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Abstract. We consider a discrete-time continuous-space random walk under the
constraints that the number of returns to the origin (local time) and the total area
under the walk are fixed. We first compute the joint probability of an excursion
having area a and returning to the origin for the first time after time τ . We then
show how condensation occurs when the total area constraint is increased: an
excursion containing a finite fraction of the area emerges. Finally we show how
the phenomena generalises previously studied cases of condensation induced by
several constraints and how it is related to interaction-driven condensation which
allows us to explain the phenomenon in the framework of large deviation theory.
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1. Introduction

Recent years have witnessed an increased interest in the mathematical theory of large
deviations, putting the theory at the fore of research in statistical physics. Roughly
speaking, large deviation theory is concerned with probabilities of sums of random
variables which are far away from their expected (mean) value [1]. In physics, these
sums are typically extensive variables such as energy and mass [2], but can also
be time-integrated observables such as currents [3–5]. In most cases with short-
range correlations between the random variables, the probability density that a sum
of random variables SN =

∑N
i=1 xi takes a large value SN = aN (meaning that

a 6= 〈SN 〉/N) is found to decay exponentially

P (SN = aN) � e−NI(a), N →∞, (1)

where � denotes asymptotic behaviour in the sense that

I(a) = − lim
N→∞

lnP (SN = aN)/N (2)

is the rate function characterising the exponential decay. When (1) holds, P (SN =
aN) is said to satisfy the large deviation principle.

While exceptions to this principle in physics are rare (at least for short-range
correlated variables), their occurrence indicates a strikingly different behaviour. A
prominent example is that of condensation phenomenon, where one of the random
variables takes a macroscopic fraction of the sum [6–8]. The simplest realisation is
found in sums of independent and identically distributed (iid) random variables whose
common probability density f(xi) is heavy-tailed, i.e. has tails that decay slower than
exponential. In that case it is well known that the probability density P (SN = aN)
is dominated by a single contribution to the sum [9–14],

P (SN = aN) ≈ Nf((a− ac)N), N →∞ (3)

where ac = Ef [x] is the mean with respect to f(xi) and the factor N indicates that
any of the random variables can take the role of the condensate.

In physics, condensation phenomena have been extensively studied in mass-
transport models such as the zero-range process (ZRP) and several related models [6,
14–22]. These models comprise masses mi (discrete or continuous) that are exchanged
locally between neighbouring sites, typically on a one-dimensional lattice. Despite non-
trivial (and generally non-equilibrium) dynamics, under certain conditions the steady
state in a class of mass-trasport models (such as in ZRP) takes a simple factorised
form [6],

P (m1, . . . ,mL) =
1

ZL(M)

[
L∏
i=1

f(mi)

]
δ

 L∑
j=1

mj −M

 . (4)

Here f(mi) is the single-site weight, the delta function ensures that the total mass

ML ≡
∑L
i=1mi is conserved and equal to M , and ZL(M) is the normalisation constant

(partition function) given by

ZL(M) =

∫ [ L∏
i=1

dmi f(mi)

]
δ

 L∑
j=1

mj −M

 , (5)
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where
∫

denotes the integral (for continuous masses) or the sum (for discrete masses).
The condensation take place provided f(mi) is heavy-tailed and the density ρ = M/L
is greater than ρc, which is given by [14,15]

ρc =

∫∞
0

dmmf(m)∫∞
0

dmf(m)
. (6)

The heavy-tailed condition required for condensation is that f(m) (modulo any
exponentially decreasing dependence on m) should decay to zero faster than m−2

but slower than exponentially [15]. Thus

f(m) ' Am−γ with γ > 2 (7)

fulfils the criterion as does a stretched exponential distribution

f(m) ' Amβ exp(−cmα) with α < 1 . (8)

Recently, we showed that iid random variables with a light-tailed distribution can
also exhibit condensation if there is an additional constraint on their linear statistics,
such as the variance

∑
jm

2
j [23]. In that case f(mi) does not need to be heavy-

tailed, since it acquires an additional factor through the second constraint that has a
Weibull-like heavy tail [24].

In this paper we take a step further and study correlated random variables
conditioned on two constraints. As a prototype model belonging to this class, we
study a discrete-time (continuous-space) reflected random walk on a line. A walker
starts at the origin at time t = 0, and undergoes independent jumps at each instant.
If a jump takes it to the negative site, its position is reset to the origin (reflecting
boundary condition) (see Figure 1 for a typical sample path). In this model, the
relevant random variables are the positions xt’s of the walker at different times. Even
though the increments (jumps) at each instant are independent, the positions xt’s at
different times are strongly correlated. We are interested in paths of this process that
realise fixed values of AT and lT defined by

AT =

T∑
t=1

xt, lT =

T∑
t=1

δxt,0, (9)

where AT is the area under the path and lT is the number of returns to the origin,
which is also known as (discrete) local time. One of our main results is to show that
these two constraints together can generate a single random walk excursion—a path
between two successive returns to the origin—which takes a macroscopic fraction of
the total area AT . In this context, this single excursion is the analogue of a condensate.
We will discuss when and how this form of condensation occurs.

This condensation phenomenon is seemingly different from the standard one
studied for i.i.d. random variables in the literature [6, 14], considering that the
condensate spans more than one random variable xt. However, we show how to recast
the process in terms of random walk excursions, i.e., the paths between successive
returns to the origin, which are mutually independent (due to the Markov nature of
the process), thus connecting this condensation phenomenon to the standard one for
iid random variables. Even though our conclusion holds for generic short-range jump
distribution, in this paper we will present explicit results for the double exponential (or
Laplace) jump distribution for which the transition line (between fluid and condensed
phases) can be found exactly. Indeed, this particular jump distribution has played
an important role already in computing exactly the probability distribution of several
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interesting variables, such as the area under an excursion of a discrete-time random
walk [25]. In our case also, it turns out that this special choice of the jump distribution
makes analytical calculations possible.

Finally, we establish a direct connection between the conditioned random walk
paths discussed above and the mass-transfer models in which the steady state assumes
a pair-factorised form [26] given by

P (m1, . . . ,mL) =
1

ZL(M)

L∏
i=1

g(mi,mi+1)δ

 L∑
j=1

mj − ρL

 , (10)

where the pair function g(mi,mi+1) consists of the interaction part −J |mi+1 − mi|
and the single-site potential Uδmi,0

g(mi,mi+1) = exp

[
−J |mi+1 −mi|+

1

2
Uδmi,0 +

1

2
Uδmi+1,0

]
. (11)

The most striking feature of the steady state (10) is that it exhibits spatially-
extended (or interaction-driven) condensation for particle density ρ above some critical
density ρc, given in (96). However, a precise understanding of this novel type of
condensation within the theory of large deviations is still lacking.

To fill this gap, we show that the phenomenon of interaction-driven condensation
is related to the standard condensation, albeit one that is driven by two constraints
rather than one. We arrive at this result by mapping the problem to a random walk
that stays non-negative and using recent results on the equivalence of nonequilibrium
path ensembles [27, 28]. Our results therefore unify these two seemingly disparate
condensation phenomena and lead us to think that other, more complex condensation
phenomena may have a similar origin [29,30].

The paper is organised as follows. In Section 2 we study a discrete-time and
continuous-space reflected random walk conditioned on the fixed total area AT and
number of returns to the origin lT . After recasting the process in terms of successive
random walk excursions, in Section 3 we show how fixing AT causes a single excursion
to take a finite fraction of the total area, thus signalling a condensation transition.
In Section 4 we establish a direct connection between the conditioned random walk
discussed above and the mass-transfer models with pair-factorised steady states that
exhibit interaction-driven condensation. Finally we conclude in Section 5 with a
summary and discussion. Some details are relegated to the Appendices.

