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Abstract Introduction: White matter hyperintensities (WMHs) increase the risk of Alzheimer’s disease (AD).
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Whether WMHs are associated with the decline of functional neural networks in AD is debated.
Method: Resting-state functional magnetic resonance imaging and WMH were assessed in 78 sub-
jects with increased amyloid levels on AV-45 positron emission tomography (PET) in different clin-
ical stages of AD. We tested the association between WMH volume in major atlas-based fiber tract
regions of interest (ROIs) and changes in functional connectivity (FC) between the tracts’ projection
areas within the default mode network (DMN).
Results: WMH volume within the inferior fronto-occipital fasciculus (IFOF) was the highest among
all tract ROIs and associated with reduced FC in IFOF-connected DMN areas, independently of
global AV-45 PET. Higher AV-45 PET contributed to reduced FC in IFOF-connected, temporal,
and parietal DMN areas.
Conclusions: High fiber tract WMH burden is associated with reduced FC in connected areas, thus
adding to the effects of amyloid pathology on neuronal network function.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Higher volume of white matter hyperintensities (WMHs)
is associated with increased risk of dementia, not only
vascular dementia but also Alzheimer’s disease (AD)–
related dementia [1]. In AD, increased WMH volume
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contributes to cognitive decline independently from abnor-
mally high levels of Ab in the brain [2]. These studies sug-
gest that WMHs are an important factor that exacerbates
the cognitive deficits in AD.

The contribution of WMH to the impairment of func-
tional networks underlying cognitive changes, however, is
not well understood. Most studies assessing the effects of
WMH on functional brain changes in AD have focused on
fluorodeoxyglucose positron emission tomography (FDG-
PET) [3–6]. Results from these studies showed that higher
global WMH volume, measured within the whole white
matter, is associated primarily with prefrontal FDG-PET hy-
pometabolism [6–9]. Higher WMH volume has further been
shown to be associated with lower FDG-PET in temporopar-
ietal brain areas in subjects with mild cognitive impairment
(MCI) or AD dementia [4]. Such effects of WMH remained
when controlling for biomarker levels of Ab [4,8]. A recent
resting-state functional magnetic resonance imaging
(rsfMRI) study showed that higher WMH burden is associ-
ated with impaired brain function [10]. However, these
studies used global measures of WMH volume averaged
across the entire white matter [4,6–10] or large brain
regions regardless of anatomical boundaries of fiber tracts
[11].

Recent studies on ischemic WMH have highlighted the
relevance of lesion location and of anatomical connections
between WMH and cortical gray matter [12–14]. By
studying patients with genetically defined small vessel
disease, we recently demonstrated that white matter
lesions are associated with local gray matter atrophy
specifically in projection areas of the connecting fiber
tracts [15]. Applied to AD, we hypothesized that higher
WMH volume in anatomically defined white matter tracts
is associated with functional brain changes specifically in
connected cortical regions.

To test this hypothesis, we measured the effect of WMH
and levels of AV-45 positron emission tomography (PET)
binding of Ab on functional connectivity (FC) within the
default mode network (DMN), which can be readily identi-
fied during rsfMRI in older subjects [16]. We focused on FC
changes within the DMN because this is the major functional
neural network that shows reduced FC in AD and for which
the fiber tract connections between different DMN regions
have been demonstrated [17,18]. Specifically, we tested
whether WMH in major fiber tract atlas ROIs of the DMN
are associated with reduced FC in cortical regions
connected by these fiber tracts.
2. Methods

2.1. Subjects

All subjects were recruited within the multicenter
network Alzheimer’s Disease Neuroimaging Initiative
(ADNI, recruitment phases GO and II) [19]. ADNI is a
longitudinal study started in 2003 as a public–private part-
nership to investigate neuroimaging features, neuropsycho-
logical parameters, and other biomarker for tracking and
predicting AD-related cerebral and cognitive changes [19]
(Supplementary Methods 1). Ethical approval was obtained
by the ADNI investigators (http://www.adni-info.org/pdfs/
adni_protocol_9_19_08.pdf). This study was approved by
the institutional review boards of all the participating institu-
tions within ADNI.

