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Proof and proving continue to receive significant attention in the research literature 

(e.g., Stylianides, A., Bieda, & Morselli, 2016; Stylianides G., Stylianides, A., & Weber, 2017) 

as well as in educational reform initiatives and national standards documents (e.g., 

Common Core State Standards for Mathematics, 2010 in the USA; new GSCE and A level 

curricula in the UK, Department for Education, 2014, with their renewed emphasis on 

reasoning, particularly justification). Yet, despite the increased weight being placed on 

proof and proving, many students, of all ages, continue to struggle learning to prove (cf. 

Stylianides G. et al., 2017), and teachers as well struggle to facilitate their students’ learning 

to prove (e.g., Bieda, 2010; Stylianides, G., Stylianides, A., & Shilling-Traina, 2013). The 

work represented by the seven papers in this special issue, however, shows potential to 

enhance student learning in an area of mathematics that is not only notoriously difficult for 

students to learn and for teachers to teach, but also critically important to knowing and 

doing mathematics. 
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Although the  seven papers, and the intervention studies they report, vary in many 

ways—student population, content domain, goals and duration of the intervention, and 

theoretical perspectives, to name a few—they all provide valuable insight into ways in 

which classroom experiences might be designed to positively influence students’ learning 

to prove. In our commentary, we highlight the contributions and promise of the 

interventions in terms of whether and how they present capacity to change the classroom 

culture, the curriculum, or instruction. In doing so, we distinguish between works that aim 

to enhance students' preparedness for, and competence in, proof and proving and works 

that explicitly foster appreciation for the need and importance of proof and 

proving. .Finally, we also discuss briefly the interventions along three dimensions: how 

amenable to scaling up, how practicable for curricular integration, and how capable of 

producing long-lasting effects these interventions are. We aim that our observations 

indicate productive (and needed) directions that continued efforts might take, particularly 

with regard to changes in classroom culture, curricula and instruction. 

Changing Classroom Culture, Curricula, and Instruction 

Systemic change with regard to the teaching and learning of proof and proving 

requires a multi-faceted effort, including considerations of teacher preparation and 

professional development, intentionally designed curricular materials (with respect to 

proof and proving), and instructional practices designed to meaningfully engage students 

in proving-related activities (e.g., conjecturing, exploring, justifying).  In what follows, we 

briefly highlight aspects of each paper that fall under these considerations .  

Changing Classroom Culture with respect to Proof and Proving 
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Guala and Boero report on their work with future teachers, which  is centered on 

the construct of Cultural Analysis of Content (CAC). CAC has two interrelated goals: to 

invite teachers to consider epistemological, historical, and anthropological aspects of 

mathematical content; and to embed an analysis of how said considerations influence a 

teacher’s developing professional profile. A CAC perspective, for example, invites teachers 

to consider how different proofs of the same theorem may be constructed with reference to 

different theories. To assist teachers in this process, Guala and Boero adapt Habermas’ 

(1998) construct of rationality and convert it into a list of criteria (e.g., validity of 

inferences, problem solving strategies, choice of communication means) that is then 

presented to teachers as they engage in proving activities (such as “Find the greatest 

common divisor of the product of three consecutive numbers”).  

A real strength of the approach illustrated in the paper, and one way in which the 

paper is separated from the other papers in this special issue, is the end goal of changing 

the “culture” of proving in schools. The majority of papers in this special issue focus 

primarily on enhancing student preparedness for proof (e.g., proof comprehension, proof 

generation), and less on enhancing student appreciation for proof. Although the two are 

interrelated, we contend that high appreciation for the need and importance of proof has 

the capacity to generate valuable momentum for developing proving competencies. For 

example, Nardi (1996) found that incoming mathematics undergraduates contest the 

didactic contract (Brousseau, 1997) presented to them upon arrival at university— a 

contract which takes such appreciation as a given. She found that students were frequently 

at odds with their lecturers on whether, for instance, an argument based on a diagram is 

acceptable or a so-called self-evident property of a function needs to be shown formally 
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through resorting to definitions  or previously proven theorems. And, when university 

lecturers were asked about the origins of this challenge to the didactic contract on proof 

and proving on the part of the students, their foremost reference was school classroom 

culture (Nardi, 2008). 

