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ON THE SHARPNESS OF THE BOUND FOR THE LOCAL

CONVERSE THEOREM OF p-ADIC GLprime

MOSHE ADRIAN, BAIYING LIU, SHAUN STEVENS, AND GEO KAM-FAI TAM

(Communicated by Matthew A. Papanikolas)

Abstract. We introduce a novel ultrametric on the set of equivalence classes
of cuspidal irreducible representations of a general linear group GLN over a
non-archimedean local field, based on distinguishability by twisted gamma
factors. In the case that N is prime and the residual characteristic is greater

than or equal to
⌊
N
2

⌋
, we prove that, for any natural number i ≤

⌊
N
2

⌋
, there

are pairs of cuspidal irreducible representations whose logarithmic distance in
this ultrametric is precisely −i. This implies that, under the same conditions

on N , the bound
⌊
N
2

⌋
in the Local Converse Theorem for GLN is sharp.

1. Introduction

Let F be a non-archimedean local field and fix a non-trivial additive character ψ
of F . Given irreducible generic representations π and τ of GLN (F ) and GLr(F ),
respectively, the twisted-gamma factor γ(s, π × τ, ψ) is a function of a complex
variable s, defined either by using Rankin–Selberg convolution [JPSS83] or by using
the Langlands–Shahidi method [Sha84].

If we now fix π, the γ(s, π×τ, ψ), as τ runs through the irreducible generic repre-
sentations of GLr(F ), with r ≥ 1, give a set of important invariants of π. A natural
question to ask is, how large do we need to allow r to be in order to completely
determine π using these invariants? This is usually called the Local Converse Prob-
lem for GLN . It is an easy consequence of the work of Jacquet, Piatetskii-Shapiro,
and Shalika [JPSS83] that r ≤ N . By the work of Henniart [Hen93], r ≤ N − 1
for N ≥ 2, and by the work of Chen [Che06] and the work of Cogdell and Piatetskii-
Shapiro [CPS99], r ≤ N − 2 for N ≥ 3. The following recently proved theorem was
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known as Jacquet’s conjecture; it was originally formulated for generic representa-
tions but was reduced to the case of cuspidal representations in [JNS15].

Theorem A (Local Converse Theorem, [JL16], [Cha16]). Let π1, π2 be irreducible
cuspidal representations of GLN (F ). If

γ(s, π1 × τ, ψ) = γ(s, π2 × τ, ψ),

as functions of the complex variable s, for all irreducible cuspidal representations τ
of GLr(F ) with r = 1, . . . ,

⌊
N
2

⌋
, then π1

∼= π2.

Theorem A was proved by Jacquet and the second-named author [JL16] and,
independently, by Chai [Cha16] using different methods. We refer to the intro-
ductions of [Che06, JNS15, ALSX16] for more related discussions on the previous
known results on Jacquet’s conjecture.

The bound
⌊
N
2

⌋
is suggested by an analogous conjecture for automorphic rep-

resentations (see [CPS99, Conjecture 1] and [ALSX16, Introduction]), and it is
expected to be sharp. It is easy to construct examples of generic (non-cuspidal)
representations showing that the bound

⌊
N
2

⌋
is sharp for the generic version of Theo-

rem A, but so far no sharpness results exist for cuspidal representations of GLN (F )
when N > 4. Indeed previous results have given families of representations for
which only twisting by characters is required (for example, simple cuspidal repre-
sentations in [AL16] and [BH14]).

