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Abstract

Objective

The clinical use of Transcranial Magnetic Stimulation (TMS) as a technique to assess corti-

cospinal excitability is limited by the time for data acquisition and the measurement variabil-

ity. This study aimed at evaluating the reliability of Stimulus-Response (SR) curves acquired

with a recently proposed rapid protocol on tibialis anterior muscle of healthy older adults.

Methods

Twenty-four neurologically-intact adults (age:55–75 years) were recruited for this test-retest

study. During each session, six SR curves, 3 at rest and 3 during isometric muscle contrac-

tions at 5% of maximum voluntary contraction (MVC), were acquired. Motor Evoked Poten-

tials (MEPs) were normalized to the maximum peripherally evoked response; the coil

position and orientation were monitored with an optical tracking system. Intra- and inter-ses-

sion reliability of motor threshold (MT), area under the curve (AURC), MEPmax, stimulation

intensity at which the MEP is mid-way between MEPmax and MEPmin (I50), slope in I50,

MEP latency, and silent period (SP) were assessed in terms of Standard Error of Measure-

ment (SEM), relative SEM, Minimum Detectable Change (MDC), and Intraclass Correlation

Coefficient (ICC).

Results

The relative SEM was�10% for MT, I50, latency and SP both at rest and 5%MVC, while it

ranged between 11% and 37% for AURC, MEPmax, and slope. MDC values were overall
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quite large; e.g., MT required a change of 12%MSO at rest and 10%MSO at 5%MVC to be

considered a real change. Inter-sessions ICC were >0.6 for all measures but slope at rest

and MEPmax and latency at 5%MVC.

Conclusions

Measures derived from SR curves acquired in <4 minutes are affected by similar measure-

ment errors to those found with long-lasting protocols, suggesting that the rapid method is at

least as reliable as the traditional methods. As specifically designed to include older adults,

this study provides normative data for future studies involving older neurological patients

(e.g. stroke survivors).

Introduction

Neuroplasticity is an important marker for motor recovery during neurorehabilitation. One

way to measure plasticity is by assessing corticospinal excitability (CSE) using Transcranial

Magnetic Stimulation (TMS). TMS is a non-invasive, painless, and well-established technique

to evaluate CSE in studies of motor learning and neurorehabilitation [1] [2]. When TMS is

administered over the cortical motor area, a motor evoked potential (MEP) is extracted from

the targeted muscle’s electromyogram [3]. The MEP has been the primary measure used to

quantify CSE. One way to use the MEP is to draw the input-output relationship between stim-

ulation intensity and the size of the MEP, i.e. the Stimulus-Response (SR) curve [4,5].

The SR curve provides comprehensive information of the excitability of the nervous system

[5],[6]. SR curves are traditionally acquired delivering stimuli at predefined stimulation inten-

sities, often between 90% and 150% of the resting motor threshold (MT), with an inter-stimu-

lus interval (ISI) of>4s, and the acquisition time for a whole SR curve is typically >8 minutes

[5,7,8], [9]. SR curves take into account the response of both neurons with lower threshold,

which are in the directly stimulated core region, and those that are activated with higher

threshold, either because they are intrinsically less excitable or because they are far from the

site where the stimulus is delivered [3]. As a result, the SR curve allows the investigation of

changes in excitability of different neuronal populations, in contrast to stimulation at a single

intensity [10]. However, despite the limitations of stimulating at a single intensity this tech-

nique is still the most used method to explore excitability, using the mean of the responses as

the outcome measure.

While assessing CSE changes in longitudinal studies [11–15], the reliability of TMS-related

measures is of primary importance in order to assure that any observed change is above the

trial-to-trial variability of the measure itself. A recent systematic review describing the reliabil-

ity of TMS outcome measures of primary motor cortex excitability in healthy subjects con-

cluded that the evidence base is insufficient and is negatively affected by problems with

methodological design and statistical analysis [16]. Beaulieu et al. (2017) also pointed out the

importance of reporting the Minimal Detectable Change (MDC) for generalization to future

work. The MDC represents the minimum difference required to determine if a significant

change has occurred in an individual. The lack of appropriate statistical assessment and a gen-

eral misunderstanding of the concept of reliability have been underlined by Schambra et al.

(2015), who propose guidelines for the rigorous testing of TMS outcome reliability [17]. They

clarify the two main subtypes of reliability: the measurement error (or absolute reliability)

which assesses the agreement between repeated measurements in an individual and is mainly
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used for longitudinal evaluative purposes, and the so called reliabilityMP (or relative reliability;

‘MP’ standing for measurement property) which assesses how well an individual can be distin-

guished from the others and might be useful for diagnostic purposes.

Variability of TMS-related measures is due to both endogenous and exogenous sources

[18], [19,20]. Spontaneous physiological fluctuation in excitability levels at both cortical and

spinal level is a primary cause of endogenous variations on TMS-related measures [21]. Due to

endogenous variability, reducing the length of the acquisition protocol is of utmost impor-

tance. Concerning exogenous variability, there are plenty of sources of which those crucial are:

i) age and gender; ii) visual attention level [22]; iii) time of day the experiment is performed

(related to cortisol levels) [23]; iv) the contraction level of the target muscle [19]; and v) the

position and orientation of the coil over the target cortical area together with stimulation

intensity [19,20], [24]. Whilst consensus is reached for the effect of most of these factors there

are conflicting results regarding the effect of age. For example, Pitcher et al. (2003) showed

that older adults required greater stimulus intensities to reach maximal motor output in the

corticospinal projection to intrinsic hand muscles and were characterized by higher trial-to-

trial variability with respect to young participants, especially at near threshold stimulation

intensities [25]. However, a subsequent study did not observe aging-related changes in corti-

cospinal stimulus-response curve characteristics in a population of exclusively male subjects

[26]. Therefore, since no final conclusion about the effect of age on CSE can be found in the lit-

erature, there is the need of age-matched normative data to be used as a reference for changes

in CSE in patients suffering neurological disease (e.g. stroke).

To minimise variability and allow quantifying CSE across different intensities it would be

advantageous to acquire data for the SR curve rapidly. To shorten the acquisition time,

Mathias and colleagues studied the minimum ISI to avoid inhibitory or facilitatory interac-

tions between the responses of two consecutive stimuli [9]. They showed that the ISI can be

reduced up to 1.4s without inducing a depression of CSE which is a well-known effect of 1Hz

repetitive TMS [27]. They also observed that 60 stimuli are sufficient to construct a representa-

tive curve, thus demonstrating that reliable SR curves can be acquired in less than 2 minutes.