Orchestrating a focus on proof appreciation requires a change in classroom culture 

with respect to proof and proving, a change that must start with teachers. In a recent 

doctoral study supervised by the first author (Kanellos, 2014; Kanellos, Nardi, & Biza, 

2013), the teacher’s clear-eyed priority setting in favor of introducing mathematical proof 

to students as a culturally important and immensely useful tool within and outside 

mathematics—coupled with systematic engagement with a carefully eclectic mix of proving 

tasks in Algebra and Geometry—was the only plausible explanation for why an otherwise 

typical, mixed ability class had shown strong evidence of a learning trajectory towards 

deductive proof schemes (Harel & Sowder, 2007). By attending to the epistemological, 

historical, and anthropological aspects of mathematical content—and proof, in particular— 

Guala and Boero provide valuable evidence regarding the impact that participation in the 

CAC intervention has on the nuance of teachers’ professional knowledge of proofs and 

arguments. Given teachers’ often limited views regarding proof in school mathematics (e.g., 

Knuth, 2002a, 2002b), broadening the scope of teachers’ professional knowledge through 

CAC may, ultimately, help teachers to change the culture of proving in schools in ways that 

may positively enhance both student preparedness and student appreciation for proof.  

Innovative Curricular Approaches to Proof and Proving 

Several of the papers address issues that are more curriculum-related in nature 

(e.g., content-based interventions, task-based interventions), and illustrate how particular 
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curricular experiences can positively impact important aspects of what students learn 

about proof and proving. In Fan et al., the authors focus on an understudied as well as 

critical aspect of geometric proofs—the construction of auxiliary lines. Auxiliary lines are 

often seen as a bit of a black box in geometric proofs and helping students to see the 

rationale for drawing a particular auxiliary line is often necessary. This paper addresses 

exactly this need. The authors take a novel approach: transformational geometry is used as 

a means towards helping students imagine more easily which lines, and how, facilitate 

proof production. Take, for example, the statement “the base angles in an isosceles triangle 

are equal.” Through folding (or reflection, in the language of transformational geometry), 

students can see that the crease line AM divides the triangle into two congruent triangles 

(Figure 1). 

 

Figure 1. Snippet from Figure 1 in Fan et al., this Special Issue. 

From this activity, students can see that by adding an auxiliary line (crease line AM, 

or line of reflection), two right-angled triangles, △ABM and △ACM become visible, which 

are congruent according to the hypotenuse-leg theorem (AM=AM, AB=AC, 

∢AMB=90o=∢AMC). The congruency of the two triangles implies that the two base angles 

∢ABC and ∢ACB are equal. Introducing a geometric transformation (in this case: reflection) 
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can help students identify which auxiliary line, and why, may support the construction of a 

proof. The results of their intervention were mixed:  no statistically significant differences 

were detected between the control and the experimental classes, even though the latter 

outperformed the former in 70% of the proving tasks. Fan et al. do suggest though that the 

potential of such an approach, especially if applied over a longer period of time so that its 

impact on the students’ approaches to proof construction can be more solid,  is worth 

further investigation.  

Fiallo and Gutiérrez present results from an intervention designed to help students 

learn proof while studying trigonometry in a dynamic geometry software (DGS) 

environment. Initially we thought the authors’ use of multiple theoretical perspectives (i.e., 

Boero et al.’s construct of cognitive unity of theorems, Pedemonte’s structural and 

referential analysis of conjectures and proofs, Balacheff and Margolinas’ cK¢ model, and 

Toulmin’s argumentation scheme) was excessive, “theory overkill.”  In the end, however, 

we were convinced that the authors’ use of the theories paid off. The result is an elaborate, 

if a little overly specified, examination of students’ proof productions as they engage with 

carefully orchestrated activities in a DGS environment, and their overall progress from 

naïve empiricism to deductive proof. Additionally, the authors provide an informative set 

of four different cases of cognitive unity/rupture, corresponding to different ways of 

solving conjecture-and-proof problems: empirical cognitive unity (“Using examples does 

not favor the structural rupture necessary to move from perceptual argumentations about 

conjectures to deductive proofs”, p. 21 of Online First version); referential rupture and 

empirical structural unity (despite difficulties in constructing a deductive proof evidence of 

generic example proof production emerges); referential unity and structural rupture 
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(“repeating previously used claims or statements, that lead to the construction of chains of 

statements that look like deductive proofs, but are incorrect”, ibid.); and deductive cognitive 

unity (“Students’ empirical actions are intended to check the accuracy of the conjectures, 

but argumentations and proofs are based on abstract general properties”, ibid.). 

