
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Omega Becomes a Sign Processor

Citation for published version:
Haralambous, Y & Bella, G 2005, 'Omega Becomes a Sign Processor' TUGboat, vol. 27, no. 0, pp. 99-110.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
TUGboat

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/131079556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/omega-becomes-a-sign-processor(8b7fce2b-29a9-475b-9c60-786af92b7f8f).html


Omega Becomes a Sign Processor

Yannis Haralambous
ENST Bretagne

yannis.haralambous@enst-bretagne.fr

http://omega.enstb.org/yannis

Gábor Bella
ENST Bretagne

gabor.bella@enst-bretagne.fr

Characters and Glyphs

The distinction between “characters” and “glyphs”
is a rather new issue in computing, although the
problem is as old as humanity: our species turns out
to be a writing one because, amongst other things,
our brain is able to interpret images as symbols be-
longing to a given writing system. Computers deal
with text in a more abstract way. When we agree
that, in computing, all possible “capital A” letters
are represented by the number 65, then we cut short
all information on how a given instance of capital let-
ter A is drawn. Modern computing jargon describes
this process as “going from glyphs to characters.”
If a glyph is the image of a writing system’s atomic
unit, a character is an interpretation of that image,
an interpretation shared by many glyphs drawn by
different people in different places at different times.
If all these drawings are equivalent in terms of in-
terpretation, we can consider character as an equiv-
alence class of glyphs. To be operational such an
equivalence class must be described in a clear and
unambiguous way. This is why we define charac-
ter as being a description of an equivalence class of
glyphs [7, pp. 53–58], [6].

Arabic text provides a typical illustration
ground for the concepts of character and glyph. In
Arabic alphabet, letters are contextual, in the sense
that a given letter will change form according to
the presence or absence of other surrounding ones.
When we refer to an Arabic letter and represent it
graphically, we use the isolated form. We can also
refer to it by its description (for example: arabic

letter jeem) and this can be considered as de-
scription of a “character”: the equivalence class of
shapes this letter can take in millions of Arabic doc-
uments. While there may be millions of instances of
this letter, according to Arabic grammar they all be-
long to one of only four forms: isolated �, initial �,

medial �, or final �. Hence, we could choose to have

not one but four equivalence classes of shapes: ara-

bic initial letter jeem, arabic medial letter

jeem, and so on. But are these “characters”?
Answering to this question requires a pragmatic

approach. What difference will it make if we have
one or rather four characters for letter jeem? There
will indeed be a difference in operations such as
searching, indexing, etc. A good question to ask
is: “when I’m searching in an Arabic document, am
I looking for specific forms of letters?” Most of the
time, the answer is negative.1 Form-independent
searching will, most of the times, produce better re-
sults and this implies that having a single character
for all forms is probably a better choice.2

Unicode is a character encoding. In other
words, it contains descriptions of characters and
tries hard to define characters properly by avoiding
dependence on glyphs.3

1 Arabic words are not always visually segmented as En-
glish ones—there is, for example, no guarantee that the first
letter of a word will always be in initial form: if a word start-
ing with jeem is preceded by the definite article al, then the
jeem will end up being in medial form.

2 Greek is different: sigma doesn’t “become” final because
it “happens” to be at the end of a word. While medial sigma

can appear anywhere, final sigma is used mainly for the end-
ings of particular grammatical forms and in onomatopeias or
foreign words. One would hardly ever search for both the fi-
nal and medial form of sigma since their rôles are distinct.
To illustrate this, when we abreviate a word by a period at
a sigma then the latter does remain medial despite being the
final letter: φιλοσοφ¬α → φιλοσ. Hence it is quite logical to
use distinct characters for medial and final sigma.

3 This is not always the case because of Unicode’s
tenth founding principle, namely convertibility of legacy
encodings—and legacy encodings contain all kinds of things.
For example, again in the case of Arabic, the main Unicode
Arabic table indeed contains only form-independent “char-
acters.” But, hidden towards the end of the first Unicode
plane, one finds several hundreds of codepoints containing
Arabic letters and ligatures in fixed forms, for legacy reasons.
Like human history (or Stephen King’s movies) Unicode has
shadowy places which people try to avoid and even to forget
that they exist.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

99



The character vs. glyph issue is far from being
solved. In this paper we give an attempt to tran-
scend it by introducing a new concept: the sign.

A sign is a set {c, p1 = v1, . . . , pn = vn, g} where c

is a character, g a glyph, and pi an arbitrary num-
ber of named properties taking values vi. Charac-
ter, glyph, number of properties, their names and
their values can be changed at any time, by spe-
cial syntax in the input file, or by OTPs, or by
interaction with fonts.

Using the term “sign” we clearly refer to a Saus-
surian linguistics tradition whose relevance for
nowadays semiotics needs not to be proven. For
Saussure [11, p. 99], sign is the basic discrete unit
of meaning. It is a dual entity made up of a signifier
and a signified. For instance, when we write or pro-
nounce the word “tree,” the visual or auditory image
of this word is the signifier and the concept of tree is
the signified. Inspired of this analysis one could at-
tempt to apply the notion of sign to characters and
glyphs, by asserting that glyph is signifier, and char-
acter is signified. Nevertheless, in semiotics things
are not that simple because linguists generally deal
with units of meaning rather than with words per
se, and even less with letters. A letter inside a word
is not considered to be a Saussurian sign.

This is why we are bound to warn the reader
that our concept of sign is inspired from but not
identical to Saussurian sign.

In Principio Creavit Knuth TEXum

How does TEX deal with characters and/or glyphs?
First of all, .tex files contain characters. When

TEX reads a file, it converts the data stream into to-
kens. A token ([10, §289] or [8], which is an exegesis
of Knuth’s B) is either a “character token” (that is,
two numbers: a character code and the character’s
“category,” which provides the specific rôle played
by the given character code, for example whether it
is a math mode espace character like $, or a com-
ment escape character like %, or a group delimiter
like {, and so on), or a “control sequence token.”

If we leave aside for a moment the fact that TEX
cannot read character codes above 255, one could
claim that “character tokens” can still be considered
as “characters.” What happens next?

Parsing these tokens, TEX builds node lists
(horizontal and vertical). A node is a typed atomic
unit of information of a list. The amount and nature
of data contained in nodes depend on their type. A
“character node” [10, §134] (or “charnode”) is made
of two numbers: a font ID and the position of the
glyph in the font table. But the latter is not bound

to have any relation whatsoever with its character
code. Obviously, we can hardly talk about charac-
ters at this point: we have crossed the bridge to
Glyphland.