In this paper, we show that the bound
⌊
N
2

⌋
is indeed sharp in Theorem A whenN

is a prime distinct from the residual characteristic p of F and p ≥
⌊
N
2

⌋
. In fact, we

prove much more.
For π1, π2 inequivalent cuspidal irreducible representations of GLN (F ), we de-

fine vγ(π1, π2) to be the minimal integer i ≥ 0 for which there exists a cuspidal
irreducible representation ρ of GLi(F ) with

γ(s, π1 × ρ, ψF ) �= γ(s, π2 × ρ, ψF )

as functions of the complex variable s. (When i = 0, so that ρ is the trivial rep-
resentation of the trivial group, we interpret this as meaning that γ(s, π1, ψF ) �=
γ(s, π2, ψF ).) Thus the sharpness result would say that there are cuspidal irre-
ducible representations π1, π2 such that vγ(π1, π2) =

⌊
N
2

⌋
. We prove the following

finer result.

Theorem B. Let N be a prime distinct from p and let i be an integer with 0 ≤
i ≤ min

{
p− 1,

⌊
N
2

⌋}
. Then there are cuspidal irreducible representations π1, π2

of GLN (F ) such that vγ(π1, π2) = i.

The pairing vγ induces an ultrametric dγ on the set of equivalence classes of
cuspidal irreducible representations of GLN (F ) by

dγ(π1, π2) = q−vγ(π1,π2),

where q is the cardinality of the residue field of F and where we understand vγ(π, π)

= +∞, so that dγ(π, π) = 0. This ultrametric takes values in
{
q−i | 0 ≤ i ≤

⌊
N
2

⌋}
∪

{0}, and Theorem B implies that when N is a prime distinct from p and p ≥
⌊
N
2

⌋
,

the ultrametric takes all these values.
It is not entirely clear to the authors how the ultrametric dγ should be inter-

preted. We note only that it is quite different from the distance function induced by
the ultrametric on endo-classes recently defined by Bushnell–Henniart in [BH17].
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When N = 1, Theorem B is empty. When N = 2, 3, it is easy to find two
cuspidal representations of GLN (F ) with the same standard gamma factors and
with different central characters (hence their GL1(F )-twisted gamma factors are
different by [JNS15, Corollary 2.7]). Thus Theorem B is new for N ≥ 5, though in
fact the proof works for any odd prime N .

For composite N , analogous examples for the case N = 4 have already been
constructed in [Che96, Section 5]. It seems likely that similar ideas to those in this
paper should allow one to prove the same result for arbitrary N .

On the other hand, the tameness assumption (that N �= p and that i < p in
Theorem B) is central to our proof. Indeed, we prove instead the analogous result
for γ-factors of representations of the Weil group of F (see Theorem 3.2) and transfer
it via the local Langlands correspondence. The main idea is to find two totally
ramified admissible pairs (E, θ1), (E, θ2) of a particular depth (depending on i),
which agree on U2

E , on the group μ′
F of roots of unity in F of order coprime to p,

and on a fixed uniformizer �E of E. It is the choice of depth which allows one to
verify that the corresponding cuspidal representations π1, π2 satisfy dγ(π1, π2) = i.

We end the introduction with a brief summary of the contents of each section. In
Section 2, we recall Howe’s construction of irreducible representations of the Weil
group via admissible pairs and the formula for computing ε-factors, as well as some
further results on representations of Weil groups. In Section 3, we construct the
admissible pairs which will allow us to prove Theorem B and complete the proof in
Section 4.

2. Local Langlands parameters

In this section, we recall basic properties of irreducible local Langlands param-
eters for GLN when the residual characteristic is prime to N , as constructed by
Howe, and formulas for computing epsilon factors of these representations. We
mainly refer to [How77,Moy86,BH06].

We begin by fixing notation. Let F be a non-archimedean local field, with ring
of integers OF , maximal ideal PF in OF , and residue field of cardinality q and
characteristic p. We write UF = U0

F = O×
F and Un

F = 1 + Pn
F . We fix once and for

all a non-trivial additive character ψF of F of level 1; that is, ψF is trivial on PF

but not on OF . For any finite extension E/F , we put ψE = ψF ◦trE/F and additive
character of E; if E/F is tamely ramified, then ψE is also of level 1. Write WF for
the Weil group of F .