2. Reflected random walk conditioned on area and local time

We consider a discrete-time, continuous space random walk on a line. The walker starts
at the origin at time t = 0. In this model, when the position of the walker becomes
negative, its position is instantaneously reset to the origin. The process, which we
refer to as the reflected random walk, is described by the following recurrence equation

xt = max{0, xt−1 + ηt}, (12)

where xt is position of the random walker at time step t and ηt, t = 1, 2, . . .,
are independent and identically distributed (iid) random variables with a common
probability density K(ηt). We note that the process (12) is well known in queuing
theory, where it is called the Lindley process [31,32]. Here we are interested in paths
X = (x0, . . . , xT ) that start from x0 = x at t = 0 and return to the same position
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Figure 1. A sample path for the reflected random walk with the double
exponential (Laplace) jump distribution K(ηt) = exp(−|ηt|)/2. The path starts
at x0 = 2 at time t = 0 and ends at xT = x0 = 2 at time t = T = 50; it consists
of three excursions denoted by numbers 1, 2 and 3 that are represented by three
different colours.

xT = x0 = x at time T . In the mathematical literature, these are known as stochastic
bridges. For a reflected random walk, stochastic bridges coincide with stochastic
excursions, which are defined as bridges that stay non-negative.

For a given path X = {x0, . . . , xT }, we are interested in the following two
functionals of X: the total area AT [X]

AT [X] =

T∑
t=1

xt, (13)

and the number of returns to the origin lT [X], also known as local time,

lT [X] =

T∑
t=1

δxt,0. (14)

In addition, we are interested in all paths that achieve fixed values of AT = A and
lT = N , where both A and N are proportional to the total duration T of the walk,

A = (σ/µ)T, N = (1/µ)T, (15)

and σ and µ are positive constants. Generally we choose values of σ and µ which
correspond to large deviations of the unconstrained walk.

Our main goal in this paper is to show that conditioning paths on their total area
and local time, both set proportional to the total duration T of the walk, leads to the
emergence of a single large excursion, which we refer to as the condensate, that takes a
macroscopic fraction of the fixed total area A. This condensation phenomenon occurs
when σ (defined in (15)) is larger than the critical σc (for a fixed µ), which we calculate
explicitly for the double exponential (also known as the Laplace) jump distribution
K(η) = exp(−|η|)/2 (normalised to unity). We also show that conditioning on lT = N
alone does not cause the transition—it is only when both AT and lT are fixed that
the condensate emerges.
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We start by writing down the path probability P [X|AT = A, lT = N ] of observing
a path X conditioned on the events AT = A and lT = N , which reads

P [X|AT = A, lT = N ] =
1

ZN (A, T )

T∏
t=1

w(xt|xt−1)δ(lT −N)δ(AT −A), (16)

where ZN (A, T ) and w(xt|xt−1) are the normalisation constant and the transition
probability, respectively,

ZN (A, T ) =

∫ ∞
0

dx1 . . .

∫ ∞
0

dxT

T∏
t=1

w(xt|xt−1)δ(lT −N)δ(AT −A), (17)

w(xt|xt−1) = δxt,0

∫ −xt−1

−∞
K(η)dη +K(xt − xt−1). (18)

We note that the variable xt in (12) is neither a continuous nor a discrete random
variable, but a mixture of both. Such mixed random variables are described by a
generalised transition probability (18) that involves the Dirac delta function. The
form in (18) takes into account the fact that if a jump at time t− 1 takes the walker
to the negative side, its position at xt is instantaneously reset to 0.

Instead of writing the delta function δ(lT − N) in (17) and integrating over all
paths, we can take N returns explicitly into account, as follows. Let us denote with
ti, i = 1, . . . , N , the time of the i-th return to the origin. Then the path between ti−1
and ti is a random walk excursion and we let τi and ai denote its duration and area,
respectively,

τi = ti − ti−1, ai =

ti∑
t=ti−1

xt. (19)

(Note that since xT = x0, the duration and area of the first excursion are given by
τ1 = t1 + (T − tN ) and (xtN + . . . xT ) + (x1 + . . .+ xt1), respectively; see Figure 1 for
more details.) The partition function ZN (A, T ) can then be written in an alternative
form

ZN (A, T ) =

∞∑
{τi=1}

N∏
i=1

∫ ∞
0

dai f(ai, τi)δ

 N∑
j=1

aj −A

 δ

(
N∑
k=1

τk − T

)
(20)

where f(ai, τi) is the joint probability density for the duration τi and area ai of
excursion i.

The expression (20) for the partition function ZN (A, T ) is central to our paper.
The advantage of introducing new random variables ai and τi is that the pairs {ai, τi},
for different i = 1, . . . , N are mutually independent (except for the global constraints
on their sums), in contrast to the positions xt, t = 1, . . . , T , which depend on xt−1.
This formulation thus exploits explicitly the renewal nature of the process (see Figure
1).

Here we compute the joint probability density f(a, τ) for the discrete-time and
continuous-space random walk with the double exponential jump probability density

K(ηt) =
1

2
e−|ηt|. (21)

To the best of our knowledge, explicit calculations of f(a, τ) have been made
so far only for the simple (Bernoulli) random walk (discrete time and space) by
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Takács [33] and for the Brownian motion (continuous time and space) by Kearney
and Majumdar [34]. In that context, our results present a novel calculation for the
discrete-time and continuous-space random walk.

2.1. Explicit calculation for the double exponential jump distribution

To calculate f(a, τ), we need to study the probability of the following event. We
consider a free random walker starting at the origin that makes successive jumps,
stays positive till step τ − 1 and at time τ becomes negative for the first time. Thus τ
is the first-passage time and is a random variable. Let a =

∑τ−1
t=0 xt denote the ‘area’

contained under the walk up to this first-passage time. Then f(a, τ) denotes the joint
probability density of the area a till the first-passage time and the first-passage time τ
itself. Problems where one is interested in computing distributions of functionals
of a random walk till its first-passage time are generally referred to first-passage
functionals [35]. To compute these distributions, it turns out to be advantageous to
use a backward Fokker-Planck approach, suitably adapted [35, 36]. For this purpose,
we will consider the starting position of the random walker x0 = x ≥ 0 as a variable,
calculate distributions of the functionals for a given x ≥ 0, and eventually set x = 0
to obtain our desired result.

0 0
0 0
0 0

1 1
1 1
1 1

0 0
0 0
0 0

1 1
1 1
1 1

0 0
0 0
0 0

1 1
1 1
1 1

0 0
0 0
0 0

1 1
1 1
1 1

0 0
0 0
0 0

1 1
1 1
1 1

0 0
0 0
0 0

1 1
1 1
1 1

0 0
0 0
0 0

1 1
1 1
1 1

x

0 1 2 3 4 5 6

x1 x2

x3 x4
x5

t

xt

Figure 2. A schematic sample path for the random walk that starts at the
initial position x0 = x ≥ 0 at time t = 0 and its position evolves via successive
independent jumps. It crosses 0 to the negative side for the first time at τ = 6.
The total area till the first-passage time τ = 6 is defined as a =

∑τ−1=5
t=0 xt.

