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Abstract 

A facile one-step hydrothermal synthesis to prepare cerium (Ce3+) ion doped CdSe/CdS 

core/shell quantum dots (QDs) is introduced. The effect of Ce3+ ion doping on structural and 

optical properties of the CdSe/CdS core/shell QDs is comprehensively investigated. With 

increasing Ce doping concentration, a linear increase in the lattice parameter is observed, 

suggesting the successful coupling of Ce3+ ions to the CdSe/CdS QDs. X-ray photoelectron 

spectroscopy reveals strong peaks of the Ce3+ state, indicating that Ce is initially present mainly 

in the Ce3+ ion state. In addition, red-shift over the range 538 to 569 nm is observed in the 

photoluminescence (PL) spectra of Ce3+ ion doped CdSe/CdS QDs. Results clearly indicates 

that the PL peak positions of the CdSe/CdS QDs could be controlled by the Ce content. This 

study highlights a new approach to tune the emission of the QDs. 

Keywords: CdSe; CdSe/CdS; Ce dopant; Quantum dots; Tunable emission 

 1. Introduction 

Semiconductor dots (QDs) have attracted significant attention in optoelectronic and electronic 

applications such as light-emitting diodes, solar cells, biological imaging, and nonvolatile 

memory owing to their appealing optical and electronic properties that can be controlled by the 

size quantization effect [1-4]. Among the semiconductor QDs, cadmium selenium (CdSe) QDs 

are widely studied because of its high luminescence quantum yield [5], and their tunable 

emission in the visible range tuned [6]. However, the luminescence of the QDs are prone to be 

affected by the surface, and interface structure due to more atoms are at the surface at such 

high surface-to-volume ratio [7, 8]. Accordingly, passivating the surface of the CdSe QDs with 

a shell of high bandgap CdS to form core/shell CdSe/CdS QDs has been demonstrated as a 
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promising approach to improve the luminescence and quantum yield of the CdSe QDs. As a 

result, high emission efficiency with 94% increase in quantum yield in the visible region was 

reported [9, 10].  

 

Recently, studies have shown that new optical and magnetic properties can be realized by 

doping rare earth elements in CdSe QDs. For example, Martin-Rodriguez et al. reported the 

incorporation of Yb3+ in CdSe QDs resulting in a strong infrared emission at 1000 nm and 

extending the long lifetime of the Yb3+ emission [11].  Li et al. demonstrated Gd3+ doped in 

CdSe QDs exhibiting a high proton longitudinal relaxivity, which is promising for integrating 

systems for cellular imaging in biomedical applications [12]. As cerium (Ce) is one of the most 

studied elements in the lanthanide series owing to a simple energy level structure, a propensity 

to capture both electrons and holes, and the existence of Ce3+ or Ce4+ valence states [13]. 

However, the optical properties of doping Ce3+ in CdSe/Cds QDs are not well studied. Here 

we report a simple one-step hydrothermal approach to synthesize Ce3+ doped CdSe/Cds QDs. 

The effects of Ce3+ ion doping on the microstructural and optical properties of CdSe/CdS QDs 

are comprehensively examined. Decrease in band gap was confirmed by ultraviolet-visible 

spectroscopy, and the red-shift in the photoluminescence measurements was observed. In 

addition, PL emission at 549 nm corresponding to D2 (5d) → F7/2(4f)
2  the transition of the 

Ce3+ ion was observed when the Ce concentration reached 4 mol.%. Results clearly 

demonstrate that the emission spectra of Ce3+ doped CdSe/CdS QDs could be tuned from 538 

nm to 569 nm by changing the Ce3+ doping concentration. 
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2. Experimental 

2.1 Materials 

Cadmium chloride hemipentahydrate (CdCl2·2.5H2O, 79.5-81%), sodium selenite (Na2SeO3, 

99-99.75%), 3-mercaptopropionic acid (MPA, 99%), and sodium borohydride (NaBH4, 98%) 

were purchased from Alfa Aesar. Cerium nitrate hexahydrate (Ce(NO3)3·6H2O, 99.5%) was 

obtained from Sigma-Aldrich (USA). All chemicals were used as received. 

