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Abstract

Mapping gene expression as a quantitative trait using whole genome-sequencing and tran-

scriptome analysis allows to discover the functional consequences of genetic variation. We

developed a novel method and ultra-fast software Findr for higly accurate causal inference

between gene expression traits using cis-regulatory DNA variations as causal anchors,

which improves current methods by taking into consideration hidden confounders and weak

regulations. Findr outperformed existing methods on the DREAM5 Systems Genetics chal-

lenge and on the prediction of microRNA and transcription factor targets in human lympho-

blastoid cells, while being nearly a million times faster. Findr is publicly available at https://

github.com/lingfeiwang/findr.

Author summary

Understanding how genetic variation between individuals determines variation in observ-

able traits or disease risk is one of the core aims of genetics. It is known that genetic varia-

tion often affects gene regulatory DNA elements and directly causes variation in expression

of nearby genes. This effect in turn cascades down to other genes via the complex pathways

and gene interaction networks that ultimately govern how cells operate in an ever chang-

ing environment. In theory, when genetic variation and gene expression levels are mea-

sured simultaneously in a large number of individuals, the causal effects of genes on each

other can be inferred using statistical models similar to those used in randomized con-

trolled trials. We developed a novel method and ultra-fast software Findr which, unlike

existing methods, takes into account the complex but unknown network context when

predicting causality between specific gene pairs. Findr’s predictions have a significantly

higher overlap with known gene networks compared to existing methods, using both sim-

ulated and real data. Findr is also nearly a million times faster, and hence the only software

in its class that can handle modern datasets where the expression levels of ten-thousands

of genes are simultaneously measured in hundreds to thousands of individuals.
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Introduction

Genetic variation in non-coding genomic regions, including at loci associated with complex

traits and diseases identified by genome-wide association studies (GWAS), predominantly

plays a gene-regulatory role [1]. Whole genome and transcriptome analysis of natural popula-

tions has therefore become a common practice to understand how genetic variation leads to

variation in phenotypes [2]. The number and size of studies mapping genome and transcrip-

tome variation has surged in recent years due to the advent of high-throughput sequencing

technologies, and ever more expansive catalogues of expression-associated DNA variants,

termed expression quantitative trait loci (eQTLs), are being mapped in humans, model organ-

isms, crops and other species [1, 3–5]. Unravelling the causal hierarchies between DNA vari-

ants and their associated genes and phenotypes is now the key challenge to enable the

discovery of novel molecular mechanisms, disease biomarkers or candidate drug targets from

this type of data [6, 7].

It is believed that genetic variation can be used to infer the causal directions of regulation

between coexpressed genes, based on the principle that genetic variation causes variation in

nearby gene expression and acts as a causal anchor for identifying downstream genes [8, 9].

Although numerous statistical models have been proposed for causal inference with genotype

and gene expression data from matching samples [10–15], no software implementation in the

public domain is efficient enough to handle the volume of contemporary datasets, hindering

any attempts to evaluate their performances. Moreover, existing statistical models rely on a

conditional independence test which assumes that no hidden confounding factors affect the

coexpression of causally related gene pairs. However gene regulatory networks are known to

exhibit redundancy [16] and are organized into higher order network motifs [17], suggesting

that confounding of causal relations by known or unknown common upstream regulators is

the rule rather than the exception. Moreover, it is also known that the conditional indepen-

dence test is susceptible to variations in relative measurement errors between genes [8, 9, 18],

an inherent feature of both microarray and RNA-seq based expression data [19].

To investigate and address these issues, we developed Findr (Fast Inference of Networks

from Directed Regulations), an ultra-fast software package that incorporates existing and

novel statistical causal inference tests. The novel tests were designed to take into account the

presence of unknown confounding effects, and were evaluated systematically against multiple

existing methods using both simulated and real data.

Results

Findr incorporates existing and novel causal inference tests

Findr performs six likelihood ratio tests involving pairs of genes (or exons or transcripts) A, B,

and an eQTL E of A (Fig 1, Materials and methods). Findr then calculates Bayesian posterior

probabilities of the hypothesis of interest being true based on the observed likelihood ratio test

statistics (denoted Pi, i = 0 to 5, 0� Pi� 1, Materials and methods). For this purpose, Findr

utilizes newly derived analytical formulae for the null distributions of the likelihood ratios of

the implemented tests (Materials and methods, S1 Fig). This, together with efficient program-

ming, resulted in a dramatic speedup compared to the standard computationally expensive

approach of generating random permutations. The six posterior probabilities are then com-

bined into the traditional causal inference test, our new causal inference test, and separately a

correlation test that does not incorporate genotype information (Materials and methods).

Each of these tests verifies whether the data arose from a specific subset of (E, A, B) relations

(Fig 1) among the full hypothesis space of all their possible interactions, and results in a

Causal inference from genome-transcriptome variation data
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Fig 1. Six likelihood ratio tests are performed to test the regulation A! B, numbered, named, and defined as shown. E is the best

eQTL of A. Arrows in a hypothesis indicate directed regulatory relations. Genes A and B each follow a normal distribution, whose mean

depends additively on its regulator(s), as determined in the corresponding hypothesis. The dependency is categorical on discrete regulators

(genotypes) and linear on continuous regulators (gene expression levels). The undirected line represents a multi-variate normal distribution

between the relevant variables. In order to identify A! B regulation, we select either the null or the alternative hypothesis depending on the

test, as shown.

https://doi.org/10.1371/journal.pcbi.1005703.g001
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probability of a causal interaction A! B being true, which can be used to rank predictions

according to significance or to reconstruct directed networks of gene regulations by keeping

all interactions exceeding a probability threshold.

The traditional causal inference test fails in the presence of hidden

confounders and weak regulations

Findr’s computational speed allowed us to systematically evaluate traditional causal inference

methods for the first time. We obtained five datasets with 999 samples simulated from syn-

thetic gene regulatory networks of 1,000 genes with known genetic architecture from the

DREAM5 Systems Genetics Challenge, and subsampled each dataset to observe how perfor-

mance depends on sample size (Materials and methods). The correlation test (P0) does not

incorporate genotype information and was used as a benchmark for performance evaluations

in terms of areas under the receiver operating characteristic (AUROC) and precision-recall

(AUPR) curves (Materials and methods). The traditional method [11] combines the secondary

(P2) and independence (P3) tests sequentially (Fig 1, Materials and methods), and was evalu-

ated by comparing P2 and P2 P3 separately against the correlation test. Both the secondary test

alone and the traditional causal inference test combination were found to underperform the

correlation test (Fig 2A and 2B). Moreover, the inclusion of the conditional independence test

worsened inference accuracy, more so with increasing sample size (Fig 2A and 2B) and increas-

ing number of regulations per gene (S1 Text, S2 Fig). Similar performance drops were also

observed for the Causal Inference Test (CIT) [13, 15] software, which also is based on the con-

ditional independence test (S3 Fig).