Another very interesting node type is the “lig-
ature node” [10, §143]. This one contains a font ID,
a glyph position in the font table, and a pointer to
a linked list of charnodes. This list is in fact the
“decomposition” of the ligature. TEX needs it in
case it has to “break” the ligature during paragraph
building, for example when a word needs to be hy-
phenated inside a ligature.

Talking about hyphenation, there is a node
called “discretionary node” [10, §145]. This node
contains two pointers to horizontal lists, as well as
an integer. These horizontal lists are what is type-
set when we break a word, before and after the line
break (in standard cases the first one contains only a
hyphen, and the second one is empty). The integer
is the number of nodes of the main horizontal list
to delete if the word is hyphenated (in other words:
how many nodes to replace by the two horizontal
lists we mentioned).

As we see, in the three node types de-
scribed above only glyphs are used—never charac-
ters. There seems to be a contradiction with the
very nature of hyphenation: after all, words are hy-
phenated according to rules given by natural lan-
guage grammars, and these grammars apply to char-
acters, not to glyphs. Indeed, would you hyphenate
a word differently if some letters had calligraphic
shapes? Certainly not, but for TEX, these letters
are glyphs in font tables, and if variant forms exist,
then their positions in the font tables are necessar-
ily different from the standard ones. How does TEX
deal with this?

There is in TEX a primitive called \lccode (and
a corresponding WEB macro called lc code). Each
glyph in a font participating in hyphenation has nec-
essarily a lc code value. These values are usually
initialized in the format.

lc code is in fact a mapping between glyphs and
characters. Hyphenation rules are written using pat-
terns, and patterns use characters. When TEX needs
to hyphenate words in a paragraph, it first maps
glyphs back to characters using lc code [10, §892–
899], and then applies hyphenation rules.

This method seems to work, but the user must,
at all times, use the appropriate lc code settings for
each font.4

4 It is worth mentioning that lc code has a big advantage
after all: it allows simplification of hyphenation patterns.
Indeed, instead of mapping a glyph to the precise character
it represents, one can use equivalence classes of characters.

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

100 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella



Let us continue our journey through TEX and see
what happens in the final stage. There is no
surprise: the information contained in charnodes
(namely font ID and glyph position) is output to
the DVI file [10, §619]. Ligature nodes are treated
similarly [10, §652]: only font ID and glyph po-
sition of the ligature remains, provided of course
that the ligature has survived hyphenation. Discre-
tionary nodes vanish long before output since either
hyphenation has occured and the two horizontal lists
pointed by the node have found their way into the
DVI file, or no hyphenation has occured and the
discretionary node falls into oblivion.

When TEX and the DVI file format were devel-
oped, this was the best possible approach: DVI files
had to be short, and there was no need to insert more
information than required to print. And indeed, a
printing device doesn’t care whether a glyph is a lig-
ature or whether it derives from hyphenation; print-
ing is done in Glyphland, at the very end of the line
of document production process. Even PostScript
language didn’t change that situation, although it
made printing devices more clever (clever enough to
interpret a very rich prgramming language).

Dixitque Berners Lee: fiat Web
et facta est Web

Things changed when DVI and PostScript were
not anymore the only targets of TEX document
production process. The Web brought the era of
electronic documents in various formats such as
PDF, XHTML, etc. These documents allow inter-
action with textual contents: copy-and-paste of text
blocks, searching, indexing, etc.

When we search for a word inside a document,
or in a collection of documents, do we care about the
shape of its letters? Most of the time, the answer is
no. Otherwise, it would be quite hard to find a word
in a document written in Zapfino or Poetica, since
one has to predict the precise variant form used for
every letter, and there are many of them.

In this kind of situation one would like to inter-
act with the document on the character level. But
if PDF or XHTML files are produced by TEX, then
the information on characters is lost. A very sim-
ple example: if ‘fi’ is represented in a DVI file as
glyph 12 of font cmr10, with no reference whatso-
ever to the character string ‘f-i’, then how on earth
can we search for the word ‘film’ by entering charac-
ters ‘f’, ‘i’, ‘l’, ‘m’ in our program’s search interface?

For example, in Greek, hyphenation does not (or very rarely)
depend on accents and breathings, so we can map all letters
with diacritics into base letter classes and write patterns using
the latter.

There is no natural solution to this problem.
Acrobat Distiller tries to give an algorithmic so-
lution by using PostScript font glyph names ([7,
pp. 651–653], [1]). The idea is the following: in
PostScript type 1 fonts, glyphs have names (namely
the names of PostScript subroutines which contain
the Type 1 operator glyph’s description); when cre-
ating a variant glyph of, let us say, letter ‘e’, design-
ers are requested to use a name like e.foo where
foo is some description of the variant: the first
part of the name identifies the Unicode character
and the second, the variant; Distiller goes through
all glyph names in all fonts used in a document
and maps glyphs to Unicode characters according
to their names. There is a similar syntax provided
for ligatures (that is: glyphs mapped to more than
one Unicode character).

TrueType fonts have a table (called cmap [7,
pp. 703–706]) dedicated to this mapping: we map
(single) Unicode characters to (single) glyphs.5

These solutions are sub-optimal. There is no
way to modify the mapping between characters and
glyphs without hampering with the font, and this is
not always desirable.

Instead of finding sub-optimal solutions to a
problem which is the consequence of information loss
in the DVI file, let us attack the origin of this prob-
lem. Is it possible to keep character and glyph in-
formation all the way long, from input file to DVI
(and beyond)?

“How now, spirit! whither wander you?”
(Enters Omega1)

One of Omega1’s goals was to achieve Unicode com-
pliance. The least one could expect of Omega1 is
an affirmative answer to the final question of previ-
ous section: Can we obtain Unicode information in
a DVI file?