AD dementia was diagnosed according to the National
Institute of Neurological and Communicative Disorders
and Stroke-Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA) criteria [20], and amnestic
MCI (aMCI) was diagnosed according to the Mayo Clinic
criteria [21,22] (for details, see Supplementary Methods
2). Subjects were selected by the following criteria: avail-
ability of an AV-45 PET scan (to assess levels of Ab),
three-dimensional (3D) T1-weighted magnetic resonance
imaging (MRI) scan (for spatial normalization), fluid-
attenuated inversion recovery (FLAIR) scan (to assess
WMH), and rsfMRI (to assess FC). In addition, MCI and
AD dementia patients had to show abnormally high global
AV-45 PET binding (Ab1) as defined by a previously estab-
lished criterion of gAV-45 PET . 1.11 [23]. The different
imaging modalities were acquired no longer than 13 months
apart from each other (average delay between AV-45 PET
and MRI scans was 20 days, range 5 2357 to 378 days).

Of the initial sample of N 5 138 subjects meeting our
criteria, 36 subjects were excluded due to poor signal in
rsfMRI as a consequence of atrophy in parietal and frontal
regions (N 5 18), FLAIR segmentation failures (N 5 2),
excessive movement artifacts visible in rsfMRI
(translations . 3 mm or rotations . 2�) or FLAIR scans
(N 5 8), or failed spatial normalization (N 5 8). Failed
spatial normalization resulted from large ventricles that
caused an erroneous high-dimensional spatial transforma-
tion (for details of spatial normalization, see Section 2.4).
The final sample included 102 subjects, that is, 38 cogni-
tively healthy control subjects (HC; Ab1 n 5 14, Ab2
n 5 24), 42 subjects with aMCI Ab1, and 22 patients
with AD dementia.
2.2. MRI acquisition

All rsfMRI scans were obtained on Philips 3T MRI scan-
ners, with an eight-channel head coil. Briefly, the rsfMRI
scans were acquired using a single-shot T2*-weighted
echo-planar imaging pulse sequence with a 3.3-mm slice
thickness (repetition time 5 3000 ms). The 3D T1-
weighted magnetic resonance images were acquired using
an magnetization-prepared rapid gradient-echo (MPRAGE)
sequence with a spatial resolution of 1! 1! 1.2-mm3 (170
slices). FLAIR scans were obtained with a spatial resolution
of 0.86! 0.86! 5-mm3 voxel resolution. Full details of all
MRI scanner protocols for T2*-weighted, MPRAGE T1-
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weighted, and FLAIR images can be found at http://adni.
loni.usc.edu/methods/documents/mri-protocols/.

2.3. AV-45 PET acquisition

AV-45 PET scans were acquired on a variety of different
PET scanners (Siemens, GE and Philips). AV-45 PET scans
consisted of 4 ! 300-second frames measured 50 minutes
after injection of 10 6 1.0 mCi of 18F-Florbetapir AV-45.
Global AV-45 PET values (gAV-45 PET) were obtained as
an average of the image values within several large ROIs
as previously described [23]. Preprocessing of the AV-45
PET scans and computation of the gAV-45 PET values
were done centrally by the ADNI core (http://adni.loni.usc.
edu/data-samples/pet).

2.4. RsfMRI analysis

Standard preprocessing of rsfMRI images was performed
including realignment of images, correction of movement
artifacts, and coregistration to native space 3D T1-
weighted images. Spatial normalization of the preprocessed
data was done through diffeomorphic high-dimensional
registration as implemented in the DARTEL toolbox (SPM
8; Wellcome Trust Centre for Neuroimaging, University
College London, see Supplementary Methods 3 for details)
[24]. Next, the motion parameters and the BOLD signal
time courses within the white matter and cerebrospinal fluid
(CSF) were regressed out. The BOLD signal was low-pass
filtered (,0.1 Hz) and detrended. These preprocessing steps
were conducted with the software program Resting-State
fMRI Data Analysis Toolkit (REST) [25]. Based on these
preprocessed scans in Montreal Neurological Institute
(MNI) space (1.5 mm), a groupwise independent component
analysis (ICA) was conducted, using the GIFT fMRI
Toolbox (version 2.0.b) [26] to extract the DMN component.
The global brain signal was removed, and a total of 20 inde-
pendent components were estimated across subjects, using
the Infomax algorithm. Spatial correlation analysis of the
group ICA–derivedmaps versus the independent component
map of the DMN reported by Smith et al. [27] showed a high
spatial correlation of r 5 0.71 for a single-group ICA
component. The next best fitting component showed a
marked drop to r5 0.29, thus allowing for an unambiguous
identification of the DMN.