Throughout the paper, we assume that N ≥ 1 is an integer which is prime
to p. There is then a nice parametrization of irreducible representations of WF of
dimension N using admissible (quasi-)characters, introduced by Howe.

Definition 2.1 ([How77]). An admissible pair of degree N with respect to F is a
pair (E, θ) consisting of an extension E/F of degree N and a character θ of E×

such that:

(i) if θ factors through the norm map NE/L to an intermediate field F ⊆ L ⊆
E, then E = L;

(ii) if the restriction θ|1+PE
factors through the norm map NE/L to an inter-

mediate field F ⊆ L ⊆ E, then E/L is unramified.

Two admissible pairs (E1, θ1) and (E2, θ2) with respect to F are said to be conjugate
over F if there is an F -isomorphism ϕ : E1 → E2 such that θ1 = θ2 ◦ ϕ.
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By local class field theory, we identify characters of F× with those of WF . The
following theorem says that irreducible N -dimensional representations of WF are
parametrized by conjugacy classes of admissible pairs of degree N with respect to F
(see [Moy86, Theorem 2.2.2] when F has characteristic zero or [BH05, A.2 Propo-
sition, A.3 Theorem] in general).

Theorem 2.2. If (E, θ) is an admissible pair of degree N with respect to F , then the

representation IndWF

WE
θ is irreducible. Moreover, two such admissible pairs induce

to equivalent representations of WF if and only if they are conjugate, and each
irreducible N-dimensional representation of WF is induced from an admissible pair
of degree N .

Now we turn to ε-factors. Suppose θ is a ramified character of F×; that is, θ
is non-trivial on U0

F . Let f = fθ > 0 be the conductoral exponent of θ; that

is, θ is trivial on Uf
F but not on Uf−1

F . Set r =
⌊
f
2

⌋
and r+ =

⌊
f+1
2

⌋
. There is

then cθ ∈ P1−f
F ,

θ(1 + x) = ψF (cθx), for x ∈ Pr+
F ,

and cθ is well-defined modulo P1−r+
F . We say that θ is represented by cθ. We

observe, for later use, that if θ1, θ2 are ramified characters of F× with unequal
conductoral exponents f1, f2 respectively and represented by c1, c2 respectively,
then the character θ1θ2 has conductoral exponent max{f1, f2} and is represented
by c1 + c2.

For θ a ramified character of F× represented by cθ as above, we define the Gauss
sum

(2.1) G(θ, ψF ) =
1

[U
r
F : U

r+
F ]1/2

∑
x∈U

r

F /U
r+
F

θ(x)−1ψF (cθ(x− 1)).

Note that if f is even, then this sum is just trivial, so G(θ, ψF ) = 1.
We do not recall the definition of the L-functions or ε-factors of finite-dimensional

semisimple representations of WF , instead referring to [BH06, §29]. For now, we
recall only that L(s, θ) = 1 for any ramified character θ, and that, for ϕ any finite-
dimensional semisimple representation of WF , the γ-factor is given by

γ(s, ϕ, ψF ) = ε(s, ϕ, ψF )
L(1− s, ϕ∨)

L(s, ϕ)
.

In particular, if θ is a ramified character, then γ(s, θ, ψF ) = ε(s, θ, ψF ). The fol-
lowing theorem is [Moy86, (2.3.17)] when F has characteristic zero and can be
extracted from the results in [BH06, §§23.4–.6] in general (see especially 23.5 The-
orem and 23.6 Proposition).

Theorem 2.3. Let θ be a ramified character of F× represented by cθ. Then

γ(s, θ, ψF ) = ε(s, θ, ψF ) = θ(cθ)
−1ψF (cθ)|cθ|1/2−sG(θ, ψF ).

For E/F an extension of F , we write λE/F (ψF ) for the Langlands constant
associated to E/F and ψF (see [BH06, §30.4]). The following lemma, together with
Theorem 2.3, will allow us to compute the ε- and γ-factors of the representations
of WF which will interest us.
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Lemma 2.4. For any finite extension E/F and any ramified character θ of E×,
we have

γ(s, IndWF

WE
θ, ψF ) = λE/F (ψF )γ(s, θ, ψE).