Before answering that question let us see
whether Omega1 is actually different from TEX
when dealing with characters and glyphs. It isn’t:
Omega1 can read 16-bit characters (some versions
of it can even read UTF-8 representation of Uni-
code data directly), but once inside Omega1, Uni-
code characters become “character tokens” and then
charnodes, ligature nodes and discretionary nodes

5 In fact, things are worse than for PostScript Type 1
fonts: while PostScript glyphs have names (and names are
usually meaningful and stable vs. font trasformations), True-
Type glyphs are accessed by their “glyph index values” which
are plain integers. A TrueType font opened and saved by
some font editing software can be re-organized, glyph index
values can change without further notice, and hence accessing
a glyph directly by its index, without going through the cmap

table, is quite risky.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

101



all the same as in TEX.
How then does Omega1 manage to do Arabic, a

writing system where one just has to go from char-
acters to glyphs? By using OTPs [9]. An OTP is an
internal filter, applied to “character tokens.” It can
be compared to a pre-processor but has some major
advantages: the fact that only tokens are targeted
(not comments, for example), and that the catcode
of each token is known and that transformations
are applied to selected categories only (usually plain
text, that is: catcodes 11 and 12). Furthermore,
OTPs have the tremendous advantage of being dy-
namically activated and de-activated by primitives.

Let us analyse the example of Arabic typeset-
ting via Omega1. When Arabic Unicode characters
are read, they become “character tokens” (the first
part of the token takes the numeric value of the Uni-
code codepoint, the second part is the catcode, in
this case probably 12). No contextual analysis is
done yet. It is an OTP that analyses the context
of each glyph, and, using a finite-state machine, cal-
culates its form; the result of the transformation by
this OTP is one or more new tokens, replacing the
previous ones. These tokens correspond to given
forms of glyphs. Other OTPs will act upon them
and produce esthetic ligatures, and usually the fi-
nal OTP will map these tokens to font-specific ones,
which in turn will become charnodes, and will end
up in the DVI file.

The purpose of keeping only the last OTP font-
dependent is to improve generality and re-usability
of the previous OTPs. But from the moment we
perform contextual analysis we have left Unicode
data behind and are travelling in a no-man’s land
between characters and glyphs. In this de Chirico-
like surreal place, characters are more-or-less “con-
crete” and glyphs more-or-less “abstract.” Obvi-
ously, if the result is satisfying—and this is the case
with Omega1’s Arabic typesetting—it is of no im-
portance how we manage to obtain it, whether we
go through these or those OTPs and in which ways
we transform data.

But the fact is that we do lose character infor-
mation, just as in TEX. In the DVI file we have
beautiful Arabic letters and ligatures . . . but there
is no way back to the original Unicode characters.

This situation is changing with Omega2 (work in
progress). Instead of characters, character tokens
and charnodes we are using signs (sign tokens and
sign nodes), links and bifurcations. Sign nodes are
data structures containing a character, a glyph, and
additional key/value pairs, where the value can be
simple or complex, involving pointers to other signs,

etc. Links are groups of signs which contain alterna-
tive sets of glyphs based on a graph: the paragraph
builder includes this graph into its own acyclic graph
through which it will obtain the optimal paragraph
layout as the shortest path from top to bottom.

Before we enter into the details of signs, let
us briefly describe another paradigm of charac-
ter/glyph model implementation: SVG.

The SVG Paradigm

SVG (= Scalable Vector Graphics, [4]) has at leats
one very nice property: the way text is managed is
quite elegant.

First of all, an SVG document is an XML docu-
ment, and the only textual data it contains is actual
text displayed in the image. In other words: however
complex a graphic may be, all graphical elements
are described solely by element tags, attributes and,
eventually, CDATA blocks. Not a single keyword
will ever appear in textual content.

This is not at all the case of LATEX, where we
are constantly mixing mark up and contents, as in:

Dieser Text ist \textcolor{red}{rot}.

where red is markup and rot is text, and where
there is no way of syntactically distinguishing be-
tween the two. In SVG, this example would be:

<svg:text>

Dieser Text ist

<svg:tspan color="red">rot</svg:tspan>.

</svg:text>

where separation between text and markup is clear.
In SVG, as this is the default for XML, text is

encoded in Unicode. In other words, text is made of
characters only. How then do we obtain glyphs?

As in TEX, SVG uses the notion of “current
font,” attached to each text or tspan element, and
this informations is inherited by all descendant ele-
ments, unless otherwise specified. Fonts can be ex-
ternal, but the model is even more elegant when
fonts are internal.

An internal SVG font is an element called font

containing elements called glyph. The latter has an
attribute called unicode. This attribute contains
the one (or more, in case of a ligature) Unicode char-
acters represented by the glyph.

The contents of the glyph element can be arbi-
trary SVG code (this is quite similar to the concept
of TEX’s virtual fonts, where a glyph can contain an
arbitrary block of DVI instructions). In this way,
any SVG image, however complicated, can become
a single glyph of a font. To include this glyph in
the SVG graphic one only needs to select the font
and ask for the same Unicode character sequence

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

102 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella



as in the unicode attribute of the glyph, in a text

element.
Besides unicode, the glyph element takes a

number of attributes :

• glyph-name: in case we want to access a glyph
directly (useful when we have more than one
variant glyphs representing the same charac-
ter);

• d: the actual outline of the glyph, if we want to
keep it simple and not include arbitrary SVG
graphical constructions as contents of glyph;

• orientation: when mixing horizontal and ver-
tical scripts, how is this glyph oriented?

• arabic-form: initial, medial, isolated or final?

• lang: use this glyph for a number of given lan-
guage codes only;

• horiz-adv-x, horiz-adv-y: the advance vec-
tor of the glyph when typeset horizontally;

• vert-adv-x, vert-adv-y: idem, when typeset
vertically;

• vert-origin-x, vert-origin-y: the origin of
the glyph when typeset vertically.

What happens if we want a specific glyph,
other than the standard one obtained directly go-
ing through Unicode character sequences? We can
use element altGlyph which allows “manual” inser-
tion of glyphs into text, and the PCDATA contents
of which is the Unicode character sequence corre-
sponding to the alternate glyph (in this way we
get, once again, textual data for indexing, search-
ing, etc.). But altGlyph also takes some attributes:

• xlink:href: if the font is described as an SVG
font element, an XLink reference to the cor-
responding glyph element inside the font—our
way of going directly to the glyph, no matter
where it is located: server on the Web, file, font;

• format: the file format of the font (SVG, Open-
Type, etc.);

• glyphRef: a reference to the glyph if the font
format is other than SVG (the specification pro-
vides no additional information, we can reason-
ably assume that this could be the PostScript
glyph name in case of CFF OpenType fonts,
or the glyph index value in case of TrueType-
like fonts, but, as we said already, this is quite
risky);

• x and y: if the alternate glyph is indeed typeset,
then these should be the absolute coordinates
of its origin;

• all usual SVG attributes (style, color, opacity,
conditionality, etc.).

