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ABSTRACT 

We consider a comprehensive mathematical and numerical 
strategy to couple water-wave motion with rigid ship dynamics 
using variational principles. We present a methodology that ap- 
plies to three-dimensional potential flow water waves and ship 
dynamics. For simplicity, in this paper we demonstrate the 
method for shallow-water waves coupled to buoy motion in two 
dimensions, the latter being the symmetric motion of a cross- 
section of a ship. The novelty in the presented model is that it 
employs a Lagrange multiplier to impose a physical restriction 
on the water height under the buoy in the form of an inequality 
constraint. A system of evolution equations can be obtained from 
the model and consists of the classical shallow-water equations 
for shallow, incompressible and irrotational waves, and relevant 
equations for the dynamics of the wave-energy buoy. One of  
the advantages of the variational approach followed is that, when 
combined with symplectic integrators, it eliminates any numeri- 
cal damping and preserves the discrete energy; this is confirmed 
in our numerical results. 

 
NOMENCLATURE 

H Distance between centre of mass and keel of the buoy 
Hb(x) Steady-state shape of the buoy’s hull 

H0 Uniform water lever at rest 

 
  

L Channel length 

Lp Steady-state position of waterline point 

M Mass of the buoy 

R(t) Wavemaker motion on left boundary 

T Final time 

W (t) Vertical velocity of the buoy’s centre of mass 

Z(t) Vertical displacement of the buoy’s centre of mass 

Z̄ Steady-state position of the buoy’s centre of mass 

g Gravitational acceleration 

h(x, t) Water height 

hb(x, Z(t)) Shape of the buoy’s hull 

x, z, t Horizontal and vertical coordinates, and time 

xp(t) Waterline point 

α Angle between the buoy’s hull and the horizontal 

η(x, t) Free-surface deviation 

λ (x, t) Lagrange multiplier 

λ̄ (x)   Steady-state solution of Lagrange multiplier λ 

µ(x, t) Slack function for inequality constraint 

µ̄ (x)   Steady-state solution of slack function µ 

ρ Density of water 

φ (x, t) Velocity potential 

( )k,A Indices denoting mesh node numbering 

( )n Time-discretisation levels 
∗Address all correspondence to this author. 
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INTRODUCTION 

Fast ships deliver all kinds of services, for example trans- 
portation of wind farm maintenance personnel and provision of 
supplies for oil and gas platforms. Ships are especially vulnera- 
ble to extreme wave phenomena such as waves with anomalously 
high amplitudes relative to the ambient waves. The aim of this 
paper is to make progress towards investigating the effect of non- 
linear water waves, as well as amplified rogue waves, on float- 
ing structures such as ships and wave-energy devices. With that 
ultimate goal in mind, we consider a reduced two-dimensional 
problem with waves impacting a floating wave-energy buoy with 
a simple linear structure, constrained to move upward only (as 
shown in Fig. 1). The simplification is performed in order to un- 
derstand the mechanics behind the wave-buoy coupling and to 
test the accuracy of the method. Moreover, this allows our novel 
approach (described later) to be tested on a simpler problem, be- 
fore generalising it to include three-dimensional ship dynamics 
coupled to potential flow water waves. 

We present a mathematical and numerical model of the mo- 
tion of a buoy in (non)linear waves. We derive a coupled model 
for the wave-buoy dynamics by following a variational method- 
ology [1, 2, 3], in order to ensure zero numerical damping which 
is important for wave propagation. The final system of evolution 
equations comprises the classical shallow-water-wave equations 
for incompressible and irrotational waves, and a set of equations 
describing the dynamics of the wave-energy buoy. The novelty in 
our model is in the presence of a physical restriction on the water 
height under the buoy, which is enforced through an inequality 
constraint and by employing a Lagrange multiplier. 

Our approach with the use of an inequality constraint avoids 
the need of splitting the domain in two subdomains: one with a 
free surface h(x, t) and a second subdomain where the free-water 
surface is constrained by the presence of the buoy and hence 
h(x, t) = hb(x, Z(t)) in that region. The latter condition physi- 
cally means that the water under the buoy takes exactly the shape 

 

mentation employs second-order continuous Lagrange polyno- 
mial approximations in space and a constrained extension of the 
second-order (dis)continuous Störmer-Verlet symplectic scheme 
in time (i.e. the RATTLE algorithm). The model is implemented 
in Firedrake [8], an automated system for the solution of partial 
differential equations with the finite element method. We have 
shown the numerical results of the linearised coupled wave-buoy 
system before [4, 9] and here we will confirm their validity using 
the new, novel approach described above. The numerical results 
confirm conservation of total mass and energy, as well as phase- 
space volume. 