2.2 Synthesis of Ce-doped CdSe/CdS QDs 

Ce-doped CdS/CdSe QDs were grown by a facile hydrothermal method following the reported 

method [14, 15]. In the first step, 2 mM CdCl2·2.5H2O as the Cd2+ source and 0, 0.02, 0.04, 

0.06, 0.08, 0.1 mM Ce(NO3)3·6H2O (0-5 mol.% compared to the Cd2+ content) were dissolved 

in 100 mL of DI water, and 3 mM MPA (as a stabilizer, molecular linker and S2- source) was 

then added with continuous stirring. The pH was regulated to 10.5 with a 5 M NaOH solution. 

Third, 1 mM Na2SeO3 (as Se2+ source) and 2.65 mM NaBH4 (as reductant) solutions were 

added in the above solution with stirring. The mixture was sealed in a 50 mL Teflon-lined 

stainless steel autoclave and kept in an oven at 150 °C for 45 min. After the hydrothermal 

process, the products were centrifuged at 5000 rpm for 30 min in ethanol to remove chemical 

residue, and the resulting products were obtained by vacuum filtration. The samples were 

labeled, 0.45Ce/CdSeCdS, 0.57Ce/CdSeCdS, 0.70Ce/CdSeCdS, 0.90Ce/CdSeCdS, and 

1.01Ce/CdSeCdS, based on the corresponding various Ce loading in the CdSe/CdS QDs (Table 

1). 

2.3 Characterization 
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X-ray powder diffraction (XRD) patterns were collected on a Rigaku MPA-2000 X-ray 

diffractometer with Cu kα radiation (λ = 1.5418 Å) at 40 kV voltage and a current of 40 mA. 

X-ray photoelectron spectroscopy (XPS) measurements were performed via the Thermo VG 

Escalab 250 photoelectron spectrometer. The morphology and chemical composition were 

characterized using a HITACHI; S-4800 field emission scanning electron microscope (FESEM) 

equipped with an electron dispersive X-ray (EDX) spectrometer. High-resolution transmitting 

electron microscopy (HR-TEM) and selected-area electron diffraction (SAED) was performed 

using a JEM-2000F transmission electron microscope at an accelerating voltage of 200kV. For 

TEM sample preparation, one drop of ultrasonically-diluted nanoparticles suspended in 

absolute ethanol was placed on a carbon-coated copper grid and allowed to dry in air. The 

Raman spectra of the samples were recorded at room temperature using a Jobin-Yvon Horiba 

HR800 UV Raman microscope with an Ar+ laser (λ=514.432 nm, 3.9 mW). Photoluminescence 

(PL) spectra were measured with He-Cd laser (λ=325.01 nm, 0.06 mW). The absorption spectra 

were obtained by UV-Visible spectroscopy Agilent HP8453 in the wavelength range 350 - 800 

nm. 

3. Results and discussion 

The synthesis of the Ce-doped CdSe/CdS core/shell QDs is illustrated in Fig. 1. Initially, at low 

temperature (≤100 °C) Na2SeO3 was firstly reduced by NaBH4 to provide an air-stable Se2+ 

source to form the CdSe core [14, 16]. Because S2- anions were released very slowly through 

the decomposition of MPA at low temperature during the synthesis, only Ce-doped CdSe 

monomers were nucleated as seeds. During the synthesis of CdSe core, Ce ions were doping 

into the lattice of the CdSe core. When reaction temperature reaches 150 °C, sufficient amounts 



6 
 

of S2- anions will be released from MPA to grow the CdS shell on the CdSe core. The reaction 

mechanism of formation of CdS shell using MPA is proposed as follows [17]:  

2−OOC(CH2)2S
− +

1

2
O2 + H2O

150℃
→   OOC− (CH2)2S − SC(CH2)2COO

− + OH−                                                          

(1) 

OOC− (CH2)2S − SC(CH2)2COO
−
OH−

→  OO− (CH2)2S + HSCCH2COO
−                                                                                 

(2) 

 HCSCH2COO
−
OH−

⇔  OO− (CH2)2COH + S
2−                                  (3) 

As the reaction goes on, more Se2- anions are consumed and the growth of CdS was dominated 

at the final stage, resulting in the proposed Ce-doped CdSe/CdS core/shell QDs.   

