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Abstract. Large and effective reductions in emissions
of long-lived ozone-depleting substance (ODS) are being
achieved through the Montreal Protocol, the effectiveness
of which can be seen in the declining atmospheric abun-
dances of many ODSs. An important remaining uncertainty
concerns the role of very short-lived substances (VSLSs)
which, owing to their relatively short atmospheric lifetimes
(less than 6 months), are not regulated under the Mon-
treal Protocol. Recent studies have found an unexplained in-
crease in the global tropospheric abundance of one VSLS,
dichloromethane (CH2Cl2), which has increased by around
60 % over the past decade. Here we report dramatic enhance-
ments of several chlorine-containing VSLSs (Cl-VSLSs), in-
cluding CH2Cl2 and CH2ClCH2Cl (1,2-dichloroethane), ob-
served in surface and upper-tropospheric air in East and
South East Asia. Surface observations were, on occasion,
an order of magnitude higher than previously reported in
the marine boundary layer, whilst upper-tropospheric data
were up to 3 times higher than expected. In addition, we pro-

vide further evidence of an atmospheric transport mechanism
whereby substantial amounts of industrial pollution from
East Asia, including these chlorinated VSLSs, can rapidly,
and regularly, be transported to tropical regions of the west-
ern Pacific and subsequently uplifted to the tropical upper
troposphere. This latter region is a major provider of air en-
tering the stratosphere, and so this mechanism, in conjunc-
tion with increasing emissions of Cl-VSLSs from East Asia,
could potentially slow the expected recovery of stratospheric
ozone.

1 Introduction

Large-scale ozone depletion in the stratosphere is a persisting
global environmental problem. It is predominantly caused by
the release of reactive chlorine and bromine species from
halogenated organic compounds. Although the basic science
is well established, there remains significant uncertainty sur-

Published by Copernicus Publications on behalf of the European Geosciences Union.



11930 D. E. Oram et al.: A growing threat to the ozone layer

rounding the long-term recovery of the ozone layer (Heg-
glin et al., 2015). One important issue is the recent, un-
explained increase in the global tropospheric abundance of
dichloromethane (CH2Cl2), which has increased by ∼ 60 %
over the past decade (Leedham-Elvidge et al., 2015; Hossaini
et al., 2015a; Carpenter et al., 2015). CH2Cl2 is one of a large
group of halogenated compounds known as VSLSs (very
short-lived substances). Owing to their relatively short atmo-
spheric lifetimes (typically less than 6 months) and their cor-
respondingly low ozone depletion potentials (ODPs), VSLSs
are not currently regulated by the Montreal Protocol. It
is however estimated that a significant fraction of VSLSs
and their atmospheric degradation products reach the strato-
sphere (> 80 % in the case of chlorinated VSLSs; Carpenter
et al., 2015), and, furthermore, halogenated VSLSs have been
shown to have a disproportionately large impact on radia-
tive forcing and climate due to their atmospheric breakdown
and the subsequent depletion of ozone, occurring at lower,
climate-sensitive altitudes (Hossaini et al., 2015b). Accord-
ing to the most recent Scientific Assessment of Ozone De-
pletion (Carpenter et al., 2015) over the period 2008–2012,
the total chlorine from VSLSs increased at a rate of approxi-
mately 1.3± 0.2 ppt Cl yr−1, the majority of this increase be-
ing due to CH2Cl2, and this has already begun to offset the
decline in total tropospheric chlorine loading over the same
period (13.4± 0.9 ppt Cl yr−1) caused by the reduced emis-
sions of substances controlled by the Montreal Protocol.

In recent years much attention has been focussed on
the potential of bromine-containing VSLSs to contribute to
stratospheric ozone depletion (Law et al., 2007; Montzka et
al., 2011). This is primarily due to the large observed discrep-
ancy between the measured inorganic bromine in the strato-
sphere and the amount of bromine available from known,
longer-lived source gases, namely the halons and methyl bro-
mide (Dorf et al., 2006). In contrast, the role of very short-
lived chlorine compounds (Cl-VSLSs) in ozone depletion
has been considered relatively minor because they are be-
lieved to contribute only a few percent to the total chlorine
input to the stratosphere, the majority of which is supplied
by long-lived compounds such as the chlorofluorocarbons
(CFCs), methyl chloroform (CH3CCl3), and carbon tetra-
chloride (CCl4). Since 1987 the consumption of these long-
lived anthropogenic compounds has been controlled by the
Montreal Protocol, and the sum of total organic chlorine in
the troposphere has been falling since its peak of around
3660 parts per trillion (ppt) in 1993/1994 to ∼ 3300 ppt in
2012 (Carpenter et al., 2015). Because of its relatively short
atmospheric lifetime (∼ 5 years) and its high chlorine con-
tent (3 chlorine atoms per molecule), the main contributor
to this decline has been CH3CCl3. However, most CH3CCl3
has now been removed from the atmosphere with a present-
day abundance of less than 5 ppt. Consequently, the rate of
decline in total organic chlorine has fallen to 13.4 ppt yr−1

(2008–2012), which is around 50 % smaller than the maxi-
mum seen in the late 1990s (Carpenter et al., 2015).

Figure 1. Map of the region showing the location of each CARIBIC
sample. The markers have been coloured according to their CH2Cl2
concentration to highlight the regions where enhanced levels of
VSLSs were observed. Also shown are the approximate locations
of the three surface stations (orange crosses).