In school mathematics, empirical-based reasoning often poses an obstacle to 

learning to prove, an obstacle that instruction must help students overcome (e.g., Sowder & 

Harel, 1998; Stylianides, G., & Stylianides, A., 2009; Zaslavsky, Nickerson, Stylianides, 

Kidron, & Winicki, 2012). At the same time, an emerging body of research suggests that 

students who are able to strategically think about—and productively use—examples as 

they engage in proving-related activities may be better positioned to learn to successfully 

develop and evaluate mathematical arguments (e.g., Knuth, Zaslavsky, & Ellis, accepted; 

Ozgur et al., accepted). Komatsu’s intervention adopts this perspective in that he argues for 

the importance of student engagement in empirical examination as they investigate the 

validity of purported proofs and the truth of propositions. Komatsu’s study demonstrates 

how students’ empirical examinations of particular proof tasks (those with diagrams), and 

with particular teacher actions (e.g., prompting students to examine or draw diagrams 

different from the diagrams given in the task) can lead them to reject invalid proofs, to 

refute false propositions, and to modify proof/proposition conditions. Moreover, students’ 

empirical examinations also served the purpose of engaging in authentic mathematical 

practices such as “discovery of cases that reject proofs and cases that refute statements, 

modification of the proofs, disclosure of hidden conditions to properly restrict the domains 

of the statements, and invention of more general statements that are true even for the 

refutation of the original statements” (p. 15 of Online First version).  
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Instructional Practices Designed to Enhance Proof Learning 

Several papers attend to various aspects of instructional practice, reporting 

interventions with foci that range from specific teacher actions to proof presentations. 

Mata-Pereira and da Ponte view generalizing and justifying as central reasoning processes, 

and the intervention they designed focuses on teacher actions—inviting, 

informing/suggesting, supporting/guiding, and challenging—as facilitators of these 

reasoning processes in the classroom. Although we wonder whether the instructional and 

task design principles they suggest would be applicable to any lesson preparation, not only 

to lessons predominantly focusing on proof and proving, the paper does offer evidence of 

the positive effect that endorsing these principles may generate. Their evidence focuses 

largely on reinforcing students’ capacity to generalize and justify in the context of a 

sequence on linear equations. Their thoughtful design considers teacher aims (promoting a 

diversity of approaches and offering activities with different levels of challenge) as well as 

teacher actions (monitoring student progress, inviting explanations, probing for acceptable 

approaches to validation, encouraging the sharing of ideas, debating alternative and not 

necessarily instantly correct suggestions, offering support where needed for the task to 

progress and challenging with more demanding explorations where appropriate).  

Gabel and Dreyfus set out from noting that research on different aspects of proof 

teaching at the university level, especially in relation to how mathematics lecturers present 

proofs to their students, is mostly descriptive in nature, and their aim is to evaluate what 

makes a proof presentation clear and effective, and subsequently, what intervention may 

be needed to have the desired effect.  They present a case study from a university number 

theory course in which they adopted Perelman’s New Rhetoric (PNR, Perelman & 
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Olbrechts-Tyteca, 1969) as a theoretical framework for analyzing the “flow” of a proof. 

“Flow of a proof” is defined as the outcome of the choices made by a lecturer with regard 

to: presentation of the logical structure of a proof; how informal features of a proof such as 

examples, intuitions, and diagrams are incorporated in the presentation of a proof; and 

mathematical and pedagogical contextual factors. They propose analyzing the flow of a 

proof both from a global perspective (chunking a proof into individual modules) and from a 

local perspective (examining singular arguments in the proof, formal or informal).  