Let us suppose, for example, that we want to
write the word “Omega” with a calligraphic ‘e’ (font
Jolino) described in the element:

<svg:glyph unicode="e" glyph-name="e.joli"

d="... its path ..."/>

We only need to write:

<text>

<tspan font-family="Jolino">

Om<altGlyph

xlink:href="#e.joli">e</altGlyph>ga

</tspan>

</text>

We can conclude by saying that SVG jolly well
separates textual contents from markup (characters
are provided as contents, glyphs as markup), and
that altGlyph element comes quite close to the goal
of our notion of sign: it provides both a character
(in fact, one or more characters), a glyph, and some
additional properties expressed by attributes. These
are not really entirely user-definable as in the case
of sign properties, but one could very well introduce
additional attributes by using other namespaces.

When the Signs Go Marching In

In the remainder of this paper we will describe the
sign concept in more detail and give some examples

of applications. We will use the notation c=0061 a

g=a, 97

for a sign containing character U+0061 latin let-

ter a, glyph “a” (position 97 in the current font),
and no additional properties.

Using this notation, an initial Arabic jeem

would need a sign
c=062C �

form=1
g= �, 18

. If we would like to

typeset this sign in red color, we would add another

property:

c=062C �

form=1
color=red
g= �, 18

.

Here is how it happens: Omega2 reads a file
containing Unicode character U+062C. Tokenisa-

tion produces sign
c=062C �

catcode=12
g=∅

(no glyph for the

moment). Then we go through the OTPs for con-
textual analysis and font re-encoding:

c=062C �

catcode=12
g=∅

1
−→

c=062C �

catcode=12
form=1
g=∅

2
−→

c=062C �

catcode=12
form=1
g= �, 18

The first OTP provides the contextual form
value, without affecting the character (or catcode)
value. The second OTP adds the glyph information
(which would otherwise be added implicitly when

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

103



reading the font data).
Now what if we wanted the glyph to be typeset

in red? All depends if we want (a) only the specific
instance of sign to be red, or (b) all jeem characters,
or (c) all initial jeem characters. In the first case one
would manually change the color property of this
sign to value red.6 In the second case one would
use an OTP matching all signs conforming to the

pattern
c=062C �

∗
g= ∗

(where asterisks indicate arbi-

trary values), and would add (or modify the value
of) property color. In the third case one would,
again, use an OTP but this time matching signs con-

forming to the pattern

c=062C �

form=1
∗
g= ∗

. That way only

initial form signs will be catched.
One can also imagine OTP patterns based

solely on properties. If we wanted to change the
color of all red glyphs into green, we would use an
OTP as the following:

c=∗
color=red
∗
g= ∗

→

c=(same)
color=green
(same)
g= (same)

Besides catcode, (Arabic) form and color, one
can imagine many other properties: horizontal and
vertical offset, hyphenation (or hyphenation prefer-
ence), penalty, glue, bidirectionality level, language,
style, word boundary, etc. We will discuss them
while describing selected examples of sign applica-
tions.

Locked Properties Whenever we define rules, we
also need ways to allow exceptions. In our previous
color example, let us suppose that there is a given
sign which has to remain blue, despite all OTPs
which will try to change its color. Properties can

be locked: if

c=�

form=1
color=blue
g= �, 18

becomes

c=�

form=1
k color=blue
g= �, 18

,

then no OTP will ever be able to change this prop-
erty. Of course, OTPs can lock k and unlock L

6 Why should we insert the color information into the
sign as a property, when we can simply use a macro like
\textcolor? Because OTPs use buffers and control sequence
tokens and character tokens of categories other than 11 and
12 will end the buffer and send the buffered text for process-
ing. If the buffer happens to end inside an Arabic word, then
there is no way to do proper contextual analysis since the
OTP cannot know what will follow in the next buffer. The
only way to obtain a sign string sufficiently long to perform
efficient contextual analysis, is to avoid control sequence to-
kens inside Arabic words, and this is easily achieved by storing
information in properties.

properties, so if that color has to be changed after
all, then it can always be unlocked, modified, and
locked again . . .

Signs in Auxiliary Files What’s the use of hav-
ing signs and sign properties if all the information is
lost when tokens are written into a file? For exam-
ple, when signs happen to be in the argument of a
\section command which will be written in a .toc

file. Instead of losing that information we will write
it into that file (which becomes a sign file), and have
Omega2 read it at the subsequent run and import
signs directly.

Sign Documents And since Omega2 reads and
writes auxiliary sign files, why not input the main
file as a sign document? One could imagine a sign-
compliant text editor, a kind of super-Emacs in
which one would attach sign information (charac-
ters, glyphs, predefined or arbitrary properties) to
the TEX code. One can imagine how simple opera-
tions like the verbatim environment would become:
if we can fix the catcode of an entire text block to
12, then all special characters (braces, backslashes,
percents, ampersands, hashes, hats, underlines) lose
their semantics and become ordinary text, LATEX
only needs to switch to a nice typewriter font and
use an \obeylines like command and we’re done.

Such a text editor is nowadays necessary when
we are dealing with OpenType fonts requiring inter-
action with the user. For example, the aalt feature
[7, p. 798] allows choosing variant glyphs for a given
character. It would be much more user-friendly to
use a pop-up menu than writing its glyph index
value in the TEX code. That pop-up menu would
insert the glyph index as a sign property, and bingo.

Explicit Ligatures

To understand how we deal with ligatures let us re-
call how TEX uses them in the first place. When
building the horizontal list (this part of code is called
the chief executive) every charnode is tested for the
presence of eventual ligatures (or kerning pairs) in
the font’s lig/kern program [10, §1035]. If a ligature
is detected then a ligature node is created. There
is a special mechanism to ensure that the created
ligatures is always the longest one (so that we get
‘ffl’ instead of an ‘ff’ followed by an ‘l’).

This ligature node contains a pointer to a hori-
zontal list containing the original charnodes. These
will be used in the paragraph builder if hyphenation
is necessary.