 
MATHEMATICAL MODEL 

Variational Principle For Shallow-Water Waves 
A classical mathematical theory in the modelling of incom- 

pressible and irrotational water waves is the so-called potential 
flow theory.  It’s main advantage is that it reduces the degrees 
of freedom in the problem by describing the fluid velocity u in 
terms of the gradient of a scalar field, the velocity potential Φ. 
The dynamics of water waves are also Hamiltonian, namely they 
have the property of conserving the total (i.e. kinetic and poten- 
tial) energy of the system. In this case, the dynamics can be de- 
scribed using variational methods, in particular the well-known 
Luke’s variational principle for water waves [1]. 

Consider a two-dimensional domain with horizontal coordi- 
nate x [0, L] and vertical coordinate z  [0, h(x, t)], where h(x, t) 
is the local wave height that evolves in time t [0, T ]. In the 
shallow-water approximation considered here, the dynamics are 
reduced to the dynamics on the free surface and are fully de- 
scribed by the total wave height h(x, t) and free-surface velocity 
potential φ (x, t) := Φ(x, h(x, t), t). The simplification of Luke’s 
variational principle [1] for shallow-water waves is 

0 δ 

∫ T  ∫ L 

−ρ
.
h∂ φ 

1 
h ∂ φ 2 1 

g h − H 2
Σ 

dx dt (1) 

 

second subdomain only. The disadvantage of the approach pre- 
sented in [4] is that the finite element discretisation leads to the 
emergence of local matrices valid in the region under the buoy 
only. 

The use of inequality constraints is typical in molecular and 
polymer dynamics [5] and optimal control systems [6], but it was 
never seen used in the context of water waves. In our prob-  
lem, the inequality constraint is imposed weakly in the vari- 
ational principle and also includes the equality constraint pre- 
sented in Kalogirou and Bokhove [4] as a sub-case. Alterna- 
tive approaches of enforcing similar inequality constraints can 
be found in [7]. 

The model is solved numerically using a variational 
(dis)continuous Galerkin finite element method with a special, 
new and robust time integration method. The numerical imple- 

 

which essentially provides an expression for the fluid’s pressure 
(as defined by Bernoulli’s principle). The above variational prin- 
ciple states that the variations of the pressure are zero, which is 
equivalent to saying that the pressure remains constant through- 
out the fluid. 

 
Linear Wave-Energy Buoy 

Suppose we have a two-dimensional channel filled with wa- 
ter up to a uniform height H0, and a wave-energy buoy of mass 
M residing at the right end of the channel. The buoy’s mo- 
tion is restricted as it can only move in the vertical; the po- 
sition of the buoy can be found by following the vertical dis- 
placement of the centre of mass Z(t) as a function of time. The 
buoy’s vertical velocity is denoted by W (t). The buoy resides at 

of the wetted part of the buoy. In Kalogirou and Bokhove [4], we 
imposed this constraint by using a Lagrange multiplier λ in the 
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constraint as seen next. The constrained variational principle is 
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FIGURE 1: Problem configuration with a linear buoy at the 

right end of the channel. The far-left point where the water 

meets the buoy defines the waterline point xp(t). 

 

z = hb(x, Z(t)) above the bottom in a certain horizontal interval 

2 

 
where we have first integrated by parts and changed the sign of 
the variational principle (3), and then imposed the constraint 

from xp(t) x L, with xp the edge of the buoy at the water 
surface. As a clear example, a linear buoy has the form h − hb 

+ 
1 

µ2 = 0, (5) 
2 

 

hb(x, Z(t)) = Z(t) − H − tan α (x − L), (2) 

 
where Z H is the position of the keel (at x = L), α the angle 
between the hull and the horizontal and L the length of the do- 
main. A simple schematic diagram of the problem configuration 
is given in Fig. 1. 

We artificially extend this buoy function hb smoothly into 

with global Lagrange multiplier λ . The use of the slack function 
µ2 in the constraint is such that to enforce the inequality condi- 
tion (h − hb) ≤ 0 as will be seen later. 