Let f(x, a, τ) denote the joint probability density of a and τ , starting at x0 = x,

where, as before, a =
∑τ−1
t=0 xt. To find f(x, a, τ) we have to integrate over all positions

xt, t = 1, . . . , τ , where xt is strictly positive at t = 1, . . . , τ − 1 and negative or zero
at t = τ (see Figure 2 for a schematic representation):

f(x, a, τ) =

∫ ∞
0

dx1 . . . dxτ−1 K(x1 − x) · . . . ·K(xτ−1 − xτ−2)

×
∫ 0

−∞
dxτ K(xτ − xτ−1)δ

(
τ−1∑
t=0

xt − a

)

=

∫ ∞
0

dx1 K(x1 − x)f(x1, a− x, τ − 1), τ > 1 (22)
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This integral equation has a simple interpretation: in the first step the walker jumps
from the initial position x to a new point at x1 > 0 (the probability of this event
is simply K(x1 − x) dx1). Following this first step the process renews itself with x1
being the new starting position. For the subsequent evolution starting at x1, the area
should be a − x and the first-passage time should be τ − 1, explaining the factor
f(x1, a− x, τ − 1) on the rhs. Finally, one needs to integrate over all possible x1 ≥ 0.
A separate case to consider is for τ = 1 for which f(x, a, τ) is given by

f(x, a, 1) = δ(x− a)

∫ 0

−∞
dx1K(x1 − x). (23)

This happens if at the first step the walker jumps to the negative side. Note that the
recursion equations (22) and (23) hold for arbitrary jump distribution K(η).

To make further progress, it is useful to consider the Laplace transform/moment-
generating function G(x, p, z) defined as

G(x, p, z) =

∫ ∞
0

da e−pa
∞∑
τ=1

f(x, a, τ)zτ . (24)

The equation for G(x, p, z) is obtained by inserting (24) into (22) and (23), yielding

G(x, p, z) = ze−px
∫ ∞
0

dx1 K(x1 − x)G(x1, p, z)

+ ze−px
∫ 0

−∞
dx1K(x1 − x). (25)

These integral equations (where the limits of the integrals on the right hand side
are over a semi-infinite line) are generally known as Weiner-Hopf equations and they
are notoriously hard to solve explicitly for arbitrary jump distribution K(η) (for a
discussion see [36]). However, in the special case of the double exponential distribution
(21), one can make progress, as we now show.

A key simplification for the double exponential case that allows us to solve the
above integral equation is the following identity

d2

dx2
e−|y−x| = e−|y−x| − 2δ(x− y). (26)

By taking the second derivative of (25) and making use of the identity (26) gives the
following differential equation for G(x, p, z)

d2G

dx2
+ 2p

dG

dx
+ (p2 − 1 + zepx)G = 0. (27)

In order to reduce this second order ordinary differential equation to a standard form,
we first make a change of variable u = 2z1/2e−px/2/p and then define W (u, p, z) =
epxG(x, p, z). It is then easy to see that W (u) satisfies Bessel’s differential equation

u2
d2W

du2
+ u

dW

du
+ [u2 − (2/p)2]W = 0. (28)

Hence, the general solution to the original differential equation (27) can be written as

W (x, p, z) = A(p, z) J2/p

(
2z1/2e−px/2/p

)
+B(p, z)N2/p

(
2z1/2e−px/2/p

)
, (29)

where Jν and Nν are Bessel functions of the first and second kind respectively, and
A and B are arbitrary constants independent of x (they are however functions of p
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and z). Since G must not diverge as x→∞, we can discard the second solution (set
B = 0) to obtain

G(x, p, z) = A(p, z) e−px J2/p

(
2z1/2e−px/2/p

)
. (30)

Determining the constant A(p, z) is however far from trivial. To fix this, we substitute
the solution (30) back into the original integral equation (25), and after somewhat
laborious algebra described in Appendix A, we finally obtain A(p, z) in the convenient
closed form

A(p, z) =
z1/2

J2/p−1(2z1/2/p)
. (31)

Equation (30) together with (31) are the main result of this section. In particular,
setting x = 0 gives the desired Laplace transform/moment-generating function g(p, z)
for the joint probability density f(a, τ) = f(x = 0, a, τ)

g(p, z) ≡ G(x = 0, p, z) ≡
∫ ∞
0

da e−p a
∞∑
τ=1

f(a, τ)zτ =
z1/2J2/p(2z

1/2/p)

J2/p−1(2z1/2/p)
. (32)

The Laplace transform/moment-generating function g(p, z) in (32) is sufficient to show
that the partition function ZN (A, T ) exhibits a condensation transition, which we
prove in the next Section.

For later usage in the next section, it is convenient to define at this point the
inverse Laplace transform (with respect to p) of g(p, z) in (32)

f̃(a, z) =

∞∑
τ=1

f(a, τ) zτ =

∫ γ+i∞

γ−i∞

dp

2πi
eap g(p, z) (33)

where the contour γ is the usual Bromwich contour taken parallel to the imaginary
axis and to the right of any singularities in the complex p plane.

3. Analysis of the partition function and the condensation transition

In this Section we analyse the partition function ZN (A, T ) defined in (20) and the
circumstances under which the condensation occurs. To this end, we study the Laplace
transform/moment-generating function ZN (p, z) defined as

ZN (p, z) =

∞∑
T=0

zT
∫ ∞
0

dA e−pAZN (A, T ) = [g(p, z)]N , (34)

where g(p, z) is given in (32). We first show that fixing either the local time lT or
the total area AT , while allowing the other observable to fluctuate, does not lead to
condensation.

3.1. No condensation transition when either local time or total area is fixed

Fixing only the local time lT amounts to setting p = 0 in (34) since

ZN (p = 0, z) =

∞∑
T=0

zT
∫ ∞
0

dA ZN (A, T )

=

∞∑
T=0

zTZN (T ) = [g(p = 0, z)]N , (35)
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where ZN (T ) is given by

ZN (T ) =

∞∑
{τi=1}

N∏
i=1

fτ (τi) δ

 N∑
j=1

τj − T

 (36)

and fτ (τ) =
∫∞
0
f(a, τ) da is the (marginal) distribution of the first-passage time τ .

Also, g(p = 0, z) =
∑∞
τ=1 fτ (τ) zτ is just the generating function of the first-passage

time distribution.
Note that Eq. (36) is similar to the standard form of the partition function in

(5) with a single site weight fτ (τi). Hence, from the general criterion for condensation
discussed in Section 1, we expect condensation to happen if fτ (τ) decays for large τ
slower than exponential (for example, algebraically with an exponent more than 2).
We show below that this is not the case.

To compute fτ (τ), we compute its generating function g(p = 0, z) by taking the
limit p → 0 of g(p, z) defined in (32). Alternatively, we can compute g(p = 0, z) by
going back to the equation for G(x, p, z), which becomes much simpler when p = 0
yielding

d2G

dx
+ (z − 1)G = 0. (37)

The general solution to this equation is

G(x, 0, z) = A0(z)e−x
√
1−z +B0(z)ex

√
1−z, (38)

from which we discard the second solution as being nonphysical so that B0(z) = 0.
The constant A0(z) can be then calculated by inserting (38) into the integral equation
for G(x, p, z) in (25) and following the same steps as before, which are detailed in
Appendix A. The final result for G(x, 0, z) is

G(x, 0, z) =
[
1−
√

1− z
]

e−x
√
1−z, (39)

from which the moment-generating function of the first-passage time τ is obtained by
letting x = 0 yielding

g(p = 0, z) =

∞∑
τ=1

fτ (τ) zτ = 1−
√

1− z. (40)

Expanding g(0, z) around z = 0 gives the following expression for the first-passage
time distribution fτ (τ) and its tail for large τ ,

fτ (τ) =
1

22τ−1τ

(
2τ − 2

τ − 1

)
∼ 1

2
√
πτ3/2

, τ →∞. (41)

The distribution fτ (τ) has a power-law tail with the exponent 3/2, which is less than
the value 2 required for condensation to happen. We thus conclude that fixing local
time lT alone is not enough to induce condensation.