Owing to their short atmospheric lifetimes and their hith-
erto low background concentrations, chlorinated VSLSs have
not been considered of major importance for ozone deple-
tion. Indeed the contribution of VSLSs to the total chlorine
entering the stratosphere is estimated to be only 55 (38–
95) ppt (Carpenter et al., 2015), which is between 1 and 3 %
of the present-day (2012) total (3300 ppt). However, because
of their short lifetimes, the potential impact of VSLSs on
stratospheric ozone is highly dependent on the location of
their sources, with emissions close to the major stratospheric
input regions being of far greater significance for ozone de-
pletion (Brioude et al., 2010; Pisso et al., 2010).

The transport of trace gases and aerosols from the tropo-
sphere into the stratosphere occurs primarily in the tropics,
where convective activity and vertical uplift are most intense.
In order to get to the stratosphere, an air parcel has to pass
through the tropical tropopause layer (TTL), the region of
the atmosphere between the level of maximum convective
outflow (∼ 12 km altitude, 345 K potential temperature) and
the cold-point tropopause (∼ 17 km, 380 K) (see Box 1–3,
Fig. 1 in Carpenter et al., 2015). The vertical flux into the
TTL is thought to be dominated by two main regional path-
ways: (1) ascent above the western Pacific during Northern
Hemispheric (NH) winter and (2) the circulation of the Asian
(Indian) Monsoon during NH summer (Fueglistaler et al.,
2005; Randel et al., 2010; Bergman et al., 2012; Haines et
al., 2014). The latter has been suggested as the most impor-
tant region for the transport of anthropogenic pollution (Ran-
del et al., 2010).

Because of their short lifetimes, to be able to accurately
determine the VSLS contribution to total organic halogen
loading in the stratosphere, it is highly desirable to collect
data in the TTL. Surface measurements alone, particularly in
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regions outside the tropics where most long-term surface sta-
tions are sited, are not sufficient. Furthermore, because of the
distribution and seasonality of stratospheric entry points, it is
also essential to measure in specific locations and at specific
times of year, i.e. in the Indian summer monsoon and over
the winter western Pacific. Unfortunately there are very few
available measurements of VSLSs in the TTL generally as it
is above the maximum altitude of most research aircraft, and,
furthermore, there is a paucity of both ground and aircraft
data available in these two key regions of interest. Where
recent TTL data are available it is primarily from different
regions and focussed on brominated VSLSs (e.g. Sala et al.,
2014; Navarro et al., 2015).

The focus of the present study is the western Pacific and,
in particular, the region of the South China Sea. During
NH winter the region is heavily influenced by the large an-
ticyclone that forms over Siberia each year, which gives
rise to strong north-easterly winds that impact deep into the
tropics as far south as Malaysia, Singapore, and Indonesia.
These north-easterly winds typically prevail for 4–5 months
(November–March) and form part of the East Asian win-
ter monsoon circulation. Superimposed on this seasonal syn-
optic flow are transient disturbances known as cold surges,
which are triggered by a southward shift of the anticyclone
and lead to sudden drops in surface air temperatures and in-
creased wind speeds (Zhang et al., 1997; Garreaud, 2001).
It has been proposed that during these events significant
amounts of pollution from continental East Asia (> 35◦ N)
can be transported rapidly to the tropics (Ashfold et al.,
2015). Furthermore, these events, which can last for many
days, occur regularly each winter and are associated with
some of the strongest convective activity in the western Pa-
cific region. Indeed, trajectory calculations show that it can
take less than 10 days for air masses to travel from the East
Asian boundary layer (> 35◦ N) to the upper tropical tropo-
sphere (altitudes> 200 hPa), thereby providing a fast route
by which VSLSs (and many other pollutants) may enter the
lower stratosphere, despite their relatively short atmospheric
lifetimes (Ashfold et al., 2015).

Here we provide strong evidence to support this
proposed transport mechanism based on new atmo-
spheric observations in the East and SE Asia region.
We will present new Cl-VSLS measurements from re-
cent ground-based and aircraft campaigns in the re-
gion during which we have observed dramatic enhance-
ments in a number of Cl-VSLSs, including CH2Cl2, 1,2-
dichloroethane (CH2ClCH2Cl), trichloromethane (CHCl3),
and tetrachloroethene (C2Cl4). Furthermore, we will demon-
strate how pollution from China and the surrounding re-
gion can rapidly, and regularly, be transported across the
South China Sea and subsequently uplifted to altitudes of
11–12 km, the region close to the lower TTL. Using the
NAME (Numerical Atmospheric-dispersion Modelling Envi-
ronment) particle dispersion model, we will also investigate
the origin of the observed Cl-VSLSs and examine the fre-

quency and duration of cold surge events. Finally we present
some new estimates of CH2Cl2 emissions from East Asia and
use these to estimate the likely emissions of CH2ClCH2Cl,
for which there is little information in the recent literature.

2 Methods

Between 2012 and 2014, air samples were collected at var-
ious times (1) two coastal sites in Taiwan – Hengchun
(22.0547◦ N, 120.6995◦ E) and Fuguei Cape (25.297◦ N,
121.538◦ E); (2) at the Bachok Marine Research Station
on the north-east coast of Peninsular Malaysia (6.009◦ N,
102.425◦ E); and (3) during several flights of the IAGOS-
CARIBIC aircraft between Germany and Thailand or
Malaysia. IAGOS-CARIBIC is a European project making
regular measurements from an in-service passenger aircraft
operated by Lufthansa (Airbus A340-600; Brenninkmeijer et
al., 2007; http://www.caribic-atmospheric.com/).