Next to the possibility of reducing variability, the reduction of the acquisition time is crucial

for transferring TMS-related measures from research to clinical practice. Indeed, not only it

helps in reducing variability, but it can also increase the patient’s compliance, thus limiting

dropout.

Whereas most studies explored MEP variability in upper limb and especially hand muscles,

lower limb muscles are less commonly studied, e.g. the tibialis anterior (TA) or soleus muscle.

Of the 34 studies selected in Beaulieu et al.’s 2017 systematic review [16], only 10 were focused

on lower limb muscles. This may be caused by the generally moderate reliability found for

MEPs in lower limb muscle of healthy participants [6,18,28] whilst in neurological patients

(i.e. stroke, multiple sclerosis and incomplete spinal cord injury) even poorer results are

obtained [29–31]. Nonetheless, the TA has a crucial role in the recovery of walking (i.e., to

overcome the drop-foot phenomenon typical following e.g. stroke), and reliable information

of CSE can be crucial for clinical decision making. Importantly, among all studies exploring

reliability of the MEPs in lower limb muscles, only Cacchio and colleagues assessed reliability

of the whole SR curves on healthy adults [6], whilst it allows investigation of excitability of dif-

ferent neuronal populations at the same time. The aim of this study is to investigate the inter-

and intra-session reliability of measures derived from SR curves acquired rapidly from the TA

muscle in healthy older adults, age-matched to stroke survivors. Both absolute and relative reli-

ability, as well as MDC for TMS measures, are assessed.

Reliability of TMS measures of tibialis anterior muscle in healthy older adults

PLOS ONE | https://doi.org/10.1371/journal.pone.0184828 September 14, 2017 3 / 17

https://doi.org/10.1371/journal.pone.0184828


Materials and methods

Participants and study design

Healthy community-dwelling participants with an age between 55 and 80 years and no previ-

ous history of neurological injury were recruited for the study. Exclusion criteria were any con-

traindication recommended for TMS [1]; presence of metal implants or cardiac pacemaker;

history of epilepsy or migraine; neurological or systemic diseases; assumption of antidepres-

sants and/or anxiolytics; and any lower extremity injuries in the three months prior to the first

experimental session [32].

The subjects participated to two experimental sessions in a test-retest design. The two sessions

were separated by 4–7 days, in agreement with textbooks on psychometric properties which rec-

ommend using different days, but no more than 2 weeks apart to assess reliability [16,33].

Participants were asked to get sufficient sleep (>6 h), avoid coffee and minimize alcohol

consumption the day and night before the experiment. During each session, six SR curves

were acquired on the TA muscle of the dominant leg, three at rest and three during isometric

muscle contractions at 5% of the maximal voluntary contraction (MVC). The dominant leg

was identified by asking the subject the preferred leg to kick a ball [34].

The research protocol was approved by the central ethical committee of Fondazione Salva-

tore Maugeri (number: 931 CE, date of approval: 10/03/2014) and conducted in accordance

with the Declaration of Helsinki. All participants provided written informed consent to

participate.

Apparatus

EMG. Surface self-adhesive Ag/AgCl electrodes (KendallTM, COVIDIEN) were placed in

a bipolar configuration over the TA muscle. EMG signals were acquired by a multi-channel

signal amplifier (Porti 32™, TMS International) and sampled at 2048 Hz.

TMS. A biphasic TMS stimulator (Magstim Rapid2, The Magstim Company, Dyfed, UK)

with a double-cone coil was used to elicit MEPs. The coil position and orientation over the tar-

get cortical motor area were monitored in real-time using a frameless stereotaxic custom C+

+ software [35] interfacing with an optical tracking system (Polaris Vicra, Northern Digital

Inc.). The software allowed to retrieve coil position and orientation between sessions and

helped the operator maintaining the correct coil position and orientation within each session

by providing feedback about any errors with respect to the predefined stimulation site and coil

orientation. Furthermore, it prevented unnecessary stimuli when the coil was not properly

placed over the hotspot. A Graphical User Interface (GUI) developed in Matlab was used to

deliver the TMS stimuli, to online display the SR curve and to store the data [36].

Peripheral nerve stimulation. A current-controlled stimulator (RehaStimTM, HASO

MED GmbH) was used to evoke the maximal evoked muscle response (Mmax).

Muscle force level. A load cell (Tekkal, Milan, Italy) was used to measure the force pro-

duced during the isometric muscle contractions of the TA muscle. The force was visually dis-

played to the participants to help them maintaining 5%MVC during active SR curves

acquisition.

The experimental setup is displayed in Fig 1.

Experimental procedure

Participants were comfortably seated in a quiet room on an armchair with knee and ankle

angles of the dominant leg fixed at about 100˚ and 90˚, respectively. A custom-built wooden-

made support maintained the correct position of the foot (see Fig 1).
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At the beginning of each session supramaximal electrical stimuli were delivered to the pero-

neal nerve to evoke the Mmax. The recorded Mmax was used to normalize the MEPs collected

on the same day in order reduce the test-retest variability due to electrodes replacement and to

ensure a valid statistical comparison among participants [37,38]. Care was taken to consis-

tently replace the electrodes between the two sessions.

During the first session, the optimal stimulation site (hotspot) was identified: the coil was

moved in small steps over the TA cortical motor area in order to find the position and orienta-

tion which evoked the maximal MEPs in the TA muscle with the lowest stimulation intensity.

Once found, the coil position and orientation were saved in the frameless stereotaxic software

[35]. On the second day, the frameless stereotaxic software was used to reposition the coil with

the same location and orientation with respect to the head as on the first day. With the coil

firmly placed over the hotspot, six SR curves were collected using the rapid acquisition

Fig 1. Experimental setup used for the acquisition of the SR curves. The coil position and orientation on the skull were monitored by an optical tracking

system. An electrical stimulus was delivered to the peroneal nerve to elicit the maximum peripheral muscular response. The operators were provided with two

visual feedbacks (VF): one GUI helped in maintaining the correct coil position and orientation (top right) and a second one visually displayed the SR curve

while it was acquired (middle right). A load cell was used to monitor the force level produced during active SR curves, which was displayed to the participant

(bottom right): the two red lines indicate the target range the participant was asked to maintain, the blue line shows the acquired force level.

https://doi.org/10.1371/journal.pone.0184828.g001
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protocol described in [9], three with the TA muscle at rest and three during an isometric con-

traction at 5%MVC. For each SR curve, a train of stimuli was delivered with an ISI of 3s; the

stimulation intensity varied pseudo-randomly on a pulse-by-pulse basis in an online adjustable

range. The operator could adjust the minimum and maximum stimulation intensity accord-

ingly to the online displayed SR curve in order to identify the threshold on one end and the

plateau on the other end. The operator manually stopped the acquisition after 3–5 stimuli

since the curve had reached a steady state (i.e., it did not change with successive stimuli). An

ISI of 3s, intermediate with respect to those tested on upper limb muscles (1.4-4s) in [9], was

selected in order to maximize the comfort of the participants. Indeed, higher stimulation

intensities are required to evoke MEPs from the TA muscle. Furthermore, this value of ISI

gave the subject enough time to recover the correct level of muscle contraction after the TMS

stimulus during active SR curves acquisition.