Importantly, this conclusion extends to jump distributions other than the double
exponential distribution studied here. It is due to the remarkable fact that the
first-passage time distribution fτ (τ) in (41) is universal for a discrete-time random
walk with arbitrary continuous jump distribution, which is contained in the Sparre
Andersen theorem [37–39].
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In a similar fashion, we consider the case in which only the total area AT is fixed.
This amounts to setting z = 1 in (34) since

ZN (p, z = 1) =

∞∑
T=0

∫ ∞
0

dA e−pAZN (A, T )

=

∫ ∞
0

dA e−pAZN (A) = [g(p, z = 1)]N , (42)

where ZN (A) is given by

ZN (A) =

∫ ∞
0

da1 . . .

∫ ∞
0

daN

N∏
i=1

fa(ai) δ

 N∑
j=1

aj −A

 (43)

and fa(a) =
∑∞
τ=1 f(a, τ) is the (marginal) probability density of the area under an

excursion. Setting z = 1 in the expression (32) for g(p, z) gives

g(p, z = 1) =
J2/p(2/p)

J2/p−1(2/p)
=

1

1 +
J′
2/p

(2/p)

J2/p(2/p)

, (44)

where in the last step we used the relation

Jν−1(u) =
ν

u
Jν(u) + J ′ν(u). (45)

We can apply the following asymptotic expansion of J ′ν(ν) and Jν(ν) when ν →∞ [40],

J ′ν ∼ −
22/3Ai′(0)

ν2/3
+ O

(
1

ν4/3

)
ν →∞,

Jν ∼
21/3Ai(0)

ν1/3
+ O

(
1

ν

)
, ν →∞, (46)

where Ai(x) and Ai′(x) are the Airy function and its first derivative, respectively,
which upon inserting into (44) finally yields

g(p, z = 1) = 1 +
Ai′(0)

Ai(0)
p1/3 + O(p2/3)

= 1− 31/3Γ(2/3)

Γ(1/3)
p1/3 + O(p2/3), p→ 0. (47)

It is well known that the existence of non-integer powers in the moment-generating
function around p = 0 means that the corresponding probability distribution has
power-law tails (see, for example, [11]). Omitting here the details, the tail of f(a)
when a is large is given by

fa(a) ∼ 1

32/3Γ(1/3)

1

a4/3
, a→∞. (48)

A similar expression has been obtained for the Brownian motion in Ref. [34]. As
before, the exponent 4/3 is less than 2 and hence, there is no condensation transition.
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3.2. Condensation transition when both local time and total area are fixed

When both lT and AT are fixed, we have to study the full partition function ZN (A, T )
which can be obtained by inverting ZN (p, z) in (34)

ZN (A, T ) =

∫ c+i∞

c−i∞

dp

2πi
epA

∮
γ

dz

2πi

[g(p, z)]N

zT+1
, (49)

where γ is a contour around z = 0 where g(p, z) is analytic and c is a real number such
that c is greater than the real part of all the singularities of the integrand. Setting

T = µN, A = σN, (50)

the partition function ZN (T,A) can be written as

ZN (A, T ) =

∫ c+i∞

c−i∞

dp

2πi

∮
γ

dz

2πi

1

z
eN h(p,z), (51)

where h(p, z) is given by

h(p, z) = lng(p, z)− µlnz + pσ. (52)

The standard technique to evaluate the integral (51) for large N is to use the
saddle-point method, which amounts to solving the following saddle-point equations

µ = z
∂

∂z
lng(p, z) (53a)

σ = − ∂

∂p
lng(p, z). (53b)

In general, if both saddle-point equations admit a solution denoted by z = z0
and p = p0 then ZN (σN, µN) can be found by the saddle-point method yielding
ZN (σN, µN) ∼ exp[Nh(p0, z0)] for large N . On the other hand, if one or both saddle-
points have no solution, then the saddle-point method is no longer applicable, which
typically signals a condensation transition. We show below that the equation (53a) has
a solution for any µ > 1, while the equation (53b) has a solution only for 0 < σ < σc(µ),
where the transition point σc(µ) is given by (66b).

To analyse the saddle-point equations, it proves convenient to consider an
auxiliary probability density ω(a, τ)

ω(a, τ ; p, z) =
f(a, τ) zτ e−pa

g(p, z)
. (54)

This auxiliary joint distribution, whose arguments are a and τ and which is
parametrised by p and z, indeed corresponds to the grand canonical ensemble when p
and z are chosen appropriately. The first saddle-point equation (53a) is then simply

µ = Eω[τ ], (55)

where the average is taken with respect to the probability density ω. In Appendix C
we show that the function Eω[τ ](p, z) for fixed p increases monotonically from 1 to ∞
for 0 ≤ z < (pj2/p−1,1/2)2, where jν,k is the k-th zero of the Bessel function Jν . This
means that equation (55) can be solved for any µ > 1 and we denote its solution by
z0(p, µ).

Using the probability density ω(a, τ ; p, z), we can write the second saddle-point
equation (53b) as

σ = Eω[a]. (56)
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In Appendix C we show that Eω[a](p, z0(p, µ)) is monotonically decreasing in p and
decays to 0 when p→∞.

To summarise, saddle-point equation (53a) can always be satisfied for 1 < µ <∞
whereas saddle-point equation (53b) can only be satisfied for sufficiently small σ. The
maximal value of σ, which we denote σc, for which equation (53b) can be satisfied is
given by taking p → 0 in the right hand side and replacing z by the value z0 which
solves equation (53a) as p→ 0:

σc = Eω[a](0, z0(p = 0, µ)). (57)

To find σc, we thus need to analyse (32) in the p→ 0 limit. We use the following
asymptotic expansions of the Bessel function Jν(νz1/2) and its derivative J ′ν(νz1/2)
when ν →∞ [40], (in our case we will identify ν = 2/p)

Jν(νz1/2) '
(

4ζ

1− z

)1/4 [
Ai(ν2/3ζ)

ν1/3
+ O

(
ν−5/3

)]
, (58a)

J ′ν(νz1/2) ' − 2

z1/2

(
4ζ

1− z

)−1/4 [
Ai′(ν2/3ζ)

ν2/3
+ O

(
ν−4/3

)]
, (58b)

where Ai(x) is the Airy function and ζ ≡ ζ(z) is given by

2

3
ζ3/2 = ln

[
1 +
√

1− z√
z

]
−
√

1− z 0 ≤ z ≤ 1 . (59)

Using the identity (45) we can rewrite g(p, z) in (32) as

g(p, z) = z

[
1 + z1/2

J ′2/p(2z
1/2/p)

J2/p(2z1/2/p)

]−1
. (60)

Combining (58a), (58b) and (60) yields

g(p, z) =
z

1− (1− z)1/2L(22/3p−2/3ζ)
, p→ 0, (61)

and the function L(x), appearing in (61) is given by

L(x) =
Ai′(x)

x1/2Ai(x)
. (62)

Since we are considering p → 0 and therefore large argument x of the function
L(x), we can further make use of the following expansion of L(x) for large, real x

L(x) =
Ai′(x)

x1/2Ai(x)
= −1− 1

4x3/2
+ O(x−3), x→∞. (63)

Inserting (63) into (61), one obtains, for small p > 0 and fixed z, the leading expression

g(p, z) ≈ z

1 +
√

1− z + p
8

√
1− z ζ−3/2

. (64)

Incidentally, we note that at p = 0 one recovers the exact universal Sparre Andersen
expression as in Eq. (40)

g(0, z) =
z

1 +
√

1− z
= 1−

√
1− z . (65)
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Finally, taking partial derivatives with respect to z and p gives the following
expressions for z0(0;µ) and σc(µ),

z0(0, µ) = 1− 1

(2µ− 1)2
(66a)

σc(µ) =
1

12µ
[
ln
(

µ
µ−1

)
− 2

2µ−1

] . (66b)

The exact expression (66b) for the critical line σc(µ), is the main result of this
section. Its significance is that the saddle-point equation (53b) can be solved only for
0 < σ < σc (the ‘fluid’ phase), but has no solution for σ > σc (the ‘condensed’ phase).
The phase diagram in the µ − σ plane with σc(µ) separating these two regimes is
presented in Figure 3.