A total of 21 samples were collected at Hengchun be-
tween 7 March and 5 April 2013 with a further 22 samples
taken at Cape Fuguei between 11 March and 4 April 2014.
Overall, 28 samples were collected at Bachok between 20
January and 5 February 2014, during the period of the NE
winter monsoon. The approximate location of each surface
site is shown in Fig. 1. The CARIBIC aircraft samples
were collected during seven return flights between (i) Frank-
furt (Germany) and Bangkok (Thailand) and (ii) Bangkok
and Kuala Lumpur (Malaysia) during the periods Decem-
ber 2012–March 2013 (four flights) and November 2013–
January 2014 (three flights). All CARIBIC flights in this re-
gion between December 2012 and January 2014 have been
included in this analysis. With the exception of three sam-
ples that were taken at altitudes between 8.5 and 9.8 km, the
CARIBIC samples were all (n= 179) collected at altitudes
between 10 and 12.3 km.

2.1 Sample collection

Air samples from Taiwan and Malaysia were collected in
3.2 L silco-treated stainless steel canisters (Restek) at a pres-
sure of approximately 2 bar using a battery-powered di-
aphragm pump (Air Dimensions, B series). In Taiwan the
samples were collected from the surface via a 1 m× 1/4′′ OD
Dekabon sampling line, whilst in Bachok the samples were
collected from the top of an 18 m tower via a 5 m× 1/4′′

OD Dekabon sampling line. In both cases the tubing was
flushed for at least 5 min prior to sampling. The sampling
integrity was confirmed by sampling high-purity air (BTCA-
178, BOC) through the inlet tubing and pump. Samples were
collected within 50 m of the sea and only when the prevailing
winds were from the sea, minimising the impact of any local
emissions. The CARIBIC aircraft samples were collected in
2.7 L glass flasks at a pressure of 4.5 bar using a two-stage
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metal bellows pumping system (Brenninkmeijer et al., 2007;
Baker et al., 2010).

2.2 Sample analysis

The collected air samples were shipped to UEA (University
of East Anglia) and analysed for their halocarbon content by
gas chromatography–mass spectrometry (GC-MS) following
trace gas enrichment using previously published methods.
All samples (i.e. Taiwan, Bachok, and CARIBIC) were anal-
ysed for CH2Cl2, CHCl3, and C2Cl4 using an Entech-Agilent
GC-MS system operating in electron ionisation (EI) mode,
as described in Leedham-Elvidge et al. (2015). Specifically,
1 L samples were dried and pre-concentrated before injection
onto a 30 m× 0.32 mm GS Gas Pro capillary column (Agi-
lent); temperature was ramped from −10 to 200 ◦C. Sam-
ples were interspersed with repeated analyses of a working
standard (SX-706070), a high-pressure air sample contained
in a 34 L electropolished stainless steel cylinder (Essex In-
dustries) provided by the Earth System Research Laboratory
of the National Oceanic and Atmospheric Administration
(NOAA-ESRL, Boulder, CO, USA). CH2Cl2, CHCl3, and
C2Cl4 were quantified on ions with a mass-to-charge ratio of
84 (CH35

2 Cl+2 ), 83 (CH35Cl+2 ), and 166 (C35
2 Cl37

3 Cl+) respec-
tively. Mean analytical precisions were ±2 % for CH2Cl2
and C2Cl4 and ±3 % for CHCl3. Instrument blanks, de-
termined by analysing 1 L aliquots of high-purity nitrogen
(BOC, research grade), were always below the detection
limit of the instrument.

Some of the ground-based samples and a subset of the
CARIBIC samples were also analysed for a range of halocar-
bons, including the newly identified CH2ClCH2Cl, using a
pre-concentration–GC system coupled to a Waters AutoSpec
magnetic sector MS instrument, also operating in EI mode
but run at a mass resolution of 1000 at 5 % peak height.
Samples (using between 200 and 250 mL of air) were anal-
ysed on an identical GS GasPro column following a previ-
ously described method (Laube et al., 2010, 2012; Leedham-
Elvidge et al., 2015). CH2ClCH2Cl was monitored on the
ions with mass-to-charge ratios of 61.99 (C2H35

3 Cl+, quali-
fier) and 63.99 (C2H37

3 Cl+, quantifier). Mean analytical pre-
cision was 1.4 % for CH2ClCH2Cl and the average blank sig-
nal was 0.07 ppt (as quantified using regular measurements
of research-grade helium) and was corrected for on a daily
basis.