Taking the variations in (4) results in 
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waterline point at xp(t) is defined (implicitly) by the equality h(x (t), t) = h (x (t), Z(t)), which essentially imposes that the + ρ
.
h∂t (δ φ ) + h∂xφ ∂x(δ φ )

Σ
 

 

 
 

  

p b p + ρδ λ 
.
h − h + µ2

Σ
 

height of the free surface should equal the buoy’s surface height 
at that point x = xp(t). 

b 2 

+ ρλ µδ µ
Σ 

dx 

Coupled Model For Nonlinear Wave-Buoy Dynamics 

A coupled model describing the evolution of water waves 
and the motion of a buoy can be obtained by combining the La- 
grangian densities of the two systems into one variational prin- 

+ δ Z
.

MẆ 

+ MZ(δẆ 

Mg − ρ 

∫ L 

λ dx
Σ

 

) + MW δW 
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dt (6a) 

ciple. We therefore extend Luke’s variational principle (1) for ∫ T Σ∫ L.
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for the buoy, i.e. we write 
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The above variational principle is still incomplete, as it 
doesn’t include any condition on the water height under the buoy. 
In the region x [xp, L], the water height h(x, t) is not an inde- 

pendent variable but is restricted by the presence of the buoy. We 
impose this physical constraint in the form of an inequality 
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shallow-water waves and add the additional degrees of freedom 
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0 

0 

− MδW (Ż − W )
Σ 

dt. (6b) 

To go from step (6a) to (6b), we have integrated the second 
and last lines by parts and applied the end-point conditions δ φ 

|T = 0 and δW |T = 0. 
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as shown in Fig. 2. Here, the function H(x) denotes the water 
level at rest and is defined as 
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H(x) = 
H0 for 0 ≤ x ≤ Lp 

Hb(x) for Lp ≤ x ≤ L, 

 

(10a) 

 

FIGURE 2: Steady-state configuration with buoy and water 

being stationary. The water has a uniform depth H0 and the 
waterline point is fixed at Lp. 

with  
Hb(x) = Hb(x; Z̄) = Z̄ − H − tan α (x − L), (10b) 

 

The resulting equations of motion are the following 

δ h :   ∂t φ + 
1 
(∂xφ )

2
 + g(h − H0) + λ = 0, (7a) 

δ φ :   ∂t h + ∂x(h∂xφ ) = 0, (7b) 

δ λ : h − hb + 
1 

µ2 = 0, (7c) 

δ µ :   λ µ = 0, (7d) 

the buoy’s hull shape at the floating rest state. The rest water 
level is essentially equal to the flat state H0 in the region where 
only water exists in the channel, whereas in the region with the 
buoy it is given by the linear shape of the buoy’s hull Hb(x). 

The steady-state solution also satisfies the equations of mo- 
tion (7), which become 

 
g(H(x) − H0) + λ̄ (x) =0, (11a) 

δ Z :    MẆ Mg − ρ 

∫ L 

λ dx = 0, (7e) H(x) − Hb(x) + 
1 

µ̄ (x)
2
 =0, (11b) 

δW : Ż = W. (7f) 
2 

λ̄ (x)µ̄ (x) =0, (11c) 

When looking at Eqs. (7c)-(7d) obtained by the variations of δ λ 
and δ µ, respectively, it becomes obvious that in different regions 
of the domain we can have one of the two following cases: 

(1) In the part of the domain where µ2 = 2(hb − h) > 0, i.e. for 
0 ≤ x ≤ xp, we get from (7c)-(7d) that 

Mg − ρ 

∫ L 

λ̄ 

From the above system, we find 

(x) dx =0. (11d) 

 

λ = 0   and µ 0. 
 

(8a) 
0 ≤ x ≤ Lp : 

Lp ≤ x ≤ L : 

λ̄ (x) = 0, 

µ̄ (x) = 0, 

 
  

µ̄ (x) = 2(Hb(x) − H0), (12a) 

λ̄ (x) = −g(Hb(x) − H0). (12b) 

(2) In the part of the domain under the buoy where h = hb, i.e. 

for xp ≤ x ≤ L, we get from (7c)-(7d) that 

µ = 0   and   λ 0. (8b) 

 
On applying Archimedes’ principle for the volume of dis- 

placed water (which should equal the volume of the buoy), we 
can find an exact expression for the rest position of the buoy’s 
centre of mass, given by 

The above conditions (8) are called complementary slackness 
conditions [6, 7]. Therefore, by introducing the constraint (5), 
we have imposed the non-negative nature of (hb h) both as in- 
equality as well as an equality. 

