCs. At 6 h, the tubes had partly disintegrated
in all three cell populations (Figures 5(d), 5(e), and 5(f)).
Meanwhile, tube formation in HUVECs was observed as
positive control (Supplemental Figure 1 available online at
https://doi.org/10.1155/2017/3175748). Interestingly, tube-
like structures remained in UCA-PSCs even after 12 h on
Matrigel but disappeared in UCV-PSCs and WJ-MSCs
(Figures 5(g), 5(h), and 5(i)), indicating that UCA-PSCs
had advantages over UCV-PSCs and WJ-MSCs in maintain-
ing the stability of the formed tubes. At 24 h, all the tube-like
structures degraded in these three stem cell populations
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(Figures 5(j), 5(k), and 5(l)). Statistical analysis showed
that the number of tubes per field significantly increased
in UCA-PSCs (11.08± 1.29) and UCV-PSCs (7.42± 0.57)
compared to those in WJ-MSCs (4.33± 0.47; P < 0 001;
Figure 5(m)). In addition, the number of tube branch
points per field was higher in UCA-PSCs (15.42±1.14) and
UCV-PSCs (11.83±0.79) than in WJ-MSCs (9.33± 2.87;

P < 0 001, UCA-PSCs versus WJ-MSCs; Figure 5(n)).
Meanwhile, the total tube length was significantly longer
in UCA-PSCs (199.27%±18.90%; P < 0 001; Figure 5(o))
and UCV-PSCs (168.53%±9.09%; P < 0 01; Figure 5(o))
compared to that in WJ-MSCs. Moreover, the number of
tube branch points per field was significantly higher in
UCA-PSCs than in UCV-PSCs (P < 0 01), while there were
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Figure 1: Immunolocalization of PDGF-Rβ, NG2, α-SMA, and CD146 in the human umbilical cord. Fluorescence imaging revealed a
high incidence of PDGF-Rβ-positive (a–c), NG2-positive (d–f), α-SMA-positive (g–i), and CD146-positive (j–l) cells in the perivascular
region. Bar: 25μm. The integrated optical density (IOD) values of positive staining in five randomly selected high power fields of view
were counted. ∗∗∗P < 0 001, versus WJ-MSCs. ∗P < 0 05, versus WJ-MSCs. ##P < 0 01, UCV-PSCs versus UCA-PSCs.
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no significant differences in the number and length of tubes
between UCA-PSCs and UCV-PSCs (P > 0 05). These results
demonstrated that UCA-PSCs and UCV-PSCs, especially
UCA-PSCs, exhibited better angiogenic ability compared to
the WJ-MSCs in vitro.

3.5. Higher Expression of CD146 and Jagged1 in UCA-PSCs.
We carried out a genome-wide gene profile analysis to
further investigate the biological characteristics of UCA-
PSCs, UCV-PSCs, and WJ-MSCs. As shown in the clustering
analysis, based on 293 selected differentially expressed genes,
UCA-PSCs were more closely related to UCV-PSCs than to
WJ-MSCs (Figure 6(a)). In addition, many angiogenesis-
related genes, such as ISL1, JAG1, THBS1, CXCL12, CTGF,
HIF1A, and ERAP1, were increased in UCA-PSCs and
UCV-PSCs than in WJ-MSCs (Figure 6(b)). Furthermore,