2.3 Calibration and quality assurance

CH2Cl2, CHCl3, and C2Cl4 data are reported on the latest
(2003) calibration scales provided by NOAA-ESRL. As was
shown in Leedham-Elvidge et al. (2015), our CH2Cl2 mea-
surements compare very well with those of NOAA-ESRL at
our mutual long-term sampling site at Cape Grim, Tasma-
nia, over more than 6 years. As a recognised international
calibration scale for CH2ClCH2Cl is not yet available, this

compound was calibrated at UEA using the established static
dilution technique recently described (Laube et al., 2012).
CH2ClCH2Cl was obtained from Sigma Aldrich with a stated
purity of 99.8 %. Three dilutions were prepared at 7.1, 11.9,
and 15.8 ppt. The mixing ratio assigned to our working stan-
dard from these dilutions was 5.67 ppt with a 1σ standard de-
viation of 1.8 %. CFC-11 was added to the dilutions as an in-
ternal reference compound, and the CFC-11 mixing ratios as-
signed to the working standard through these dilutions agreed
with the value assigned by NOAA-ESRL within 4.3 %. This
is well within the estimated uncertainty of the calibration
system of 7 % (Laube et al., 2012). In addition, the mixing
ratios of CH2ClCH2Cl in the working standard were com-
pared with those in three other high-pressure canisters (in-
ternal surface was either electropolished stainless steel or
passivated aluminium) over the whole measurement period.
The ratios between standards did not change within the 2σ
standard deviation of the measurements for any of the can-
isters analysed, indicating very good long-term stability for
CH2ClCH2Cl. This was also the case for CHCl3 and C2Cl4.
As noted in Leedham-Elvidge et al. (2015), mixing ratios of
CH2Cl2 were found to change over longer timescales in some
of our standard canisters, but this drift has been successfully
quantified and corrected for as indicated by the very good
comparability with NOAA-ESRL measurements at the Cape
Grim site noted above.

3 Results

Figure 1 shows the location of the three surface observa-
tion stations as well as the location of the CARIBIC sam-
ples. The aircraft sampling points have been coloured by
their CH2Cl2 concentration (see later discussion). Data from
the surface stations and from the CARIBIC aircraft flights
are summarised in Table 1, together with a summary of pub-
lished observations as reported in the most recent Scientific
Assessment of Ozone Depletion (Carpenter et al., 2015). It
should be noted that only selected samples were analysed
for CH2ClCH2Cl, and no data are available from Hengchun
2013 or from CARIBIC flights between Bangkok and Kuala
Lumpur. In addition, only 16 Bachok samples were analysed
for CH2ClCH2Cl.

The highest concentrations of chlorinated VSLSs were
measured in samples collected in Taiwan, suggesting that
Taiwan is located relatively close to major emission re-
gions. Figure 2 shows the March/April 2014 data from Cape
Fuguei. The NAME model (see Supplement) can be used
to infer the recent transport history of this pollution. Our
NAME analysis (Fig. 2b–d) indicates that most of the sam-
ples that contained high concentrations of Cl-VSLSs had
originated from regions to the north of Taiwan, primarily the
East Asian mainland. The median sum of chlorine from the
four VSLSs listed above (6ClVSLS) in 22 samples collected
at Cape Fuguei in March/April 2014 was 756 ppt (range 232–
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Table 1. Summary of Cl-VSLS data from the three surface stations and the seven CARIBIC flights. For comparison, the ranges reported in
the most recent (2014) WMO ozone assessment (Carpenter et al., 2015) for the marine boundary layer (MBL) and lower tropical tropopause
layer (TTL, 12–14 km altitude) are also shown. All data are reported as mole fractions (ppt). FRA: Frankfurt; BKK: Bangkok; KUL: Kuala
Lumpur.

Taiwan 2013 Taiwan 2014 Bachok 2014 MBL (WMO, 2014)b

Median Range Median Range Median (CS)a Median (non-CS) Range Median Range

CH2Cl2 226.6 68–624 227.4 70–639 170.4 81.9 64.8–355 28.4 21.8–34.4
CH2ClCH2Cl – – 85.4 16.7–309 62.2 21.7 16.4–120c 3.7 0.7–14.5d

CHCl3 33.0 11.6–232 35.1 13.8–103 22.8 14.7 12.8–30.5 7.5 7.3–7.8
C2Cl4 4.4 1.7–16.6 5.5 1.7–18.6 4.5 1.9 1.5–9.5 1.3 0.8–1.7
6ClVSLS – – 755.8 232 -2178 546.0 243.1 207–1078c 93.4 70–134

CARIBIC (FRA–BKK, 65–97◦ E) CARIBIC (BKK–KUL, 100–105◦ E) Lower TTL (WMO, 2014)b

10–12 km 10–12 km 12–14 km
Mean Median Range Mean Median Range Mean Range

CH2Cl2 43.2 31.6 14.6–121 50.4 46.5 22.5–100 17.1 7.8–38.1
CH2ClCH2Cle 9.9 6.1 0.4–29.1 – – – 3.6 0.8–7.0
CHCl3 7.0 6.0 2.0–15.6 9.3 8.7 3.7–46.6 6.8 5.3–8.2
C2Cl4 0.87 0.65 0.1–4.4 1.6 1.5 0.2–5.9 1.1 0.7–1.3
6ClVSLS

e 153.7 119.3 48.4–330 67 36–103
6ClVSLS∗

f 110.9 81.4 35.2–301 134.8 127.8 56.6–251 – –
a CS and non-CS refer to the cold surge (polluted) and non-cold surge periods at Bachok. b The WMO data are a compilation of all reported global measurements up
to, and including, the year 2012. The range represents the smallest mean minus 1 standard deviation and the largest mean plus 1 standard deviation of all considered
datasets. Data from the TTL were derived from various aircraft and balloon campaigns. c CH2ClCH2Cl was only analysed for in 16 of the 28 samples collected at
Bachok. d Note that the CH2ClCH2Cl MBL data actually date back to the early 2000s. No recent data were reported. e CH2ClCH2Cl was only analysed for in
selected samples from the Frankfurt–Bangkok flights and not in any samples collected during the Bangkok–Kuala Lumpur flights. These statistics are therefore
based on a reduced number of samples on the FRA–BKK route (24 out of 98). f 6ClVSLS* is defined as the sum of Cl-VSLSs excluding the contribution from
CH2ClCH2Cl. Statistics are derived from all samples (98 FRA–BKK; 81 BKK–KUL).