 
Steady State 

When the free-water surface is flat and the buoy is stationary, 
the problem admits a steady-state solution, given by 

h = H(x), φ = 0, λ = λ̄ (x), µ = µ̄ (x), 

 

Z̄   = H0 + H − 

. 
2M tan α 

. (13) 

Finally, Eqs. (11)-(13) also define the waterline point at rest x = 
Lp, which is now independent of time and found to be 
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Linearised Dynamics 

The nonlinear variational principle (4) can be linearised 
around the rest state by considering the steady-state solution (9)- 

(13) plus small perturbations 

h = H(x) + η, φ = 0 + φ ,̃ 

λ = λ̄ (x) + λ̃ , µ = µ̄ (x) + µ̃ , (15) 

Z = Z̄ + Z̃, W = 0 +W̃ , 

hb = Hb(x; Z̄) + Z̃, xp = Lp + x̃p. 

In what follows, all perturbation variables are written without the 
tildes for simplicity. 

In the linearised variational principle, the constant terms are 
discarded (as their variations are zero), terms linear in the per- 
turbation variables cancel after using the steady-state solution, 
and only quadratic terms are kept. Hence, we find the following 
variational principle for the linearised equations of motion 

0 =δ 

∫   Σ∫   

ρ  η∂ φ + 
1 

H(x)(∂ φ )
2
 + 

1 
gη2

 

(1) In region 0       x     Lp, we have that λ̄  = 0 and µ̄  > 0 (see 
(12a)); therefore it follows from (17c)-(17d) that in the inter- 
val with a free surface 

 

λ = 0   and µ ƒ= 0. (18a) 

(2) In region   Lp     x     L, we have that µ̄  = 0 while λ̄      0 (see 
(12b)); hence it follows from (17c)-(17d) that in the interval 
under the buoy where η = Z 

 
µ = 0   and   λ 0. (18b) 

 
NUMERICAL DISCRETISATION OF THE EQUATIONS 

Spatial Discretisation: Finite Element Method 

We split the horizontal domain [0, L] in N finite elements 
0 = x0 < x1 <   < xk <    < xN  = L of equal sizes, and con- 
sider continuous piecewise-linear basis functions ϕk(x) in each 
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h h h h 

+ MZẆ  + 
1 

MW 2   dt (16a) 
2 ∫ T Σ∫ L.

ρδ η  ∂ φ gη λ 

− ρδ φ 
.
∂t η + ∂x(H(x)∂xφ )

Σ
 

+ ρδ µ
.
µ̄ λ + λ̄ µ

Σ 
dx 

η ≈ ηh = ηk(t)ϕk(x),   φ ≈ φh = φk(t)ϕk(x), (19) 

λ ≈ λh = λkϕk(x), µ ≈ µh = µkϕk(x), 

where the Einstein summation convention is used for notational 
brevity. The above finite element expansions are substituted in 
the linearised variational principle in Eq. (16a) and the following 
matrices are introduced 

. 
˙ 

∫ L Σ 
+ δ Z MW − ρ 

0
 

. Σ 

λ dx 
Σ M 

∫ L 

ϕ ϕ dx A 

∫ L 

H x ∂ ϕ ∂ ϕ dx 
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∫ L 

µ̄ 
 

  

 
x  ϕ ϕ dx C ∫ L 

λ̄

  x ϕ ϕ dx  (20) 

after using the end-point conditions δ φ |T = 0 and δW |T = 0. 
kA = 

0 
(  ) k  A , kA = 

0 
(  ) k  A , 

The above variations lead to the linear equations of motion L 

QA = A , 
0 

 

 
η − Z + µ̄ µ = 0, 

with indices k, A used to denote the total number of nodes. The 
time-continuous but space-discrete linear variational principle is 
therefore given by 
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Once again, we get the following two cases in different parts 

of the domain: 

+ρMkAηkλA − ρQAλAZ + ρBkAλAµk + 
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ρCkAµkµA 

+MZẆ  + 
1 

MW 2    dt. (21) 

0 

0 0 

are approximated by η , φ , λ and µ and the latter are expanded 
of the elements. The space-dependent variables η, φ , λ and µ 

− MδW dt , (16b) kA = 
0 

k , 

= 
0 0 

δ η : ∂t φ + gη + λ = 0, (17a) 

δ φ : 