2.5. WMH segmentation and projection onto fiber tract
ROIs

The preprocessing steps involved in the WMH measure-
ment are displayed in Supplementary Fig. 1. WMH was
segmented from the whole brain FLAIR images, using a
semiautomatic classification procedure. In the first step,
FLAIR images were bias-corrected and segmented into
three-tissue probability maps using the FAST toolbox [28]
from the FMRIB software library [29] (FSL, version v5.0).
As a result, for all subjects, WMH and CSF were mixed in
the same tissue probability map that was thresholded at a
probability .0.3. Given that these two tissue types have
nonoverlapping FLAIR intensities distributions (WMH be-
ing very bright and CSF very dark), WMH could be unam-
biguously segregated. This was done using a histogram
segmentation based on the Otsu method [30]. Two indepen-
dent raters manually edited the resulting WMH segmenta-
tions to remove clusters that were misclassified as WMH
(Supplementary Fig. 2). Manual editing was done using a
custom written software tool, developed in MATLAB
(R2013b; MathWorks, Natick, MA, USA). The inter-rater
reliability of the WMH assessment yielded a Dice coeffi-
cient of 0.98.

The resulting WMH maps in native space were then
normalized to MNI space (2 mm) by a two-step procedure.
First, the FLAIR images were registered (affine) to the
MPRAGE T1-weighted images using FSL FLIRT [31]. Sec-
ond, normalization to MNI space (2 mm) was estimated
based on the T1-weighted MRI sequence using linear (FSL
FLIRT) and nonlinear (FSL FNIRT) registration with stan-
dard parameters. The WMH maps were spatially normal-
ized, by applying the transformation parameters estimated
in this two-step procedure. Tract-specific WMH volumes
were then calculated by superimposing the spatially normal-
izedWMHmaps onto the Johns Hopkins University Interna-
tional Consortium for BrainMapping probabilistic fiber tract
atlas (JHU-ICBM-tracts) [32] in the MNI152 standard
space. The atlas was comprised of probability maps for 20
main fiber tracts. In order to calculate the WMH volume
for a particular fiber tract, the WMH map was overlaid on
the corresponding probability map and used as a mask.
The voxel-wise probabilities were then summed up across
all voxels within this mask. Finally, the tract-specific
WMH volumes were normalized to the tracts’ total volumes,
calculated as the sum of voxel-wise fiber tract probabilities
(from the JHU-ICBM-tracts) throughout the whole brain.
This procedure has been described previously [33].
2.6. Mapping DMN regions connected by the atlas-based
fiber tract ROIs

The initial set of fiber tracts was based on previous re-
ports of fiber tract connections between DMN brain regions
[34–41] and included the cingulum (CING), cingulum–
hippocampus tract (CING-Hippo), superior longitudinal
fasciculus (SLF) and its temporal cortex branch (SLF-
Temp), inferior longitudinal fasciculus, and the inferior
fronto-occipital fasciculus (IFOF). For the present study,
we did not include forceps minor and forceps major
[37,41] because these interhemispheric fibers connect
midline structures that are not clearly separable between
hemispheres within resting-state ICA component images
(left and right posterior cingulate cortices connected by
the forceps major and left and right medial frontal cortices
connected by the forceps minor). Next, we determined
those tracts that could be confirmed to connect DMN brain
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Fig. 1. Schema of successive steps involved in generating the default mode network (DMN) regions of interest (ROI) connected by a tract (here, the cingulum)

and theWMH located in that tract. A three-dimensional rendering of the location of the cingulum (red) and the DMN (blue) is shown (A, left panel), where after

different processing steps, the final cingulum-connected ROI of the DMN (green) and the WMH (yellow) located in that fiber tract ROI are yielded (A, right

panel). (B–E) Illustrate the different processing steps to produce those final ROIs. In the first step, the DMN mask (blue) obtained from a previously published