As all participants were naïve TMS participants, at the beginning of the first session an addi-

tional short SR curve (30–40 stimuli) was acquired in order to familiarise the participants with

the method. This curve was discarded from the analysis.

Data analysis

The EMG signal was extracted from 150ms before to 300ms after each TMS stimulus and

high-pass filtered (5th order Butterworth filter, cut frequency of 5 Hz). The root mean square

(RMS) of the EMG 100ms before the TMS stimulus, referred to as “background EMG”, was

computed to monitor the state of the muscle before stimulation: individual MEPs were

excluded from the subsequent analysis if their respective background EMG was over mean

±3SD computed for the complete dataset of each SR curve.

The MEP size was computed as the peak-to-peak value (MEPpp) of the EMG signal in a

60ms window placed 20ms from the start of the TMS stimulus.

To construct the SR curve, MEPpp values were first normalised to the peak-to-peak ampli-

tude of the Mmax, then plotted as function of the stimulation intensity, and finally all data was

modelled using a four-parameter Boltzmann sigmoid [9]:

MEPpp Ið Þ ¼ MEPmin þ
MEPmax � MEPmin

1þ e
I50 � I

S

ð1Þ

where MEPmin and MEPmax are the minimum and maximum asymptotes of the function; I50

is the percentage of maximal stimulator output (%MSO) at which the MEP is mid-way

between MEPmin and MEPmax and S is the slope at I50. The goodness of the fit was evaluated

by means of the coefficient of determination R2. Curves with R2�0.75 were discarded.

Corticospinal excitability was assessed in terms of:

1. Motor Threshold (MT), i.e. the minimum stimulus that evokes an MEP in the muscles and

reflects the membrane excitability of the neurons in the cortical region of the target muscle

[39]. It was computed as the x-intercept of the tangent to the sigmoid function at the point

of maximal slope, i.e. I50 (see Equation I) [7]. It is expressed as %MSO.

2. Area Under Recruitment Curve (AURC), computed as the integral under the sigmoid func-

tion. This parameter provides a global estimate of the corticospinal excitability and is sug-

gested to characterize the corticospinal projections to a wide range of muscles. An increase

of the area indicates an increase of excitability [40].

3. MEPmax, which reflects the maximum corticospinal response of the cortical neurons evoked

by the stimulation [2].

Reliability of TMS measures of tibialis anterior muscle in healthy older adults

PLOS ONE | https://doi.org/10.1371/journal.pone.0184828 September 14, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0184828


4. I50, expressed as %MSO.

5. S, expressed as %MSO-1. It has been suggested to give inion about the neurophysiological

strength of intracortical and corticospinal projections [39,41].

6. Latency, i.e. the time period between the TMS stimulus and the MEP onset. This parameter

was computed only for MEPs elicited by stimuli with a stimulation intensity higher than

the one corresponding to the 80% of the difference between maximum and minimum pla-

teau of SR curve. Changes in MEP latency may reflects variation in central motor conduc-

tion time [6,42].

7. Silent period (SP), i.e. the period of EMG activity suppression following a supra-threshold

TMS stimulus. It was computed only during muscle contractions and for the same MEPs

selected to compute latency, as the time interval between the end of the MEP and the return

of the background voluntary activity (i.e., >70% of the mean background EMG) [41]. SP is

believed to reflect inhibitory mechanisms at the motor cortex level mediated by GABA-B

receptors [42][41].

While MT, AURC, MEPmax, I50, and slope were derived from the sigmoid function of the

SR curve, latency and silent period were derived from individual MEPs.

Statistical methods

An a priori power analysis showed that 22 was the minimum sample size required to establish

that a reliability coefficient of 0.80 was significantly different from a minimally acceptable reli-

ability coefficient of 0.50, considering α = 0.05 and 1-β = 0.80 [43]. A total of 24 participants

were recruited to allow for a 10% drop-out rate.

After verifying the homoscedasticity of each dataset by means of the Breusch-Pagan test

[44], the variance components of the observed measurements were estimated using the

restricted maximum likelihood method and a random effects model, as follows [17]:

s2

observed ¼ s2

subjects þ s2

tests or days þ s2

residual ð2Þ

where s2
subjects is the between-subject variance, s2

tests or days is the variance between the three mea-

surements collected on the first day (intra-session) or the variance between days (inter-session),

and s2
residual is the error term which represents all other unexplained sources of variability. Please

note that the variance components to derive inter-session reliability were estimated twice, once

considering the average of the three daily measurements of each subject and once considering

only the first measurement collected on each day.

The measurement error was estimated by the Standard Error of Measurement, which can

be easily derived from the variance components as follows [17]:

SEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
tests or days þ s2

residual

q

ð3Þ

The SEM takes into account both systematic (s2
tests or days) and random error (s2

residual).

The relative SEM (SEMrel%) was also computed by normalizing the SEM to the measure-

ment mean, as follows:

SEMrel% ¼
SEM
mean

� 100 ð4Þ

From the SEM computed between sessions, the MDC, i.e. the smallest change in score that

is likely to reflect a true change rather than a measurement error, was estimated as follows
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[45]:

MDC ¼ SEM � 1:96 �
ffiffiffi
2
p

ð5Þ

where
ffiffiffi
2
p

accounts for the variance associated with two independent sessions and 1.96 repre-

sents the 95% confidence interval.

Relative intra- and inter-session reliability of TMS-related measures was estimated by the

Intraclass Correlation Coefficient (ICC), using the ICC(2,1) formula (model 2, random-effects

1-way, single measures) [17,45]. To take into account possible systematic differences, absolute

agreement was selected. For intra-session reliability, the three measurements collected the first

day were considered, while for inter-session reliability, as before, the average daily measure-

ments and only the first measurement collected on each day were considered separately. ICC

values>0.70 are usually interpreted as acceptable reliabilityMP [17].

Repeated-measures ANOVA and paired t-tests were used to evaluate possible systematic

errors between the three dataset collected on the first day (intra-session) and between the aver-

age daily measurements or only the first measurement collected on the two days (inter-ses-

sion), respectively.