σc(μ)

0 2 4 6 8 10

0

20

40

60

80

μ

σ

condensed
phase

fluid phase

Figure 3. Phase diagram in the µ − σ plane consisting of the ‘fluid’ phase and
‘condensed’ phase for 0 < σ < σc and σ > σc, respectively.

3.3. Nature of the condensate

To understand how the condensate arises in the system, let us write again the
microcanonical partition function ZN (A, T )

ZN (A, T ) =

∫ ∞
0

da1 . . . daN
∑
{τi}

N∏
i=1

f(ai, τi)δ

(
N∑
k=1

τk − T

)
δ

 N∑
j=1

aj −A

 , (67)

which describes the system of N random walk excursions with fixed total area A and
total duration T .

For A = σN and T = µN , the grand canonical partition function is given by

ZN (p, z) =

∫ ∞
0

da1 . . . daN
∑
{τi}

N∏
i=1

f(ai, τi)e
−paizτi = [g(p, z)]N , (68)

where z and p are found by solving the saddle-point equations (53a) and (53b),
respectively. In the previous Section we showed that the microcanonical and grand
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canonical ensembles are not equivalent when σ > σc, because we cannot find p = p0
that solves the second saddle-point equation (53b). However, since we can always find
the solution to the first saddle point equation (53a), we can replace the microcanonical
part that enforces lT = N by the corresponding canonical one. The resulting partition
function,

YN (A, z) =

∫ ∞
0

da1 . . . daN

 N∏
i=1

∑
{τi}

f(ai, τi)z
τi

 δ
 N∑
j=1

aj −A

 , (69)

can be considered as a mixed canonical-microcanonical partition function: canonical
with respect to lT and microcanonical with respect to AT (see Section 5 in Ref. [41]
for a rigorous analysis).

For σ > σc, we know that the mixed canonical-microcanonical ensemble is
equivalent to the microcanonical one for z = z0(p = 0, µ) = 1 − 1/(2µ − 1)2, since
that is the solution to the first saddle-point equation (53a). To calculate YN (A, z),
we consider the marginal of ω(a, τ ; p, z) (54), evaluated at z = z0(p = 0, µ) and p = 0

ω(a) =

∞∑
τ=1

ω(a, τ ; 0, z0) =
1

g(0, z0)

∞∑
τ=1

f(a, τ) zτ0 =
f̃(a, z0)

g(0, z0)
, (70)

where we have used the definition of f̃(a, z) in (33) and g(0, z) = 1 −
√

1− z from
(65).

The distribution ω(a) in (70) is thus the effective single-excursion area distribution
within the mixed canonical-microcanonical ensemble. It is straightforward to establish
the following properties of ω(a):∫ ∞

0

da ω(a) = 1,

∫ ∞
0

da aω(a) = σc. (71)

Using ω(a), the mixed partition function YN (A, z0) can be written as

YN (A, z0) = [g(0, z0)]NP

(
N∑
i=1

ai = A

)
, (72)

where P is the probability density of the sum of iid random variables ai with common
probability density ω(ai),

P

(
N∑
i=1

ai = A

)
=

∫ ∞
0

da1, . . .daN

N∏
i=1

ω(ai)δ

 N∑
j=1

aj −A

 . (73)

The condensation thus arises because the canonical probability density ω(ai) for the
area of a single excursion, which emerges by conditioning random walks to fixed local
time, becomes heavy-tailed. We explicitly calculate this heavy-tailed behaviour and
show it to be stretched exponential in section 3.4, equation (92). The second constraint

on the total area
∑N
i=1 ai = σN then forces the sum to have a large deviation, for

which the condensation phenomenon is known to occur in which one random variable
ai has a macroscopic size of (σ − σc)N .

This condensation mechanism is very similar to the one we previously studied in
Ref. [23, 24]. There the partition function of random variables mi, i = 1, . . . , L was
given by

ZL(V,M) =

∫ ∞
0

dm1 . . .mL

L∏
i=1

f(mi)δ

 L∑
j=1

mj −M

 δ

 L∑
j=1

m
1/q
j − V

 , (74)
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where f(mi) = re−rm and 0 < q < 1 is a parameter appearing in the second
delta function constraint in (74). In the condensed regime, the mixed canonical-
microcanonical function for this problem reads

YL(V, r) =

∫ ∞
0

dm1 . . . dmN

[
L∏
i=1

f(mi)e
−smi

]
δ

 N∑
j=1

m
1/q
j − V


=

∫ ∞
0

dv1 . . . dvN

L∏
i=1

[
qvq−1i f(vqi )e

−svqi
]
δ

 N∑
j=1

vj − V

 , (75)

where in the second line we made a change of variables vi = m
1/q
i . The probability

density of vi now has a stretched exponential heavy tail exp(−(s + r)vq), 0 < q < 1,
which is at the origin of this constraint-driven condensation.

3.4. Asymptotic behaviour of ω(a)

From Eq. (70), we have

ω(a) =
f̃(a, z0)

g(0, z0)
(76)

where z0 is the solution (66a). In order to compute the large a behaviour of ω(a),

we need to then compute f̃(a, z) from (33), by inverting the Laplace transform (with
respect to p) of g(p, z) given explicitly in (32), and finally replace z by z0.

Exact computation of ω(a) via inverting this Laplace transform for arbitrary
a is rather hard. However, one can make progress for large a, by exploiting the
singularity structure of g(p, z) in the complex p plane. We note that g(p, z) has a
branch cut for Re[p] ≤ 0 with p = 0 being a branch point. Therefore we may deform
the Bromwich contour in the complex p plane (33) into a contour C which extends
from ∞ e−i(π−δ), around the origin anti clockwise and back to −∞ above the branch
cut along ∞ e+i(π−δ) where δ is some infinitesimal real number (see Fig. 4). In the
following we will neglect δ to lighten the notation. We expect the inversion integral to
be dominated for large a by contributions near to the branch point at p = 0, therefore
we develop an expansion for small p, along the deformed contour C.

We first consider the function L(x) (62) where x = 22/3p−2/3ζ. In the case
p = εe±πi where ε→ 0, we need to consider L(ye∓2πi/3) as y →∞ where

y = 22/3ε−2/3ζ . (77)

We use the following connection formulae [40]

Ai(ye±2πi/3) =
1

2
e±πi/3 [Ai(y)∓ iBi(y)] (78)

Ai′(ye±2πi/3) =
1

2
e∓πi/3

[
Ai′(y)∓ iBi′(y)

]
(79)

Using (78,79) and the definition (62) we may write

L(ye∓2πi/3) = − 1

y1/2

[
Ai′(y)± iBi′(y)

]
[Ai(y)± iBi(y)]

(80)

= − 1

y1/2
Bi′(y)

Bi(y)

[
1∓ iAi′(y)

Bi′(y)
± iAi(y)

Bi(y)
+ · · ·

]
(81)
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0
0
1
1

γ

O

complex p plane Bromwich
contour

C

Figure 4. The branch cut in the complex p plane is along the negative real p
axis (shown by dashed red lines) with the origin O (red filled circle) as the branch
point. The Bromwich contour γ is deformed to the contour C around the negative
real p axis.