We believe that the failure of the traditional causal inference test is due to an elevated false

negative rate (FNR) coming from two sources. First, the secondary test is less powerful in iden-

tifying weak interactions than the correlation test. In a true regulation E! A! B, the second-

ary linkage (E! B) is the result of two direct linkages chained together, and is harder to detect

than either of them. The secondary test hence picks up fewer true regulations, and conse-

quently has a higher FNR. Second, the conditional independence test is counter-productive in

the presence of hidden confounders (i.e. common upstream regulators). In such cases, even if

E! A! B is genuine, the conditional independence test will find E and B to be still correlated

after conditioning on A due to a collider effect (S4 Fig) [20]. Hence the conditional indepen-

dence test only reports positive on E! A! B relations without any confounder, further rais-

ing the FNR. This is supported by the observation of worsening performance with increasing

sample size (where confounding effects become more distinguishable) and increasing number

of regulations per gene (which leads to more confounding).

To further support this claim, we examined the inference precision among the top predic-

tions from the traditional test, separately for gene pairs directly unconfounded or confounded

by at least one gene (Materials and methods). Compared to unconfounded gene pairs, con-

founded ones resulted in significantly more false positives among the top predictions (Fig 2C).

Furthermore, the vast majority of real interactions fell outside the top 1% of predictions (i.e.

had small posterior probability) [92% (651/706) for confounded and 86% (609/709) for uncon-

founded interactions, Fig 2C]. Together, these results again showed the failure of the tradi-

tional test on confounded interactions and its high false negative rate overall.

Findr accounts for weak secondary linkage, allows for hidden

confounders, and outperforms existing methods on simulated data

To overcome the limitations of traditional causal inference methods, Findr incorporates two

additional tests (Fig 1 and Materials and methods). The relevance test (P4) verifies that B is not

Causal inference from genome-transcriptome variation data
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Fig 2. Findr achieves best prediction accuracy on the DREAM5 systems genetics challenge. (A, B) The mean AUROC (A) and AUPR

(B) on subsampled data are shown for traditional (P2, P2 P3) and newly proposed (P4, P2 P5, P) causal inference tests against the baseline

correlation test (P0). Every marker corresponds to the average AUROC or AUPR at specific sample sizes. Random subsampling at every

sample size was performed 100 times. Half widths of the lines and shades are the standard errors and standard deviations respectively. Pi

corresponds to test i numbered in Fig 1; P is the new composite test (Materials and methods). This figure is for dataset 4 of the DREAM

challenge. For results on other datasets of the same challenge, see S2 Fig. (C, D) Local precision of top predictions (bars top to bottom: 0%

to 0.01%, 0.01% to 0.02%, 0.02% to 0.05%, 0.05% to 0.1%, 0.1% to 0.2%, 0.2% to 0.5%, 0.5% to 1%, 1% to 10%, and 10% to 100% top

predictions) for the traditional (C) and novel (D) tests for dataset 4 of the DREAM challenge. Gene pairs unconfounded (left, blue) and

confounded by a third gene (right, red) are visualized separately. Each full brick corresponds to 10% in precision. Numbers next to each bar

(x/y) indicate the number of true regulations (x) and the total number of gene pairs (y) within the respective range of prediction scores. For

results on other datasets, see S5E and S5F Fig. (E, F) The average AUROC (E) and AUPR (F) over 5 DREAM datasets with respectively

100, 300 and 999 samples are shown for Findr’s new (Findr-P), traditional (Findr-PT), and correlation (Findr-P0) tests, for CIT and for the

best scores on the DREAM challenge leaderboad. For individual results on all 15 datasets, see S1 Table.

https://doi.org/10.1371/journal.pcbi.1005703.g002
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independent from A and E simultaneously and is more sensitive for picking up weak second-

ary linkages than the secondary linkage test. The controlled test (P5) ensures that the correla-

tion between A and B cannot be fully explained by E, i.e. excludes pleiotropy. The same

subsampling analysis revealed that P4 performed best in terms of AUROC, and AUPR with

small sample sizes, whilst the combination P2 P5 achieved highest AUPR for larger sample

sizes (Fig 2A and 2B). Most importantly, both tests consistently outperformed the correlation

test (P0), particularly for AUPR. This demonstrates conclusively in a comparative setting that

the inclusion of genotype data indeed can improve regulatory network inference. These obser-

vations are consistent across all five DREAM datasets (S2 Fig).

We combined the advantages of P4 and P2 P5 by averaging them in a composite test (P)

(Materials and methods), which outperformed P4 and P2 P5 at all sample sizes (Fig 2 and

S2 Fig) and hence was appointed as Findr’s new test for causal inference. Findr’s new test (P)

obtained consistently higher levels of local precision (i.e. one minus local FDR) on confounded

and unconfounded gene pairs compared to Findr’s traditional causal inference test (PT)

(Fig 2C and 2D, S5 Fig), and outperformed the traditional causal inference test (PT), correla-

tion test (P0), CIT, and every participating method of the DREAM5 Systems Genetics Chal-

lenge (Materials and methods) in terms of AUROC and AUPR on all 15 datasets (Fig 2E and

2F, S1 Table, S6 Fig).

Specifically, Findr’s new test was able to address the inflated FNR of the traditional method

due to confounded interactions. It performed almost equally well on confounded and uncon-

founded gene pairs and, compared to the traditional test, significantly fewer real interactions

fell outside the top 1% of predictions (55% vs. 92% for confounded and 45% vs. 86% for

unconfounded interactions, Fig 2D, S5 Fig).

The conditional independence test incurs false negatives for

unconfounded regulations due to measurement error

The traditional causal inference method based on the conditional indepedence test results in

false negatives for confounded interactions, whose effect was shown significant for the simu-

lated DREAM datasets. However, the traditional test surprisingly reported more confounded

gene pairs than the new test in its top predictions (albeit with lower precision), and corre-

spondingly fewer unconfounded gene pairs (Fig 2C and 2D, S5 Fig).

We hypothesized that this inconsistency originated from yet another source of false nega-

tives, where measurement error can confuse the conditional independence test. Measurement

error in an upstream variable (called A in Fig 1) does not affect the expression levels of its

downstream targets, and hence a more realistic model for gene regulation is E! A(t)! B
with A(t)! A, where the measured quantities are E, A, and B, but the true value for A, noted

A(t), remains unknown. When the measurement error (in A(t)! A) is significant, conditioning

on A instead of A(t) cannot remove all the correlation between E and B and would therefore

report false negatives for unconfounded interactions as well. This effect has been previously

studied, for example in epidemiology as the “spurious appearance of odds-ratio heterogeneity”

[21].