 

Fig. 2 reveals the XRD pattern of Ce-doped CdSe/CdS QDs. The diffraction peaks are matched 

with the cubic CdSe (JCPDS 88-2346) and CdS (JCPDS 89-0440) phasese, indicating the 

successful formation of CdSe/CdS QDs. The crystallite size (D) of the CdSe/CdS QDs was 

calculated using the Scherrer equation: 

D =
𝑘𝜆

𝛽𝑐𝑜𝑠𝜃
                                                                                         (4) 

where k is a constant equal to 0.94, λ is the wavelength of the incident X-rays, θ is the 

diffraction angle of the peak in radians, and β is the full width at half-maximum (FWHM) of 

the peaks. With increasing Ce dopant concentration from 0 to 5 mole%, (111) peak shifted to 

lower 2θ, indicating the increase of the d spacing. The average crystal size of the Ce-doped 

CdSe/CdS QDs was calculated to be 4.16, 4.20, 4.22, 4.27, 4.30, 4.64 nm. The increasing 
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crystallite size was attributed to the nucleation and subsequent growth rate with increasing Ce 

doping [18] and the substitution of Ce3+ (1.01 Å) for Cd2+ (0.95 Å) [19]. 

 

Fig. 3a shows the energy dispersive X-ray spectroscopy of the 1.01Ce/CdSeCdS QDs revealing 

the presence of elements Cd, Se, S, and the dopant Ce in the sample. To understand how the 

substitution of Ce3+ ions was taken place at the Cd sites of the CdSe/CdS QDs, Vegard’s law 

empirical analysis is employed to predict the structural effects of dopant and investigate the 

statistical substitution of a guest ion (Ce3+ ion) into the host lattice (Cd site) with increasing 

Ce3+ ion concentration [20, 21]. Using Vegard’s law, structural effects of the Ce doping in 

CdSe/CdS QDs is revealed by plotting the change in lattice parameter as a function of Ce 

dopant concentration. Fig. 3b shows a shift in the a-lattice parameter of Ce-doped CdSe/CdS 

QDs with increasing Ce ions mole ratio. The observed linear enlargement of a-lattice expansion 

of approximately 1.1% from 599.2 to 605.7 pm with increasing Ce dopant concentration is in 

accordance with the predictions of Vegard’s law, suggesting that Ce3+ doping occurs at the Cd 

lattice sites in the CdSe/CdS QDs. 

 

Fig. 4 shows the XPS analysis of Ce 3d spectra that consists of a mixed valence state of Ce3+ 

and Ce4+. It was reported that the Ce 3d spectra could be assigned to two sets of spin-orbital 

multiplets, i.e., 3d5/2 and 3d3/2 which are denoted as v and u in Fig. 4, respectively [22]. The v0, 

v' and u0, u' peaks are attributed to the two main and satellite peaks of the Ce3+ state, 

respectively, while the v, v'', v''' and u, u'', u''' peaks are attbibuted to the three main and satellite 
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peaks of the Ce4+ state, respectively. The peaks between 880-895 eV correspond to Ce 3d5/2, 

while the peaks between 895-910 eV correspond to Ce 3d3/2 and peak at 917.4 eV is a 

characteristic satellite peak indicating the presence of +4 state [23]. Strong peaks for the Ce3+ 

state are visible in the XPS Ce 3d spectrum of the sample, indicating that Ce is initially present 

mainly in the Ce3+ state. 

 

Fig. 5 (a) shows SEM image of the 1.01Ce/CdSeCdS sample possessing homogeneous QDs. 

Fig. 5 (b)-(d) show high-resolution TEM (HRTEM) images of the undoped and Ce-doped 

CdSe/CdS QDs. These QDs exhibit an almost spherical shape with a uniform particle size, and 

the inserts show the QDs exhibiting a good crystal structure. In addition, the observed lattice 

fringes in the HRTEM images suggest crystalline structure with ABCABC stacking cubic 

structure. Moreover, no segregation of Ce-rich particles was observed by HRTEM, which 

suggests that Ce3+ or Ce4+ ions are incorporated into the CdSe/CdS QDs. The diameters of the 

undoped CdSe/CdS QDs, 0.70Ce/CdSeCdS, and 1.01Ce/CdSeCdS QDs were estimated to be 

4.6 nm, 4.9 nm and 5.2 nm, respectively. HRTEM images indicate that QDs exhibits a 

relatively narrow size distribution with a relative standard deviation of 13-16%. Compared to 

the CdSe/CdS QDs, the Ce doped CdSe/CdS QDs exhibits larger particle sizes, which matches 

well with XRD data (Fig. 2) and Vegard’s law (Fig. 3b).  