The measurement properties were computed separately for dataset acquired at rest and

during muscle contractions (referred to as “active”).

Differences among the three dataset of the two sessions in terms of background EMG and

force level were also investigated by means of repeated-measures ANOVA. A paired t-test was

used to assess differences in terms of Mmax between the two sessions. Descriptive group data

are reported as mean ± standard deviation unless otherwise noted.

The statistical analysis was performed with IBM SPSS Statistics v23 software.

Results

Twenty-four healthy participants (12 males and 12 females) aged between 55 and 75 years old

were recruited. Participants’ details are provided in Table 1.

Two participants (age 64 and 69 years) did not return for the second session, while the MT

at rest was >100%MSO for one subject (64 years) and therefore MEPs at rest could not be

evoked. Thus, the intra-session reliability analysis was based on 23 and 24 subjects at rest and

5%MVC, respectively, while for the inter-session reliability analysis 21 and 22 subjects were

considered for the passive and active conditions, respectively.

Each SR curve was acquired by delivering an average of 70±2 stimuli at rest and 67±3 dur-

ing muscle contractions. Thus, the overall duration of each SR curve acquisition was of about

3.5 minutes. None or one MEP (average of 0.09%±0.11%) were excluded because of the back-

ground EMG. The SR curves obtained a coefficient of determination R2 = 0.85±0.08, with val-

ues always bigger than 0.75.

The Mmax was not significantly different between the two sessions (5.3±2.0 at day 1 and

5.8±2.6 at day 2, p = 0.388).

Table 1. Participants’ details.

N 24

Age * [years] 62.3 ± 4.5

Height * [cm] 168 ± 9

Gender (M/F) 12/12

Dominant leg (R/L) 21/3

* indicates mean±SD. M (male), F (female), R (right), L (left)

https://doi.org/10.1371/journal.pone.0184828.t001
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The participants were able to maintain the TA contractions at 5%MVC as required, exploit-

ing the visual feedback of the force level. Indeed, no significant differences were obtained for

the six active SR curves neither in terms of force level (F = 0.75, p = 0.595) nor in terms of

background EMG (F = 0.55, p = 0.735).

Exemplary dataset acquired on one single subject (female, 63 years old, right dominant leg)

are shown in Figs 2 and 3. Active SR curves (panels (b)) show lower motor thresholds, steeper

slopes, higher MEPmax, and higher AURC compared to the passive (panels (a)).

All dataset was found to be homoscedastic and therefore no transformation was needed to

compute the measurement properties.

Intra-session reliability

The results of the intra-session reliability analysis are reported in Table 2. Systematic errors

were found only for the silent period (repeated measures ANOVA, p<0.01). All the ICCs were

significant (p-value<0.001). The measurement error for MT was<4%MSO both at rest and at

5%MVC. Analogously, the measurement error for MEPmax, slope, and latency were similar

between rest and active conditions and about 0.08, 2%MSO-1, and 2ms, respectively. For the

AURC, the SEM increased from 1.7 at rest to 3.3 during muscle contractions. Opposite was

the behaviour of I50, whose SEM decreased from 5.5%MSO at rest to 3.8%MSO at 5%MVC.

The relative SEM was always below or about 10% except for the AURC at rest (16%) and the

MEPmax and the slope in both conditions (MEPmax: 26% and 12% at rest and at 5%MVC;

slope: 37% and 29%). A relative SEM <10% was previously proposed as a cut-off for high mea-

surement stability [17,46]. Considering this cut-off, all measurements but AURC at rest and

Fig 2. Exemplary dataset acquired within one session for one participant. Raw data and sigmoid functions obtained on the first day at rest (panel (a))

and at 5%MVC (panel (b)) are shown as red, green and blue dots and corresponding lines.

https://doi.org/10.1371/journal.pone.0184828.g002
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MEPmax and slope in both conditions were characterized by a low relative measurement

error within the same session. ICC values were>0.70 for all parameters but slope at rest

(ICC = 0.54) and SP (ICC = 0.67), suggesting a good reliabilityMP, which is the ability of the

measurement to distinguish between subjects in a sample.

Inter-session reliability

The results of the inter-session reliability analysis based on the mean values of the 3 curves

acquired during each testing session are shown in Table 3. The ICC of the slope at rest was not

significant (p-value = 0.121); all the others were significant (p-value<0.02). The measurement

errors for AURC and MEPmax were higher than those obtained within a single session. These

measures, as well as the slope, showed a relative SEM>10%, indicating a low measurement

stability. All the other measures exhibited a relative SEM about or below 10%. The MDC values

were overall quite large; for example, MT required a change of at least 12%MSO at rest and

10%MSO at 5%MVC to be considered a real change above the measurement error. A good

reliabilityMP was found for MT and I50, both at rest and during muscle contractions, AURC

and MEPmax at rest, slope during muscle contractions, and SP, with ICC values>0.70.

To evaluate whether it was possible to further reduce the acquisition time, the inter-session

reliability analysis was performed also just considering the first curve acquired at rest and at

5%MVC during the two sessions. Results are reported in Table 4. All the ICCs were significant

(p-value<0.03), with the only exception of the slope at rest (p-value = 0.671). Both reliability

measurement properties at rest were overall worsened and in the majority of the cases did not

reached acceptable values. MT and I50 at 5% MVC maintained a relative SEM <10%, indicat-

ing a good measurement stability, and ICC values >0.7.

Fig 3. Exemplary dataset acquired in the two sessions for one participant. The three fitted SR curves obtained during session 1 (in grey) and session

2 (in black) at rest (panel (a)) and at 5%MVC (panel (b)) are shown.

https://doi.org/10.1371/journal.pone.0184828.g003
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Table 2. Intra-session reliability analysis of the TMS-related parameters obtained at rest and at 5%MVC (active).