Jagged1 expression was the highest in UCA-PSCs, followed
by UCV-PSCs, and then WJ-MSCs (Figure 6(b)). Jagged1 is
well-known to play an important role in both physiological
and pathological angiogenesis [23]. The Jagged1 mRNA
levels were measured by qRT-PCR, and the results were in
line with those of the microarray analysis (Figure 6(c)). The
results of the western blot analysis also confirmed that
UCA-PSCs had the highest CD146 and Jagged1 protein
expression, followed by UCV-PSCs and WJ-MSCs. How-
ever, the protein level of Delta-like ligand (Dll4), another
important ligand in Notch signals [24], revealed the oppo-
site expression pattern among the three cell populations,
which may be beneficial in angiogenesis (Figure 6(d)). Statis-
tical analysis of the different protein levels of CD146
(Figure 6(e)), Jagged1 (Figure 6(f)), and Dll4 (Figure 6(g))
in UCA-PSCs, UCV-PSCs, and WJ-MSCs was also showed.
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Figure 2: Isolation and characterization of umbilical cord artery perivascular stem cells (UCA-PSCs), umbilical cord vein perivascular stem
cells (UCV-PSCs), and Wharton’s jelly mesenchymal stem cells (WJ-MSCs). (a–c) Three different compartments in human umbilical cord:
umbilical arteries (UCA) (a), umbilical vein (UCV) (b), and Wharton’s jelly (WJ) (c). (d–f) Isolation of UCA-PSCs (d), UCV-PSCs (e), and
WJ-MSCs in the human umbilical cord (f). (g–i) Cells from the third passage showed similar fibroblastic morphology. Bar: 100μm.
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3.6. Knockdown of Jagged1 Decreased Tubule Formation in
UCA-PSCs. To examine the role of Jagged1 in angiogenesis,
in particular the role of endogenous Jagged1 in capillary tube
formation of the three stem cells, siRNA was used to silence
the expression of Jagged1 in UCA-PSCs, UCV-PSCs, and
WJ-MSCs. The results showed that the depletion of Jagged1
in UCA-PSCs, UCV-PSCs, and WJ-MSCs decreased Jagged1
mRNA level compared with the si-NC group (Figures 7(a),
7(b), and 7(c)). Similarly, the three stem cells transfected
with si-Jagged1 expressed the lower protein level of Jagged1
at 72 hours after transfection (Figures 7(d), 7(e), and 7(f)).
Transfection of si-Jagged1 resulted in a 71.26%, 57.38%,
and 29.51% decrease of Jagged1 expression in UCA-PSCs

(Figure 7(g)), UCV-PSCs (Figure 7(h)), and WJ-MSCs,
respectively (Figure 7(i)). Then, we determined the effect of
Jagged1 knockdown on the angiogenic properties of the
three stem cells in vitro. As shown in Figures 7(j), 7(k),
7(l), 7(m), 7(n), and 7(o), UCA-PSCs, UCV-PSCs,
and WJ-MSCs transfected with si-Jagged1 or si-NC were
cultured on Matrigel-coated plates for 3 h. Representative
images revealed that the number of tubule-like structures
per random field was apparently lower in si-Jagged1 group,
compared with si-NC group in UCA-PSCs (Figures 7(j)
and 7(m)), UCV-PSCs (Figures 7(k) and 7(n)), and WJ-
MSCs (Figures 7(l) and 7(o)). Statistical analysis showed
that Jagged1 knockdown led to a significant reduction in
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Figure 3: Proliferation and phenotype profile of umbilical cord artery perivascular stem cells (UCA-PSCs), umbilical cord vein perivascular
stem cells (UCV-PSCs), and Wharton’s jelly mesenchymal stem cells (WJ-MSCs). (a) Cell proliferation was continuously monitored for
7 days using cell-counting kit-8 (CCK-8), which showed that the number of UCA-PSCs was significantly higher than that of UCV-PSCs
at days 4 and 5. However, the cell growth rate of UCA-PSCs, UCV-PSCs, and WJ-MSCs did not significantly differ. Bars represent the
means± SE of three independent experiments performed in triplicate. ∗P < 0 05, UCV-PSCs versus UCA-PSCs. (b) Profiles of cell
surface epitopes in UCA-PSCs, UCV-PSCs, and WJ-MSCs. Abundance of cells positive for CD13, CD29, CD34, CD45, CD73, CD90,
CD105, CD146, and HLA-DR, expressed as percentages, in UCA-PSCs, UCV-PSCs, and WJ-MSCs. Bars represent the means± SE of
donor samples (n = 3). ∗∗P < 0 01, UCA-PSCs versus WJ-MSCs. ∗P < 0 05, UCV-PSCs versus WJ-MSCs. #P < 0 05, UCV-PSCs versus
UCA-PSCs. (c–h) Representative flow cytometric plots, including isotype control (IgG-FITC) (f–h).
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the number of tubes per field in UCA-PSCs (2.56± 0.33
versus 13.22± 0.67; P < 0 001, si-Jagged1 versus si-NC;
Figure 7(p)), UCV-PSCs (3.85± 0.45 versus 11.96± 0.56;
P < 0 001, si-Jagged1 versus si-NC; Figure 7(q)) and WJ-
MSCs (4.96± 0.30 versus 7.70± 0.32; P < 0 001, si-Jagged1
versus si-NC; Figure 7(r)). In addition, compared to the si-
NC group, the total tube length of si-Jagged1 group decreased
by 72.74% in UCA-PSCs (P < 0 01; Figure 7(s)), 62.27% in
UCV-PSCs (P < 0 01; Figure 7(t)); and 23.38% in WJ-
MSCs (P > 0 05; Figure 7(u)). These data suggested that
Jagged1 played a vital role in tube formation in the
three stem cells.