 

Fig. 6 presents the Raman spectrum of Ce-doped CdSe/CdS QDs with different Ce 

concentrations. The peaks of the undoped CdSe/CdS QDs located at 197.5 cm-1 and 279.3 cm-
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1 (marked as LO1 and LO2) were assigned to the scattering of CdSe and CdS longitudinal optic 

phonons, respectively [24]. In addition, higher-order Raman peaks were also observed at 395.3 

cm-1 and the other mode at 477.3 cm-1, revealing a second-order phonon frequency of CdSe 

mode masked as 2LO1. Remarkably, CdSe- and CdS-like phonon peaks (LOCdSe+LOCdS) are 

observed at 477.3 cm-1, which is the sum of ωLO1=197.5 and ωLO2=279.3 cm-1. Similar studies 

conducted by Lu et al. [25] and Dzhagan et al. [24] reported the existence of the CdSexS1-x 

phases at the interface of the CdSe/CdS QDs. Furthermore, the peak positions of LO1 and 

2LO1 are shifted towards the higher frequency, whereas the peak position of LO2 is shifted 

towards a lower frequency, which might attribute to the increase of grain sizes CdSe/CdS QDs 

with increasing Ce mole ratio [25-28]. 

 

Fig. 7 shows the typical UV-visible absorption spectra of the Ce-doped CdSe/CdS QDs. The 

absorption spectrum of the undoped CdSe/CdS QDs (black solid line) exhibited an absorption 

onset at 551 nm (2.25 eV) followed by an excitonic peak centered at 522 nm (2.37 eV) as well 

as a long absorption tail above 590 nm. The absorption onset was determined from the dip in 

the first derivative (marked with a circle in Fig. 7) [29] and the excitonic peak was obtained by 

fitting the absorption curve to two Gaussian bands [30] (plotted as dashed lines). In addition, 

the excitonic peak was assigned to the characteristic transition for the first excitonic state 

(1Se1S3/2) of the CdSe QDs [31]. 
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With increasing the Ce dopant concentration, the photoluminescence (PL) emission peak 

shifted gradually from 538 nm (2.30 eV) to 569 nm (2.18 eV), which was accompanied by a 

red shift in the absorbance peak from 521 nm to 552 nm (Fig. 8). The Stokes shift is the overall 

red shift of emission peak compared to the absorbance peak, i.e., the emitted photon has less 

energy than the absorbed photon. The emission peaks are closely aligned with the edge of the 

corresponding absorption spectrum, confirming the band-edge emission of these QDs. Besides, 

the optical band gaps of undoped and Ce-doped CdSe/CdS QDs were in the range of 2.30-2.18 

eV, which are higher than their bulk counterpart (1.7 eV) [32]. The observed higher optical 

band gap in QDs compared to the bulk material was attributed to the quantum confinement 

effect due to the localization of electrons and holes in the QDs causing a change in the 

electronic band structure [33]. In addition, the red shift in the PL emission could be related to 

the decrease in band gap due to the change in particle size with increasing Ce content. 

Meulenberg et al. [20] reported the red-shift in the PL emission in the Cu-doped CdSe QDs 

was attributed to the sub-gap trap states from the dopants. When the Ce dopant concentration 

is higher than 3 mol.%, two emission peaks were observed at 549 nm and 565 nm in the 

0.90Ce/CdSeCdS and  1.01Ce/CdSeCdS QDs. The main emission peak at 565 nm was assigned 

to the emission of CdSe/CdS core/shell QDs, whereas the shoulder peak at 549 nm was 

attributed to the transition of the Ce3+ ion from the lowest components of the 5d state to the 

𝐹7/2
2  components of the ground state [34]. Zhu et al. reported the PL emission shoulder at 550 

nm from a CaS:Ce phosphor for the lowest state 𝐹7/2
2  of the single 4f electron of Ce3+ [35]. 

 

4. Conclusion 
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Ce-doped CdSe/CdS core/shell QDs were synthesized by a facile one-step hydrothermal route. 

XRD showed that Ce doping does not lead the formation of any secondary phase precipitate in 

the studied Ce dopant concentration range of 0-5 mol.%. XRD and HRTEM confirmed that the 

size of QDs increased with increasing Ce dopant concentration. XPS confirmed the chemical 

state of the Ce3+ ions in the CdSe/CdS QDs. The band gaps of the Ce-doped CdSe/CdS QDs 

showed a blue shift with increasing Ce dopant concentration due to the larger grain size with 

increasing Ce mole ratio as well as the quantum confinement effect. In addition, PL results 

showed that the peak position could be tuned easily from 538 nm to 569 nm by changing the 

Ce dopant concentration. In particular, the emission peak at 549 nm is attributed to the Ce 

dopants concentration. This study provides a simple and promising strategy for tuning the 

emission spectrum of CdSe/CdS QDs by incorporating lanthanide ions.  