DMN template [27] and the fiber tract mask (red) obtained from the probabilistic JHU fiber tract atlas [32] are fused in MNI space (B). Next, the fiber tract was

dilated by 6 mm (meshed red) to determine the area of spatial overlap between the tract and the DMNmask (green, [C]). The green area was dilated in another

iteration by 6 mmwithin the boundaries of the DMN, thus yielding a larger projection area of the fiber tract within the DMN (white arrows pointing to extended

green area outside the red meshed sphere, D). This was done to ensure sufficient coverage of the DMN for a representative sampling of DMN FC values within

the projection area of the tract. Finally, the spatially normalized WMH map (yellow) was superimposed onto the fiber tract, and the WMH volume within the

fiber tract was calculated (E).
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regions based on an atlas-based ROI approach. The selected
fiber tracts were identified within the probabilistic JHU fi-
ber tract ROI atlas, and the connected brain areas in the
DMN were determined as illustrated in Fig. 1. In the first
step, a previously published DMN map [27] was binarized
at a threshold of z . 3, except for the hippocampus region
that was thresholded at z. 2 to account for typically lower
reliability of FC between the hippocampus and other DMN
brain regions [42]. The DMN mask was subsequently
multiplied by a binary gray matter mask. The gray matter
mask was produced by averaging the gray matter probabil-
ity maps from the SPM-based segmentation (in MNI space)
across subjects and thresholding at a gray matter probabil-
ity score .0.3. The thus produced DMN mask was super-
imposed onto the JHU fiber tract atlas in MNI space
(Fig. 1B). In the second step, the selected tracts in the prob-
abilistic JHU fiber tract atlas [38] were binarized at 10%
probability and dilated by 6 mm. The intersection between
the dilated fiber tracts and the DMN mask defined then the
tract’s cortical projection area (Fig. 1C). To provide larger
coverage of the projection area within the DMN, the inter-
secting region was dilated by another 6 mm within the
boundaries of the DMN mask, thus yielding the final
DMN ROI for a particular tract (Fig. 1D). The ROI was
used to extract the mean ROI value from a subject’s
DMN map for each tract, which was then analyzed in rela-
tion to the WMH volume within the same tract (Fig. 1E),
calculated as described previously. The maps of all finally
selected fiber tract ROIs and associated gray matter ROI
are presented in Fig. 2 (see also Supplementary Table 1).

For an additional analysis, the definition of ROIs was
repeated using the same procedure, but a DMN template
generated from the group ICAwithin the present study sam-
ple was used this time. The maps of all fiber tracts and asso-
ciated gray matter ROIs resulting from that modified
procedure can be found in Supplementary Fig. 3.
2.7. Signal-to-noise ratio of rsfMRI

To control for the variability in fMRI BOLD signal due to
field inhomogeneities in T2*-weighted scans [43], we calcu-
lated the signal-to-noise ratio (SNR) within each ROI. SNR
was defined as the average of the signal intensity across the
entire time series divided by the standard deviation of the
signal within the time series [43].
2.8. Statistical analysis

For each fiber tract, the ratio between the WMH volume
and total white matter volume was calculated (henceforth
called WMHr). Normal distribution of gAV-45 PET,
WMHr, and FC values was tested in Ab1 subjects, using



Fig. 2. Major fiber tracts (red) and connected cortical regions of interest (green) of the DMN. The DMNmask was based on the a prioriDMNmap published by

Smith et al. [27] as shown in axial view in the upper row. Abbreviations: AG, angular gyrus; L, left; MFC, medial frontal cortex; MTG, middle temporal gyrus;

PCC, posterior cingulate cortex; R, right.
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Table 1

Group characteristics

HC Ab2 HC Ab1 P MCI Ab1 P AD P

Sample size 24 14 42 22

Age (y)* 74.7 (6.6) 74.8 (6.5) .94 72.4 (6.7) .19 73.2 (6.9) .48

Education* 16.0 (2.1) 17.0 (1.9) .13 16.1 (2.6) .83 15.7 (2.3) .72

Gender (F/M) 18/6 6/8 .10 16/26 �.5 12/10 .25

MMSE* 28.8 (1.3) 28.7 (0.9) .79 27.3 (1.7) ,.001 22.9 (2.6) ,.001

Abbreviations: Ab, amyloid-beta; AD, Alzheimer’s disease; F, female, HC, healthy controls; M, male; MCI, mild cognitive impairment;MMSE, mini-mental

state examination.