We verified our hypothesis with a simple simulation (Materials and methods). In a typical

scenario with 300 samples from a monoallelic species, minor allele frequency 0.1, and a third

of the total variance of B coming from A(t), the conditional independence test reported false

negatives (likeilihood ratio p-value�1, i.e. rejecting the null hypothesis of conditional inde-

pencence, cf. Fig 1) as long as measurement error contributed more than half of A’s total unex-

plained variance (Fig 3B). False negatives occurred at even weaker measurement errors, when

the sample sizes were larger or when stronger A! B regulations were assumed (S7 Fig).

Causal inference from genome-transcriptome variation data
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This observation goes beyond the well-known problems that arise from a large measure-

ment error in all variables, which acts like a hidden confounder [9], or from a much larger

measurement error in A than B, which can result in B becoming a better measurement of A(t)

than A itself [8]. In this simulation, the false negatives persisted even if E! A was observation-

ally much stronger than E! B, such as when A’s measurement error was only 10%

(s2
A1
¼ 0:1) compared to up to 67% for B (Fig 3B). This suggested a unique and mostly

neglected source of false negatives that would not affect other tests. Indeed, the secondary, rele-

vance, and controlled tests were much less sensitive to such measurement errors (Fig 3A, 3C,

and 3D).

Fig 3. The conditional independence test yields false negatives for unconfounded regulations in the presence of even minor

measurement errors. (A, B, C, D) Null hypothesis p-values of the secondary linkage (A), conditional independence (B), relevance (C), and

controlled (D) tests are shown on simulated data from the ground truth model E! A(t)! B with A(t)! A. A(t)’s variance coming from E is set

to one, x axis (s2
A1

) is A(t)’s variance from other sources and y axis (s2
A2

) is the variance due to measurement noise. A total of 100 values from

10−2 (left, bottom) to 102 (right, top) were taken for s2
A1

and s2
A2

each to form the 100 × 100 tiles. Tiles that did not produce a significant eQTL

relation E! A with p-value�10−6 were discarded. Contour lines are for the log-average of smoothened tile values. Note that for the

conditional independence test (B), the true model corresponds to the null hypothesis, i.e. small (purple) p-values correspond to false

negatives, whereas for the other tests the true model corresponds to the alternative hypothesis, i.e. small (purple) p-values correspond to

true positives (cf. Fig 1). For details of the simulation and results from other parameter settings, see Materials and methods and S7 Fig

respectively. (E) Color bar.

https://doi.org/10.1371/journal.pcbi.1005703.g003
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Findr outperforms the traditional causal inference test and machine

learning methods on microRNA target prediction

In order to evaluate Findr on a real dataset, we performed causal inference on miRNA and

mRNA sequencing data in lymphoblastoid cell lines from 360 European individuals in the

Geuvadis study [3] (Materials and methods). We first tested 55 miRNAs with reported signifi-

cant cis-eQTLs against 23,722 genes. Since miRNA target predictions from sequence compli-

mentarity alone result in high numbers of false positives, prediction methods based on

correlating miRNA and gene expression profiles are of great interest [22]. Although miRNA

target prediction using causal inference from genotype and gene expression data has been con-

sidered [23], it remains unknown whether the inclusion of genotype data improves existing

expression-based methods. To compare Findr against the state-of-the-art expression-based

miRNA target prediction, we used miRLAB, an integrated database of experimentally con-

firmed human miRNA target genes with a uniform interface to predict targets using twelve

methods, including linear and non-linear, pairwise correlation and multivariate regression

methods [24]. We were able to infer miRNA targets with 11/12 miRLAB methods, and also

applied the GENIE3 random forest regression method [25], CIT, and the three tests in Findr:

the new (P) and traditional (PT) causal inference tests and the correlation test (P0) (S1 Text).

Findr’s new test achieved the highest AUROC and AUPR among the 16 methods attempted.

In particular, Findr’s new test significantly outperformed the traditional test and CIT, the two

other genotype-assisted methods, while also being over 500,000 times faster than CIT (Fig 4,

S2 Table, S8 Fig). Findr’s correlation test outperformed all other methods not using genotype

information, including correlation, regression, and random forest methods, and was 500 to

100,000 times faster (Fig 4, S2 Table, S8 Fig). This further illustrates the power of the Bayesian

gene-specific background estimation method implemented in all Findr’s tests (Materials and

methods).

Findr predicts transcription factor targets with more accurate FDR

estimates

We considered 3,172 genes with significant cis-eQTLs in the Geuvadis data [3] (Materials and

methods) and inferred regulatory interactions to the 23,722 target genes using Findr’s tradi-

tional (PT), new (P) and correlation (P0) tests, and CIT. Groundtruths of experimentally con-

firmed causal gene interactions in human, and mammalian systems more generally, are of

limited availability and mainly concern transcription or transcription-associated DNA-bind-

ing factors (TFs). Here we focused on a set of 25 TFs in the set of eQTL-genes for which either

differential expression data following siRNA silencing (6 TFs) or TF-binding data inferred

from ChIP-sequencing and/or DNase footprinting (20 TFs) in a lymphoblastoid cell line

(GM12878) was available [26] (Materials and methods). AUPRs and AUROCs did not exhibit

substantial differences, other than modest improvement over random predictions (S9 Fig, S3

Table). To test for enrichment of true positives among the top-ranked predictions, which

would be missed by global evaluation measures such as AUPR or AUROC, we took advantage

of the fact that Findr’s probabilities are empirical local precision estimates for each test (Mate-

rials and methods), and assessed how estimated local precisions of new, traditional, and corre-

lation tests reflected the actual precision. Findr’s new test correctly reflected the precision

values at various threshold levels, and was able to identify true regulations at high precision

control levels (Fig 5). However, the traditional test significantly underestimated precision due

to its elevated FNR. This lead to a lack of predictions at high precision thresholds but enrich-

ment of true regulations at low thresholds, essentially nullifying the statistical meaning of its

output probability PT. On the other hand, the correlation test significantly overestimated

Causal inference from genome-transcriptome variation data
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Fig 4. Findr achieves highest accuracy and speed on the prediction of miRNA target genes from the Geuvadis data. Shown are the

AUROC (A), AUPR (B) and runtime (C) for 16 miRNA target prediction methods. Methods are colored by type: blue, genotype-assisted

causal inference methods; red, pairwise correlation methods; yellow, multivariate regression methods; purple, other methods. Dashed lines

are the AUROC and AUPR from random predictions. For method details, see S1 Text.

https://doi.org/10.1371/journal.pcbi.1005703.g004
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precisions because it is unable to distinguish causal, reversed causal or confounded interac-

tions, which raises its FDR. The same results were observed when alternative groundtruth

ChIP-sequencing networks were considered (S9 and S10 Figs).