The formula is also true when γ is replaced by ε.

Proof. The exercise in [BH06, §29.3], together with the hypothesis that θ is ramified,
gives

L(s, IndWF

WE
θ) = L(s, θ) = 1.

Therefore,

γ(s, IndWF

WE
θ, ψF ) = ε(s, IndWF

WE
θ, ψF ) and γ(s, θ, ψE) = ε(s, θ, ψE).

Now [BH06, Theorem 29.4] says that

ε(s, IndWF

WE
θ, ψF ) = λE/F (ψF )ε(s, θ, ψE),

so the same identity holds if we replace ε by γ. �

As well as inducing, we will need to restrict characters. Let θ be a ramified
character of F× of conductor fθ and represented by cθ. For E/F a tamely ramified
extension, we write θE = θ ◦NE/F , a ramified character of conductor e(fθ − 1)+ 1,
where e = e(E/F ) is the ramification index of E/F . Then, recalling that we have
the character ψE = ψF ◦ trE/F , the character θE is also represented by cθ (see for
example [BH06, 18.1 Proposition]). Note that, viewed as a character of the Weil
group WE , the character θE is simply the restriction of θ.

We end this section with two lemmas which we will need for computing ε-factors
of pairs.

Lemma 2.5. Let E and L be field extensions of F , and let φ and λ be characters
of E× and L× respectively. Then IndWF

WE
φ⊗ IndWF

WL
λ is isomorphic to⊕

g∈WL\WF /WE

IndWF

WL(gE)
(gφ ◦NL(gE)/gE ⊗ λ ◦NL(gE)/L).

Proof. This is just the Mackey induction formula, recalling that local class field
theory tells us that the restriction to WE of φ, viewed as a character of WF , is
given by φ ◦NE/F . �

The following lemma shows that, in the situation of Lemma 2.5 which we will
be considering in this paper, the double coset space WL\WF /WE is actually a
singleton.

Lemma 2.6. Let E/F be a totally (tamely) ramified extension of degree N and
let L/F be a finite extension whose ramification index is prime to pN . Then the
double coset space WL\WF /WE is a singleton.

Proof. Put e = e(L/F ) and f = f(L/F ) and let K/F be the Galois closure of the
compositum EL, which is a tamely ramified extension of ramification index eN and
some residue degree fd. We have

WL\WF /WE
∼= Gal(K/L)\Gal(K/F )/Gal(K/E),

which we prove is a singleton.
Let �F be a uniformizer of F and let ζ ∈ K be a root of unity of order qfd − 1.

By [Has80, p. 251], we can write K = F [ζ,�K ], where �eN
K = �F ζ

c for a certain c,
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depending on K, such that eN divides both qfd − 1 and c(q − 1). Moreover,
by [Has80, p. 252], the Galois group Gal(K/F ) has presentation

Gal(K/F ) =
〈
ρ, τ | ρfd = τ c, τ eN = 1, ρτρ−1 = τ q

〉
,

where

ρ : ζ → ζq, �K → ζc(q−1)/eN�K ,

τ : ζ → ζ, �K → ζ(q
fd−1)/eN�K .

Then Gal(K/E) =
〈
ρτ j , τN

〉
and Gal(K/L) =

〈
ρfτk, τ e

〉
, for some integer j, k.