Now although
1

y1/2
Bi′(y)

Bi(y)
is non-analytic in y, by virtue of the relation (77) it is an

analytic function of ε. This function which tends to −1 as ε → 0 (y → ∞), thus
the leading non-analytic terms in (81) come from the two ratios Ai′(y)/Bi′(y) and
Ai(y)/Bi(y). We use the asymptotic behaviours for large y (small ε)

Ai(y) ∼ 1

2π1/2
y−1/4 e−u (82)

Ai′(y) ∼ − 1

2π1/2
y1/4 e−u (83)

Bi(y) ∼ 1

π1/2
y−1/4 eu (84)

Bi′(y) ∼ − 1

π1/2
y1/4 eu (85)

where

u =
2

3
y3/2 (86)

to obtain the leading non-analytic behaviour of L as y →∞

L(ye∓2πi/3) ∼ −1∓ i exp

(
−4y3/2

3

)
. (87)

We use this expression and equations (77) and (61), to evaluate the leading
nonanalytic term in the expansion of g(p, z), for p = εe±πi where ε→ 0,

g(εe±πi, z)

g(0, z)
∼ 1∓ i (1− z)1/2

(1 + (1− z)1/2)
exp

(
−b
ε

)
(88)

where

b =
8ζ3/2

3
(89)
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and ζ is defined as before in (59). Using the deformed contour C we now obtain equal
contributions from pieces above and below the branch cut and we obtain

f̃(a, z)

g(0, z)
∼ 1

π

(1− z)1/2

(1 + (1− z)1/2)

∫ ∞
0

exp

(
−b
ε
− εa

)
dε (90)

Note that in (90) we may use the small ε behaviour even though the limit of
integration extends to ∞, because for large a the integral is dominated by small ε. In
fact, we can evaluate (90) by a straightforward application of the saddle point method
to find the integral is dominated by contributions around ε = (b/a)1/2 and we obtain
for a� 1

f̃(a, z)

g(0, z)
' 1

π1/2

b1/4

a3/4
(1− z)1/2

(1 + (1− z)1/2)
exp

(
−2b1/2a1/2

)
(91)

Finally we can insert the value of z = z0 into (91) and use the definition (70) to
find the asymptotic behaviour of the single-excursion area distribution:

ω(a) ' 1

π1/2

b1/4

a3/4
1

2µ
exp

(
−2b1/2 a1/2

)
(92)

This expression confirms a stretched exponential form which obeys the criterion for a
condensation transition [15]. Thus the effect of the joint constraints is to induce an
effective single excursion area distribution which admits a condensation transition for
the area constraint in (73).

4. Interaction-driven condensation in pair-factorised steady states

In this Section we make an explicit connection between reflected random walk paths
conditioned on fixed local time and area and pair-factorised steady states in mass-
transfer models which exhibit interaction-driven condensation.

4.1. A short review of the interaction-driven condensation

Interaction-driven condensation is a novel type of condensation that was reported first
by Evans, Hanney and Majumdar in 2006 [26]. The condensation takes place in one-
dimensional mass-transfer models in which discrete masses mi ≥ 0, i = 1, . . . , L are
exchanged at rates that depend on their immediate environment, which mimics local
interaction between the masses.

Under certain conditions on the dynamics, the steady state can be found explicitly
and takes the following pair-factorised form:

P (m1, . . . ,mL) =
1

ZL(M)

L∏
i=1

g(mi,mi+1)δ

 L∑
j=1

mj −M

 , (93)

where the partition function ZL(M) is given by

ZL(M) =
∑
{mi}

L∏
i=1

g(mi,mi+1)δ

 L∑
j=1

mj −M

 . (94)

The weight function g(mi,mi+1) reads

g(mi,mi+1) = exp

[
−J |mi+1 −mi|+

1

2
Uδmi,0 +

1

2
Uδmi+1,0

]
, (95)
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where J and U are positive constants. For the choice of g(mi,mi+1) in (95), the
condensation occurs for the density ρ = M/L greater than the critical density ρc,

ρc =
1

e2J(1− e−U )2 − 1
. (96)

This condensation differs from the standard one found in mass-transfer models
with factorised steady states: here the condensate does not reside on a single site
but extends over O(L1/2) sites; for this reason, the phenomenon is also known as
spatially-extended condensation [42–44].

4.2. Mapping pair factorised steady states to the reflected random walk paths

Inserting (95) into (94) gives

ZL(M) =
∑
{mi≥0}

[
L∏
i=1

e−J|mi+1−mi|

]
eU

∑L
j=1 δmj,0δ

(
L∑
k=1

mk −M

)
. (97)

The expression in square brackets is proportional to the path probability for the
standard random walk,

L∏
i=1

e−J|mi+1−mi| =

(
eJ + 1

eJ − 1

)L L∏
i=1

θ(mi+1 −mi), (98)

where θ(η) is the discrete double exponential jump distribution

θ(η) =

(
eJ − 1

eJ + 1

)
e−J|η|,

∞∑
η=−∞

θ(η) = 1. (99)

However, since the summation in ZL(M) is over all non-negative mi, i = 1, . . . , L
we would like to rewrite the above expression in terms of the reflected rather than
the standard random walk. This is indeed possible for the double exponential jump
distribution and the corresponding transition probability reads

w(mi+1|mi) = δmi+1,0

[ −mi∑
η=−∞

θ(η)

]
+ [1− δmi+1,0]θ(mi+1 −mi)

= θ(mi+1 −mi)e
Rδmi+1,0 , (100)

where R = J − ln(eJ − 1). Inserting (100) into (97) gives

ZL(M) =
∑
{mi≥0}

L∏
i=1

w(mi+1|mi)e
(U−R)lLδ

(
L∑
k=1

mk −M

)
, (101)

where lL =
∑L
j=1 δmj ,0. The only thing left to do is to interpret the exponential

weight exp[(U −R)lL], which we do in terms of nonequilibrium path ensembles.

4.3. Nonequilibrium path ensembles and their equivalence

First, we note that the sum in the exponential in (101) is just the local time lL

e(U−R)
∑L

i=1 δmi,0 = e(U−R)lL . (102)

Second, we argue that the exponential factor exp[(U − R)lL] represents the driven
path ensemble (also known as s ensemble for short) with respect to lL, in contrast to
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the microcanonical or conditioned one in which lL is fixed. Such nonequilibrium paths
extend the notion of statistical (thermodynamic) ensembles to dynamical trajectories
of systems which are not necessarily in the thermal equilibrium [28,30].

The driven or s ensemble is described by the exponentially tilted path probability

Ps[m] =

[∏L
i=1 w(mi+1|mi)

]
eslL

〈eslL〉
. (103)

On the other hand, the microcanonical ensemble conditioned on a large deviation
lL = N = λL is described by the path probability

P [m|lL = λL] =

∏L
i=1 w(mi+1|mi)δ(lT − λL)

〈δ(lT − λL)〉
. (104)

Here, the asymptotic equivalence means that

lim
L→∞

1

L
ln

Ps[m]

P [m|lL = λL]
= 0 (105)

almost everywhere with respect to Ps[m] [27,28]. The equivalence holds provided (a)
the probability distribution P (lL = λL) for the reflected random walk obeys a large
deviations principle,

P (lL = λN) ∼ e−LI(λ), L→∞ (106)

and (b) the corresponding rate function I(λ) is convex. In addition, if the rate function
I(λ) is differentiable, then the titling parameter s is unique and is given by s = I ′(λ).