Materials and methods

Datasets

We used the following datasets/databases for evaluating causal inference methods:

1. Simulated genotype and transcriptome data of synthetic gene regulatory networks from the

DREAM5 Systems Genetics challenge A (DREAM for short), generated by the SysGenSIM

Fig 5. Findr predicts TF targets with more accurate FDR estimates from the Geuvadis data. The precision (i.e. 1-FDR) of TF target

predictions is shown at probability cutoffs 0.1 to 0.9 (blue to yellow) with respect to known functional targets from siRNA silencing of 6 TFs

(A) and known TF-binding targets of 20 TFs (B). The number above each bar indicates the number of predictions at the corresponding

threshold. Dashed lines are precisions from random predictions.

https://doi.org/10.1371/journal.pcbi.1005703.g005
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software [27]. DREAM provides 15 sub-datasets, obtained by simulating 100, 300, and 999

samples of 5 different networks each, containing 1000 genes in every sub-dataset but more

regulations for sub-datasets with higher numbering. In every sub-dataset, each gene has

exactly one matching genotype variable. 25% of the genotype variables are cis-expression

Quantitative Trait Loci (eQTL), defined in DREAM as: their variation changes the expres-

sion level of the corresponding gene directly. The other 75% are trans-eQTLs, defined as:

their variation affects the expression levels of only the downstream targets of the corre-

sponding gene, but not the gene itself. Because the identities of cis-eQTLs are unknown, we

calculated the P-values of genotype-gene expression associations with kruX [28], and kept

all genes with a P-value less than 1/750 to filter out genes without cis-eQTL. For the sub-

sampling analysis, we restricted the evaluation to the prediction of target genes from these

cis-genes only, in line with the assumption that Findr and other causal inference methods

require as input a list of genes whose expression is significantly associated with at least one

cis-eQTL. For the full comparison of Findr to the DREAM leaderboard results, we pre-

dicted target genes for all genes, regardless of whether they had a cis-eQTL.

2. Genotype and transcriptome sequencing data on 465 human lymphoblastoid cell line sam-

ples from the Geuvadis project [3] consisting of the following data products:

• Genotype data (ArrayExpress accession E-GEUV-1).

• Gene quantification data for 23722 genes from nonredundant unique samples and after

quality control and normalization (ArrayExpress accession E-GEUV-1).

• Quantification data of miRNA, with the same standard as gene quantification data

(ArrayExpress accession E-GEUV-2).

• Best eQTLs of mRNAs and miRNAs (ArrayExpress accessions E-GEUV-1 and

E-GEUV-2).

We restricted our analysis to 360 European samples which are shared by gene and miRNA

quantifications. Excluding invalid eQTLs from the Geuvadis analysis, such as single-valued

genotypes, 55 miRNA-eQTL pairs and 3172 gene-eQTL pairs were retained.

3. For validation of predicted miRNA-gene interactions, we extracted the “strong” ground-

truth table from miRLAB [24], which contains experimentally confirmed miRNA-gene reg-

ulations from the following databases: TarBase [29], miRecords [30], miRWalk [31], and

miRTarBase [32]. The intersection of the Geuvadis and ground-truth table contains 20

miRNAs and 1054 genes with 1217 confirmed regulations, which are considered for predic-

tion validation. Interactions that are present in the ground-truth table are regarded as true

while others as false.

4. For verification of predicted gene-gene interactions, we obtained differential expression

data following siRNA silencing of 59 transcription-associated factors (TFs) and DNA-

binding data of 201 TFs for 8872 genes in a reference lymphoblastoid cell line (GM12878)

from [26]. Six siRNA-targeted TFs, 20 DNA-binding TFs, and 6,790 target genes without

missing differential expression data intersected with the set of 3172 eQTL-genes and 23722

target genes in Geuvadis and were considered for validation. We reproduced the pipeline of

[26] with the criteria for true targets as having a False Discovery Rate (FDR) < 0.05 from R

package qvalue for differential expression in siRNA silencing, or having at least 2 TF-

binding peaks within 10kb of their transcription start site. We also obtained the filtered

proximal TF-target network from [33], which had 14 TFs and 7,000 target genes in com-

mon with the Geuvadis data.
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General inference algorithm

Consider a set of observations sampled from a mixture distribution of a null and an alternative

hypothesis. For instance in gene regulation, every observation can correspond to expression

levels of a pair of genes wich are sampled from a bivariate normal distribution with zero (null

hypothesis) or non-zero (alternative hypothesis) correlation coefficient. In Findr, we predict

the probability that any sample follows the alternative hypothesis with the following algorithm

(based on and modified from [11]):

1. For robustness against outliers, we convert every continuous variable into standard nor-

mally distributed N(0, 1) values using a rank-based inverse normal transformation across

all samples. We name this step as supernormalization.

2. We propose a null and an alternative hypothesis for every likelihood ratio test (LRT) of

interest where, by definition, the null hypothesis space is a subset of the alternative hypothe-

sis. Model parameters are replaced with their maximum likelihood estimators (MLEs) to

obtain the log likelihood ratio (LLR) between the alternative and null hypotheses.

3. We derive the analytical expression for the probablity density function (PDF) of the LLR

when samples follow the null hypothesis.

4. We convert LLRs into posterior probabilities of the hypothesis of interest with the empirical

estimation of local FDR.

Implementational details can be found in Findr’s source code.

Likelihood ratio tests

Consider correlated genes A, B, and a third variable E upstream of A and B, such as a signifi-

cant eQTL of A. The eQTLs can be obtained either de novo using eQTL identification tools

such as matrix-eQTL [34] or kruX [28], or from published analyses. Throughout this article,

we assume that E is a significant eQTL of A, whereas extension to other data types is straight-

forward. We use Ai and Bi for the expression levels of gene A and B respectively, which are

assumed to have gone through supernormalization, and optionally the genotypes of the best

eQTL of A as Ei, where i = 1, . . ., n across samples. Genotypes are assumed to have a total of na
alleles, so Ei 2 {0, . . ., na}. We define the null and alternative hypotheses for a total of six tests,

as shown in Fig 1. LLRs of every test are calculated separately as follows:

0. Correlation test: Define the null hypothesis as A and B are independent, and the alterna-

tive hypothesis as they are correlated:

Hð0Þ

null ¼ A B; Hð0Þ

alt ¼ A — B: ð1Þ

The superscript (0) is the numbering of the test. Both hypotheses are modeled with gene

expression levels following bivariate normal distributions, as

Ai

Bi

 !

� N
0

0

 !

;
s2

A0
r sA0sB0

r sA0sB0 s2
B0

 ! !

;

for i = 1, . . ., n. The null hypothesis corresponds to ρ = 0.