If we need to hyphenate inside a ligature then
it the lignode is first disassembled into the origi-
nal charnodes [10, §898] and then a discretionary

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

104 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella



node is created with the two parts of the ligature as
pre-break and post-break lists [10, §914]. This ap-
proach allows only one possible hyphenation inside a
ligature—as Don says in [10, §904]: “A further com-
plication arises if additional hyphens appear [ . . . ]
TEX avoids this by simply ignoring the additional
hyphens in such weird cases.” This can be quite an-
noying for ligatures of 4 or more letters containing 2
or even 3 potential hyphenation points, and due to
the increasing popularity of OpenType fonts we will
get more and more of such ligatures in the future.

In TEX a ligature can be inserted only by read-
ing the font lig/kern program. It is impossible to
instruct TEX to create a ligature node using control
sequences or other means, and hence it is equally
impossible to do it in Omega1 using OTPs.

Our goal is to do this in Omega2, using signs.
We call such a ligature an explicit one (in contrast
to implicit ligatures contained in fonts). Let us take
the example of the ‘ffl’ ligature in the word “affligé.”
Let us first suppose that there is no hyphenation
point in this word:

c=a

hyph=0
g=a

c=f

hyph=0
g= f

c=f

hyph=0
g= f

c=l

hyph=0
g= l

c=i

hyph=0
g= i

To insert a ligature one would replace it by:

c=a

hyph=0
g=a

c=f

hyph=0
gdef=f
g=ffl

c=f

hyph=0
gdef=f
g=∅

c=l

hyph=0
gdef=l
g=∅

c=i

hyph=0
g= i

In this string, character information is left un-
touched and the ligature glyph is placed in the first
sign participating to the ligature (the remaining
ones have void glyphs). The gdef properties contain
the “default glyphs,” in case the ligature is broken.

This brings us to a new notion, the one of link. The
sign string shown in the previous example is, in fact,
a doubly linked list. A link is a set of doubly linked
signs, in our case those producing the ligature. We
say that they participate to the link. The reason
for linking these signs is that, at any moment, some
OTP may insert additional signs between the ones
of the link. We have to be sure that when these signs
arrive to the paragraph builder, they will produce a
ligature only if they are still consecutive, otherwise
we will fall back to the default glyphs.

Things get more complicated if there is a hy-
phenation point. In this case we must provide all
possible combinations of ligatured and non-ligatured
glyphs. These combinations form an acyclic graph,
very much like the one of TEX’s paragraph builder,
we call it a set of bifurcations. In the figure below,
we have illustrated a quite complex case: a ligature
‘ffi’ surrounded by letters ‘a’ and ‘i’ and contain-

ing two hyphenation points (after the first and the
second ‘f’ letter), a mission impossible for TEX:

c=a

hyph=0

g=a

c=f

hyph=0

g=ffl

g=f •

g=f

c=f

hyph=0

g=∅

g=f

g=f •

c=l

hyph=0

g=∅

g=l

g=l

c=i

hyph=0

g=a

The fat strokes in the figure are the vertices of the
graph. These vertices will be examined later for
eventual kerning pairs or for other ligatures. The
bullet after a glyph indicates that at this location we
have a mandatory line break.7 Notice that all hyph
properties are now set to 0 since the discretionary
hyphenation is handled “manually” by bifurcation.

Here is the same figure, completed with ‘ff’ and
‘fl’ ligatures which will only be used in cases the
original ‘ffl’ is broken:

c=a

hyph=0

g=a

c=f

hyph=0

g=ffl

g=f •

g=ff

c=f

hyph=0

g=∅

g=fl

g=∅ •

c=l

hyph=0

g=∅

g=∅

g=l

c=i

hyph=0

g=a

Let us not forget that this graph deals only
with glyphs. Characters still form a plain (one-
dimensional) string, and macro expansion will use
signs in exactly the same way as it currently uses
character tokens. The paragraph builder, on the
other hand, will include this graph as a subgraph
of its network for finding the shortest path. Where
we have placed a bullet, the paragraph builder will
consider it as a mandatory end-of-line preceded by
a hyphen glyph.

Non-Standard Hyphenation

Standard hyphenation corresponds to TEX’s \-: the
first part of the word stays on the upper line and
is followed by a hyphen glyph but otherwise un-
changed, and the remaining part is placed on the
lower line, also unchanged.

But “there are more things in heaven and earth,
Horatio.” Typical examples of deviant hyphenation
are German words containing the string ‘ck’ (which,

7 The purpose of this bullet is to postpone until the very

last moment the creation of a sign
c=∅
g= -

followed by a line

break. The user should be able to decide whether character
properties of line break hyphens should be void or U+00AD

soft hyphen, or ant other character.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

105



together with ‘ch’ is a ligature in traditional Ger-
man typography in the sense that glyphs are brought
closer to each other) or Hungarian ‘ssz’ which in
some cases is hyphenated ‘sz-sz’ (ösz-sze) and in
other cases (when the word is composite, like in kis-
szerű) ‘s-sz’.

Obtaining this using bifurcation is very easy:

c=a

hyph=0

g=a

c=c

hyph=0

g=c

pseudo=k •

c=k

hyph=0

g=k

c=e

hyph=0

g=e

The paragraph builder will have to choose between
an unbroken glyph string ‘ack’ and a string ‘ak’ fol-
lowed by a hyphen, a line break, and another ‘k.’
We can insert this information in signs very early, it
will remain alive until the paragraph builder. On the
character level we keep ‘ack’ so that in text extrac-
tion or in conversion to a file format without explicit
line breaks (like XHTML) we will always keep the
regular ‘ack’, whether or not there has been hyphen-
ation in the DVI file.

There are similar phenomena involving punctu-
ation or diacritics: in Polish, when a word is broken
after an explicit hyphen, then we get a hyphen at
the end of line, and another hyphen at line begin.
In Dutch, ‘oe’ is pronounced ‘ou’ unless there is a di-
aeresis on the ‘e’; when a word is broken between ‘o’
and ‘ë’, then the diaeresis disappears (since break-
ing the word at that point makes it clear that the
two letters do not form a diphthong). In Greek we
have exactly the same phenomenon as in Dutch.