4. Discussion

Human UC-derived mesenchymal stem cells are a promising
versatile tool for regenerative medicine and immunotherapy
[25]. This is the first study to compare the features of UCA-
PSCs, UCV-PSCs, and WJ-MSCs obtained from the same
human UC. Our results revealed that UCA-PSCs expressed
higher levels of CD146 than WJ-MSCs. Additionally, UCA-
PSCs and UCV-PSCs, especially UCA-PSCs, showed greater
angiogenesis capacity and expressed higher levels of Jagged1,
which is an important Notch ligand in angiogenesis.
Our study demonstrated that the knockdown of Jagged1
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Figure 4: Differentiation of umbilical cord artery perivascular stem cells (UCA-PSCs), umbilical cord vein perivascular stem cells
(UCV-PSCs), and Wharton’s jelly mesenchymal stem cells (WJ-MSCs). (a–c) For adipogenic differentiation, the cells were cultured
in adipogenic induction medium for 14 days. The formation of lipid droplets was confirmed by oil red O staining. (d–f) Cells were
cultured in osteogenesis induction medium for 21 days. Calcium deposition was confirmed by alizarin red staining. (g–l) Differentiation of
cells to neuronal lineage after 18 h preinduction and 36 h induction was confirmed by immunofluorescence staining of neurofilament
medium polypeptide (g–i) and neuron-specific enolase (j–l). Bar: 10 μm.
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Figure 5: In vitro Matrigel tube formation assay. Umbilical cord artery perivascular stem cells (UCA-PSCs), umbilical cord vein perivascular
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Figure 6: Expression of angiogenesis-related genes in the umbilical cord artery perivascular stem cells (UCA-PSCs), umbilical cord vein
perivascular stem cells (UCV-PSCs), and Wharton’s jelly mesenchymal stem cells (WJ-MSCs). (a) Comparison of gene expression
patterns in UCA-PSCs, UCV-PSCs, and WJ-MSCs using microarray analysis. Red indicates upregulated genes while green indicates
downregulated genes. (b) Gene expression heatmaps showed fold changes in the expression of a selection of genes involved in
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10 Stem Cells International



1.0

0.8

0.6

0.4

0.2

0.0

UCA-PSCs

si-Jagged1si-NC

Re
lat

iv
e e

xp
re

ss
io

n 
of

 JA
G

1

⁎⁎

(a)

UCV-PSCs

Re
la

tiv
e e

xp
re

ss
io

n 
of

 JA
G

1 1.0

0.8

0.6

0.4

0.2

0.0
si-Jagged1si-NC

⁎⁎⁎

(b)

Re
la

tiv
e e

xp
re

ss
io

n 
of

 JA
G

1 1.0

0.8

0.6

0.4

0.2

0.0
si-Jagged1si-NC

⁎

WJ-MSCs

(c)

Jagged1

si-NC

GAPDH

si-Jagged1

(d)

Jagged1

si-NC

GAPDH

si-Jagged1

(e)

Jagged1

si-NC

GAPDH

si-Jagged1

(f)

⁎⁎

100

80

Ja
gg

ed
/G

A
PD

H
 p

ro
te

in
re

la
tiv

e i
nt

en
sit

y

60

40

20

0
si-NC si-Jagged1

(g)