Maximum likelihood estimators (MLE) for the model parameters ρ, σA0, and σB0 are

r̂ ¼
1

n

Xn

i¼1

AiBi; ŝA0 ¼ ŝB0 ¼ 1; ð2Þ
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and the LLR is simply

LLRð0Þ ¼ �
n
2

ln ð1 � r̂2Þ: ð3Þ

In the absence of genotype information, we use nonzero correlation between A and B as

the indicator for A! B regulation, giving the posterior probability

PðA — BÞ ¼ PðHð0Þ

alt j LLRð0ÞÞ:

1. Primary (linkage) test: Verify that E regulates A from Hð1Þalt � E ! A and

Hð1Þnull � E A. For Hð1Þalt , we model E! A as A follows a normal distribution whose

mean is determined by E categorically, i.e.

Ai j Ei � NðmEi
; s2

AÞ: ð4Þ

From the total likelihood pðA j EÞ ¼
Qn

i¼1
pðAi j EiÞ, we find MLEs for model parameters

μj, j = 0, 1, . . ., na, and σA, as

m̂ j ¼
1

nj

Xn

i¼1

AidEij
; ŝ2

A ¼ 1 �
Xna

j¼0

nj

n
m̂2

j ;

where nj is the sample count by genotype category,

nj �
Xn

i¼1

dEij
:

The Kronecker delta function is defined as δxy = 1 for x = y, and 0 otherwise. When sum-

ming over all genotype values (j = 0, . . ., na), we only pick those that exist (nj> 0)

throughout this article. Since the null hypothesis is simply that Ai is sampled from a geno-

type-independent normal distribution, with MLEs of mean zero and standard deviation

one due to supernormalization, the LLR for test 1 becomes

LLRð1Þ ¼ �
n
2

ln ŝ2

A: ð5Þ

By favoring a large LLR(1), we select Hð1Þ

alt and verify that E regulates A, with

PðE! AÞ ¼ PðHð1Þ

alt j LLRð1ÞÞ:

2. Secondary (linkage) test: The secondary test is identical with the primary test, except it

verifies that E regulates B. Hence repeat the primary test on E and B and obtain the MLEs:

n̂ j ¼
1

nj

Xn

i¼1

BidEij
; ŝ2

B ¼ 1 �
Xna

j¼0

nj

n
n̂2

j ;

and the LLR as

LLRð2Þ ¼ �
n
2

ln ŝ2

B:

Hð2Þ

alt is chosen to verify that E regulates B.
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3. (Conditional) independence test: Verify that E and B are independent when condition-

ing on A. This can be achieved by comparing Hð3Þalt � B E ! A ^ ðA correlates

with BÞ against Hð3Þnull � E ! A! B. LLRs close to zero then prefer Hð3Þnull, and ensure

that E regulates B only through A:

PðE ? B j AÞ ¼ PðHð3Þ

null j LLRð3ÞÞ:

For Hð3Þ

alt , the bivariate normal distribution dependent on E can be represented as

Ai

Bi

 !�
�
�
�
�
Ei � N

mEi

nEi

0

@

1

A;
s2

A rsAsB

rsAsB s2
B

 !0

@

1

A:

For Hð3Þ

null, the distributions follow Eq 4, as well as

Bi j Ai � NðrAi; s
2
BÞ:

Substituting parameters μj, νj, σA, σB, ρ of Hð3Þ

alt and μj, ρ, σA, σB of Hð3Þ

null with their MLEs,

we obtain the LLR:

LLRð3Þ ¼ �
n
2

ln ŝ2

Aŝ2

B � ðr̂ þ sAB � 1Þ
2

� �

þ
n
2

ln ŝ2

A þ
n
2

ln ð1 � r̂2Þ;

ð6Þ

where

sAB � 1 �
Xna

j¼0

nj

n
m̂ jn̂ j;

and r̂ is defined in Eq 2.

4. Relevance test: Since the indirect regulation E! B tends to be weaker than any of its

direct regulation components (E! A or A! B), we propose to test E! A! B with

indirect regulation E! B as well as the direct regulation A! B for stronger distinguish-

ing power on weak regulations. We define Hð4Þalt � E ! A ^ E ! B A and

Hð4Þnull � E ! A B. This simply verifies that B is not independent from both A and E
simultaneously. In the alternative hypothesis, B is regulated by E and A, which is modeled

as a normal distribution whose mean is additively determined by E categorically and A
linearly, i.e.

Bi j Ei;Ai � NðnEi
þ rAi; s

2
BÞ:

We can hence solve its LLR as

LLRð4Þ ¼ �
n
2

ln ŝ2

Aŝ2

B � ðr̂ þ sAB � 1Þ
2

� �
þ

n
2

ln ŝ2

A:

5. Controlled test: Based on the positives of the secondary test, we can further distinguish the

alternative hypothesis Hð5Þalt � B E ! A ^ A! B from the null Hð5Þnull � B E ! A
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to verify that E does not regulate A and B independently. Its LLR can be solved as

LLRð5Þ ¼ �
n
2

ln ŝ2

Aŝ2

B � ðr̂ þ sAB � 1Þ
2

� �
þ

n
2

ln ŝ2

Aŝ2

B:

Null distributions for the log-likelihood ratios

The null distribution of LLR, pðLLR j HnullÞ, may be obtained either by simulation or analyti-

cally. Simulation, such as random permutations from real data or the generation of random

data from statistics of real data, can deal with a much broader range of scenarios in which ana-

lytical expressions are unattainable. However, the drawbacks are obvious: simulation can take

hundreds of times longer than analytical methods to reach a satisfiable precision. Here we

obtained analytical expressions of pðLLR j HnullÞ for all the tests introduced above.

0. Correlation test: Hð0Þnull ¼ A B indicates no correlation between A and B. Therefore,

we can start from

~Bi � i:i:d Nð0; 1Þ: ð7Þ

In order to simulate the supernormalization step, we normalize ~Bi into Bi with zero mean

and unit variance as:

Bi �
~Bi �

�~Bi

s~B
; �~B �

1

n

Xn

i¼1

~Bi; s2
~B �

1

n

Xn

i¼1

ð~Bi �
�~BÞ2: ð8Þ

Transform the random variables f~Big by defining

X1 �
1
ffiffiffi
n
p
Xn

i¼1

Ai
~Bi; ð9Þ

X2 �
1
ffiffiffi
n
p
Xn

i¼1

~Bi; ð10Þ

X3 �
Xn

i¼1

~B2

i

 !

� X2
1
� X2

2
: ð11Þ

Since ~Bi � i:i:d Nð0; 1Þ (according to Eq 7), we can easily verify that X1, X2, X3 are inde-

pendent, and

X1 � Nð0; 1Þ; X2 � Nð0; 1Þ; X3 � w2ðn � 2Þ: ð12Þ

Expressing Eq 3 in terms of X1, X2, X3 gives

LLRð0Þ ¼ �
n
2

ln ð1 � YÞ; ð13Þ

in which

Y �
X2

1

X2
1
þ X3

� Beta
1

2
;
n � 2

2

� �

ð14Þ

follows the Beta distribution.

We define distribution Dðk1; k2Þ as the distribution of a random variable Z ¼ � 1

2
ln ð1� YÞ
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for Y * Beta(k1/2, k2/2), i.e.