Assuming that the equivalence (105) holds, we can choose λ such that U − R =
I ′(λ). The partition function ZL(M) in (101) is then equivalent to the following
microcanonical partition function

ZL(M,N) =
∑
{mi≥0}

L∏
i=1

w(mi+1|mi)δ

 L∑
j=1

δmj ,0 −N

 δ

(
L∑
k=1

mk −M

)
, (107)

which is precisely the partition function (17), now for the discrete random variables
mi, for the reflected random walk conditioned on the area A = M and local time
lL = N .

This is our second main result: it shows that the pair-factorised steady state
defined in (93), which involves correlated random variables mi, i = 1, . . . , L
conditioned on the fixed sum

∑
imi = M , can be instead understood in terms of

reflected random walk paths conditioned on the number of returns lL =
∑
i δmi,0 = N

to the origin and total area AL =
∑
imi = M .

From there, one follows the procedure described in Section 2 to reformulate
random walk paths in terms of N independent random walk excursions having area
aj and duration τj , j = 1 . . . , N . At this point the analysis is very similar to the
constraint-driven condensation that we recently studied in Ref. [23,24] for joint large
deviations of sums

∑
jmj = M and

∑
jm

2
j = V , the only difference being that

random variables aj and τj are correlated but not functionally dependent on each
other. The mechanism of condensation is nevertheless the same: fixing the total
duration

∑
j τj = T = µN is responsible for causing aj to become essentially heavy

tailed, while fixing the sum
∑
j aj = M = σN ensures that the sum represents a large

deviation resulting in the standard condensation phenomenon for σ > σc(µ).
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5. Conclusions

In this work we have considered a discrete-time continuous-space reflected random
walk under the constraints that the number of returns to the origin and the total
area under the walk are fixed. We have shown how condensation occurs through the
imposition of extensive values (proportional to the walk duration) on the number of
returns lT =

∑
t δxt,0 = N to the origin and total area AT =

∑
t xt = M , whereas it

would not occur if only the number of returns or the total area were constrained.
In order to study the condensation we derived the joint probability f(a, τ) of a

reflected random walk excursion having area a and returning to the origin for the first
time after time τ . This distribution is of some interest in its own right and we have
included some further properties of the distribution in Appendix B.

We have also seen how ‘interaction-driven’, spatially-extended condensation
exhibited in pair-factorised steady states can also be understood in terms of reflected
random walk paths. It would be of interest to see if our approach can allow further
properties of spatially-extended condensates to be analysed.

More generally, the problem of the random walk with constraints on local time
and total area is an example of two correlated, but not functionally dependent
random variables. The correlation is then sufficient to induce condensation in
one of the random variable which would not otherwise exhibit condensation. In
principle, conditions for condensation for random walk models with more general
jump distributions should follow from the knowledge of the corresponding function
g(z, p). It would be of interest to confirm numerically (or if possible analytically) that
the same scaling behaviour as established here, for example for the single-excursion
area distribution ω(a) in (92), holds for more general random walk models.

Finally, we mention that in the context of mass-transfer models discussed in
Section 4, different choices of constraints may also lead to condensation behaviour
and to different shape of the condensate [42,43]. In the present work we have used as
our main tool the renewal nature of the process which results from the local time
constraint. However the results of Refs. [42, 43] suggest that an explicit renewal
property is not strictly required for condensation. For example, constraining fractional
moments of the walk forces the walk close enough to the origin that effectively one
has a renewal picture.
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Appendix A. Calculation of the constant A(p, z)

Inserting the solution (30) for G(x, p, z),

G(x, p, z) = A(p, z) e−px J2/p

(
2z1/2e−px/2/p

)
, (A.1)

into the integral equation (25) yields

A(p, z)J2/p(2z
1/2/p) = zA(p, z)

∫ ∞
0

dx′
e−|x

′|

2
J2/p

(
2z1/2e−px

′/2/p
)

e−px
′
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+ z

∫ 0

−∞
dx′

e−|x
′|

2
(A.2)

In the equation above we chose x = 0 to simplify the calculation, since A(p, z) does
not depend on x. The last integral in the equation above equals 1/2; to calculate the
first integral we make the following change of variables

y = 2z1/2e−px
′/2/p, dy = −z1/2e−px

′/2dx′ = (−p/2)ydx′. (A.3)

Introducing c = 2z1/2/p, the first integral then becomes∫ ∞
0

dx′e−(p+1)x′J2/p

(
2z1/2e−px

′/2/p
)

=
1

z1/2c2/p+1

∫ c

0

dy y2/p+1J2/p(y)

=
1

z1/2c2/p+1

∫ c

0

dy
d

dy

(
y2/p+1J2/p+1(y)

)
=
J2/p+1(2z1/2/p)

z1/2
. (A.4)

Here in going from the first to the second line we use the following property of the
Bessel function Jν(y) for ν = 2/p,

d

dy

[
yν+1Jν+1(y)

]
= yν+1Jν(y). (A.5)

Inserting (A.4) into (A.2) gives

A(p, z)z1/2

2

[
2

z1/2
J2/p − J2/p+1

]
=
z

2
. (A.6)

The expression in square brackets is just J2/p−1(2z1/2/p) so that the constant A(p, z)
is finally given by (31)

A(p, z) =
z1/2

J2/p−1(2z1/2/p)
. (A.7)

Appendix B. Properties of f(a, τ) for the double exponential jump
distribution

Appendix B.1. Explicit calculation of f(a, τ) for small τ

Let us recall the expression for the Laplace transform/moment-generating function
g(p, z)

g(p, z) =

∫ ∞
0

da e−pa
∞∑
τ=1

f(a, τ)zτ =
z1/2J2/p(2z

1/2/p)

J2/p−1(2z1/2/p)
. (B.1)

Using the relation

Jν(u) =
ν − 1

u
Jν−1(u)− J ′ν−1(u), (B.2)

we can write g(p, z) as

g(p, z) = 1− p

2
− z1/2

J ′2/p−1(2z1/2/p)

J2/p−1(2z1/2/p)
. (B.3)
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The Weierstrass factorisation for the Bessel function [45] is given by

Jν(u) =
(u/2)

ν

Γ(ν + 1)

∞∏
m=1

(
1− u2

j2ν,m

)
, (B.4)

where jν,m is the m-th zero of the Bessel function Jν(u). Using (B.4) we can write

u
J ′ν(u)

Jν(u)
= u

d

du
lnJν(u) = u

d

du

[
νlnu+

∞∑
m=1

ln

(
1− u2

j2ν,m

)]

= ν − 2

∞∑
m=1

u2

j2ν,m − u2
= ν − 2

∞∑
k=1

u2k

( ∞∑
m=1

1

j2kν,m

)

≡ ν − 2

∞∑
k=1

u2kσk(ν), (B.5)

where the function σk(ν), which is known as the Rayleigh function [45], is given by

σk(ν) =

∞∑
m=1

1

j2kν,m
. (B.6)

Inserting (B.6) and (B.5) into (B.3) gives

g(p, z) =

∞∑
τ=1

4τ

p2τ−1
στ (2/p− 1)zτ . (B.7)

From here it follows that the Laplace transform of f(a, τ) is given by∫ ∞
0

da e−paf(a, τ) =
4τ

p2τ−1
στ (2/p− 1). (B.8)

The Rayleigh function σk(ν) is a rational function of ν and can be calculated
recursively [45] from

(ν + k)σk(ν) =

k−1∑
j=1

σj(ν)σk−j(ν), σ1(ν) =
1

4(ν + 1)
. (B.9)