2178 ppt). Similarly high concentrations and variation were
seen in the 21 samples collected at Hengchun in March/April
2013 (Fig. S1 in the Supplement). To put these concen-
trations in a global context, the total organic chlorine de-
rived from all known source gases in the background tro-
posphere (including CFCs, HCFCs (hydrochlorofluorocar-
bons), and longer-lived chlorocarbons) is currently around
3300 ppt, with a typical Cl-VSLS contribution in the remote
marine boundary layer of approximately 3 % (Carpenter et
al., 2015). Of the four VSLSs measured, the two largest con-
tributors to 6ClVSLS in Taiwan were CH2Cl2 (55–76 %) and
CH2ClCH2Cl (14–30 %).

Figure 3 shows the Cl-VSLS data from 28 samples col-
lected at Bachok, Malaysia, during the winter monsoon sea-
son in late January/early February 2014. During this phase
of the East Asian monsoon the prevailing winds are from
the north-east and, as described earlier, are often impacted
by emissions further to the north, including from mainland
China. As can be seen in Fig. 3, there was a 7-day pe-
riod between 19 and 26 January when significantly enhanced
concentrations of Cl-VSLSs were observed. During this pe-
riod NAME back trajectories show air travelling from con-
tinental East Asia and across the South China Sea before
arriving at Bachok. Three examples during this cold surge
event are shown in Fig. 3b–d. These trajectories often pass
over Taiwan and, in some instances, also over parts of In-
dochina where additional emissions could have been picked

up. As in the Taiwan samples, CH2Cl2 is the largest contrib-
utor to 6ClVSLS (59–66 %), having a mean concentration of
179.9± 71.9 ppt (range 94.0–354.9 ppt, nine samples) dur-
ing the 7-day period of the pollution event. The mean con-
centration of CH2ClCH2Cl was 64.4± 23.9 ppt (range 30.2–
119.5 ppt), accounting for 19–23 % of6ClVSLS. These abun-
dances are substantially higher than those typically found
in the marine boundary layer. For example, the range of
6ClVSLS from the four compounds listed above in the trop-
ical marine boundary layer reported in WMO (2014) is 70–
134 ppt. The range observed at Bachok over the entire sam-
pling period was 207–1078 ppt, with medians of 546 ppt
and 243 ppt during the polluted (20–26 January) and less-
polluted (27 January–5 February) periods respectively (see
Table 1). It is interesting to note that even in the period after
the cold surge event (Fig. 3e, f), the levels of Cl-VSLSs are
still significantly higher than would be expected, suggesting
that this region of the South China Sea is widely impacted by
emissions from E Asia.

The pollution or “cold surge” event observed at Bachok
lasted for 6–7 days and the back trajectories shown in Fig. 3
are typical of those arriving at Bachok during the winter
monsoon period (see NAME animations in Supplement). To
further investigate the frequency and typical duration of these
events, a NAME trajectory analysis using carbon monoxide
(CO) as a tracer of industrial emissions from regions north of
20◦ N was conducted for the entire winter season (see Sup-
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(a)

(b) (c) (d)

(b)

(c)

(d)

(b)

(d)

(c)

Figure 2. Upper panel (a): Mole fractions (ppt) of the four chlorinated VSLSs in air samples collected at Cape Fuguei, Taiwan, in March/April
2014. The error bars are ±1 standard deviation. The black arrows show the dates of the footprint maps shown below. Lower panel (b–
d): NAME footprint maps indicating the likely origin of the air sampled at Cape Fuguei. Panel (b), 13 March, and (c), 30 March, show
examples where the observed VSLS levels are very high and suggest a strong influence from continental East Asia. Figure (d) is from
29 March where the influence of the mainland is much lower and the VSLS mole fractions are much closer to the expected background level.
The location of Cape Fuguei is indicated with a blue circle (see also Fig. 1).

plement for details). Figure 4a shows a time series of this in-
dustrial CO tracer for winter 2013/2014 and suggests that the
observed event in January, during which there was a strong
correlation between the industrial CO tracer and CH2Cl2
(Fig. 4b), is likely to be repeated regularly throughout the
winter. An analysis of a further five winters (Fig. 4c) demon-
strates that 2013/2014 was not unusual and that the events
depicted in Fig. 3a occur repeatedly every year (Fig. S2 in
the Supplement).