The coset space Gal(K/F )/Gal(K/E) has {τ i | 0 ≤ i ≤ N − 1} as a set
of representatives. The action of τ e ∈ Gal(K/L) on this coset space is given
by τ iGal(K/E) → τ i+eGal(K/E). Since e,N are coprime, this action is transi-
tive, and the result follows. �

3. Construction

From now until the end of the paper, we assume that N ≥ 3 is a prime dif-
ferent from p. Let i ≤

⌊
N
2

⌋
be a natural number. In this section, we explicitly

construct a family of irreducible N -dimensional representations of WF (depending
on i) with the property that their twisted γ-functions by irreducible r-dimensional
representations ofWF are equal, for r < i, but for which there exists an irreducible i-
dimensional representation of WF whose twisted γ-function distinguishes them. In
particular, the local Langlands correspondence then implies that the corresponding
cuspidal representations of GLN (F ) show that the bound

⌊
N
2

⌋
in Theorem A is

sharp.
The idea is to pick two totally ramified admissible pairs (E, θ1), (E, θ2) of a

particular depth (depending on i) which agree on U2
E , on the group μ′

F of roots of
unity in F of order coprime to p, and on a fixed uniformizer �E of E. To identify
the correct depth, we begin with a simple numerical lemma.

Lemma 3.1. Let i ≤
⌊
N
2

⌋
be a natural number. Then there exist unique inte-

gers k, v with 2 ≤ k < N such that Nv − ik = 1. Moreover, if r < i is a natural
number, then there is no integer u such that |Nu− rk| = 1.

As an example, we note that when i =
⌊
N
2

⌋
, we have k = 2.

Proof. The first assertion is just Bézout’s Lemma, since i, N are coprime (since N
is prime). The integers k < N are then coprime, and the solutions to |Nu−rk| = 1
are given by r = ±i+Nt, u = ±v+ kt (for the same choice of sign). In particular,
since 0 < i <

⌊
N
2

⌋
, the only solution with 0 < r <

⌊
N
2

⌋
is given by r = i, and the

result follows. �
We now fix a natural number i ≤

⌊
N
2

⌋
and let k be the integer given by

Lemma 3.1. We also fix a uniformizer �F in F and the totally tamely ramified
extension E = F [ N

√
�F ] of F of degree N . Set �E = N

√
�F and β = �−k

E . We

define a character of U
�k/2�+1
E trivial on Uk+1

E by

1 + x → ψE(βx), for x ∈ P�k/2�+1
E ,

and extend it to a character φ0 of U2
E .

We consider the set Φ of characters of E× such that

(i) φ|U2
E
= φ0;
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(ii) φ(ζ) = 1, for all ζ ∈ μ′
F , the group of roots of unity of order prime to p

in F ;
(iii) φ(�E) = 1.

Note that the final condition implies that φ(β) = 1 also. Moreover, the restriction
of φ to F× is trivial, since U1

F ⊂ UN
E and F× ⊂ 〈�E〉μ′

FU
1
F . The set Φ has

cardinality q, since we may construct such a character by extending φ0 arbitrarily
to U1

E , and then conditions (ii), (iii) determine it uniquely.
Each φ ∈ Φ has conductoral exponent k+1 and is represented by β, by construc-

tion. Since the conductoral exponent is not congruent to 1 (mod N), the restriction
of φ to U1

E does not factor through NE/F , so that (E, φ) is an admissible pair over F
of degree N . Moreover, the admissible pairs (E, φ), for φ ∈ Φ, are inequivalent:
if φ ∈ Φ and γ is an F -automorphism of E, then γ−1(β) = ζβ, for some N th root
of unity ζ ∈ μ′

F , so that the character φ ◦ γ is represented by ζβ; in particular,

if φ ◦ γ ∈ Φ, then ζβ ≡ β (mod P−�k/2�
E ) so that, since k ≥ 2, we have ζ = 1,

whence γ is the identity and φ ◦ γ = φ.
The following theorem is our main result.

Theorem 3.2. Let (L, λ) be an admissible pair of degree r < i, with p � r. Then,
for φ ∈ Φ, the γ-function

γ(s, IndWF

WE
φ⊗ IndWF

WL
λ, ψF )

is independent of φ.
Moreover, if p � i, then, for any distinct φ1, φ2 ∈ Φ, there is an admissible

pair (L, λ) of degree i such that

γ(s, IndWF

WE
φ1 ⊗ IndWF

WL
λ, ψF ) �= γ(s, IndWF

WE
φ2 ⊗ IndWF

WL
λ, ψF ).