δ λ : 
∂t η + ∂x

.
H(x)∂xφ 

Σ 
= 0, 

(17b) 

(17c) 

δ µ : µ̄ λ + λ̄ µ = 0, (17d) 

δ Z : 
MẆ  − ρ 

∫ L 

λ dx 0 
= , 

0 
(17e) 

δW : Ż = W. (17f) 
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3. functions: numerical approximation of the unknowns ηh, φh, 

∆t k k 2 k . (24) 
Ĩ  = λ̃ n+1/2 

dx, (26) 
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∆ 

M 
kA 

k 

k k 

 1 

Time Discretisation: Symplectic Methods 

After obtaining the variational principle (21) in a space- 
discrete form,  we then apply a modified RATTLE  algorithm  
to discretise the variational principle in time. RATTLE [10] 

The above left-hand-side matrix is symmetric. Upon solving lin- 

ear system (24) and knowing the solution for λ̃ n+1/2
, the rest of 

the equations can be solved in the following order 

was developed alongside with SHAKE to provide a stable time- n+1/2 n 1 n ˜ n+1/2 

discretisation symplectic scheme for constrained Hamiltonian MkAφA = MkAφA − 
2 
∆t gMkAηA − MkAλA , (25a) 

systems [11, 12], and it can be seen as an extension of the 
W n+1/2 n ρ ˜ n+1/2 

Störmer-Verlet method.  The final space-time discrete equations 
of motion for the linear system are the following 

= W  + 
M 

QAλA , (25b) 

M   ηn+1 = M   ηn + ∆t A   φ n+1/2
, (25c) 

kA k kA k kA k 

M φ 
n+1/2 

= M
 φ n − 

1 
∆t gM ηn − 

1 
∆t M λ n+1/2

, (22a) Zn+1 = Zn + ∆t W n+1/2, (25d) 
kA A 

n 1 2 

kA  A 2 kA  A 2 kA A 

n 1 n+1/2 MkAφ n+1 = MkAφ 
n+1/2 

−   ∆t gMkAη
n+1 − MkAλ̃ n+1/2

,   (25e) 
MW + / = MW  + 

2 
ρ∆t QAλA , (22b) A A 2 A A 

 
n n+1/2 W n+1 = W n+1/2 + 

 ρ 
Q λ̃ n+1/2

. (25f) 
 

MkAη +1 = MkAηn + ∆t AkAφ , (22c) M A
 

k k k 

Zn+1  = Zn + ∆t W n+1/2, (22d) 

0 = MkAηn+1 − QAZn+1 + BkA µ
n+1/2

, (22e) 

 

Firedrake Implementation of semi-linear system 

 
0 = BkAλ 

n+1/2 
+CkA µ

n+1/2
, (22f) be solved easily using linear algebra in a mathematical software 

A A 

M φ n+1 = M φ n+1/2
 − 

1 
∆t gM ηn+1 − 

1 
∆t M 

λ 
n+1/2

,
 such as MATLAB. However, the system becomes more compli- 

kA A kA A 2 kA A 2 kA A  
(22g) 

cated when the nonlinear problem is considered, in which case 
an iterative method needs to be used for the solution of a non- 

MW n+1 n+1/2 1 n+1/2 linear system of equations (such as Newton’s and Halley’s meth- 
= MW + 

2 
ρ∆t QAλA . (22h) ods). The numerical package Firedrake [8] is a user-friendly sys- 

tem which makes the implementation of nonlinear systems much 

Since the above system is linear, we can easily solve the two 

Eqs. (22e)-(22f) to determine solutions λ n+1/2
 and µn+1/2

 first.  In 

order to obtain these solutions, the unknowns ηn+1 and Zn+1 

have to be eliminated from the discrete constraint Eq. (22e). This 
can be achieved by first using Eqs. (22c) and (22d), respectively, 

followed by use of Eqs. (22a) and (22b) to eliminate φ n+1/2
 and 

W n+1/2. Equations (22e)-(22f) therefore reduce to a linear sys- 
tem for λ n+1/2

 and µn+1/2
, given by 

simpler, by employing linear and nonlinear solvers provided by 
PETSc [13, 14, 15]. 