The Bachok measurements clearly demonstrate the rapid
long-range transport of highly elevated concentrations of
Cl-VSLSs for several thousand kilometres across the South
China Sea, as predicted by Ashfold et al. (2015). How-

ever, to have an impact on stratospheric ozone, it is nec-
essary to demonstrate that these high concentrations of Cl-
VSLSs can be rapidly lifted to the upper tropical tropo-
sphere (lower TTL) or above. Such evidence can be found
in samples from several recent CARIBIC aircraft flights
in the South East Asia region. Figure 1 shows significant
enhancements of CH2Cl2 during flights over northern In-
dia and the Bay of Bengal and also between Bangkok and
Kuala Lumpur. The same data are plotted against longitude
in Fig. 5a, which shows that elevated concentrations were ob-
served in the seven CARIBIC flights in the region during the
periods December 2012–March 2013 and November 2013–
January 2014. The samples were collected in the altitude
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Figure 3. Panel (a): ole fractions (ppt) of the four chlorinated VSLSs in air samples collected at Bachok in January/February 2014. Strongly
enhanced levels of all four compounds were seen for a 7-day period at the beginning of the campaign (20–26 January). Also shown (dashed
line) are the approximate median background concentrations in the remote marine boundary layer in 2012 (from Carpenter et al., 2015).
Lower panels (b–f): NAME footprint maps indicating the likely origin of the air sampled at Bachok. During the pollution episode (b:
21 January; c: 23 January; d: 24 January), the samples would have been heavily impacted by emissions from the East Asian mainland, whilst
this influence is much reduced during the cleaner, non-polluted periods (e: 3 February; f: 5 February). Note that even after the main pollution
event, the abundance of the VSLSs remain significantly above true background levels for much of the time, suggesting a widespread influence
from industrial emissions on a regional scale. The location of Bachok is indicated with a blue circle (see also Fig. 1).
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Figure 4. (a) Time series of the modelled carbon monoxide (CO) anomaly at Bachok (i.e. that due only to industrial emissions from north
of 20◦ N in the previous 12 days) for winter 2013/2014. The CH2Cl2 data (grey squares) from the Bachok sampling period are overlaid. The
dashed lines show the 25 and 50 ppb thresholds referred to in Fig. 3c (see Supplement for further details). (b) Correlation of the modelled CO
anomaly with the observed CH2Cl2. (c) Average number of days each month, averaged over six consecutive winters (2009/2010–2014/2015),
where the modelled carbon monoxide anomaly at Bachok is above a particular threshold (25 and 50 ppb, which, from the regression in Fig. 3b,
correspond to 176 and 315 ppt of CH2Cl2). The 2013/2014 winter is shown separately for comparison with the 6-year average.

range 10–12.3 km, showing that recent industrial emissions
can regularly reach the lower boundary of the TTL. Although
CH2ClCH2Cl was only analysed for in a selection of samples
during the flights from Germany to Bangkok, elevated mix-
ing ratios coinciding with the high levels of CH2Cl2 were
clearly observed (Fig. 5b). CHCl3 and C2Cl4 were also en-
hanced during these flights (Table 1), with 6ClVSLS being in
the range of 48–330 ppt (Fig. 5c). This is up to 3.2 times
higher than that previously found in the lower TTL (36–
103 ppt; Carpenter et al., 2015). The highest abundances of
Cl-VSLSs were seen in samples collected over the Bay of
Bengal and on flights between Bangkok and Kuala Lumpur
(Fig. 5a). NAME back trajectories (Fig. 5d) indicate that in
these cases the sampled air had almost always been trans-
ported from the east and had often been impacted by emis-
sions from East Asia, with possible contributions from other
countries including the Philippines, Malaysia, and Indochina.

4 Discussion

The high mixing ratios of CH2Cl2 observed in the Taiwan
samples are not entirely unexpected. Previous studies have

found very high levels (> 1 ppb) of CH2Cl2 in various Chi-
nese cities (Barletta et al., 2006) and in the Pearl River
Delta region (Shao et al., 2011). Elevated levels (several
hundred ppt) were also observed in aircraft measurements
in polluted air emanating from China during the TRACE-
P campaign in 2001 (Barletta et al., 2006). These studies
took place in the early 2000s, and emissions may be ex-
pected to have grown significantly since. CH2Cl2 is predom-
inantly (∼ 90 %) anthropogenic in origin and is widely used
as a chemical solvent, a paint stripper, and as a degreas-
ing agent (McCulloch and Midgely, 1996; Montzka et al.,
2011). Other uses include foam blowing and agricultural fu-
migation. A growing use of CH2CL2 is in the production of
HFC-32 (CH2F2), an ozone-friendly replacement for HCFC-
22 (CHF2Cl) in refrigeration applications. Around 10 % of
global CH2Cl2 emissions comes from natural marine and
biomass burning sources (Simmonds et al., 2006; Montzka
et al., 2011).

Whilst the strong enhancements of CH2Cl2 are not en-
tirely unexpected, the presence of high concentrations of
CH2ClCH2Cl most certainly are. There are very few previ-
ously reported measurements of CH2ClCH2Cl, particularly
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(a)

(d)

(c)(b)