We will prove Theorem 3.2 in the following section and first derive its con-
sequence (via the local Langlands correspondence) for cuspidal representations
of GLN (F ), Theorem B of the introduction. Recall that, as in the introduction,
for π1, π2 cuspidal irreducible representations of GLN (F ), we define vγ(π1, π2) to
be the minimal non-negative number i for which there exists a cuspidal irreducible
representation ρ of GLi(F ) with

γ(s, π1 × ρ, ψF ) �= γ(s, π2 × ρ, ψF ).

Corollary 3.3. Let N≥3 be a prime distinct from p and let 0≤ i≤min
{
p− 1,

⌊
N
2

⌋}
be an integer. Then there exist cuspidal irreducible representations π1, π2 of GLN (F )
such that vγ(π1, π2) = i.

In particular, we see that the bound
⌊
N
2

⌋
for r in Theorem A is indeed sharp,

for N a prime different from p and p ≥
⌊
N
2

⌋
.

Proof of Corollary 3.3. Let φ1, φ2 be distinct characters in Φ; then, by the remarks
before the statement of Theorem 3.2, the admissible pairs (E, φj) are non-conjugate.
For j = 1, 2, write πj for the cuspidal irreducible representation of GLN (F ) corre-

sponding to IndWF

WE
φj via the local Langlands correspondence.

Since i < p, for each r ≤ i the local Langlands correspondence gives a bijection
between the cuspidal irreducible representations of GLr(F ) and the representa-

tions IndWF

WL
λ for equivalence classes of admissible pairs (L, λ). Since the local

Langlands correspondence preserves γ-factors of pairs, the result follows immedi-
ately from Theorem 3.2. �
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Note that in the proof of Corollary 3.3, we have not explicitly identified cuspidal
irreducible representations π1, π2 of GLN (F ) such that vγ(π1, π2) = i in terms
of the inducing data (i.e., the types) which give them, but only in terms of their
Langlands parameters. In order to identify the inducing data one would need to use
Bushnell–Henniart’s (essentially) tame local Langlands correspondence [BH10] and,
in particular, compute the so-called rectifier for the admissible pairs concerned.

4. Proof of Theorem 3.2

Before starting to prove Theorem 3.2, we need the following numerical lemma.

Lemma 4.1. Suppose E = F [β]/F is a finite extension of ramification index n
and valE(β) = b is prime to n. Let L/F be a finite extension of ramification
index e, let α ∈ L, and set K = LE.

(i) Suppose valF (β) > valF (α) and either
(a) the interval

[
b−1
n , b

n

)
contains no rational number with denominator e

or
(b) n is prime to e and jb �≡ 1 (mod n), for j = 1, . . . , [K : E].
Then NK/E(1 + βα−1) ∈ U2

E.
(ii) Suppose valF (β) < valF (α) and either

(a) the interval
(
b
n ,

b+1
n

]
contains no rational number with denominator e

or
(b) n is prime to e and jb �≡ −1 (mod n), for j = 1, . . . , [K : E].
Then NK/E(1 + αβ−1) ∈ U2

E.

In fact, we will only use the conditions (b) in Lemma 4.1; the conditions (a),
which are more straightforward, are included with a view to the possibility of ex-
tending the results here to composite N .

Proof. The proof of (ii) is exactly analogous to that of (i), so we prove only the
latter. We put a = valL(α) and write Gal(K/E) for the set of embeddings of K in
the separable closure of F which fix E.