 

Acknowledgements 

This work was supported by the UEA funding. 

 

 

 

 

 

 

 

 



12 
 

References 

[1] F. Wang, R.R. Deng, J. Wang, Q.X. Wang, Y. Han, H.M. Zhu, X.Y. Chen, X.G. Liu, Nat. 

Mater., 10, 968-973, (2011) 

[2] O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.S. Han, D. 

Fukumura, R.K. Jain, M.G. Bawendi, Nat. Mater., 12, 445-451, (2013) 

[3] L. Etgar, D. Yanover, R.K. Capek, R. Vaxenburg, Z.S. Xue, B. Liu, M.K. Nazeeruddin, 

E. Lifshitz, M. Gratzel, Adv. Funct. Mater., 23, 2736-2741, (2013) 

[4] K.W. Han, M.H. Lee, T.W. Kim, D.Y. Yun, S.W. Kim, S.W. Kim, Appl. Phys. Lett., 99, 

193302, (2011) 

[5] K. Surana, P.K. Singh, H.W. Rhee, B. Bhattacharya, J. Ind. Eng. Chem., 20, 4188-4193, 

(2014) 

[6] Y.L. Lee, B.M. Huang, H.T. Chien, Chem. Mater., 20, 6903-6905, (2008) 

[7] A. Eychmuller, J. Phys. Chem. B, 104, 6514-6528, (2000) 

[8] A.P. Alivisatos, J. Phys. Chem., 100, 13226-13239, (1996) 

[9] W.G. Chang, Y.H. Shen, A.J. Xie, H. Zhang, J. Wang, W.S. Lu, J. Colloid Interface Sci. , 

335, 257-263, (2009) 

[10] X.G. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc., 119, 

7019-7029, (1997) 

[11] R.G. Rosa Martin-Rodriguez, and Andries Meijerink, J. Am. Chem. Soc., 135, 13668-

13671, (2013) 

[12] I.F. Li, C.S. Yeh, J. Mater. Chem., 20, 2079-2081, (2010) 

[13] N.R. Panda, B.S. Acharya, T.B. Singh, R.K. Gartia, J. Lumin, 136, 369-377, (2013) 



13 
 

[14] J. Wang, H.Y. Han, J. Colloid. Interf. Sci., 351, 83-87, (2010) 

[15] K.N. Hui, K.S. Hui, X.L. Zhang, R.S. Mane, M. Naushad, Sol. Energy, 125, 125-134, 

(2016) 

[16] H.F. Qian, L. Li, J.C. Ren, Mater. Res. Bull., 40, 1726-1736, (2005) 

[17] H.F. Qian, X. Qiu, L. Li, J.C. Ren, J Phys Chem B, 110, 9034-9040, (2006) 

[18] P.U. Gitanjali Dhir, N.K. Verma, Mater. Sci. Semicond. Process., 27, 611-618, (2014) 

[19] R.D.Shannon, Acta Crystallogr., A32, 751-767, (1976) 

[20] R.W. Meulenberg, T. van Buuren, K.M. Hanif, T.M. Willey, G.F. Strouse, L.J. 

Terminello, Nano Lett., 4, 2277-2285, (2004) 

[21] O.E. Raola, G.F. Strouse, Nano Lett., 2, 1443-1447, (2002) 

[22] T. Naganuma, E. Traversa, Nanoscale, 4, 4950-4953, (2012) 

[23] C. Korsvik, S. Patil, S. Seal, W.T. Self, Chem. Commun., DOI 1056-1058, (2007) 

[24] V.M. Dzhagan, M.Y. Valakh, A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmiy, D.R.T. 

Zahn, Nanotechnology, 18, 285701, (2007) 

[25] L. Lu, X.L. Xu, W.T. Liang, H.F. Lu, J. Phys.: Condens. Matter 19, 406221 (2007) 

[26] V.M. Dzhagan, M.Y. Valakh, A.E. Raevskaya, A.L. Stroyuk, S.Y. Kuchmiy, D.R.T. 