Figure 5. (a) Mole fractions (ppt) of CH2Cl2 in CARIBIC air samples collected at 10–12 km altitude over northern India, the Bay of Bengal,
and SE Asia. The samples are plotted against longitude and have been coloured by date. (b) Mole fraction (ppt) of CH2ClCH2Cl in selected
CARIBIC samples (note: CH2ClCH2Cl was not monitored in the samples collected between Bangkok and Kuala Lumpur and only in a
selection of samples on the Frankfurt–Bangkok route). (c) Total Cl-VSLSs derived from the four compounds of interest in the CARIBIC
samples (note: total Cl-VSLSs could only be calculated for the samples shown in b above). (d) NAME footprint maps indicating the likely
origin of the air sampled by the CARIBIC aircraft. NAME footprints at this altitude, and particularly in regions of strong sub-grid-scale
convection not captured fully in the gridded meteorological input data, may be less reliable than those at the surface sites. This makes
pinpointing particular emission regions more difficult. The central panel therefore shows a composite footprint derived from the samples
that contained the highest levels of CH2Cl2 (90th percentile, [CH2Cl2]> 75.6 ppt), with the composite footprint from the remaining samples
([CH2Cl2]< 75.6 ppt) shown in the left-hand panel. To emphasise the likely source regions the right-hand panel shows the difference between
the middle and left-hand panels. The geographical location of each sample included in the composite analysis is shown in blue circles.
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in recent years. Elevated levels have been observed in urban
environments close to known emission sources (Singh et al.,
1981), and, more recently, Xue et al. (2011) reported elevated
levels (91± 79 ppt) in air samples collected in the bound-
ary layer over north-eastern China in 2007. The few reported
measurements of CH2ClCH2Cl in the remote marine bound-
ary layer are typically in the low ppt range (see Table 1), but
these were mostly made well over a decade ago. No long-
term atmospheric measurements of CH2ClCH2Cl have been
reported, and CH2ClCH2Cl is not reported by the main sur-
face monitoring networks (AGAGE and NOAA), so current
background concentrations and longer-term trends are un-
known. CH2ClCH2Cl is predominantly anthropogenic in ori-
gin, its primary use being in the manufacture of vinyl chlo-
ride, the precursor to polyvinyl chloride (PVC), and a num-
ber of chlorinated solvents. CH2ClCH2Cl also finds use as a
solvent and a dispersant and has historically been added to
leaded petrol as a lead scavenger (EPA, 1984). In common
with CH2Cl2, it has also been used as a cleaning/degreasing
agent and as a fumigant. China is the world’s largest pro-
ducer of PVC, accounting for 27 % of global production in
2009 (DCE, 2017). Production has increased rapidly in re-
cent years (14 % per year over the period 2000–2009; DCE,
2017), which could potentially have led to increased atmo-
spheric emissions of CH2ClCH2Cl. Simpson et al. (2011)
observed a small enhancement in CH2ClCH2Cl in Cana-
dian boreal forest fire plumes (background average, June–
July 2008, 9.9± 0.3 ppt; plume average 10.6± 0.3 ppt) and
estimated a global boreal fire source of 0.23± 0.19 kilo-
tonnes (kt) yr−1.

The other Cl-VSLSs presented here are C2Cl4 and CHCl3.
In contrast to CH2ClCH2Cl, long-term atmospheric data
records are available for these compounds, although there
are few data from the SE Asia region. Current trends
show that C2Cl4 is declining in the background troposphere
(∼ 6 % yr−1), whilst CHCl3 is approximately constant (Car-
penter et al., 2015). However, both compounds were elevated
in the samples containing high concentrations of CH2Cl2 and
CH2ClCH2Cl, suggesting that significant, co-located sources
remain. Like CH2ClCH2Cl, C2Cl4 is almost exclusively an-
thropogenic in origin, used primarily as a solvent in the
dry-cleaning industry, as a metal degreasing agent, and as
a chemical intermediate, for example in the manufacture
of the hydrofluorocarbons HFC-134a and HFC-125. CHCl3
is believed to be largely natural in origin (seawater, soils,
macroalgae), but potential anthropogenic sources include the
pulp and paper industry, water treatment facilities, and HFC
production (McCulloch, 2003; Worton et al., 2006; Montzka
et al., 2011).

4.1 Regional emissions of CH2Cl2 and CH2ClCH2Cl

China does not report production or emission figures for
CH2Cl2. However, emissions of CH2Cl2 can be estimated
from the known Chinese production of HCFC-22 (CHClF2).

This is possible because the production of HCFC-22 requires
CHCl3 as feedstock (1 kg HCFC-22 requires 1.5 kg CHCl3)
and because CHCl3 is produced almost entirely (> 99 %) for
HCFC-22 production. Production of chloromethanes by any
manufacturing process leads to the inevitable co-production
of CH2Cl2 and CHCl3, with smaller (3–5 %) co-production
of carbon tetrachloride (CCl4). The production ratios vary by
individual plant but are within the range of 30 : 70–70 : 30 (%
CH2Cl2 : CHCl3). Chinese chloromethanes plants, which to-
gether represent some 60 % of global capacity and produc-
tion, are generally built to a 40 : 60–60 : 40 flexibility ratio.
With falling CHCl3 demand due to diminished feedstock de-
mand for HCFC-22 production, and based on regular dis-
cussions with the individual large producers, ratios in China
have been switching in recent years from the traditional
40 : 60 towards 50 : 50 (CH2Cl2 : CHCl3; Nolan Sherry as-
sociates1).