In this section, we present a semi-linear system that is ob- 
tained by considering linear waves and a nonlinear buoy (and 
therefore nonlinear motion of the waterline point xp). Firedrake 
requires a time-discrete system to be provided by the user, while 
the finite element discretisation in space is performed on a level 
lower than the user interface. The user also specifies the follow- 
ing: 
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1. mesh: one-dimensional domain of length L, split into N ele- 

ments; 
2. function space: Lagrange polynomials, here chosen to be 
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(MkAη
n − QAZ

n) − QAW n + AkA

.
φ n − 
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gηn

Σ
,   (23a) 

linear and continuous across the elements; 

BkAλ 
n+1/2 

+CkA µ
n+1/2 

= 0. (23b) λh, µh; 
k k 

4. test functions: δ ηh, δ φh, δ λh, δ µh; 
Equivalently, we can define λ̃ n+1/2  

=  ∆t λ 
n+1/2 and B̃kA  = 5. constants: numerical approximation of the scalars Zh, Wh; 

k 2 k 

∆t BkA, in which case the above system can be written in the 
following matrix form 

6. weak formulations: system of equations discretised in time. 

At every time step ∆t, the current solutions will be denoted with 
superscript n, and the updated solutions at the next time step will .

AkA + 
 ρ 

QkQA B̃kA 
1 

 
  

Σ .
λ̃ n+1/2

Σ
 have a superscript n + 1. 

B̃kA − 2 CkA n+1/2 
k In our case we also introduce a new variable 

. 
 1  (MkAηn − QAZn) − QAW n + AkA

.
φ n − ∆t gηn

ΣΣ 
∫ L 

The linear system (24) and the final system of Eqs. (25) can 

A 

0 
h 

0 
h 0 

 ρ  1 
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Σ
+λ 

 dx =0, 
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. 

. 

| 

h 

0 
h h h + 

2
 

( ( ) 0 + 
h ) 

h − h ) − tH(x) x( h) x h dx =0, 

(27b) 

h 

conditioning matrix 

h ( ) + + ( ) + h h h 0 I 0 0 0 

h h + 
2
 

M 0 
h = , 

motion of the wavemaker is given by R t A 1 cos ωt 

h h − h + 
2
 ( ( ) − h ) 

h h + 
2
 

M 0 

h = , 
at time level tn + 

1
 = (n + 

1
 )∆t, n = 0, . . . , T . 

M ∆t2 

− 

h 2 h 

and a new test function v, to overcome the difficulty of a term five unknowns φ n+1/2
, ηn+1, λ̃ n+1/2

, µn+1/2
, Ĩ, forming a mixed 

n+1/2 h h h h 

involving double integrals (represented  by QkQAλk in the 

space-discrete case above – see Eq. (23a)). The variable Ĩ  be- 
longs in a function space consisting of functions on the real line 
(the function space R), which is typically employed to model 

global constraints. The presence of the unknown function Ĩ  from 
space R in our system (given next in (27)), leads to implementa- 
tion difficulties due to the coupling with all of the other degrees 
of freedom. 

The weak formulations implemented in Firedrake are the 
following 

system in Firedrake. This system of weak formulations is non- 
trivial as it involves a function over R which is constant over the 
domain. The remaining Eqs. (27f)-(27i) are then explicit and can 
be solved in the order provided. 

 
Preconditioning. In order to be able to use iterative 

methods effectively, a suitable preconditioner P must be de- 
fined [16]. To find a suitable preconditioner for the mixed system 
(27a)-(27e), we look at the corresponding linear problem which 
allows us to define a left-hand-side matrix/operator A which has 
a natural block structure. The resulting preconditioned matrix 

∫ L 

δ η 
.
φ 

n+1/2 
− φ n

 

∆t 
g  H  x − H ηn

 
M = P−1

A  is then spectrally equivalent to A  and has a smaller 

˜ n+1/2 
h 

(27a) 
A  into a block diagonal matrix with some operator for φ n+1/2

 
and only unit matrices for the remaining variables ηn+1, λ̃ n+1/2

, 
h h 

∫ L.
δ φ ηn+1 ηn ∆ ∂ δ φ ∂ φ  n+1/2

Σ µn+1/2
, Ĩ. We therefore find the following (block diagonal) pre- 

 

∫ L 

δ λ 
.
H x H tan α x − L ηn+1 − Zn − ∆tW n I − ∂x(H(x)∂x) 0  0 0 0  

0              
∆t2 ρ ˜ 1 n+1/2 2Σ P = 

 
0 0 ( ρ  +   

1
  µ̄ 2)I   0    0 

 
, (28) 
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M 
I + 
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(µh ) dx =0,  0 0 0 I 0  

 

  

∫ L 

δ µ 
 

µ
n+1/2

λ̃ n+1/2   
dx

 

(27c) 

0 

2 

0 0 0 0 L 

h( h 

0 
h ) = , 

(27d) 
with I the identity matrix. 