It should be interesting to note that this situation
of discrepancy between visual information and text
contents is being taken into account by formats like
PDF. Indeed, version 1.4 of PDF has introduced the
notion of replacement text where one can link a char-
acter string (← the characters) with any part of the
page contents (← the glyphs) [2, p. 872]. The ex-
ample given is the one of German ‘ck’ hyphenation:

(Dru) Tj

/Span

<</ActualText (c) >>

BDC

(k-) Tj

EMC

(ker) ’

The ActualText operator specifies that the
string “c” is a “logical replacement” for the contents
of the BDC/EMC block, which contains precisely the
string “k-.” As we see, using sign properties to keep
this particular information until the DVI file (and

beyond) makes sense since PDF is already prepared
for handling it, and by using it one can enhance
user-interaction with the document.

OpenType Features

OpenType fonts contain information on various
glyph transformations. This works roughly in the
following way: the user activates “features,” for
each feature the font attempts “lookups” (pattern
matching on the glyph string), and for each matched
lookup there is a series of glyph positionings or glyph
substitutions. In our case, activated features be-
come sign properties (so that they can be entered
and modified at any time, independently of macro
expansion, and so that they are carried over when
tokens are stored, moved or written to files), then at
some point, chose by the user, lookups are applied to
sign strings, and the effect of positionings and sub-
stitutions is again translated into sign properties,
before the signs arrive to the paragraph builder.

Both glyph substitution and positioning act on
the glyph part of signs only. Let us review briefly
the different types of OpenType transformations [7,
p. 746–785]:

• single substitution: a glyph is replaced by an-
other glyph. For example, a lowercase letter is
replaced by a small cap one;

c=a

sc=1
g=a

→
c=a

sc=1
g=a

• multiple substitution: a glyph is replaced by
more than one glyphs. For example, we may
want to replace the ideographic square ㎑ by
the glyph string “kHz”:

c=3391 ㎑

g=㎑
→ c=3391 ㎑

g=k
c=∅
g=H

c=∅
g= z

We generate additional signs with empty
character parts so that eventual interaction be-
tween the glyphs of these signs is possible (for
example, they may kern or be involved in some
other OpenType transformation).

• alternate substitution: one chooses among a
certain number of alternate glyphs for a given
sign. The user provides the ordinal of the de-
sired variant glyph as a sign property:

c=&

alt=3
g=&

→
c=&

alt=3
g=&

• ligature substitution: the ordinary ligature.
Once again we have to use glyph-less signs:

c=f

g= f
c=i

g= i
→ c=f

g=fi
c=i

g=∅

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

106 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella



• contextual substitution, chaining contextual
substitution, reverse chaining contextual sub-
stitution: meta-substitutions where one has a
pattern including glyphs before and/or after
the ones we are dealing with, with eventual
backtrack and lookahead glyph sequences, and
sometimes going from end to start;

• single adjustment : this is a transformation that
adjusts the position of a glyph. In TEX, you
can move a glyph horizontally by using \kern

of \hskip commands, and vertically by putting
it in a box and \raise-ing or \lowering that
box. In both cases you lose hyphenation and
kerning, and since control sequence tokens are
involved, OTP buffers are terminated.

This is why we introduce two very impor-
tant sign properties: dx and dy. They pro-
vide horizontal and vertical offsets without go-
ing through control sequence tokens. There is
no boxing, the advance vector of the glyph does
not change, and the effect of moving the glyphs
around does not affect surrounding boxes. In
other words: even if you raise a glyph using dy,
this will not affect your baseline—it is rather
like if you had used a MOVEUP instruction in a
virtual font.

Our favourite example of such a transfor-
mation: the TEX logo (one of the first things
people learn about TEX, since it is described
on page 1 of the TEXbook) becomes a plain
sign string without any control sequence inbe-
tween. Here is the standard TEX code, taken
from plain.tex:

\def\TeX{T\kern-.1667em\lower.5ex%

\hbox{E}\kern-.125emX}

and here is the sign string:

c=T

kern=-.1667em
g=T

c=E

kern=-.125em
dy=-.5ex
g=E

c=X

g=X

(see below for the kern property);

• pair adjustment is like single adjustment, but is
applied to a pattern of two glyphs. Kerning is
the most common case of pair adjustment. Be-
sides dx and dy we also provide kern and vkern

properties for this. The difference with dx and
dy is that the advance vector of the glyph is
modified. To see the difference, here is the TEX
logo first with a kern property and then with a
dx property on sign ‘E’: TEX, TEX;

• cursive attachment is a very interesting trans-
formation: we define a mark (that is a point
in the glyph’s coordinate space) on each side

of a glyph, and we declare that proper type-
setting in this font is achieved when the right
mark of glyph n is identified with left mark of
glyph n+1. This eliminates the need of kerning
pairs (both horizontally and vertically) and is
ideal for cursive fonts with connected letters (as
we used to write on the blackboard in primary
school). We define a property called cursive,
when it is activated Omega2 will first check that
the marks exist in the font, then do the neces-
sary calculations, and finally insert kern and
vkern values to match marks;

• mark to base attachment : the same principle as
cursive attachment, but this time the goal is to
connect a “base” to an “attachment.” Usually
this will be the glyphs of a Unicode base charac-
ter and the one of a combining character. The
simplest example: a letter and an accent. TEX
veterans still remember the headaches caused
to Europeans by the \accent primitive. Since
1990, thanks to the Cork encoding and its fol-
lowers, we have been able to avoid using this
primitive for many languages. But there are
still areas where one cannot predict all possi-
ble letter + accent combinations and draw the
necessary glyphs. To make things worse, Uni-
code compliance requires the ability to combine
any base letter with any accent, and even any
number of accents!

To achieve this, one once again defines marks
on strategical positions around the letter (ac-
cent scan be placed above, beyond, in the cen-
ter, etc., these positions correspond to Uni-
code combining classes) and around the accent.
When the glyph of a combining character fol-
lows the one of a base character, all we need
to do is find the appropriate pair of marks and
identify them, using dx and dy properties. Here
is an example:

c=x

g=x

c=0302 ^

comb=1
g=ˆ

→ c=x

g= x

c=0302 ^

comb=1
dx=-4pt
dy=0.05pt
g=ˆ

and the result is ‘x̂’ (we have deliberately chosen
a letter-accent combination which is used in no
language we know of, so that there is no chance
to find an already designed composite glyph in
any font);

• mark to mark attachment : instead of attaching
the glyph of a combining character to the one
of a base character, we attach it to the one of
another combining character. The method is
strictly the same;

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

107



• mark to ligature attachment : same principle
but things get more complicated since a liga-
ture can have more than one marks in the same
combining class and corresponding to individ-
ual letters. The idea is to read a ligature of n

glyphs followed by n combining glyphs and to
place the latter on appropriate locations above
(or more generally, around) the former. This
is rarely encountered in Latin fonts, but be-
comes crucial in Arabic fonts with many lig-
atures (since short vowels and other diacritics
are considered as combining characters by Uni-
code);

• contextual and chaining contextual positioning :
again a meta-transformation where a pattern
of glyphs is matched (with eventually a back-
track and a lookahead) and then one or more
of the previous positioning transformations are
applied. This is crucially missing from TEX.