*Values indicate the mean (and standard deviation) that is given for each group. P values are indicated for differences between HC-Ab2 and each of the other

groups based on t-tests or chi-square test (gender).
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the Shapiro–Wilk test. TheWMHr values were not normally
distributed (P , .05) and were therefore log transformed.

To control for the influence of potentially confounding
variables, we tested for each fiber tract if the independent
variables WMHr and gAV-45 PET were associated with
any of the demographic variables including age, education,
or gender. Only the variable “age” showed an association
with WMHr (P , .05). Therefore, each subject’s WMHr
score was subsequently adjusted for the influence of age,
based on the regression coefficient of age estimated in the
HC Ab2 group.

For each fiber tract, nonparametric robust regression an-
alyses (Huber-M) were computed, with FC within the tract’s
gray matter ROI as the dependent variable. The independent
variables included WMHr, gAV-45 PET, diagnosis (HC
Ab1, MCI Ab1, and AD dementia), and SNR (within the
connected ROI). We controlled for SNR because rsfMRI
scans showed in most cases pencil-shaped patterns of
SNR. Gender was included as an additional variable due to
numerical (although not significant) difference between
diagnostic groups. Improvements in model fit by adding
two-way interaction terms of diagnosis ! WMHr or
WMHr ! AV-45 PET were tested. The normal distribution
of the residuals was examined for each significant regression
model, using the Shapiro–Wilk test. The significance
threshold was a , 0.05 (one-tailed) for testing our direc-
tional hypotheses of the effect of WMHr and gAV-45 PET
on FC. To test the robustness of findings, we bootstrapped
the regression analysis, with the coefficient of WMHr and
AV-45 PET being estimated in N5 999 bootstrap iterations.
We report the mean bootstrapped beta coefficient and the
95% confidence interval (95% CI).

Voxel-based lesion probability mapping of WMH was
done based on the binarized WMH maps within the entire
sample (AD dementia, MCI Ab1, and HC Ab1) [44]. All
statistical analyses were done with the software library R.
fronto-occipital fasciculus (IFOF)–connected regions of interest of the

DMN as a function of WMHr in the IFOF. The regression lines for each

group (colored) and the whole sample (solid black line) and the standard er-

ror of the estimate (shaded area) are shown. Higher WMHr in the IFOF was

associated with lower FC in the gray matter projection area of the IFOF. Sta-

tistical outliers (.3 standard deviation from group mean) have been

removed for purposes of the current graph (robust regression model ac-

counted for outliers in the regression analysis). Abbreviation: WMHr, ratio

between the WMH volume and total white matter.
3. Results

Table 1 summarizes the demographic characteristics for
each diagnostic group. Supplementary Table 2 summarizes
the mean values of WMHr, ROI-FC, and gAV-45 PET.
3.1. Association between WMHr and FC

Greater WMHr within the IFOF was associated with
reduced FC of the IFOF-connected gray matter ROIs, inde-
pendently of gAV-45 PET levels (b525.6, t(72)522.051,
P 5 .02, Fig. 3). Bootstrapping of the regression analysis
confirmed the association between IFOF WMHr and lower
FC (bootstrapped b 5 26.6, 95% CI 5 214.2 to 21.2).
None of the other fiber tracts demonstrated a main effect
of WMHr. None of the two-way interactions (WMHr !
diagnosis or WMHr ! gAV-45 PET) were significant,
with outliers excluded (Supplementary Table 3). In addition,
we tested whether GM volume within each fiber tracts’ con-
nected brain area is a confounding factor. However, no asso-
ciations between GM volume andWMHr for any of the fiber
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tract ROIs were found (P . .05). Stepwise forward regres-
sion showed that both IFOF-ROI GM volume and IFOF
WMHr independently predicted FC. The association be-
tween higher WMHr in the IFOF and lower FC in connected
brain areas of the DMN was confirmed (b 5 29.0,
t(72) 5 22.3802, P 5 .01, Supplementary Fig. 4), when
spatially defining the DMN regions by the group-specific
DMN map rather than the a priori selected DMN mask
[27]. None of the two-way interactions (WMHr! diagnosis
or WMHr! gAV-45 PET) were significant. To test whether
global WMHr (excluding WMHr of the IFOF) added to the
prediction of FC changes, we added both IFOF-WMHr and
global WMHr (excluding WMHr of the IFOF) in a stepwise
forward regression model, controlled for age, gender, educa-
tion, and diagnosis. Results showed that only WMHr of the
Fig. 5. Lesion probability map of WMH including the voxel-wise mapping

of the proportion of subjects showing aWMH in a particular voxel. The pro-

portion of WMH occurrence is color-coded in each voxel, with low values

shown in green–blue colors and high values in red colors.
IFOF was predictive of FC (b 5 26.26, t 5 22.312,
P 5 .012).