∫ L 

v
. Ĩ  

− λ̃ n+1/2Σ 
dx    0 

0 L h = , 

(27e) 

NUMERICAL RESULTS 

We consider waves generated by a piston wavemaker located 
at the left wall of the channel, i.e. at x = R(t). Assuming that the 

W 
n+1/2 

− W 
n 

∆t 
g − 

 ρ  
∫ L 

λ̃ n+1/2 
dx    0 

wavemaker is linearised around x = 0, we take x = R(t) ≈ 0. The 

(27f) 
Zn+1 − Zn − ∆tW n+1/2

 =0, 

( ) = ω ( ( )) 
such that R(t) and dR/dt = A sin(ωt) are both zero initially (at 
t = 0).  To  accommodate the motion of the wavemaker, we add 

∫ L 

δ η 
.
φ n+1 
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n+1/2 

h h 

 
∆t 

g H x H 

h 

 

ηn+1 

(27g) the term ρH0(dR/dt)φ  
x=0  in the continuum variational princi- 

ple (4) or (16a). The corresponding term in the space-discrete 

 

+λ̃ n+1/2Σ 
dx =0, 

 
ary, the Wk 

 
vector has only one non-zero entry (the W1) based on 

W 
n+1 − W 

n+1/2 ∆t 
g − 

 ρ  
∫ L 

λ̃ n+1/2 
dx

 

(27h) 

0 

the contribution of the ϕ1 basis (tent) function. In the final space- 
time discrete system, the time-dependent term dR/dt is evaluated 

 

  

(27i) 

 

where we have again introduced λ̃ n+1/2  
= ∆t λ n+1/2

.  Note that 

2 2 

variational principle (21) is ρH0(dR/dt)Wk, with Wk = ϕk x=0. 
Note that due to the presence of the wavemaker at the left bound- 0 

I 1 

I 1 

Λ 

spectral condition number [17]. The goal is to reduce the matrix 

0 
h( 

, 

0 + 



 

The initial value problem is solved with initial conditions  
φ = 0 and η = 0 (see Fig. 4, first panel). Waves are then 
gener- ated from the left due to the sinusoidal motion of the 

wavemaker (see Fig. 4, second panel) with amplitude A = 
0.0498 m and fre- 

in Eq. (27c), the updates for Zn+1  and subsequently W n+1/2
 are quency ω = 

8π 
√

gH0 (corresponding to a physical frequency of 
h h L 

substituted from (27g) and (27f) to eliminate these scalar vari- 
ables. The first five Eqs. (27a)-(27e) are solved together for the 

approximately 3.9618 Hz). The remaining of the parameters that 
appear in the system take the following values: 



 

· the buoy has mass M = 5 kg; 

· 

· 
· the gravity g = 9.81 m/s2 and water density ρ = 997 kg/m3 

≤ ≤ 

 

  
 
 

 
 

FIGURE 3: Buoy’s response in time: vertical displacement 

Z(t) (top) and vertical velocity W (t) (bottom). 

 

the channel’s length is L = 1 m; 

· the uniform water depth at rest is H0 = 0.1 m; 

· the waterline point at rest resides at Lp = 0.8 m; 

take their physical values; 

the parameters α and Z̄ are calculated based on the chosen 
values of Lp and M, as well as relations (14) and (13), respec- 
tively. 

In what follows, we present numerical solutions of the lin- 
earised problem (24)-(25). The numerical calculation is per- 
formed on a uniform mesh with N = 100 elements and the  
time step is chosen such that to satisfy the CFL condition ∆t = 

L/(2πN
√

gH0) = 0.0016.  The response of the buoy is depicted 
in Fig. 3, where the time-evolution of the vertical displacement 
Z(t) and velocity W (t) are shown. The numerically computed 
wave height h(x, y) and the vertical position of the buoy are 
demonstrated in Fig. 4 for times t = 0.0, 0.4, 0.8, 1.21, 1.65 sec- 
onds, while the corresponding velocity potential φ (x, t) at the 
same times is plotted in Fig. 5. The waterline is marked with 
black dots and is calculated using a second-order expansion of 

h(Lp + x̃p, t) = hb(Lp + x̃p, Z̄ + Z̃).  The results are identical to 
the ones obtained by the method presented in Kalogirou and 
Bokhove [4] with equality constraint. 