Test 1* Test 2* Test 3* P-value† SEM SEMrel (%) ICC (95% CI)

Rest (N = 23) MT [%MSO] 58 ± 13 57 ± 13 58 ± 14 0.68 3.7 6.4 0.92 (0.85; 0.96)

AURC 11 ± 10 10 ± 9 10 ± 8 0.49 1.7 16.5 0.96 (0.93; 0.98)

MEPmax 0.31 ± 0.21 0.29 ± 0.21 0.28 ± 0.17 0.42 0.08 25.7 0.85 (0.73; 0.93)

I50[%MSO] 69 ± 16 69 ± 14 69 ± 16 0.97 5.5 8.0 0.87 (0.76; 0.94)

Slope[%MSO]-1 5.4 ± 3.0 5.8 ± 2.9 5.5 ± 3.1 0.64 2.0 36.7 0.54 (0.29; 0.75)

Latency [ms] 24 ± 5 24 ± 5 24 ± 4 0.49 1.8 7.5 0.82 (0.68; 0.92)

Active (N = 24) MT [%MSO] 42 ± 8 42 ± 9 41 ± 10 0.85 3.9 9.4 0.82 (0.68; 0.91)

AURC 30 ± 11 29 ± 11 31 ± 12 0.36 3.3 11.0 0.92 (0.85; 0.96)

MEPmax 0.65 ± 0.22 0.6 ± 0.17 0.64 ± 0.2 0.09 0.08 12.3 0.84 (0.71; 0.92)

I50 [%MSO] 57 ± 15 55 ± 13 56 ± 12 0.21 3.8 6.7 0.92 (0.85; 0.96)

Slope [%MSO]-1 6.6 ± 4.7 5.5 ± 3.4 5.7 ± 3.2 0.07 1.7 29.2 0.80 (0.65; 0.90)

Latency [ms] 29 ± 5 29 ± 6 30 ± 4 0.25 2.1 7.2 0.82 (0.67; 0.91)

SP [ms] 140 ± 26 153 ± 26 158 ± 28 <0.01 16.1 10.7 0.67 (0.39; 0.84)

* mean ± SD obtained across participants during the 3 repetition of the first day (Test 1, Test 2 and Test 3)

† Repeated measures ANOVA

MT: motor threshold; AURC: area under the recruitment curve; SP: silent period

MSO: maximal stimulator output

SEM: Standard Error of Measurement; SEMrel%: relative Standard Error of Measurement; ICC (CI 95%): intraclass correlation coefficient (95% confidence

interval)

https://doi.org/10.1371/journal.pone.0184828.t002

Table 3. Inter-session reliability analysis of TMS-related parameters at rest and at 5%MVC (active).

Test* Retest* P-value† SEM SEMrel (%) MDC ICC (95% CI)

Rest (N = 21) MT [%MSO] 56 ± 12 55 ± 9 0.40 4.4 7.9 12.2 0.84 (0.64; 0.93)

AURC 11 ± 9 9 ± 8 0.04 3 30.0 8.3 0.88 (0.70; 0.95)

MEPmax 0.30 ± 0.19 0.23 ± 0.14 0.02 0.09 35.8 0.26 0.71 (0.37; 0.87)

I50 [%MSO] 67 ± 14 68 ± 14 0.89 7.4 11.0 20.5 0.72 (0.43; 0.88)

Slope [%MSO]-1 5.7 ± 2.4 5.7 ± 2.6 0.97 2.1 37.1 5.8 0.28 (-0.20; 0.64)

Latency [ms] 23 ± 4 24 ± 5 0.24 2.5 10.6 6.9 0.66 (0.33; 0.84)

Active (N = 22) MT [%MSO] 42 ± 9 41 ± 7 0.45 3.7 8.9 10.3 0.77 (0.52; 0.90)

AURC 31 ± 12 30 ± 14 0.93 8 26.2 22.2 0.60 (0.24; 0.81)

MEPmax 0.62 ± 0.19 0.59 ± 0.26 0.54 0.17 28.1 0.47 0.44 (0.02; 0.72)

I50 [%MSO] 55 ± 13 54 ± 12 0.05 3.2 5.9 9.0 0.94 (0.84; 0.97)

Slope [%MSO]-1 5.5 ± 3.4 5.2 ± 3.9 0.38 1.3 25.2 3.7 0.87 (0.71; 0.94)

Latency [ms] 29 ± 4 29 ± 4 0.55 3 10.3 8.3 0.54 (0.16; 0.78)

SP [ms] 155 ± 27 148 ± 23 0.20 13.8 9.1 38.3 0.71 (0.42; 0.87)

* mean ± SD obtained across participants at day 1 (Test) and day 2 (Retest); group means were obtained by first averaging each subject’s daily

measurements.

† Paired t-test

MT: motor threshold; AURC: area under the recruitment curve; SP: silent period

MSO: maximal stimulator output

SEM: Standard Error of Measurement; SEMrel%: relative Standard Error of Measurement; MDC: Minimum Detectable Changes; ICC (CI 95%): intraclass

correlation coefficient (95% confidence interval)

https://doi.org/10.1371/journal.pone.0184828.t003
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Discussion

This study assessed the reliability of TMS-related measures collected from the TA muscle at

rest and at 5%MVC of a population of 24 healthy older adults (mean age of 62 years). These

measures, although acquired with the rapid protocol for SR curves proposed in [9], were simi-

lar, in terms of magnitude, to those previously obtained on the TA muscle of healthy subjects

[6,18,29,30,47]. Comparisons were not possible for the AURC and I50, since no previous stud-

ies evaluated this outcome on the TA muscle. The measurement error between sessions were

overall quite large. However, all measures but AURC, MEPmax, and slope could be considered

as acceptable, with a relative measurement error�10% [17].

The lowest relative measurement errors were found for MT and I50 both at rest and at 5%

MVC. MT was characterized by MDC values of 12.2%MSO (at rest) and 10.2%MSO (at 5%

MVC), comparable to 9.3%MSO for resting MT found in [6,29]. Therefore, we concluded that

the MT is reliable even when derived from the SR curve instead of using the traditional

method (MT is usually defined as the lowest stimulation intensity inducing a MEPpp>50μV

in at least 5 out of 10 consecutive trials [6,18,29]). Comparisons were not possible for I50 since

no previous data were found.

MEPmax showed a measurement error above the cut-off of 10%, as already observed in [6]:

we obtained a value of SEMrel equal to 36% at rest and 28% at 5%MVC, compared to 16%

found at rest in [6]. The slope showed a higher measurement error with respect to what previ-

ously found: in [6] the Authors observed a relative SEM of 8.2% for the TA at rest, while we

found a relative SEM of 25.1% and 37.1% at rest and at 5%MVC, respectively.

Instead of considering each single curve parameter individually, AURC has been candidate

as a global indicator of cortical excitability [40] and therefore as the most clinically meaningful

outcome to be used in longitudinal studies. Our study assessed for the first time its measure-

ment properties for lower limb muscles: high values of SEMrel were found between sessions

Table 4. Inter-session reliability analysis of TMS-related parameters at rest and at 5%MVC (active). Only the first curves acquired in the two sessions

are considered.