3.2. Distribution of WMH within the DMN tracts

Next, we investigated whether WMHr differed between
fiber tracts of the DMN or whether WMHs were rather ho-
mogenously distributed within the DMN. Fig. 4 shows the
mean WMHr for each fiber tract. WMHr within the IFOF
was significantly higher compared with each of the other
tracts (F(4,73) 5 111.8, P , .001; see also Supplementary
Table 2). WMH probability mapping showed that WMHs
were predominantly distributed around posterior and ante-
rior periventricular regions (Fig. 5), which include pathways
of the IFOF and SLF tracts within the DMN.

3.3. Association between global AV-45 PET binding and
FC

Greater gAV-45 PET binding was associated with lower
ROI-FC values in the projection brain areas of the IFOF
(t(72) 5 21.81, P 5 .037), CING-Hippo (t(72) 5 21.93,
P 5 .029), and at trend level for the SLFtemp (b 5 20.15,
t 5 21.4, P 5 .08). Bootstrapping of the regression coeffi-
cient of AV-45 PET confirmed a significant effect for the
IFOF (b520.28, 95% CI520.55 to20.004) and a trend
for the CING-Hippo (b520.75, 95% CI5 0.007 to21.5).
Regression plots are presented in Fig. 6. None of the WMHr
measures were associated with gAV-45 PET binding.

3.4. Association between WMHr and other resting-state
networks

To test whether the current results on the association be-
tween WMHr and AV-45 PETwith FC were specific for the
DMN, we tested the association between those predictors
and FC changes in two control rsfMRI networks, including
the auditory network and the dorsal attentional network
maps [27]. Because none of the atlas-based fiber tract
ROIs of the DMN-connected regions of those two resting-
state networks, we did not expect any correlation between
WMHr and FC for those networks. Applying the same
spatial ROIs and using the same regression models, we did
not find any association between WMHr and FC for any of
the fiber tract ROIs.
4. Discussion

The major findings of the present study are that: (1) the
IFOF showed the highest WMHr among all atlas-based fiber
tract ROIs of the DMN, (2) WMHr in the fiber tract ROI of
the IFOF was associated with reduced FC in the connected
brain regions, (3) the association between higher WMHr
and lower FC was independent of gAV45 PET, and (4)
higher gAV45 PET was independently associated with
reduced FC within DMN areas. These results suggest that
WMHr disrupt FC in a fiber tract–specific way and
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contribute independently from Aß pathology to reduced FC
within the DMN.

The IFOF showed a particularly high WMHr when
compared with other fiber tracts of the DMN. The IFOF is
a long association tract that passes through the periventricu-
lar white matter [45], that is, the sparsely perfused vascular
end zone of perforating arteries [46]. Sparse perfusion of the
IFOF may thus explain the high WMH volume of that tract.
The current results of selective effects for the IFOF suggest
that only at a sufficiently high severity level, WMH volume
disrupts FC. Although the interpretation in favor of a
threshold effect is tempting, we caution that any smaller ef-
fects of WMH in tracts other than the IFOF may have not
been detected due to lower statistical power. Thus, the
threshold hypothesis of the effect of WMH on FC awaits
further confirmation.

We found effects of WMH onto FC to be additive to those
observed for gAV-45 PET, and no interaction with gAV-45
PET was observed. These results are in keeping with previ-
ous studies reporting additive rather than synergistic effects
of WMH and global Ab levels on FDG-PET and cognitive
function in AD [47]. Moreover, the levels of gAV45 PET
were not associated with WMHr in any of the fiber tracts
of the DMN, consistent with previous studies that found
no association between global levels of WMH and global
levels of Ab [2,48]. Together, these results suggest that
WMH and Ab pathology contribute independently to
functional changes within the DMN. Still, the absence of
an interaction effect reported in many neuroimaging
studies should be cautiously interpreted with regard to
conclusions about the association between vascular
pathology and Ab deposition. WMHs are a radiological
surrogate measure of white matter changes of presumed
vascular origin, where the sensitivity to detect underlying
vascular pathology is unclear [49]. Given that many risk fac-
tors of AD such as high blood pressure, hyperlipidemia, or
diabetes are associated with vascular pathology [50–52], it
remains to be clarified whether vascular pathology and
primary AD pathology such as Ab are truly independent
disease processes.