It can be calculated that in 2015 China produced approx-
imately 600 kt of HCFC-22 for all uses (Nolan Sherry as-
sociates), which would require 900 kt of CHCl3 as feed-
stock. Subtracting Chinese imports of CHCl3 (40 kt; Com-
trade, 2016) and allowing for some limited emissive solvent
use (15 kt) suggests that China produced around 875 kt of
CHCl3 in 2015. As noted above, in the chlorocarbon in-
dustry, CH2Cl2 and CHCl3 are produced in the same man-
ufacturing process, and in China this is currently moving
from a historic production ratio of around 40 : 60 towards
50 : 50. Using a production ratio of 45 : 55, it can therefore
be estimated that China produced around 715 kt of CH2Cl2
in 2015. Approximately 90 kt of this was exported (Com-
trade, 2016), and another 170 kt was used for the produc-
tion of HFC-32 (CH2F2), which is a non-emissive appli-
cation (Nolan Sherry associates). This leaves an estimated
455 kt (±10 %) of CH2Cl2 which is used almost exclusively
in emissive applications such as paint stripping, foam blow-
ing, pharmaceuticals, and solvent use. Although there is no
specific industry-based aggregation of these numbers, they
have been verified in discussion with Chinese and other in-
dustry sources. A similar method has recently been used to
assess emissions of CCl4 (SPARC, 2016).

There is a strong linear correlation between the ob-
served CH2Cl2 and CH2ClCH2Cl data at both Bachok (R2

=

1Nolan Sherry Associates (NSA) proprietary information: some
of the data used in these calculations are proprietary in nature, being
based on direct information from discussions with the producers,
and have been aggregated for reasons of confidentiality. In the case
of the HCFC-22 production data this is also because there are two
uses of HCFC22: as a chemical intermediate, and as a refrigerant
and a foam blowing agent. The latter uses are “emissive” and are
controlled by the Montreal Protocol (http://ozone.unep.org) and are
in the public domain. Information on the controlled uses of HCFC-
22 may be found at http://ozone.unep.org or by access to the Multi-
lateral Fund of the Montreal Protocol (http://www.multilateralfund.
org) and, in the case of China, by private subscription to the industry
magazine China Fluoride Materials (www.cnchemicals.com).
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0.9799) and Cape Fuguei (R2
= 0.9189). Combining the

datasets yields a slope of 0.4456± 0.0194 (R2
= 0.9228).

Using the emissions for CH2Cl2 derived above (455 kt) and
making the assumptions that (1) all emissions originate in
China and (2) there are no significant relative losses in the
two compounds since emission (lifetimes are 144 days for
CH2Cl2 and 65 days for CH2ClCH2Cl), we can estimate
Chinese emissions of CH2ClCH2Cl to be of the order of
203± 9 kt yr−1. If accurate, the scale of these emissions is
a major surprise as CH2ClCH2Cl is highly toxic (suggesting
that local emissions would be minimised) and believed to be
used almost exclusively in non-emissive applications.

5 Concluding remarks

When calculating the VSLS contribution to stratospheric
chlorine, it is usual to assume an average concentration in the
region of the TTL known as the level of zero radiative heat-
ing (LZRH). The LZRH is located at the transition between
clear-sky radiative cooling and clear-sky radiative heating.
This occurs at an approximate altitude of 15 km, and it is
believed that air masses above this level will go on to en-
ter the stratosphere (Carpenter et al., 2015). As noted above
there are very few measurements in this region and, fur-
thermore, many of the available measurements were made
over a decade ago, and assumptions based on surface tempo-
ral trends have to be made in order to estimate present-day
values (Carpenter et al., 2015; Hossaini et al., 2015a). An-
other key deficiency in this estimation of VSLS concentra-
tions entering the stratosphere is that most of the reported
measurements have not been made in the two key regions
where the strongest troposphere-to-stratosphere transport oc-
curs. Although we have no data from the region of the LZRH,
the CARIBIC data over northern India and SE Asia sug-
gest that the contribution of VSLSs to stratospheric chlorine
loading may be significantly higher than is currently esti-
mated (50–95 ppt; Carpenter et al., 2015). It is also interest-
ing to note that the much-discussed contribution of VSLS–Br
compounds to stratospheric bromine is approximately 5 ppt,
which is equivalent to 300 ppt of chlorine (1 ppt of bromine is
roughly equivalent to 60 ppt chlorine; Sinnhuber et al., 2009).
The CARIBIC measurements suggest that Cl-VSLSs could
currently, on occasion, contribute a similar amount.

These new measurements of Cl-VSLSs in Taiwan, in
Malaysia, and from an aircraft flying above South East Asia
show that there are substantial regional emissions of these
compounds; that these emissions can be rapidly transported
long distances into the deep tropics; and that an equally rapid
vertical transport to the upper tropical troposphere is a regu-
lar occurrence. Although the focus of this paper is short-lived
chlorinated gases, there are many other chemical pollutants
contained in these air masses which will have a large impact
on such things as regional air quality.

Unlike the bromine-containing VSLSs, which are largely
natural in origin, the Cl-VSLSs reported here are mainly an-
thropogenic, and consequently it would be possible to control
their production and/or release to the atmosphere. Of partic-
ular concern are the rapidly growing emissions of CH2Cl2,
and potentially CH2ClCH2Cl, especially when considering
the geographical location of these emissions, close to the
major uplift regions of the western Pacific (winter) and the
Indian sub-continent (summer). Without a change in indus-
trial practices, the contribution of Cl-VSLSs to stratospheric
chlorine loading is likely to increase substantially in the com-
ing years, thereby endangering some of the hard-won gains
achieved, and anticipated, under the Montreal Protocol.

Data availability. The data form part of a larger halocarbon
database that will be submitted to the UK Centre for Environmen-
tal Data Analysis (CEDA, www.ceda.ac.uk) archive in 2018. Until
this time, the data are available from the corresponding author upon
request.
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