Test* Retest* P-value† SEM SEMrel (%) MDC ICC (95% CI)

Rest (N = 21) MT [%MSO] 57 ± 13 53 ± 9 0.16 7.4 13.5 20.5 0.54 (0.17; 0.78)

AURC 11 ± 10 9 ± 8 0.12 3.8 38.0 10.5 0.82 (0.61; 0.92)

MEPmax 0.32 ± 0.22 0.23 ± 0.14 0.02 0.11 41.5 0.32 0.63 (0.26; 0.84)

I50 [%MSO] 67 ± 15 67 ± 15 0.98 9.67 14.4 26.8 0.57 (0.19; 0.80)

Slope [%MSO]-1 5.4 ± 3.0 5.6 ± 3.3 0.74 3.2 57.8 8.8 -0.11 (-0.55; 0.36)

Latency [ms] 24 ± 4 24 ± 6 0.75 2.8 11.7 7.8 0.68 (0.36; 0.86)

Active (N = 22) MT [%MSO] 42 ± 8 41 ± 8 0.88 3.2 7.7 8.8 0.77 (0.51; 0.90)

AURC 30 ± 12 30 ± 14 0.93 8 26.7 22.2 0.60 (0.24; 0.81)

MEPmax 0.63 ± 0.22 0.58 ± 0.24 0.32 0.18 29.6 0.50 0.40 (-0.00; 0.70)

I50 [%MSO] 56 ± 15 53 ± 12 0.02 5.0 9.2 13.9 0.86 (0.65; 0.95)

Slope [%MSO]-1 6.1 ± 4.6 5.1 ± 3.8 0.02 1.6 29.1 4.5 0.85 (0.64; 0.94)

Latency [ms] 28 ± 5 29 ± 5 0.73 3.4 11.9 9.4 0.49 (0.09; 0.75)

SP [ms] 151 ± 32 139 ± 27 0.06 19.9 13.7 55.2 0.57 (0.20; 0.80)

* mean ± SD obtained across participants during the first repetition of day 1 (Test) and day 2 (Retest).

† Paired t-test

MT: motor threshold; AURC: area under the recruitment curve; SP: silent period

MSO: maximal stimulator output

SEM: Standard Error of Measurement; SEMrel%: relative Standard Error of Measurement; MDC: Minimum Detectable Changes; ICC (CI 95%): intraclass

correlation coefficient (95% confidence interval)

https://doi.org/10.1371/journal.pone.0184828.t004
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(30% at rest and 26% at 5%MVC), indicating that big changes are needed to overcome the

measurement error. This high measurement error reflected the high errors already found for

MEPmax and slope.

When compared to the literature, higher and lower MDC values were found for latency (7/

8ms versus<2ms found in [6,29]), and SP (38ms versus 60ms in [6]), respectively. However,

comparisons must be made with caution since previous studies have assessed these outcomes

at different stimulation intensities and the stimulation intensity has been seen to influence the

magnitude of these measures: SP increases and latency decreases with increased stimulation

intensity [48,49]. Furthermore, previous studies acquired active SR curves at contraction levels

higher than 5%MVC (20%MVC in [6] and 10%MVC in [29]). Although this low background

activity made comparison with the literature more difficult, it was chosen to reduce the risk of

muscle fatigue, particularly relevant for healthy older adults and, even more, for neurological

patients (e.g. stroke survivors).

Overall, we observed that individual changes needed to exceed the MDC values should be

quite high; for example, we obtained that MT during slight muscle contractions should change

of>10%MSO after an intervention to be considered a real change above the measurement

error (MDC = 10.3%MSO at 5% MVC, as reported in Table 3). However, such a change is

quite unusual to be observed [17]. Therefore, as already suggested in [17] and confirmed in

[16], MDC values should be better used to identify changes within a homogenous group of

subjects rather than to track individual changes. Indeed, in case of groups, MDC value is

divided by the square root of the sample size and its value is strongly reduced, even for small

samples.

Compared to absolute reliability, relative reliability was more commonly investigated in the

literature. Several studies have estimated ICC values for TMS outcomes in TA muscle on

healthy subjects [6,18,29,30,47]. Good relative reliability (ICC>0.70) was generally found for

resting MT, slope, latency, silent period, and MEP amplitude; only one study [30] observed a

moderate reliability for latency (ICC of 0.55–0.71 during isometric muscle contractions of 10%

to 60%MVC) and silent period (ICC of 0.16–0.40). Similar results were observed in our study

for MT (inter-session ICC of 0.84 and 0.77 at rest and at 5%MVC, respectively) and SP (ICC

of 0.71), while a moderate reliability as in [30] was obtained for latency (ICC of 0.66 and 0.54

at rest and at 5%MVC, respectively). A lower reliability with respect to the literature was found

for the slope at rest (inter-session ICC of 0.28 versus 0.78 found in [6]); however, during slight

muscular contraction a good relative reliability was regained (ICC of 0.87). For MEPmax, the

same value of ICC was found in our study and in [6] at rest (ICC of 0.71). Concerning the

AURC, ICC ranged from 0.88 at rest to 0.60 at 5%MVC, and to our knowledge no other stud-

ies evaluated its reliabilityMP so far. Based on our results, one could conclude that all TMS mea-

sures but AURC and MEPmax during muscle contraction, latency, and slope at rest could be

used to discriminate between subjects for staging or diagnosis.

As already observed [6,16], lower measurement errors were found when outcomes were

acquired within the same day (intra-session, Table 2) than some days apart (inter-session,

Table 3), in particular for AURC and MEPmax. This is mainly due to the different sources of

variability which affect intra- and inter-session reliability. The measurement error within the

same day is mainly due to the physiological fluctuations of the excitability at cortical and spinal

levels. Reducing the acquisition time to 3–4 minutes we expected to decrease the effect of long-

term exogenous variability, and so to reduce the intra-session variability. However, this result

was not achieved. The higher measurement error between different sessions is most likely due

to the methodological sources of variability, such as EMG electrodes replacement and hotspot

repositioning [16]. The use of an optical electronic system and a custom-made software to
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maintain the same coil position and orientation within and between sessions did not reduce

the measurement variability, as already observed [50].

As expected, averaging the parameters over 3 curves increases the reliability with respect to

single-curve parameters, since the average reduces the effect of random errors. Therefore,

when studying small changes in corticospinal excitability, usually found in healthy participants

following brief motor learning paradigms, three SR curves may be needed to optimally quan-

tify changes in excitability. However, in patients where changes in CSE are expected to be

large, a single curve will be sufficient to detect changes.

Our study has some limitations. Firstly, an ISI<3s could have been investigated in order to

further reduce the acquisition time of the SR curves. Secondly, the study did not collect active

SR curves at contraction levels >5%MVC (e.g. 10–20%MVC) and this limited the possibility

to compare our results with previous findings.