(i)(a) We have

NK/E(1 + βα−1) =
∏

σ∈Gal(K/E)

(
1 + σ(βα−1)

)
= 1 +

[K:E]∑
j=1

βjEj(α−1),

where Ej(α−1) denotes the jth symmetric polynomial in {σ(α−1) | σ ∈ Gal(K/E)}.
Since valF (β) > valF (α) we have b

n > a
e and, by the hypothesis, also b−1

n > a
e .

Since Gal(K/E) preserves the valuation valF , we get, for each j = 1, . . . , [K : E],

valF
(
βjEj(α−1)

)
≥ bj

n
− aj

e
>

j

n
≥ 1

n
,

so that valE
(
βjEj(α−1)

)
> 1. The result follows.

(i)(b) We put M = E ∩ L. Then the natural restriction map Gal(K/E) →
Gal(L/M) is injective, since K = LE. By the uniqueness of unramified extensions
of F of given degree, E/M and L/M have coprime residue class degrees. Since, by
hypothesis, they also have coprime ramification index, they have coprime degrees.
This implies that [K : E] = [L : M ] so the injective map Gal(K/E) → Gal(L/M)
is in fact a bijection.
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As above, we have

NK/E(1 + βα−1) = 1 +

[K:E]∑
j=1

βjEj(α−1)

and Ej(α−1) ∈ M , since α ∈ L. In particular, valF (Ej(α)) = valM (Ej(α)) is an
integer, so

valF
(
βjEj(α−1)

)
∈ bj

n
+ Z.

In particular, valE
(
βjEj(α−1)

)
≡ jb (mod n), which is not 1 (mod n), for j =

1, . . . , [K : E], by hypothesis; thus valE
(
βjEj(α−1)

)
> 1, and the result again

follows. �

Now we specialize to the situation of Theorem 3.2, so that N ≥ 3 is prime, i ≤⌊
N
2

⌋
is a natural number, and k is the integer given by Lemma 3.1; in particular,

if r < i, then rk �≡ ±1 (mod N). A simple application of Lemma 4.1 yields the
following.

Corollary 4.2. With notation as in Lemma 4.1, suppose that E/F is totally ram-
ified of degree N , that b = −k, and that [L : F ] < i.

(i) If valF (β) > valF (α), then NK/E(1 + βα−1) ∈ U2
E .

(ii) If valF (β) < valF (α), then NK/E(1 + αβ−1) ∈ U2
E .

Proof. Again, the proofs are similar so we treat only (i). Since i, N are coprime,
we have E ∩ L = F and, as in the proof of Lemma 4.1, we also have [K : E] = [L :
F ] < i. Then, for 1 ≤ j ≤ [K : E], we have

−kj �≡ 1 (mod N)

by the choice of k, and the result follows from Lemma 4.1(i)(b). �

Finally, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let (L, λ) be an admissible pair of degree r ≤ i. Writ-
ing fλ = u+1 for its conductoral exponent, the character λ is represented by some
(choice of) element α ∈ P−u

L , so that

λ(1 + x) = ψL(αx), for x ∈ P�u
2 +1�

L .

Let e = e(L/F ) be the ramification index of L/F and put K = EL, an extension
of F of degree rN and of ramification index eN . We put φK = φ◦NK/E and λK =

λ ◦ NK/L, ramified characters of K× of conductoral exponent ke + 1 and uN + 1
respectively, represented by β and α respectively. Note that ke + 1 �= uN + 1,
since N is prime and 1 ≤ k, e < N , so N is prime to ke.

We set θ = φK ⊗ λK , a character of K×. Then Lemmas 2.5 and 2.6 imply that

IndWF

WE
φ⊗ IndWF

WL
λ ∼= IndWF

WK
θ.

Since φK , λK have different conductoral exponents, θ is a ramified character of K×

of conductoral exponent max{ke, uN}+1 and is represented by α+β. In particular,
Lemma 2.4 implies that

γ(s, IndWF

WK
θ, ψ) = λK/F (ψF )γ(s, θ, ψK),



LOCAL CONVERSE PROBLEM 15

where ψK = ψF ◦ trK/F . Putting this together, Theorem 2.3 implies that the γ-

factor γ(s, IndWF

WE
φ⊗ IndWF

WL
, ψ) is equal to

λK/F (ψF )ψF (α+ β)|α+ β|1/2−sθ(α+ β)−1G(θ, ψK).