A typical example is the acronym S.A.V.

(= “Service Après-Vente”), where the ‘V’
should be brought closer to the period pre-
ceding it because the latter is itself preceded
by an ‘A’. In the case of, for example, S.V.V.
(= “Schweizerische Vereinigung für Vegetaris-
mus”) kerning between period and second ‘V’
should better not be applied.

Another example is German word “Würze,”
where, in some fonts with a very expansive ‘W’,
the Umlaut has to be brought closer to the let-
ter to avoid overlapping ‘W’. In this case we
(a) match the pattern of three signs ‘Wu¨’, (b)
place the accent on the ‘u’, and (c) lower it:

c=W

g=W
c=u

g=u
c=0308 ¨

g=¨

→ c=W

g=W
c=u

g=u

c=0308 ¨

dx=-4pt
dy=0.05pt
g=¨

→ c=W

g=W
c=u

g=u

c=0308 ¨

dx=-4pt
dy=-.55pt
g=¨

Application of transformations contained in GPOS

and GSUB tables will be considered like activating an
OTP, so that the user may insert additional OTPs
between those two, or after them.

Doing Better Than OpenType

Positioning of diacritics on Arabic ligatures [3], or
of Masoretic diacritics in Biblical Hebrew [5] is a
non-trivial task. There are algorithms calculating
positions of diacritics using methods such as force-
fields, blank area calculation, etc. Until now it is

impossible to apply such algorithms without imple-
menting them into the very kernel of TEX.

Using sign OTPs one would first apply con-
textual analysis, then GSUB transformations (and
GPOS for whatever it is worth) and finally, after the
string chain has gone through all OpenType trans-
formations, apply positioning algorithms as exter-
nal OTPs. At that stage we know exactly which
ligatures are used and what the final shape of each
word is. The algorithm would obtain the glyphs of
ligatures and vowels used—as well as special infor-
mation such as the presence of keshideh—from sign
properties. Having access to the glyph contours of
the specific font, it would then reconstruct in mem-
ory an envelope of the global graphical image of the
word, containing visual centers of individual letters
and other relevant information. The result of calcu-
lations would be included in dx and dy properties of
vowel signs. After that, processing would continue
normally.

In fact, our approach not only uses all resources that
OpenType fonts can provide but, contrarily to other
systems which rely on OpenType for the final type-
setting steps, it allows OTP transformations before
GSUB, between GSUB and GPOS and even after GPOS.
And if we want to use OpenType transformations
only partially, we can always lock properties and
hence avoid them to be modified by the font.

Meta-information

For TEX, the only way to include metadata (that is:
information which is not part of the page descrip-
tion) in a DVI file is through the \special primi-
tive. “Specials” are not supposed to interfere with
typesetting, but they actually do: if we write

A\special{blabla}V

there will be no kerning between these two letters.
Which means that if we want to change the color
of letter ‘V’ only, we will lose kerning. In Omega1,
there is a primitive allowing us to avoid this prob-
lem: \ghost (which would emulate the behaviour of
a glyph related to kerning, without actually typeset-
ting the glyph), but this solution is rather clumsy.

Using signs, we can insert the color informa-
tion as a property and then include the necessary
PostScript code for changing color, long after kern-
ing has been applied (kerning, which, by the way, is
also a sign property), or even leave the color prop-
erty in the DVI file and let (sign-compatible) dvips
read that information and write the appropriate PS
code.

One could even define sign properties having no ef-
fect whatsoever on typesetting. For example, in

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

108 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella



Arabic, one could mark the letters alef and lam of
the definite article, or the letter waw of the “and”
particle, as playing these specific grammatical rôles,
so that we can easily distinguish them from letters
alef +lam or waw which just happen to be at the
beginning of a word. The interest of this lies in the
fact that Arabic is not visually separating them from
the following word.

Or, again in Arabic, one could imagine a mor-
phological analyser (acting as an external OTP)
which would give the letters of the Semitic root of
each word a specific sign property. Such letters
would be alkitābu (the book), kutubun (books)
aktubu (I write), etc. This is the kind of infor-
mation which would enormously facilitate searching
and indexing, but which we would like to avoid rep-
resenting visually since it would only obstruct read-
ing.

Characters, Sign Properties or Higher
Order Markup?

In the previous section we have suggested uses
of sign properties which do not affect typesetting.
Most often these can also be achieved by characters
or by higher order markup.

For example, Ω besides being a popular soft-
ware project is also a letter of the Greek alphabet
and the symbol for the SI unit for resistance, named
after its inventor Georg Simon Ohm (1789–1854).
To distinguish between these two uses of the same
symbol, Unicode provides two different characters
(U+03A9 and U+2126). Clearly it would be preferable
to use one of them should to distinguish between
“Omega” and “Ohm,” rather than sign properties
or higher order markup.

We mentioned the possible use of sign prop-
erties for marking the current language. This can
seem practical but also has drawbacks: languages
are nested, even if their nesting is not always com-
patible with the logical structure of the document.
It would be better to use LATEX commands for mark-
ing languages since these commands will not inter-
fere with micro-typography. Indeed, the author can
hardly imagine the need of changing the language
of a word in the very middle of it, so that we in-
cur the danger of losing kerning or hyphenation8).

8 Although, nowadays, people use more and more lan-
guage mixtures, like the notorious French antislash for “back-
slash” . . . In fact, in French one has anglicisms (French words
used with their English meaning, like librairie for [code] li-
brary, etc.), English words that found their way into French
vocabulary (week-end, starlet, etc.), English words that have
been artificially gallisized (débogage ← “debugging,” shunter

← “to shunt”, etc.) and many other levels of interaction
between the two languages. Hyphenation of these words de-

Hence, such properties can, at first sight, very well
be handled by usual higher level markup.

The best possible use of sign properties is for
cases where control sequence tokens would otherwise
interfere with the very fragile operations of microty-
pography and hyphenation.