Z ¼ �
1

2
ln ð1 � YÞ � Dðk1; k2Þ:

The probability density function (PDF) for Z � Dðk1; k2Þ can be derived as: for z> 0,

pðz j k1; k2Þ ¼
2

Bðk1=2; k2=2Þ
ð1 � e� 2zÞ

ðk1=2� 1Þe� k2z; ð15Þ

and for z� 0, p(zjk1, k2) = 0. Here B(a, b) is the Beta function. Therefore the null distribution

for the correlation test is simply

LLRð0Þ=n � Dð1; n � 2Þ: ð16Þ

1. Primary test: Hð1Þnull ¼ E A indicates no regulation from E to A. Therefore, similarly

with the correlation test, we start from ~Ai � i:i:d Nð0; 1Þ and normalize them to Ai with

zero mean and unit variance.

The expression of LLR(1) then becomes:

LLRð1Þ ¼ �
n
2

ln 1 �
Xna

j¼0

nj

n
ð~̂m j �

�~AÞ2

s2
~A

 !

;

where

~̂m j �
1

nj

Xn

i¼1

~AidEij
:

For now, assume all possible genotypes are present, i.e. nj> 0 for j = 0, . . ., na. Transform

f~Aig by defining

Xj �
ffiffiffiffinj
p

~̂m j ; for j ¼ 0; . . . ; na;

Xnaþ1 �
Xn

i¼1

~A2

i

 !

�
Xna

j¼0

X2

j

 !

:

ð17Þ

Then we can similarly verify that {Xi} are pairwise independent, and

Xi � Nð0; 1Þ; for i ¼ 0; . . . ; na;

Xnaþ1 � w2ðn � na � 1Þ:
ð18Þ

Again transform {Xi} by defining independent random variables

Y1 �
Xna

j¼0

ffiffiffiffi
nj

n

r

Xj � Nð0; 1Þ;

Y2 �
Xna

j¼0

X2

j

 !

� Y2
1
� w2ðnaÞ;

Y3 � Xnaþ1 � w2ðn � na � 1Þ:
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Some calculation would reveal

LLRð1Þ ¼ �
n
2

ln 1 �
Y2

Y2 þ Y3

� �

;

i.e.

LLRð1Þ=n � Dðna; n � na � 1Þ:

To account for genotypes that do not show up in the samples, define nv� ∑j2{jjnj>0} 1 as

the number of different genotype values across all samples. Then

LLRð1Þ=n � Dðnv � 1; n � nvÞ: ð19Þ

2. Secondary test: Since the null hypotheses and LLRs of primary and secondary tests are

identical, LLR(2) follows the same null distribution as Eq 19.

3. Independence test: The independence test verifies if E and B are uncorrelated when con-

ditioning on A, with Hð3Þnull ¼ E ! A! B. For this purpose, we keep E and A intact while

randomizing ~Bi according to B’s correlation with A:

~Bi � r̂Ai þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r̂2

p
Xi; Xi � i:i:d Nð0; 1Þ:

Then ~Bi is normalized to Bi according to Eq 8. The null distribution of LLR(3) can be

obtained with similar but more complex computations from Eq 6, as

LLRð3Þ=n � Dðnv � 1; n � nv � 1Þ: ð20Þ

4. Relevance test: The null distribution of LLR(4) can be obtained similarly by randomizing

Bi according to Eqs 7 and 8, as

LLRð4Þ=n � Dðnv; n � nv � 1Þ:

5. Controlled test: To compute the null distribution for the controlled test, we start from

~Bi ¼ n̂Ei
þ ŝBXi; Xi � Nð0; 1Þ; ð21Þ

and then normalize ~Bi into Bi according to Eq 8. Some calculation reveals the null distri-

bution as

LLRð5Þ=n � Dð1; n � nv � 1Þ:

We verified our analytical method of deriving null distributions by comparing the analytical

null distribution v.s. null distribution from permutation for the relevance test.

Bayesian inference of posterior probabilities

After obtaining the PDFs for the LLRs from real data and the null hypotheses, we can convert

LLR values into posterior probabilities PðHalt j LLRÞ. We use a similar technique as in [11],

which itself was based on a more general framework to estimate local FDRs in genome-wide
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studies [35]. This framework assumes that the real distribution of a certain test statistic forms a

mixture distribution of null and alternative hypotheses. After estimating the null distribution,

either analytically or by simulation, it can be compared against the real distribution to deter-

mine the proportion of null hypotheses, and consequently the posterior probability that the

alternative hypothesis is true at any value of the statistic.

To be precise, consider an arbitrary likelihood ratio test. The fundamental assumption is

that in the limit LLR! 0+, all test cases come from the null hypothesis (Hnull), whilst as LLR

increases, the proportion of alternative hypotheses (Halt) also grows. The mixture distribution

of real LLR values is assumed to have a PDF as

pðLLRÞ ¼ PðHnullÞpðLLR j HnullÞ þ PðHaltÞpðLLR j HaltÞ:

The priors PðHnullÞ and PðHaltÞ sum to unity and correspond to the proportions of null and

alternative hypotheses in the mixture distribution. For any test i = 0, . . ., 5, Bayes’ theorem

then yields its posterior probability as

PðHðiÞ
alt j LLRðiÞÞ ¼

pðLLRðiÞ j HðiÞ
altÞ

pðLLRðiÞÞ
PðHðiÞ

altÞ: ð22Þ

Based on this, we can define the posterior probabilities of the selected hypotheses according to

Fig 1, i.e. the alternative for tests 0, 1, 2, 4, 5 and the null for test 3 as

Pi �

(
PðHðiÞ

alt j LLRðiÞÞ; i ¼ 0; 1; 2; 4; 5;

PðHðiÞ
null j LLRðiÞÞ; i ¼ 3:

ð23Þ

After obtaining the LLR distribution of the null hypothesis [pðLLR j HnullÞ], we can determine

its proportion [PðHnullÞ] by aligning pðLLR j HnullÞ with the real distribution p(LLR) at the

LLR! 0+ side. This provides all the prerequisites to perform Bayesian inference and obtain

any Pi from Eq 23.

In practice, PDFs are approximated with histograms. This requires proper choices of histo-

gram bin widths, PðHnullÞ, and techniques to ensure the conversion from LLR to posterior

probability is monotonically increasing and smooth. Implementational details can be found in

Findr package and in S1 Text. Distributions can be estimated either separately for every (E, A)

pair or by pooling across all (E, A) pairs. In practice, we test on the order of 103 to 104 candi-

date targets (“B”) for every (E, A) such that a separate conversion of LLR values to posterior

probabilities is both feasible and recommended, as it accounts for different roles of every gene,

especially hub genes, through different rates of alternative hypotheses.