For example, for k = 1, . . . , 7 we get

σ1(ν) =
1

4(ν + 1)
,

σ2(ν) =
1

42(ν + 2)(ν + 1)2
,

σ3(ν) =
2

43(ν + 3)(ν + 2)(ν + 1)3
,

σ4(ν) =
5ν + 11

44(ν + 4)(ν + 3)(ν + 2)2(ν + 1)4
,

σ5(ν) =
14ν + 38

45(ν + 5)(ν + 4)(ν + 3)(ν + 2)2(ν + 1)5
,

σ6(ν) =
42ν3 + 362ν2 + 1026ν + 946

46(ν + 6)(ν + 5)(ν + 4)(ν + 3)2(ν + 2)3(ν + 1)6
,

σ7(ν) =
132ν3 + 1316ν2 + 4324ν + 3580

47(ν + 7)(ν + 6)(ν + 5)(ν + 4)(ν + 3)2(ν + 2)3(ν + 1)7
.
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For small τ we can invert the Laplace transform explicitly using partial fractions. The
function f(a, τ) for 1 ≤ τ ≤ 5 is listed below and plotted in Figure B1. The calculation
for higher τ using partial fractions soon becomes cumbersome, but can be done e.g.
using Mathematica software.

f(a, 1) =
δ(a)

2
,

f(a, 2) =
e−2a

4
,

f(a, 3) =
e−a − e−2a

8
,

f(a, 4) =
27e−2a/3 − 32e−a − (4a− 5)e−2a

256
,

f(a, 5) =
512e−a/2 − 729e−2a/3 + 144e−a + (60a− 73)e−2a

4608
.

τ=2

τ=3

τ=4

τ=5

0 2 4 6 8 10 12 14
0.00

0.01

0.02

0.03

0.04

a

f(
a
,τ
)

Figure B1. The joint probability f(a, τ) for 2 ≤ τ ≤ 5 for the double exponential
jump distribution.

Appendix B.2. Scaling limit of f(a, τ)

Here we show another interesting result, the scaling limit of f(a, τ) when a, τ → ∞
with aτ−3/2 fixed.

We start from the expression for g(p, z) in (B.7) with the Rayleigh function στ (ν)
defined in (B.6). We then use asymptotic expansion for the zeroes of the Bessel
function [47]

jν,m = ν + αm
ν1/3

21/3
, ν →∞, (B.10)

where −αm are the zeroes of the Airy function. Inserting (B.10) in (B.8) and using
(B.6) gives ∫ ∞

0

da e−paf(a, τ) =
4τ

p2τ−1

∞∑
m=1

1

j2τ2/p−1,m
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≈ p
∞∑
m=1

(
1 + αmp

2/3/2
)2τ

≈ p
∞∑
m=1

e−αmp
2/3τ (B.11)

Let us now introduce s = 21/2p/τ3/2 and u = a/(21/2τ3/2) so that∫ ∞
0

du e−suf(u, τ) =
1

2
√

2πτ3

[
√

2πs

∞∑
m=1

e−αm2−1/3s2/3

]
. (B.12)

The expression in the square brackets is Laplace transform of the Airy probability
density fAiry [49]. We thus conclude that f(a, τ) behaves for large a and τ as

f(a, τ) ≈ 1

2
√

2πτ3
fAiry

( a

21/2τ3/2

)
, τ →∞, (B.13)

where the Airy probability density fAiry is defined by

fAiry(x) =
213/6

33/2x10/3

∞∑
m=1

α2
me−2α

3
m/(27x

2)U

(
−5

6
,

4

3
,

2α3
m

27x2

)
(B.14)

and U is a confluent hypergeometric function.
It is further interesting to consider the conditional probability density f(a|τ)

defined by

f(a|τ) =
f(a, τ)

f(τ)
, (B.15)

which according to (41) and (B.13) behaves as

f(a|τ) ≈ 1

21/2τ3/2
fAiry

( a

21/2τ3/2

)
, τ →∞. (B.16)

Taking into account that the variance σ2 of the double exponential jump distribution
equals 2, we can write the above expression as

f(a|τ) ≈ 1

στ3/2
fAiry

( a

στ3/2

)
, τ →∞. (B.17)

This limit was first proved by Takács for simple lattice random walks [33] and was
recently extended to all symmetric lattice random walks with a finite variance σ [48].
Here we showed that the scaling limit also holds for the random walk on a real line
with the double exponential jump distribution.

Appendix C. Analytic properties of Eω[τ ](p, z) and Eω[a](p, z)

Appendix C.1. Proof that Eω[τ ](p, z) = µ has a solution for any µ ≥ 1

Let us recall the definition of the function E[τ ]ω(p, z)

E[τ ]ω(p, z) =

∫∞
0

da
∑∞
τ=1 τf(a, τ)zτe−pa

g(p, z)
(C.1)

The function Eω[τ ](p, z) is monotonically increasing in z for a fixed p, which can be
seen by inspecting its first derivative which is always non-negative

∂

∂z
Eω[τ ] =

Eω[τ2]− Eω[τ ]2

z
≥ 0. (C.2)
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To inspect the limits of Ef [ω](z, p), we write the expression for Eω[τ ](p, z) using
(B.1) which yields

E[τ ](z, p) = 1− 2

p
+
z1/2

p

[
J2/p−1(2z1/2/p)

J2/p(2z1/2/p)
+

J2/p(2z
1/2/p)

J2/p−1(2z1/2/p)

]
. (C.3)

Clearly the function Eω[τ ](p, z) is analytic for 0 ≤ z < (pj2/p−1,1/2)2 and diverges to
∞ for z = (pj2/p−1,1/2)2. The expansion around z = 0 reads,

Eω[τ ](p, z) = 1 +
1

2(p+ 2)
z + O(z2), (C.4)

so that E[τ ](p, z = 0) = 1. This completes our proof that the equation Eω[τ ](p, z) = µ
has a unique solution for any µ ≥ 1. As an example, we plotted the function Eω[τ ](p, z)
for fixed p = 10 in Figure C1.

0 5 10 15 20

0

5

10

15

20

z


ω
[τ
](
p
,z
)

Figure C1. Eω [τ ](p, z) plotted as a function of z for fixed p = 10. The function
is monotonically increasing from 1 to ∞ for any p ≥ 0.

Appendix C.2. Analytic properties of Eω[a](p, z0(p, µ))

Let us recall the definition of the function E[a]ω(p, z)

Eω[a](p, z) =

∫∞
0

da
∑∞
τ=1 af(a, τ)zτe−pa

g(p, z)
. (C.5)

As a function of p, Eω[a](p, z0(p;µ)) is monotonically decreasing since

d

dp
Eω[a](p, z0(p;µ)) =

Eω[(a− σ)(τ − µ)]2 − Eω[(a− σ)2]Eω[(τ − µ)2]

Eω[(τ − µ)2]
≤ 0, (C.6)

which is by the Cauchy-Schwartz inequality always negative.
To inspect the limit p → ∞ of Eω[a](p, z0(p, µ)), we first obtain the expression

for g(p, z) for fixed z and large p,

g(p, z) ≈ zp

2p− z
, p→∞ (C.7)
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which one gets by expanding Bessel functions J2/p(2z
1/2/p) and J2/p−1(2z1/2/p) for

small argument. The solution z0(p, µ) to the equation Eω[τ ](p, z0) = µ is then given
by

z0(p, µ) ≈ 2

(
1− 1

µ

)
p, p→∞. (C.8)

Inserting z0(p, µ) into g(p, z0) and then in the expression for the function Eω[a](p, z)
gives finally

Eω[a](p, z0(p, µ)) ≈ 1

p
, p→∞, (C.9)

which goes to zero when p goes to infinity.
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