Only the final two terms on the right hand side may depend on the choice of φ ∈ Φ.
In fact, the Gauss sum G(θ, ψK), which is defined as in (2.1), does not. Indeed, the
conductoral exponent of θ is f = max{ke, uN} + 1, and θ = φKλK is represented
by α + β, both of which are independent of φ ∈ Φ. Thus it is sufficient to observe
that φK |

U
�f/2�
K

is independent of φ, which is clear since

⌊
f

2

⌋
≥

⌊
uN + 1

2

⌋
≥

⌊
N + 1

2

⌋
≥

⌊
2e+ 2

2

⌋
= e+ 1,

so that NK/E

(
U

�f/2�
K

)
⊆ U2

E .

Thus the only term which may depend on the choice of φ ∈ Φ is the term
θ(α + β)−1. We prove that if r < i, then it does not. Since θ = φKλK , we need
only show that φ(NK/E(α+ β)) is independent of φ. We split into two cases:

• If valK(β) < valK(α), then we write β+α = β(1+β−1α). By Corollary 4.2
we have NK/E(1 + β−1α) ∈ U2

E , and the independence follows since all

characters in Φ agree on β and on U2
E .

• If valK(β) > valK(α), then we write β + α = α(1 + βα−1). Since α ∈
L while [K : E] = [L : F ], we have NK/E(α) = NL/F (α) ∈ F×. By

Corollary 4.2 again, NK/E(1 + βα−1) ∈ U2
E , and the independence follows

since all characters in Φ agree on F× and on U2
E .

This completes the proof of the first assertion of Theorem 3.2. Now let φ1, φ2 ∈ Φ
be distinct characters. We must show that there is an admissible pair (L, λ) of
degree i such that

γ(s, IndWF

WE
φ1 ⊗ IndWF

WL
λ, ψF ) �= γ(s, IndWF

WE
φ2 ⊗ IndWF

WL
λ, ψF ).

We put v = (ik+1)/N , which is a positive integer, by the choice of k in Lemma 3.1.
Then, from the arguments above, it is sufficient to find a totally ramified exten-
sion L/F of degree i and an element α ∈ L× of valuation valL(α) = −v such that,
writing K = EL as above,

φ1

(
NK/E(α+ β)

)
�= φ2

(
NK/E(α+ β)

)
.

Moreover, since then valK(β) = −ik > −(ik + 1) = valK(α), and all φ ∈ Φ agree
on NL/F (α) ∈ F×, it is sufficient to check that

φ1

(
NK/E(1 + βα−1)

)
�= φ2

(
NK/E(1 + βα−1)

)
.

Since φ1, φ2 agree on U2
E but differ on U1

E , there is a root of unity ζ ∈ μ′
F such

that

φ1(1 + ζ�E) �= φ2(1 + ζ�E).

Let L = F [�L], where �i
L = (−1)i+1ζN�F , and set α = ζk�−v

L . Since, by
construction, i, v are coprime, the minimum polynomial of α−1 over F is Xi −
NL/F (α

−1) = Xi− ζ−ki+vN�v
F so that the jth symmetric polynomial in the conju-

gates of α−1 is zero for 1 ≤ j < i. In particular, repeating the analysis in the proof
of Lemma 4.1(i)(b), we get

NK/E(1 + βα−1) = 1 + βiNL/F (α
−1) = 1 +�−ki

E ζ−kiζvN�v
F = 1 + ζ�E.



16 M. ADRIAN, B. LIU, S. STEVENS, AND G. K. TAM

Thus, if λ is a character of L× represented by α, then the admissible pair (L, λ) is
as required. �
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