Lastly, in a typical application of Findr, inputs of (E, A) pairs will have been pre-determined

as the set of significant eQTL-gene pairs from a genome-wide eQTL associaton analysis. In

such cases, we may naturally assume P1 = 1 for all considered pairs, and skip the primary test.

Tests to evaluate

Based on the six tests in Fig 1, we use the following tests and test combinations for the infer-

ence of genetic regulations, and evalute them in the results.

• The correlation test is introduced as a benchmark, against which we can compare other

methods involving genotype information. Pairwise correlation is a simple measure for the

probability of two genes being functionally related either through direct or indirect regula-

tion, or through coregulation by a third factor. Bayesian inference additionally considers dif-

ferent gene roles. Its predicted posterior probability for regulation is P0.
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• The traditional causal inference test, as explained in [11], suggested that the regulatory rela-

tion E! A! B can be confirmed with the combination of three separate tests: E regulates

A, E regulates B, and E only regulates B through A (i.e. E and B become independent when

conditioning on A). They correspond to the primary, secondary, and independence tests

respectively. The regulatory relation E! A! B is regarded positive only when all three

tests return positive. The three tests filter the initial hypothesis space of all possible relations

between E, A, and B, sequentially to E! A (primary test), E! A ^ E! B (secondary test),

and E! A! B ^ (no confounder for A and B) (conditional independence test). The result-

ing test is stronger than E! A! B by disallowing confounders for A and B. So its probabil-

ity can be broken down as

PT � P1P2P3: ð24Þ

Trigger [36] is an R package implementation of the method. However, since Trigger inte-

grates eQTL discovery with causal inference, it is not practical for use on modern datasets.

For this reason, we reimplemented this method in Findr, and evaluated it with P2 and P2 P3

separately, in order to assess the individual effects of secondary and independence tests. As

discussed above, we expect a set of significant eQTLs and their associated genes as input, and

therefore P1 = 1 is assured and not calculated in this paper or the package Findr. Note that

PT is the estimated local precision, i.e. the probability that tests 2 and 3 are both true. Corre-

spondinly, its local FDR (the probability that one of them is false) is 1 − PT.

• The novel test, aimed specifically at addressing the failures of the traditional causal inference

test, combines the tests differently:

P �
1

2
ðP2P5 þ P4Þ: ð25Þ

Specifically, the first term in Eq 25 accounts for hidden confounders. The controlled test

replaces the conditional independence test and constrains the hypothesis space more

weakly, only requiring the correlation between A and B is not entirely due to pleiotropy.

Therefore, P2 P5 (with P1 = 1) verifies the hypothesis that B E! A ^ ðA ? BjEÞ, a super-

set of E! A! B.

On the other hand, the relevance test in the second term of Eq 25 addresses weak interac-

tions that are undetectable by the secondary test from existing data (P2 close to 0). This term

still grants higher-than-null significance to weak interactions, and verifies that

E! A ^ ðE! B _ A — BÞ, also a superset of E! A! B. In the extreme undetectable

limit where P2 = 0 but P4 6¼ 0, the novel test Eq 25 automatically reduces to P ¼ 1

2
P4, which

assumes equal probability of either direction and assigns half of the relevance test probability

to A! B.

The composite design of the novel test aims not to miss any genuine regulation whilst distin-

guishing the full spectrum of possible interactions. When the signal level is too weak for tests

2 and 5, we expect P4 to still provide distinguishing power better than random predictions.

When the interaction is strong, P2 P5 is then able to pick up true targets regardless of the

existence of hidden confounders.

Evaluation methods

Evaluation metrics. Given the predicted posterior probabilities for every pair (A, B) from

any test, or more generically a score from any inference method, we evaluated the predictions

against the direct regulations in the ground-truth tables with the metrics of Receiver Operating
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Characteristic (ROC) and Precision-Recall (PR) curves, as well as the Areas Under the ROC

(AUROC) and Precision-Recall (AUPR) curves [37]. In particular, AUPR is calculated with

the Davis-Goadrich nonlinear interpolation [38] with R package PRROC.

Subsampling. In order to assess the effect of sample size on the performances of inference

methods, we performed subsampling evaluations. This is made practically possible by the

DREAM datasets which contain 999 samples with sufficient variance, as well as the computa-

tional efficiency from Findr which makes subsampling computationally feasible. With a given

dataset and ground-truth table, the total number of samples n, and the number of samples of

our actual interest N< n, we performed subsampling by repeating following steps k times:

1. Randomly select N samples out of the total n samples without replacement.

2. Infer regulations only based on the selected samples.

3. Compute and record the evaluation metrics of interest (e.g. AUROC and AUPR) with the

inference results and ground-truths.

Evaluation metrics are recorded in every loop, and their means, standard deviations, and

standard errors over the k runs, are calculated. The mean indicates how the inference method

performs on the metric in average, while the standard deviation reflects how every individual

subsampling deviates from the average performance.

Local precision of top predictions separately for confounded and unconfounded gene

pairs. In order to demonstrate the inferential precision among top predictions for any infer-

ence test (here the traditional and novel tests separately), we first ranked all (ordered) gene

pairs (A, B) according to the inferred significance for A! B. All gene pairs were split into

groups according to their relative significance ranking (9 groups in Fig 2C and 2D, as top 0%

to 0.01%, 0.01% to 0.02%, etc). Each group was divided into two subgroups, based on whether

each gene pair shared at least one direct upstream regulator gene (confounded) or not (uncon-

founded), according to the gold standard. Within each subgroup, the local precision was com-

puted as the number of true directed regulations divided by the total number of gene pairs in

the subgroup.

Simulation studies on causal models with measurement error

We investigated how each statistical test tolerates measurement errors with simulations in a

controlled setting. We modelled the causal relation A! B in a realistic setup as E! A(t)! B
with A(t)! A. E remains as the accurately measured genotype values as the eQTL for the pri-

mary target gene A. A(t) is the true expression level of gene A, which is not observable. A is the

measured expression level for gene A, containing measurement errors. B is the measured

expression level for gene B.

For simplicity, we only considered monoallelic species. Therefore the genotype E in each

sample followed the Bernoulli distribution, parameterized by the predetermined minor allele

frequency. Each regulatory relation (of E! A(t), A(t)! A, and A(t)! B) correponded to a

normal distribution whose mean was linearly dependent on the regulator variable. In particu-

lar, for sample i:

AðtÞi � Nð~Ei ; s
2
A1
Þ; ð26Þ

Ai � NðAðtÞi ; s2
A2
Þ; ð27Þ

Bi � Nð~AðtÞi ; s2
BÞ;

ð28Þ

Causal inference from genome-transcriptome variation data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005703 August 18, 2017 20 / 26

https://doi.org/10.1371/journal.pcbi.1005703


in which σA1, σA2, and σB are parameters of the model. Note that s2
B is B’s variance from all

unknown sources, including expression level variations and measurement errors. The tilde

normalizes the variable into zero mean and unit variance, as:

~Xi �
Xi �

�X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX Þ

p ; ð29Þ

where �X and Var(X) are the mean and variance of X� {Xi} respectively.