We have also confirmed that the total energy (or Hamilto- 
nian) of the full system is “constant” after the wavemaker is 
switched off, in the sense that it remains bounded and exhibits 
small-but-finite oscillations.  This is illustrated in Fig. 6,  where  
the numerically computed energy is shown in the time interval    
Tw   t    T  (for wavemaker switch-off time Tw  = 2 seconds and 
final time T = 3 seconds). The top-row panels depict the conser- 
vation of energy (top right panel) and the error from the “initial” 
energy E(Tw) (top left panel). The bottom-row panels clearly 
exhibit the anticipated exchange of energy between water waves 
(bottom left panel) and the buoy (bottom right panel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 4: Solution snapshots of the numerically computed 

wave height h(x, t) and the buoy, for t = 0.0, 0.4, 0.8, 1.21, 1.65 
seconds. The black dot denotes the waterline position at x = 
Lp + x˜p(t) at the same times. 



 

 

 
 

FIGURE 6: The energy of the system after the wavemaker is 

switched off at Tw = 2 seconds. The total energy E(t) shows 

no drift and is bounded (top right panel), and thus remains 

close to the value E(Tw) (top left panel). The amount of en- 

ergy lost from the water waves is exactly transferred to the 

buoy and back, as shown in the bottom panels (left: water- 

wave energy, right: buoy energy). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 5: Snapshots of the numerically computed velocity 

potential φ (x, t), for t = 0.0, 0.4, 0.8, 1.21, 1.65 seconds. The 

noticeable distinctive structure of the potential in the region 

0.8 ≤ x ≤ 1 is due to the presence of the buoy in that region, 

i.e. in Lp ≤ x ≤ L. 

DISCUSSION 

A mathematical model for the motion of a wave-energy buoy 
in nonlinear water waves is presented. The model is developed 
using variational methods and is based on extending a shallow- 
water version of Luke’s variational principle for water waves to 
include a floating buoy, allowed to move only vertically. The 
final system of evolution equations is nonlinear and couples the 
dynamics of the waves to the dynamics of the buoy through a 
hydrostatic pressure term. The novelty in our model lies in the 
use of an inequality constraint to impose the physical condition 
on the water height being equal to the shape of the buoy in the 
region under the buoy. The inequality constraint is imposed by 
the use of a Lagrange multiplier and includes the equality case 
presented before in Kalogirou and Bokhove [4]. 

The constraint model is discretised in space using the finite 
element method (with linear polynomial approximation in each 
element, and continuous across the elements) and in time using 
a variation of the RATTLE symplectic algorithm. The numer- 
ical implementation is performed using the automated system 
Firedrake. Numerical solutions are presented for the problem 
linearised around a steady state, in a two-dimensional channel 
and linear waves generated by the periodic motion of a piston 
wavemaker. The total energy of the system is conserved after the 
wavemaker is switched off, while the energies of water wave and 
buoy are exactly exchanged between each other. 

The three-dimensional analogue of the problem considered 
here consists of a wave channel that allows the generation of non- 
linear rogue-wave effects through a V-shaped contraction, and 
the impact of such waves on a floating tetrahedral wave-energy 
buoy constrained to move only vertically in the contraction. We 



 

aim to perform further numerical simulations for the dynamics of 
the coupled system in a hierarchy of increasing complexity: lin- 
ear water-wave and nonlinear buoy dynamics, and fully-coupled 
nonlinear water-wave and buoy dynamics. As a validation of the 
model, laboratory experiments will be performed in a small-scale 
wave tank with a wave-energy buoy attached to an AC-induction 
motor, for which we have realised a working-scale model. 

Finally, the methodology presented in this paper is generic 
and can there be readily extended to incorporate a ship in a 
straightforward manner. The additional complexity arises in the 
form of additional degrees of freedom:  the position of centre  
of mass in the three-dimensional space X = (X ,Y, Z), and the 
rotation of the ship around the three principal axis of rotation   
θ = (θ , ϕ, ψ) [18]. The variational principle (3) or (4) can be 
therefore easily extended to include the dynamics of the ship 
(such an extended principle can be found in [4]). The exten- 
sion to three-dimensional potential flow or Benney-Like equa- 
tions [19] is also possible and we can build on existing applica- 
tions thereof in Firedrake. 
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