There are several caveats that need to be taken into ac-
count when interpreting our results.

First, we did not assess fiber tract connections via diffu-
sion tensor imaging directly but applied an atlas-based fiber
tract ROI approach. Although this approach has the advan-
tage of avoiding problems of fiber tracking such as failure
due to white matter lesions, the current approach cannot
assure that fiber tracts always connected the DMN brain re-
gions. Based on the group ICA map of the DMN, we
observed for the SLF fiber tract ROIs a connection to the
angular gyrus but not the middle temporal gyrus
(Supplementary Fig. 3), which may explain why we did
not find an association between WMHr in the SLF and
DMN brain regions.

Second, we included only subjects with abnormally
increased levels of Aß. Hence, the observed association be-
tweenWMH and reduced FC may not necessarily be gener-
alizable to subjects with low levels of Ab. However,
because Ab levels are associated with abnormal FC in the
DMN particularly at pathologically increased but not low
levels of Ab [53], we specifically chose the present study
design for a rigorous test of our hypothesis that WMHs,
in addition to Ab pathology, contribute to changes in the
DMN.
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Third, we used only global levels of AV-45 PET binding
rather than levels of Ab in the DMN as a predictor of FC
changes. We chose the global measure of Ab level because
in subjects with abnormally increased levels of Ab, the
PET levels of Ab binding are highly correlated between
different cortical brain areas. Thus, the average cortical
AV-45 PET binding can be considered a valid estimate of
the level of Ab deposition within the DMN.

Fourth, the AV-45 PET scans were acquired sometimes
months apart from the rsfMRI scan. Previous longitudinal
studies have shown a 1% to 2% annual change in global
AV-45 PET binding [54] with rather subtle spatial expansion
[55]. This variability may have limited the power to detect an
association between AV-45 PET and FC changes in the pre-
sent study.

Lastly, we focused on the DMN rather than other resting-
state networks. We specifically chose the DMN because this
resting-state network is predominantly affected in AD. Our
results provide evidence that even in a resting-state network
where Ab accumulation is high and Ab is associated with
reduced FC, increased WMHs still add to reduced FC in
that network in AD. However, other resting-state networks
such as the fronto-parietal attention network [56] may be
affected by WMH in AD as well [57].

In conclusion, the current results support the notion of
localized effects of WMH on the functional integrity of the
DMN. These effects of WMHwere independent from the ef-
fects of global levels of Ab, suggesting a linear additive
contribution of both cerebrovascular-related fiber tract
impairment and Ab pathology to functional network alter-
ations. For vascular brain changes, treatment options and
preventative interventions are already available. The current
approach offers a promising way to pinpoint the effects of
cerebrovascular pathology–related impairment of functional
networks and thus to potentially serve as an outcome param-
eter for clinical trials.
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RESEARCH IN CONTEXT

1. Systematic review: Global levels of white matter hy-
perintensities (WMHs) were associated with reduced
brain function (FDG-PET or fMRI; [4]; [10]) and
added to the effects of increased Aß in AD ([8]).
Which functional networks show reduced integrity in
association with WMH is debated. WMHs are het-
erogeneously distributed in the WM and may affect
the gray matter in a fiber tract–specific way (Duering
et al., 2014, Reference 33).

2. Interpretation: Higher tract-based WMH and lower
FC were associated selectively in brain areas con-
nected by the IFOF, that is, the fiber tract showing the
highest WMH among all tracts of the DMN. These
results suggest that WMH are associated with
reduced FC in a tract-specific way rather than global
way, independently of Aß.

3. Future direction: Are WMHs in particular fiber tracts
associated with altered memory task–related activa-
tion and thus may contribute to cognitive impairment
in Alzheimer’s disease?
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