Given the five parameters of the model (the number of samples, the minor allele frequency,

σA1, σA2, and σB), we could simulate the observed data for E, A, and B, which were then fed into

Findr for tests 2–5 and their p-values of the respective null hypotheses. Supernormalization

step was replaced with normalization which merely shifted and scaled variables into zero mean

and unit variance.

We then chose different configurations on the number of samples, the minor allele fre-

quency, and σB. For each configuration, we varied σA1 and σA2 in a wide range to obtain a

2-dimensional heatmap plot for the p-value of each test, thereby exploring how each test was

affected by measurement errors of different strengths. Only tiles with a significant E! A
eQTL relation were retained. The same initial random seed was employed for different config-

urations to allow for replicability.

Conclusion

We developed a highly efficient, scalable software package Findr (Fast Inference of Networks

from Directed Regulations) implementing novel and existing causal inference tests. Applica-

tion of Findr on real and simulated genome and transcriptome variation data showed that our

novel tests, which account for weak secondary linkage and hidden confounders at the potential

cost of an increased number of false positives, resulted in a significantly improved perfor-

mance to predict known gene regulatory interactions compared to existing methods, particu-

larly traditional methods based on conditional independence tests, which had highly elevated

false negative rates.

Causal inference using eQTLs as causal anchors relies on crucial assumptions which have

been discussed in-depth elsewhere [8, 9]. Firstly, it is assumed that genetic variation is always

causal for variation in gene expression, or quantitative traits more generally, and is indepen-

dent of any observed or hidden confounding factors. Although this assumption is valid for

randomly sampled individuals, caution is required when this is not the case (e.g. case-control

studies). Secondly, measurement error is assumed to be independent and comparable across

variables. Correlated measurement error acts like a confounding variable, whereas a much

larger measurement error in the source variable A than the target variable B may lead to an

inversion of the inferred causal direction. The conditional independence test in particular

relies on the unrealistic assumptions that hidden confounders and measurement errors are

absent, the violation of which incurs false negatives and a failure to correctly predict causal

relations, as shown throughout this paper.

Although the newly proposed test avoids the elevated FNR from the conditional indepen-

dence test, it is not without its own limitations. Unlike the conditional independence test, the

relevance and controlled tests (Fig 1) are symmetric between the two genes considered. There-

fore the direction of causality in the new test arises predominantly from using a different

eQTL when testing the reverse interaction, potentially leading to a higher FDR as a minor

trade-off. About 10% of cis-regulatory eQTLs are linked (as cis-eQTLs) to the expression of

more than one gene [39]. In these cases, it appears that the shared cis-eQTL regulates the genes

independently [39], which in Findr is accounted for by the ‘controlled’ test (Fig 1). When
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causality between genes and phenotypes or among phenotypes is tested, sharing or linkage of

(e)QTLs will be more common. Resolving causality in these cases will likely require the use of

Findr’s conservative, traditional causal inference test in conjunction with the new test, and/or

the combination of association signals from multiple (e)QTLs [40]. Lastly, Findr currently

operates on individual-level genotype and (molecular or phenotypic) trait data only, and is

thus not directly extendable to emerging Mendelian randomization methods that use sum-

mary data from independent eQTL and GWAS studies to attempt to infer causality between

genes and phenotypic traits [40].

In this paper we have addressed the challenge of pairwise causal inference, but to recon-

struct the actual pathways and networks that affect a phenotypic trait, two important limita-

tions have to be considered. First, linear pathways propagate causality, and may thus appear as

densely connected sets of triangles in pairwise causal networks. Secondly, most genes are regu-

lated by multiple upstream factors, and hence some true edges may only have a small posterior

probability unless they are considered in an appropriate multivariate context. The most

straightforward way to address these issues would be to model the real directed interaction

network as a Bayesian network with sparsity constraints. A major advantage of Findr is that it

outputs probability values which can be directly incorporated as prior edge probabilities in

existing network inference softwares.

In conclusion, Findr is a highly efficient and accurate open source software tool for causal

inference from large-scale genome-transcriptome variation data. Its nonparametric nature

ensures robust performances across datasets without parameter tuning, with easily interpret-

able output in the form of accurate precision and FDR estimates. Findr is able to predict causal

interactions in the context of complex regulatory networks where unknown upstream regula-

tors confound traditional conditional independence tests, and more generically in any context

with discrete or continuous causal anchors.
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S6 Fig. Estimated and real precision-recall curves for dataset 4 of the DREAM challenge.

The real precision was computed according to the groundtruth, whilst the estimated

precision was obtained from the estimated FDR from the respective inference method (preci-

sion = 1 − FDR). Only genes with cis-eQTLs were considered as primary targets in prediction

and validation. Both the novel (A, B) and the traditional (C, D) tests were evaluated. In A, C

the original groundtruth table was used to validate predictions, whereas in B, D an extended

groundtruth was used that also included indirect regulations at any level based on the original

groundtruth.
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S7 Fig. Null hypothesis p-values of the conditional independence test on simulated data

from the ground truth model E! A(t)! B with A(t)! A under parameter settings other

than Fig 3. (A, B) 100 (A) or 999 (B) samples. (C, D) Minor allele frequency is 0.05 (C) or 0.3

(D). (E, F) Regarding B’s variance from A(t)! B as unit variance, B’s variance from other

sources including measurement errrors is 0.2 (E) or 20 (F). Unmentioned parameters remain

the same as in Fig 3.
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S8 Fig. ROC (top) and PR (bottom) curves of miRNA target predictions were compared

for Findr’s traditional, new, and correlation tests, GENIE3, CIT, and 11 methods in miR-

LAB, based on Geuvadis data. The solid black lines correspond to expected performances

from random predictions. A higher curve indicates better prediction performance.

(PDF)

S9 Fig. Three methods of causal inference were evaluated and compared against the base-

line correlation test method (P0): Findr’s new test (P), traditional causal inference test in

Findr (PT), and CIT (C). AUROC and AUPR metrics are measured for three inference

tasks. MiRNA compares miRNA target predictions based on Geuvadis miRNA and mRNA

expression levels against groundtruths from miRLAB. SiRNA and TF-binding compares

gene-gene interaction predictions based on Geuvadis gene expression levels against

groundtruths from siRNA silencing and TF-binding measurements respectively. ENCODE

compares the same gene-gene interaction predictions against TF-binding networks derived

from ENCODE data. Dashed lines indicate expected performances from random predic-

tions.
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S10 Fig. Inference precision at estimated precision cutoffs 0.1 to 0.9 with respect to

groundtruth network derived from TF binding of 14 TFs from ENCODE data. The number
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