Glue, Penalty, CJK Languages

Be it fixed or flexible glue, it is now possible, through
sign properties, to add it to glyphs, without affecting
already existing kerning (which would be added to
this glue), ligatures, hyphenation, OTPs that may
match the word, etc.

The typical example is letterspacing: how do
you increase space between letters9 while keeping
hyphenation of the word, f-ligatures, etc.? Before
Omega2, to achieve this, the author was bound to
define special font metrics (with tens of thousands
of kerning pairs). Now it suffices to add a simple
kern property to each sign.

Glue for all glyphs is also required in CJK lan-
guages where there are no blank spaces between
ideographs but where one sometimes needs to shrink
or stretch the contents of a line because of a punc-
tuation mark or a closing delimiter which are not
allowed to be on line begin, or an opening delim-
iter which is not allowed on line end. So, even if
this is not obvious when reading such text, we do
put some glue (with a very small amount of flexibil-
ity) between every pair of ideographs. In Omega1

this is handled by OTPs, but once such an OTP is
used, the ones following it cannot match patterns of
ideographs anymore because of the control sequence
tokens between them. Once more, it is more natural
to systematically add a small amount of glue to each
ideograph, using a sign property.

Adding glue to every ideograph is a good thing,
but how do we avoid lines starting with punctuation
or closing delimiters?

If we can add glue to signs, why not penalties?
In that way the space between an ideograph and a
punctuation mark or a delimiter will be exactly the
same as for all other ideographs, but using an infinite
penalty value, line breaking will be prohibited at
that point.10 Here is an example of some ideographs

pends on their level of French-ness, which can vary temporally
and geographically.

9 Cave canem! Letterspaced typesetting should be at-
tached to specific semantics and should never be done for
justification reasons only, otherwise it is like stealing sheeps.

10 We don’t have that problem in Latin typography be-
cause line breaking is allowed only at glue nodes (that is,
mostly between words) and inside words using hyphenation—
but a punctuation mark has no lc code and hence cannot be
matched by a hyphenation pattern.

Proceedings EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

109



and the corresponding values of glue and penalty (as
used by the author):

c=9019 這

glue=0pt
stretch=.025em
g=這

c=672C 本

glue=0pt
stretch=.025em
penalty=10000
g=本

c=3002 。

glue=0pt
stretch=.025em
g=。

to obtain: 這本。

Glue vs. the “Space Character”

It is well known to us TEX users, that TEX (and thus
also DVI) has its own philosophy about how words
are separated, namely by glue. The DVI page is
like a sea of glue in which glyphs navigate and give
the impression of forming words by getting closer to
each other. But this is only illusion. In DVI there
is no way of distinguishing between, for example,
inter-word space and kerning. It is the human eye
that deciphers spaces between some letters as be-
ing word separators (and the narrower these spaces
are, the more difficult is reading). In other markup
or typesetting systems, things are different. Uni-
code defines character U+0020 space as well as a
dozen other “whitespace characters.” Some of them
are extensible and others of fixed width. PostScript
uses a mixed approach: when the glyph of the space
character has the right width, it is used in strings;
when a different width is needed, due to justifica-
tion, PostScript uses horizontal skips, similar to DVI
ones. But in PDF space characters must be present,
since people may copy-paste text into other appli-
cations: they would be quite surprised to find blank
spaces are missing . . .

To be able to distinguish glue produced by in-
terword space from glue entered explicitly, we use a
sign for interword glue. This sign has a character
part which is one of the Unicode whitespace char-
acters and a blank glyph part. “Blank” is not the
same as “void”: this sign has indeed a glyph, which
can therefore be matched by OpenType lookups, but
this glyph has no contour and its advance vector can
vary.

Using this approach, not only can OpenType
lookups match whitespace glyphs but we can also
produce adequate PDF, SVG and XHTML code (for
example: in XHTML, interletter kerning should be
ignored but interword spaces must be kept in form
of Unicode whitespace characters).

Conclusion and Caveats

Work described in this paper is experimental. In
other words: what we present here is the latest sta-
tus of our investigations and experimentations, in
the frame of the research project INEDIT of ENST

Bretagne. Our goal is to provide a new microty-
pographical model for typesetting (different from
the node-model of TEX) which will be Unicode- and
OpenType-compliant, which will provide more con-
trol to the user than any Unicode or OpenType-
compliant application, and which will produce doc-
uments with sufficient information to be converted
into any present or future electronic document file
format.

There is a discussion list omega@tug.org hosted
by TUG and dedicated to this project. To subscribe,
please visit:

http://tug.org/mailman/listinfo/omega

References

[1] Adobe Systems. Unicode and glyph names,
2003.

[2] Adobe Systems. PDF Reference: Version 1.6.
Addison-Wesley, 5th edition, 2004.

[3] Gábor Bella. An automatic mark positioning
system for Arabic and Hebrew scripts. Master’s
thesis, ENST Bretagne, Octobre 2003.

[4] Jon Ferraiolo, Jun Fujisawa, and Dean Jack-
son (eds.). Scalable Vector Graphics (SVG) 1.1
Specification. W3C, 2003.

[5] Yannis Haralambous. Tiqwah, a typesetting
system for biblical Hebrew, based on TEX.
In Actes du Quatrième Colloque International
Bible et Informatique, Amsterdam, 1994, pages
445–470, 1994.

[6] Yannis Haralambous. Unicode et typographie :
un amour impossible. Document Numérique,
6(3-4):105–137, 2002.

[7] Yannis Haralambous. Fontes & codages.
O’Reilly France, 2004.

[8] Yannis Haralambous. Voyage au centre de
TEX : composition, paragraphage, césure.
Cahiers GUTenberg, 44-45:3–53, Nov 2004.

[9] Yannis Haralambous and John Plaice. Methods
for processing languages with Ω. In Proceedings
of the International Symposium on Multilingual
Information Processing, Tsukuba 1997, pages
115–128. ETL Japan, 1997.

[10] Donald E. Knuth. TEX: The Program, vol-
ume B of Computers and Typesetting. Addi-
son-Wesley, Reading, MA, USA, 1986.

[11] Ferdinand de Saussure. Cours de linguistique
générale. Payot & Rivages, 1916, facsimilé de
1995.

MOT02 Proceedings EuroTEX2005 – Pont-à-Mousson, France

110 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella


