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Abstract

This paper addresses the single-item single-stock location stochastic lot-
sizing problem under (R,S) policy. We assume demands in different periods
are dependent. We present a mixed integer linear programming (MILP) model
for computing optimal (R,S) policy parameters, which is built upon the con-
ditional distribution. Our model can be extended to cover time-series-based
demand processes as well. Our computational experiments demonstrate the
effectiveness and versatility of this model.

1 Introduction

Since [14] proved the optimality of (s, S) policies for a class of dynamic inventory
models, a sizeable literature has been performed for computing the optimal policy
parameters (see, for example, [20, 1, 6]). However, as pointed out in [19], although
the (s, S) policy is cost-optimal, it performs poorly in terms of “nervousness”, i.e. lack
of planning stability. In this regard, the (R, S) policy provides an effective means of
dampening the planning instability and coping with demand uncertainty. Under this
policy, both inventory reviews R and associated order-up-to-levels S are fixed at the
beginning of the planning horizon, while actual order quantities are decided upon
only after demand has been observed.

In the seminal work, [3] proposed a two-stage deterministic equivalent heuristic
which fixes replenishment periods first and then determines order quantities under the
independent demand assumption. [17] presented a mixed integer programming (MIP)
model that determines both timing and quantity of orders simultaneously without



addressing computational performance. Under the independent demand assumption,
[19, 12, 16, 17, 18, 11] proposed efficient solution methods.

In the literature, most inventory models assume that demands over different time
periods are independent and identically distributed. Recently, a few studies on in-
ventory theory with correlated demands have been emerged. They either focused on
(s, S) policy (see [9, 15, 5, 4]) or measured the performance of the inventory system
with specific demand patterns ([9, 7, 10, 8]). However, none of them studied the
(R, S) policy with correlated demands, which motivates our work in developing an
efficient method for computing (R, S) policies.

In this paper, we present an MILP-based model for approximating the (R, S)
policies with correlated demand. Our model can cover a series of time-based demand
process, such as the autoregressive process (AR), the moving-average process (MA),
the autoregressive moving average process (ARMA), the autoregressive conditional
heteroskedasticity process (ARCH). Preliminary computational experiments demon-
strate that optimality gaps of our model are tighter than existing algorithms, and
computational times of model are reasonable. Our model can be accommodated to
approximate (s, S), and (R,Q) policies.

2 Problem description

Let a random vector d = [d1, . . . ,dn]T represents stochastic demand over the planning
horizon, which follows the multivariate distribution f with cumulative distribution
function F : Rn → R. Let d̃ be the mean of demand vector d, and Σ be the
variance-covariance matrix, we require that Σ is symmetric positive definite.

Lemma 1 (Conditional distribution) Let d == [d1, . . . ,dq,dq+1 . . . ,dn]T de-
note a random vector with joint probability function f(d1, . . . , dq, . . . , dn), then the
conditional joint probability density function of d1, . . . , dq given dq+1 = dq+1, . . . ,dn =
dn is

f1,...,q|q+1,...,n(d1, . . . , dq|dq+1 = dq+1, . . . ,dn = dn) =
f(d1, . . . , dq)

f(dq+1, . . . , dn)
(1)

We now consider the multivariate normal distribution (MVN). A vector-valued
random variable d = [d1, . . . ,dn]T is said to have a multivariate normal distribution
(MVN) with mean d̃ ∈ Rn and covariance matrix Σ ∈ Rn×n, if its probability density
function is given by

f(d; d̃,Σ) =
1

(2π)
1
2 |Σ| 12

exp
(
− 1

2
(d− d̃)TΣ−1(d− d̃)T

)
. (2)



Lemma 2 (Conditional distribution of MVN) Let d = [d1,d2]T be a parti-
tioned multivariate normal random vector, with mean d̃ = [d̃1, d̃2]T and variance-
covariance matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (3)

Then, the conditional distribution of d2 given d1 = d1 is MVN, with conditional
distribution d2|d1 = d1 ∼ N

(
d̃2 + Σ21Σ

−1
11 (d1 − d̃1),Σ22 −Σ21Σ

−1
11 Σ12

)
.

Example. We now demonstrate the concepts introduced on a 4-period example.
d̃ = [20, 40, 60, 40] and standard deviations σ = 0.25d̃. We assume any dt, t =
{2, . . . , T}, is only correlated to dt−1 with correlation coefficient ρ = 0.5, then the
variance-covariance matrix is

Σ =


25 25 0 0
25 100 75 0
0 75 225 75
0 0 75 100

 .
Therefore, the conditional distribution of dt, for t = {2, . . . , T}, is d2|d1 = d1 ∼
N (20+d1, 75), d3|d2 = d2 ∼ N (30+ 3

4
d2, 168.75), and d4|d3 = d3 ∼ N (20+ 1

3
d3, 75).

3 Stochastic dynamic programming

We consider a single-item single-stocking location inventory management system over
a T-period planning horizon. We assume that the demand dt depends on realised
information set it−1 at period t− 1; it follows the conditional distribution f(dt|it−1).
Let It−1 denote the opening inventory level, and Qt represent the order quantity.

At the beginning of period t, there exist ordering costs c(·) comprising a fixed
ordering cost K, and a linear ordering cost c. At the end of period t, a linear holding
cost h is charged on every unit carried from one period to the next; a linear penalty
cost b is occurred for each unmet demand at the end of each time period. Then the
immediate cost can be expressed as

ft(i, It−1, Qt) = ct(i, Qt) + E[h ·max(It−1 +Qt − dt, 0) + b ·max(dt − x−Qt, 0)|it−1 = i],
(4)

where ct(i, Qt) is defined as:

ct(i, Qt) = K · δt + c ·Qt, δt = {0, 1}. (5)

Let Ct(i, It−1) denote the expected total cost of an optimal policy over period
t, . . . , T when the observed demand information set is it = i and the opening inventory



level is It−1. We model the problem as a stochastic dynamic program ([2]) via the
following functional equation,

Ct(i, It−1) = min
Qt≥0
{ft(i, It−1, Qt) + E[Ct+1(it+1, It−1 +Qt − dt)|it−1 = i]}, t=1,. . . ,T-1

(6)

where

CT (i, It−1) = min
QT≥0
{fT (i, It−1, QT )|iT−1 = i]} (7)

represents the boundary condition.
Example. We illustrate the SDP introduced on the same 4-period example in

Section 2. We assume K = 100, h = 1, b = 10, and c = 1. We observe that the
minimised expected total cost is 262.60 when the opening inventory level is 70.

4 MILP-based models

The (R, S) policy features two control parameters: review periods (R), and order-up-
to-levels (S). Under this policy, both R and S are determined at the beginning of the
planning horizon; an order is issued to reach the order-up-to-level at the beginning
of each review period.

In the literature, [11] built an MILP model upon the piecewise linearisation ap-
proach for the first order loss function L(x, ω) and its complementary function L̂(x, ω),
where ω represents an independent random variable with the probability density func-
tion gω(·) and x denotes a scalar variable. Consider a partition of the support Ω of
ω into W disjoint compact subregions Ω1, . . . ,ΩW . By fixing a priory the proba-
bility mass pi = Pr{ω ∈ Ωi}, the associated conditional expectation E[ω|Ωi] are
determined. Based on Jensen’s and Edmundson-Madanski inequalities, the first or-
der loss function and its complementary function are approximated with piecewise
linear functions (

∑W
i=1 piL(x,E[ω|Ωi]),

∑W
i=1 piL̂(x,E[ω|Ωi])). For a special case of

standard normally distributed random variables, all pi and E[ω|Ωi] are precomputed
in [13].

We now consider a correlated random variable dt, for t = {1, . . . , T}, we can com-
pute the conditional distribution fdt|it−1(·) of dt|it−1 based on Lemma 1. We apply the
piecewise linear approximation proposed in [13] on its conditional distribution. There-
fore, L(x, dt|it−1) and L̂(x, dt|it−1) are approximated by

∑W
i=1 piL

(
x,E

[
{dt|it−1}|Ωi

])
and

∑W
i=1 piL̂

(
x,E

[
{dt|it−1}|Ωi

])
, respectively.

Example. We illustrate the MILP model introduced on the same example in
Section 3. We observe that the minimum expected total cost is 256.07, when the
opening inventory level is 70. Specifically, the reviewing time periods are 1 and 3,
and the corresponding order-up-to-levels are 69.18 and 114.34.



5 Conclusion

In this paper we presented a MILP-based model for approximating optimal (R, S)
policy parameters with correlated demand. This model is based on a mathematical
programming model that can be solved by using-off-the-shelf optimization packages.
Our preliminary results show that the optimality gap of our model is tighter, and the
computational time of our model is reasonable. This model also can be extended to
cover time-series-based demand process, such as AR, MA, ARMA, ARCH.
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