Specifically, they use two features of PNR (scope, i.e. how a lecturer may regulate the 

density in the presentation of a proof according to the audience that is being addressed; 

and presence, i.e. what degree of emphasis, frequency of repetition etc. a lecturer may 

choose in the presentation of a proof) to analyze the flow of a proof and change it. They 

observe a lecturer during a Number Theory lecture that centered on the proof of the 

theorem, “The greatest common divisor (gcd) of two integers a, b, at least one of which is 

not 0, equals the smallest natural number of the form ma+nb, where m, n are integers: 

gcd(a, b) = min{ma + nb > 0 : m, n ∈ Z},” and, after interaction following the first delivery of 

the lecture, they demonstrate how the lecturer was able to change the flow of a presented 

proof both in terms of scope and presence. The intervention focused on suggestions on how 

to improve the flow of the proof through smoother transitions between the proof modules 

and more emphasis on what necessitated the use of the remainder theorem, to name a few. 

Observed changes in the flow of the lecture concerned both scope (e.g., the non-formal 

argumentation leading to the proof in the post-intervention lecture caused “a noticeable 

change of scope and organization changing the global flow of the proof substantially”; p. 14 

of Online First version) and presence (e.g., there was evidence of the lecturer’s raised 
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“awareness of the fact that the distinction between existence and constructive proof is not 

trivial for the students” and this led to endowing “this proof element with a strong degree 

of presence”; p. 16). 

While the paper does not directly address whether the intended learning outcomes 

were achieved in relation to student comprehension and affective response to proof and 

proving tasks, we found the authors’ proposed use of PNR compelling. We also found the 

comparison of PNR to other constructs used for similar purposes in our field informative, 

and it served to highlight the potential strengths of PNR for teaching proof. 

Finally, Roy, Inglis, and Alcock present results from a study that serves as a 

cautionary tale about instructional interventions. In particular, they report results from an 

intervention in which multimedia resources were designed with the intention to help 

undergraduate students comprehend proofs. The multimedia resource that the study 

focused on, “e-proofs,” is a resource which captures the explanations that a lecturer “would 

ordinarily offer verbally”, but “allows students to engage more fully with these by making 

them replayable and by highlighting the parts of the proof to which they referred” (p. 4 of 

Online First version). An e-proof offers multiple explanation screens, with each screen 

focusing attention using “greying out, boxes and arrows” and being accompanied “by a 

short audio commentary that could be played by clicking a button, and replayed as many 

times as desired” (ibid.). 

On the surface, it seemed reasonable, and expected, that the e-proofs would improve 

students’ proof comprehension. Yet, unexpectedly, students actually exhibited poorer 

performance than those students who engaged with the same proofs presented without the 

resources. The authors—through drawing on extensive datasets collected through eye-
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tracking technology—conclude that the extra supporting resources may disrupt the way in 

which students process and organize the information presented in the proofs, and as a 

result, may limit their proof comprehension. Although not the intention at the outset, the 

authors also raise important questions about the responsibilities of instructors to evaluate 

the effectiveness of instructional resources made available to students. This is especially 

the case given the growing abundance of easily accessible resources (e.g., web-based 

curricular materials, on-line videos). The paper also serves as a poignant cautionary tale: 

evaluating the effectiveness of instructional resources needs to be done in far more robust 

and systematic ways than merely relying on students’ self-reported learning outcomes and 

satisfaction with the resources. 

Enhancing Students' Preparedness and Appreciation for Proof and Proving 

The various papers demonstrate, with varying degrees of success, interventions that 

target either students’ preparedness for proof and proving or teachers’ instructional 

practices for teaching proof and proving.  In the first type, the interventions depended 

upon the use of specific tasks designed to evoke particular student actions (e.g., 

construction of auxiliary lines, refutation of purported proofs) or of specific curricular 

environments (e.g., dynamic geometry software, transformational geometry). In the second 

type of intervention, approaches focused on ways to enhance the presentation (and, 

ultimately, student comprehension) of proofs, teachers’ actions related to engaging 

students in proof and proving, or teachers’ appreciation for proofs and proving. In both 

types of intervention, we see examples of students who are seemingly better prepared for 

proof and proving as a result. Although the goal of these studies, understandably, was not 

to produce broadly generalizable interventions, nevertheless, we did wonder whether 
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these works could claim longer-term, deeper, and broader impact on students’ 

preparedness for proof and proving in typical school contexts.  Also, in both types, a focus 

on fostering appreciation for proof and proving was largely missing—with the exception as 

we mentioned earlier of the Guala and Boero paper. 