100

80

Ja
gg

ed
/G

A
PD

H
 p

ro
te

in
re

la
tiv

e i
nt

en
sit

y

60

40

20

0
si-NC si-Jagged1

⁎⁎

(h)

100

80

Ja
gg

ed
/G

A
PD

H
 p

ro
te

in
re

la
tiv

e i
nt

en
sit

y

60

40

20

0
si-NC si-Jagged1

⁎

(i)

si-NC

(j)

si-NC

(k)

si-NC

(l)

si-Jagged1

(m)

si-Jagged1

(n)

si-Jagged1

(o)

Figure 7: Continued.
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decreased tubule-like structure formation in UCA-PSCs,
UCV-PSCs, and WJ-MSCs.

As a prerequisite to the identification of human peri-
vascular cells, we used immunofluorescence assay to detect
relevant marker combinations for this elusive cell population.
It has been confirmed that all perivascular cells (pericytes)
still display overextended culture, the markers their ancestors
natively expressed in the tissue of origin (PDGF-Rβ, NG2,
α-SMA, and CD146) [26]. In the present study, pericyte
markers were detected in the perivascular region and the
UCA had a higher proportion of cells expressing CD146
and NG2, indicating that there may be more perivascular
stem cells surrounding UCA.

Meanwhile, the expression of CD146 was most notably
elevated in UCA-PSCs and UCV-PSCs compared to WJ-
MSCs, which was indicated not only by flow cytometry
analysis of the harvested cell populations from the perivascu-
lar region but also by direct immunostaining of the human
UC samples. CD146 is identified as a potential marker for
multipotency [27]. The CD146+ subset of MSCs can long-
time maintain the hematopoietic stem cells (HSCs) with
engraftment and self-renewal ability [28]. In an experimental

approach combining stringent cell purification by flow
cytometry and differentiation in culture and in vivo, human
CD146+ perivascular cells represent the ubiquitous ancestors
of MSCs [29]. Additionally, CD146 has been reported to play
a crucial role in the vascular development [30]. A previous
study found that knockdown of CD146 protein expression
severely hindered vascular development, leading to poorly
developed intersomitic vessels, with lack of blood flow
through the intersomitic vessel region [31]. In addition, the
gain-of-function analysis of CD146 in zebrafish found
that enforcing expression of CD146 induced sprouting
angiogenesis [32]. Moreover, as a novel VEGFR-2 coreceptor,
CD146 is required in the promotion of endothelial cell
migration and microvascular formation [33].