Zahn, Nanotechnology, 19, 305707, (2008) 

[27] L.B. Hai, N.X. Nghia, P.T. Nga, V.D. Chinh, N.T.T. Trang, V.T.H. Hanh, J. Exp. 

Nanosci., 4, 277-283, (2009) 

[28] S. Chandramohan, A. Kanjilal, S.N. Sarangi, S. Majumder, R. Sathyamoorthy, C.H. 

Hong, T. Som, Nanoscale, 2, 1155-1159, (2010) 



14 
 

[29] J. Planelles-Arago, E. Cordoncillo, R.A.S. Ferreira, L.D. Carlos, P. Escribano, J. Mater. 

Chem., 21, 1162-1170, (2011) 

[30] J. He, W. Ji, G.H. Ma, S.H. Tang, H.I. Elim, W.X. Sun, Z.H. Zhang, W.S. Chin, J. Appl. 

Phys., 95, 6381-6386, (2004) 

[31] E.A. McArthur, A.J. Morris-Cohen, K.E. Knowles, E.A. Weiss, J. Phys. Chem. B, 114, 

14514-14520, (2010) 

[32] K. Singh, S.S.D. Mishra, Sol. Energ. Mat. Sol. C, 71, 115-129, (2002) 

[33] Z.M. Yuan, P. Yang, Mater. Res. Bull., 48, 2640-2647, (2013) 

[34] V. Kumar, S.S. Pitale, V. Mishra, I.M. Nagpure, M.M. Biggs, O.M. Ntwaeaborwa, H.C. 

Swart, J. Alloy Compd., 492, L8-L12, (2010) 

[35] V. Singh, T.K.G. Rao, J.J. Zhu, M. Tiwari, Mat Sci Eng B-Solid, 131, 195-199, (2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

Figure and Table captions  

Fig. 1. Schematic diagram of Ce-doped CdSe/CdS core/shell QDs synthesized using a one-step 

hydrothermal method. 

Fig. 2. XRD patterns of Ce-doped CdSe/CdS QDs with different Ce doping concentration. 

Fig. 3. (a) Energy dispersive X-ray spectrum of 1.01Ce/CdSeCdS sample; (b) Vegard’s law plot 

of the lattice parameter mole fraction of dopant for Ce-doped nanocrystals. 

Fig.4. Ce 3d5/2, 3/2 XPS spectrum of 1.01Ce/CdSeCdS sample fitted with ten peaks, including 

satellites, corresponding to Ce3+ and Ce4+. 

Fig. 5. (a) SEM images of 1.01Ce/CdSeCdS. HRTEM images of Ce-doped CdSe/CdS QDs with 

Ce mole fractions of (b) 0, (c) 0.03 and (d) 0.05. Top right insert: HRTEM images of particles 

with lattice fringes corresponding to (111) planes. Bottom right insert: TEM diffraction 

imaging. 

Fig. 6. Raman spectra of Ce-doped CdSe/CdS QDs with different Ce content. 

Fig. 7. UV- visible absorption spectra for Ce-doped CdSe/CdS QDs with various Ce dopant 

concentrations (solid line). Absorption spectra of undoped CdSe/CdS QDs fitted to two 

Gaussian bands (dashed line) to locate the excitonic peak (522 nm). The circle in the 

experimental spectrum indicates the absorption onset (551 nm). 

Fig. 8. The photoluminescence spectra of Ce-doped CdSe/CdS QDs with various Ce dopant 

concentrations. 

Table 1 Elemental composition of the samples by EDX analysis.  
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Table 1 

 

Sample 

Ce 

(at%) 

Cd 

(at%) 

Se 

(at%) 

S 

(at%) 

O 

(at%) 

Ce loading 

(mole%) 

0.45Ce/CdSeCdS 0.45 40.95 29.17 18.16 11.27 1 

0.57Ce/CdSeCdS 0.57 41.37 28.46 17.68 11.92 2 

0.70Ce/CdSeCdS 0.70 40.12 29.15 17.86 12.17 3 

0.90Ce/CdSeCdS 0.90 39.98 27.85 18.55 12.71 4 

1.01Ce/CdSeCdS 1.01 39.06 26.62 19.82 13.49 5 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 

 

 

 

500 520 540 560 580 600 620

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

N
o

rm
a

li
z
e

d
 I

n
te

n
s

it
y

Wavelength (nm)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

Ce mole ratio

 

 