Conclusion

This study showed that although a shorter time for data collection and an experimental protocol

designed to minimise measurement variability, TMS measures acquired by stimulating the area

of the motor cortex representing the TA muscle of healthy older adults using this method are

comparable to traditional methods and are affected by a large measurement error. Therefore,

our results support the use of TMS measures to detect changes significantly over the measure-

ment error in group of subjects, instead of individual changes. In such a way, when used in lon-

gitudinal studies aimed at investigating neuroplasticity linked to motor rehabilitation, TMS

measures might aid our understanding about how we can augment the effect of motor rehabili-

tation and identify the optimal treatment plans for its effects to persist and translate to improve-

ments in daily life activities. As specifically designed to include older adults, this study provides

normative data for future studies involving older neurological patients (e.g. stroke survivors).
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S1 File. MT, AURC, slope, I50, MEPmax, latency, SP computed for each of the 24 patients

are reported for passive (sheet 1) and active (sheet 2) test conditions. Each column corre-

sponds to data extracted from a single SR curve (three at Day1 and three at Day2).
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16. Beaulieu L-D, Flamand VH, Massé-Alarie H, Schneider C. Reliability and minimal detectable change of

transcranial magnetic stimulation outcomes in healthy adults: A systematic review. Brain Stimul. 2017;

10: 196–213. https://doi.org/10.1016/j.brs.2016.12.008 PMID: 28031148

Reliability of TMS measures of tibialis anterior muscle in healthy older adults

PLOS ONE | https://doi.org/10.1371/journal.pone.0184828 September 14, 2017 15 / 17

https://doi.org/10.1016/j.clinph.2009.08.016.Rossi
https://doi.org/10.1038/35018000
http://www.ncbi.nlm.nih.gov/pubmed/10910346
https://doi.org/10.1016/S0924-980X(97)00041-6
https://doi.org/10.1016/S0924-980X(97)00041-6
https://doi.org/10.1007/PL00005641
http://www.ncbi.nlm.nih.gov/pubmed/9166922
https://doi.org/10.1016/j.clinph.2008.11.019
http://www.ncbi.nlm.nih.gov/pubmed/19135412
https://doi.org/10.1016/S0165-0270(01)00468-X
http://www.ncbi.nlm.nih.gov/pubmed/11716954
https://doi.org/10.1177/1545968309349939
http://www.ncbi.nlm.nih.gov/pubmed/19861590
https://doi.org/10.1016/j.brs.2013.08.003
https://doi.org/10.1016/j.brs.2013.08.003
http://www.ncbi.nlm.nih.gov/pubmed/24120355
https://doi.org/10.1016/j.brs.2011.07.008
http://www.ncbi.nlm.nih.gov/pubmed/21962980
https://doi.org/10.1111/j.1525-1403.2012.00459.x
https://doi.org/10.1111/j.1525-1403.2012.00459.x
http://www.ncbi.nlm.nih.gov/pubmed/22624621
https://doi.org/10.1093/cercor/bhm218
http://www.ncbi.nlm.nih.gov/pubmed/18234688
https://doi.org/10.1016/j.clinph.2014.01.034
http://www.ncbi.nlm.nih.gov/pubmed/24636830
https://doi.org/10.4103/1673-5374.172329
http://www.ncbi.nlm.nih.gov/pubmed/26889202
http://www.ncbi.nlm.nih.gov/pubmed/23432716
https://doi.org/10.1016/j.brs.2016.12.008
http://www.ncbi.nlm.nih.gov/pubmed/28031148
https://doi.org/10.1371/journal.pone.0184828


17. Schambra HM, Ogden RT, Martı́nez-Hernández IE, Lin X, Chang YB, Rahman A, et al. The reliability of

repeated TMS measures in older adults and in patients with subacute and chronic stroke. Front Cell

Neurosci. 2015; 9: 335. https://doi.org/10.3389/fncel.2015.00335 PMID: 26388729

18. Tallent J, Goodall S, Hortobogyi T, St Clair Gibson A, French DN, Howatson G. Repeatability of corti-

cospinal and spinal measures during lengthening and shortening contractions in the human tibialis ante-

rior muscle. PLoS One. 2012; 7: 1–8. https://doi.org/10.1371/journal.pone.0035930 PMID: 22563418

19. Kiers L, Cros D, Chiappa KH, Fang J. Variability of motor potentials evoked by transcranial magnetic

stimulation. Electroencephalogr Clin Neurophysiol. 1993; 89: 415–23. PMID: 7507428

20. Schmidt S, Bathe-Peters R, Fleischmann R, Rönnefarth M, Scholz M, Brandt SA. Nonphysiological fac-

tors in navigated TMS studies; confounding covariates and valid intracortical estimates. Hum Brain

Mapp. 2015; 36: 40–9. https://doi.org/10.1002/hbm.22611 PMID: 25168635

21. Adrian ED, Moruzzi G. Impulses in the pyramidal tract. J Physiol. 1939; 97: 153–99. PMID: 16995153

22. Kamke MR, Hall MG, Lye HF, Sale M V, Fenlon LR, Carroll TJ, et al. Visual attentional load influences

plasticity in the human motor cortex. J Neurosci. 2012; 32: 7001–8. https://doi.org/10.1523/

JNEUROSCI.1028-12.2012 PMID: 22593068

23. Sale M V, Ridding MC, Nordstrom MA. Cortisol inhibits neuroplasticity induction in human motor cortex.

J Neurosci. 2008; 28: 8285–93. https://doi.org/10.1523/JNEUROSCI.1963-08.2008 PMID: 18701691

24. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimu-

lation in healthy subjects. J Physiol. 2010; 588: 2291–2304. https://doi.org/10.1113/jphysiol.2010.

190314 PMID: 20478978

25. Pitcher JB, Ogston KM, Miles TS. Age and sex differences in human motor cortex input-output charac-

teristics. J Physiol. Blackwell Publishing Ltd; 2003; 546: 605–613. https://doi.org/10.1113/jphysiol.2002.