A complex labyrinth of blood vessels in the human body
provides cells and tissues with the nutrients and oxygen
needed for survival, proliferation, and a variety of physiolog-
ical activities. The majority of the blood vessel network is
considered to be built through angiogenic processes. Normal
physiological angiogenesis is the formation of new blood
vessels from preexisting vasculature, and it is a fundamental
event during embryonic development, homeostasis, wound
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Figure 7: Knockdown of Jagged1 decreased tubule-like structures formation in the umbilical cord artery perivascular stem cells (UCA-PSCs),
umbilical cord vein perivascular stem cells (UCV-PSCs), and Wharton’s jelly mesenchymal stem cells (WJ-MSCs). (a–i) Jagged1 knockdown
was effective. qRT-PCR analysis of Jagged1 mRNA levels in UCA-PSCs (a), UCV-PSCs (b), andWJ-MSCs (c) 48 h after the transfection with
negative control siRNA (si-NC) or Jagged1 siRNA (si-Jagged1). ∗∗P < 0 01, si-Jagged1 versus si-NC; ∗∗∗P < 0 001, si-Jagged1 versus si-NC;
∗P < 0 05, si-Jagged1 versus si-NC. Western blot analysis of Jagged1 expression in UCA-PSCs (d), UCV-PSCs (e), and WJ-MSCs (f) 72 h
after the transfection with si-NC or si-Jagged1. Quantitative analysis of Jagged1 protein expression levels in UCA-PSCs (g), UCV-PSCs
(h), and WJ-MSCs (i) 72 h after the transfection with si-NC or si-Jagged1. Data are representative of three independent experiments
performed in triplicate, and the expression of targeted protein was relative to the expression of GAPDH protein. ∗∗P < 0 01, si-Jagged1
versus si-NC; ∗P < 0 05, si-Jagged1 versus si-NC. Knockdown of Jagged1 decreased angiogenesis in UCA-PSCs, UCV-PSCs, and WJ-MSCs
in vitro. (j–o) Representative images of tubular structures. Bar: 50 μm. Tube formation assays were performed 72 h after transfection of si-NC
or si-Jagged1. The number of tubes in UCA-PSCs (p), UCV-PSCs (q), and WJ-MSCs (r), together with the total length of tubes per field in
UCA-PSCs (s), UCV-PSCs (t), and WJ-MSCs (u) were quantified 3 h after treatment by counting 3–5 random fields/well under the
microscope (magnification: 100x). n = 5. ∗∗∗P < 0 001, si-Jagged1 versus si-NC; ∗∗P < 0 01, si-Jagged1 versus si-NC.
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and fracture healing, and the growth and function of the
female reproductive organs [34–36]. Thus, understanding
the angiogenesis ability of these three MSC populations
is vital in consideration of their clinical application. In
the present study, we confirmed that UCA-PSCs had
better tube formation capacity in vitro than WJ-MSCs.
In addition to the increased number of tubes, branching
points and total tube length per field, UCA-PSCs and
UCV-PSCs, particularly UCA-PSCs, were also superior to
WJ-MSCs in maintaining the stability of the tubes.
Perivasculature has been considered to be the niche for
various types of MSCs [37]. However, whether arteries,
veins, and capillaries represent different MSC niches
remains largely unknown. A recent study suggested that
mouse incisor MSCs were localized around arterioles
alone and not veins or capillaries and were regulated
by the neurovascular bundle niche [38]. This finding
may give a possible explanation as to why UCA-PSCs
had a slight advantage over UCV-PSCs in terms of
angiogenic capacity.

In addition to CD146, UCA-PSCs and UCV-PSCs both
expressed higher levels of angiogenesis-related genes than
WJ-MSCs, such as ISL1, JAG1, THBS1, CXCL12, CTGF,
HIF1A, and ERAP1. It was reported that Jagged1 overexpres-
sion in tumor cells enhances neovascularization and tumor
growth and that loss of Jagged1 in endothelial had an
inhibitory effect on the neoangiogenic and maturation
responses as well as an angiocrine effect in tumor cells
[39]. Furthermore, mutations in the human Jagged1 gene
cause Alagille syndrome, which involves complex cardiac
defects and vascular anomalies [40]. Our data showed that
knockdown of Jagged1 expression by siRNA in UCA-
PSCs, UCV-PSCs, and WJ-MSCs resulted in remarkably
reduced tube formation in vitro. However, the knockdown
efficiency in WJ-MSCs was lower compared to the other
two kinds of cell, which may be explained by the low
expression of endogenous Jagged1. During the process of
angiogenesis, a well-regulated balance between the migra-
tion of tip cells and proliferation of stalk cells is essential
for adequately shaped nascent sprouts [41]. Selecting the
tip and the stalk fate is critical for developing a functional
vessel and mediated by the Notch signaling pathway, a
conserved cell-cell communication pathway activated
through transinteractions between Notch ligands and
receptors [42]. The Notch ligands Jagged1 and Dll4 have
opposing effects on angiogenesis. Different signals might
modulate angiogenesis by changing the ratio of Jagged1
and Dll4 expression, which integrated pro- or antiangio-
genic signal into the selection of endothelial tip cells
[43], which may be the cause of optimum angiogenic
capacity of UCA-PSCs.

5. Conclusions

In summary, our results indicated for the first time that
UCA-PSCs and UCV-PSCs, especially UCA-PSCs, had
better angiogenesis capacity than WJ-MSCs in vitro. In addi-
tion, higher expression level of angiogenesis related genes,
such as CD146 and Jagged1, was detected in UCA-PSCs.

These results offered a promising candidate, UCA-PSCs, for
cell-based therapy for ischemia.
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