Concluding Remarks 

As a collective, the papers in this special issue provide a picture of promising 

approaches to classroom-based interventions that have the potential to enhance the 

teaching and learning of proof and proving. Gabel and Dreyfus noted (based on a comment 

from Fukawa-Connelly, Johnson, & Keller, 2016) that “new policies and reforms in 

mathematics education will not gain traction unless they are perceived as practical and 

feasible in the eyes of the mathematicians [and school mathematics teachers] delivering 

the instruction” (p. 17 of Online First version). As we consider the interventions reported in 

this special issue, the aforementioned comment underscores the necessity for 

interventions that are amenable to scaling up, practicable for incorporation into existing 

curricular structures, and capable of producing long-lasting, positive effects (Stylianides, A. 

& Stylianides, G., 2013). 

There is a long history of research that has documented the challenges of teaching 

and learning proof, and, although such research has provided invaluable insight into these 

challenges, students continue to struggle with learning to prove, curricula continue to 

provide inadequate opportunities for engaging students with proof, and teachers continue 

to struggle with teaching proof. As Stylianides et al. (2017) note, “research thus far has 

offered inadequate support to teachers, teacher educators, and curriculum developers 

(including textbook authors) about how they might address problems of practice in the 
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area of proof” (p. 252). The papers in this special issue, and classroom-based intervention 

research with respect to proof and proving, show promise to make further progress into 

the perennial concern in mathematics education that students fail to understand the nature 

of evidence and justification in mathematics. The special issue papers mark an exciting, and 

relatively new, direction in research on proof and proving, a direction that we think will 

provide the foundation and guidance needed for making proof and proving a consistent 

and regular part of the mathematics education of all students. 

 
References 

Balacheff, N., & Margolinas, C. (2005). cK¢ modèle de connaissances pour le calcul de 

situations didactiques. In A. Mercier, & C. Margolinas (Eds.), Balises pour la didactique des 

mathématiques (pp. 75-106). Grenoble, France: La Pensée Sauvage. 

Bieda, K. (2010). Enacting proof-related tasks in middle school mathematics: 

Challenges and opportunities. Journal for Research in Mathematics Education, 41, 351–382. 

Boero, P., Garuti, R., Lemut, E., & Mariotti, M. A. (1996). Challenging the traditional 

school approach to theorems: A hypothesis about the cognitive unity of theorems. In L. 

Puig, & A. Gutiérrez (Eds.), Proceedings of the 20th PME Conference (vol. 2, pp. 113-120). 

Valencia, Spain: PME. 

Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht, NL: 

Kluwer. 

Council of Chief State School Officers. (2010). Common Core State Standards for 

Mathematics. Washington, DC: Council of Chief State School Officers. 

Department for Education (2014). Mathematics programmes of study: key stages 1 

and 2: National curriculum in England: 



 14 

https://www.gov.uk/government/publications/national-curriculum-in-england-

mathematics-programmes-of-study 

Fukawa-Connelly, T., Johnson, E., & Keller, R. (2016). Can math education research 

improve the teaching of abstract algebra? Notices of the American Mathematics Society, 63, 

276–281. 

Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning 

and teaching of proof. In F. Lester (Ed.), Second handbook of research on mathematics 

teaching and learning (pp. 805–842). Charlotte: Information Age Publishing. 

Kanellos, I. (2014). Secondary students’ proof schemes during the first encounters 

with formal mathematical reasoning: Appreciation, fluency and readiness. Unpublished 

doctoral thesis: University of East Anglia, UK. 

Kanellos, I., Nardi, E., & Biza, I. (2013). The interplay between fluency and 

appreciation in secondary students’ first encounter with proof. In A.M. Lindmeier & A. 

Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the 

Psychology of Mathematics Education (PME) (Vol. 5, pp. 84). Kiel, Germany: PME. 

Knuth, E. (2002a). Secondary school mathematics teachers’ conceptions of proof. 

Journal for Research in Mathematics Education, 33(5), 379–405. 

Knuth, E. (2002b). Teachers’ conceptions of proof in the context of secondary school 

mathematics. Journal of Mathematics Teacher Education, 5(1), 61-88. 

Knuth, E., Zaslavsky, O., & Ellis, A. (Accepted). The role and use of examples in 

proving-related activities. To appear in Journal of Mathematical Behavior. 

Nardi, E. (1996). The novice mathematician’s encounter with mathematical 

abstraction: Tensions in concept image construction and formalisation Unpublished doctoral 

https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study


 15 

thesis, University of Oxford, UK (available at http://www.uea.ac.uk/~m011 and 

https://ora.ox.ac.uk/objects/uuid:19d55975-7af9-4ed4-ab98-3be18da31e16). 

Nardi, E. (2008). Amongst mathematicians: Teaching and learning mathematics at 

university level. New York: Springer. 

Ozgur, Z., Vinsonhaler, R., Dogan, M., Knuth, E., & Ellis, A. (Accepted). From examples 

to proof: Purposes, strategies, and affordances of example use. To appear in Journal of 

Mathematical Behavior. 

Pedemonte, B. (2005). Quelques outils pour l`analyse cognitive du rapport entre 

argumentation et démonstration. Recherches en Didactique des Mathématiques, 25(3), 313-

348. 

Perelman, C., & Olbrechts-Tyteca, L. (1969). The new rhetoric: A treatise on 

argumentation (J. Wilkinson & P. Weaver, Trans.). Notre Dame, IN: University of Notre 

Dame. 

Sowder, L., & Harel, G. (1998). Types of students’ justifications. Mathematics 

Teacher, 91, 670–675. 

Stylianides, A. J., Bieda, K. N., & Morselli, F. (2016). Proof and argumentation in 

mathematics education research. In A. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The Second 

Handbook of Research on the Psychology of Mathematics Education (pp. 315-351). 

Rotterdam, The Netherlands: Sense Publishers. 

Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to 

problems of practice: Classroom-based interventions in mathematics education. ZDM, 45, 

333-341. 

https://ora.ox.ac.uk/objects/uuid:19d55975-7af9-4ed4-ab98-3be18da31e16
http://www.springer.com/education+%26+language/mathematics+education/book/978-0-387-37141-2
http://www.springer.com/education+%26+language/mathematics+education/book/978-0-387-37141-2
https://www.sensepublishers.com/catalogs/bookseries/other-books/the-second-handbook-on-the-psychology-of-mathematics-education/
https://www.sensepublishers.com/catalogs/bookseries/other-books/the-second-handbook-on-the-psychology-of-mathematics-education/


 16 

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical 

arguments to proof. Journal for Research in Mathematics Education, 40, 314–352. 

Stylianides, G. J., Stylianides, A. J., & Shilling-Traina, L. N. (2013). Prospective 

teachers’ challenges in teaching reasoning-and-proving. International Journal of Science and 

Mathematics Education, 11, 1463–1490. 

Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and 

learning of proof: Taking stock and moving forward. In J. Cai (Ed.), Compendium for 

Research in Mathematics Education (pp. 237-266). Reston, VA: National Council of Teachers 

of Mathematics. 

Toulmin, S. E. (2003). The uses of argument (updated edition of the 1958 book). 

Cambridge, UK: Cambridge University Press. 

Zaslavsky, O., Nickerson, S., Stylianides, A., Kidron, I., & Winicki, G. (2012). The need 

for proof and proving: Mathematical and pedagogical perspectives. In G. Hanna & M. de 

Villiers (Eds.), Proof and proving in mathematics education (pp. 215–229). New York, NY: 

Springer. 

http://www.nctm.org/eresources/article_summary.asp?URI=JRME2009-05-314a&from=B
http://www.nctm.org/eresources/article_summary.asp?URI=JRME2009-05-314a&from=B