029454 PMID: 12527746

26. Smith AE, Sale M V, Higgins RD, Wittert G a, Pitcher JB. Male human motor cortex stimulus-response

characteristics are not altered by aging. J Appl Physiol. 2011; 110: 206–12. https://doi.org/10.1152/

japplphysiol.00403.2010 PMID: 21071590

27. Chen R. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.

Neurology. 1997; 48: 1398–1403. PMID: 9153480

28. Peri E, Colombo VM, Ambrosini E, van de Ruit M, Grey MJ, Monticone M, et al. Reliability of Rapid TMS

Stimulus-Response Curves During Tibialis Anterior Contractions on Healthy Elderly. Springer Interna-

tional Publishing; 2016. pp. 1069–1074. https://doi.org/10.1007/978-3-319-32703-7_211

29. Cacchio A, Paoloni M, Cimini N, Mangone M, Liris G, Aloisi P, et al. Reliability of TMS-related measures

of tibialis anterior muscle in patients with chronic stroke and healthy subjects. J Neurol Sci. 2011; 303:

90–94. https://doi.org/10.1016/j.jns.2011.01.004 PMID: 21262510

30. Van Hedel HJA, Murer C, Dietz V, Curt A. The amplitude of lower leg motor evoked potentials is a reli-

able measure when controlled for torque and motor task. J Neurol. 2007; 254: 1089–1098. https://doi.

org/10.1007/s00415-006-0493-4 PMID: 17431701

31. Meaney A, Collett J, Dawes H, Howells K, Izadi H. Consistency of evoked responses to dual-stimulator,

single-pulse transcranial magnetic stimulation in the lower limb of people with multiple sclerosis. J Clin

Neurosci. Elsevier; 2015; 22: 1434–1437. https://doi.org/10.1016/j.jocn.2015.02.034 PMID: 26154149

32. Keel JC, Smith MJ, Wassermann EM. A safety screening questionnaire for transcranial magnetic stimu-

lation. Clin Neurophysiol. 2001; 112: 720. PMID: 11332408

33. Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. Third ed. Upper

Saddle River, editor. Pearson Education, Inc; 2009.

34. Chapman JP, Chapman LJ, Allen JJ. The measurement of foot preference. Neuropsychologia. 1987;

25: 579–584. https://doi.org/10.1016/0028-3932(87)90082-0 PMID: 3683814

35. Ambrosini E, Biguzzi S, van de Ruit M, Pedrocchi A, Ferrigno G, Ferrante S, et al. Open-Source Soft-

ware for Manual Transcranial Magnetic Stimulation Coil Positioning. 7th International IEEE EMBS Con-

ference on Neural Engineering, Montpellier, France. 2015.

36. van de Ruit M, Ambrosini E, Ferrante S, Grey MJ. Towards use of TMS as a clinical tool to assess plas-

ticity. 26th Annual Meeting of Scoiety for the Neural Control of Movement.

37. Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, et al. A practical guide to diagnostic

transcranial magnetic stimulation: Report of an IFCN committee. Clin Neurophysiol. International Feder-

ation of Clinical Neurophysiology; 2012; 123: 858–882. https://doi.org/10.1016/j.clinph.2012.01.010

PMID: 22349304

38. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and

magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and proce-

dures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin

Neurophysiol. 2015; 126: 1071–107. https://doi.org/10.1016/j.clinph.2015.02.001 PMID: 25797650

Reliability of TMS measures of tibialis anterior muscle in healthy older adults

PLOS ONE | https://doi.org/10.1371/journal.pone.0184828 September 14, 2017 16 / 17

https://doi.org/10.3389/fncel.2015.00335
http://www.ncbi.nlm.nih.gov/pubmed/26388729
https://doi.org/10.1371/journal.pone.0035930
http://www.ncbi.nlm.nih.gov/pubmed/22563418
http://www.ncbi.nlm.nih.gov/pubmed/7507428
https://doi.org/10.1002/hbm.22611
http://www.ncbi.nlm.nih.gov/pubmed/25168635
http://www.ncbi.nlm.nih.gov/pubmed/16995153
https://doi.org/10.1523/JNEUROSCI.1028-12.2012
https://doi.org/10.1523/JNEUROSCI.1028-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/22593068
https://doi.org/10.1523/JNEUROSCI.1963-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18701691
https://doi.org/10.1113/jphysiol.2010.190314
https://doi.org/10.1113/jphysiol.2010.190314
http://www.ncbi.nlm.nih.gov/pubmed/20478978
https://doi.org/10.1113/jphysiol.2002.029454
https://doi.org/10.1113/jphysiol.2002.029454
http://www.ncbi.nlm.nih.gov/pubmed/12527746
https://doi.org/10.1152/japplphysiol.00403.2010
https://doi.org/10.1152/japplphysiol.00403.2010
http://www.ncbi.nlm.nih.gov/pubmed/21071590
http://www.ncbi.nlm.nih.gov/pubmed/9153480
https://doi.org/10.1007/978-3-319-32703-7_211
https://doi.org/10.1016/j.jns.2011.01.004
http://www.ncbi.nlm.nih.gov/pubmed/21262510
https://doi.org/10.1007/s00415-006-0493-4
https://doi.org/10.1007/s00415-006-0493-4
http://www.ncbi.nlm.nih.gov/pubmed/17431701
https://doi.org/10.1016/j.jocn.2015.02.034
http://www.ncbi.nlm.nih.gov/pubmed/26154149
http://www.ncbi.nlm.nih.gov/pubmed/11332408
https://doi.org/10.1016/0028-3932(87)90082-0
http://www.ncbi.nlm.nih.gov/pubmed/3683814
https://doi.org/10.1016/j.clinph.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22349304
https://doi.org/10.1016/j.clinph.2015.02.001
http://www.ncbi.nlm.nih.gov/pubmed/25797650
https://doi.org/10.1371/journal.pone.0184828


39. Hallett M. Transcranial Magnetic Stimulation: A Primer. Neuron. 2007; 55: 187–199. https://doi.org/10.

1016/j.neuron.2007.06.026 PMID: 17640522

40. Carson RG, Nelson BD, Buick AR, Carroll TJ, Kennedy NC, Mac Cann R. Characterizing Changes in

the Excitability of Corticospinal Projections to Proximal Muscles of the Upper Limb. Brain Stimul. 2013;

6: 760–768. https://doi.org/10.1016/j.brs.2013.01.016 PMID: 23474090

41. Liu H, Au-Yeung SSY. Reliability of transcranial magnetic stimulation induced corticomotor excitability

measurements for a hand muscle in healthy and chronic stroke subjects. J Neurol Sci. 2014; 341: 105–

109. https://doi.org/10.1016/j.jns.2014.04.012 PMID: 24792099

42. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003;

2: 145–156. https://doi.org/10.1016/S1474-4422(03)00321-1 PMID: 12849236

43. Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Stat Med.

Wiley Subscription Services, Inc., A Wiley Company; 1998; 17: 101–110. https://doi.org/10.1002/(SICI)

1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E PMID: 9463853

44. Breusch TS, Pagan AR. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econ-

ometrica. 1979; 47: 1287. https://doi.org/10.2307/1911963

45. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the sem. J

Strength Cond Res. 2005; 19: 231–240. https://doi.org/10.1519/15184.1 PMID: 15705040
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