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Abstract

Natural movement plays a significant role in realistic speech an-
imation. Numerous studies have demonstrated the contribution
visual cues make to the degree we, as human observers, find an
animation acceptable.

Rigid head motion is one visual mode that universally co-
occurs with speech, and so it is a reasonable strategy to seek a
transformation from the speech mode to predict the head pose.
Several previous authors have shown that prediction is possi-
ble, but experiments are typically confined to rigidly produced
dialogue. Natural, expressive, emotive and prosodic speech ex-
hibit motion patterns that are far more difficult to predict with
considerable variation in expected head pose.

Recently, Long Short Term Memory (LSTM) networks
have become an important tool for modelling speech and nat-
ural language tasks. We employ Deep Bi-Directional LSTMs
(BLSTM) capable of learning long-term structure in language,
to model the relationship that speech has with rigid head mo-
tion. We then extend our model by conditioning with prior mo-
tion. Finally, we introduce a generative head motion model,
conditioned on audio features using a Conditional Variational
Autoencoder (CVAE). Each approach mitigates the problems
of the one to many mapping that a speech to head pose model
must accommodate.

Index Terms: speech animation, head motion synthesis, visual
prosody, generative models, BLSTM, CVAE

1. Introduction
Speech animation involves transforming and deforming a char-
acter model, temporally synchronised to an audible utterance
to give the appearance that the model is speaking. Given the
close relationship between speech and gesture, the problem is
challenging, as human viewers are very sensitive to natural hu-
man movement. Practical applications of speech animation, for
example computer games and animated films, often rely on mo-
tion capture devices or hand keyed animation. Demand for re-
alistic animation within these domains is high and both of these
approaches are expensive and time consuming, providing con-
siderable motivation for automation of the process.

Human discourse essentially flows in two modes: the ex-
plicit mode of audible speech that carries the semantic meaning
of some utterance, and a more supportive visual mode where
non-verbal gestures complement and enhance the audible mode.
Research suggests that speech and gesture stem from the same
internal process and share the same semantic meaning [1, 2].

Speaker head motion is a rather interesting aspect of visual
speech. Head motion has been shown to contribute to speech

comprehension [3], yet unlike the articulators, it is under inde-
pendent control. As the audio channel contains the most com-
plete information stream in an utterance, it is a reasonable strat-
egy to seek a mapping from within this stream that might enable
plausible predictions of head pose. Indeed, there is significant
measurable correlation between speech and head motion [4, 5].

When we speak, we encapsulate the semantics of our utter-
ance in the words of our language. We have already stated that
rigid head motion is strongly tied to speech, but consider how
that occurs. For example, if we are expressing agreement, nod-
ding the head is a common gestural supplement. However, just
considering that simple gesture, speaking the same utterance at
another time could well have the nodding action at a different
phase or frequency. In considering just that simple case, we can
appreciate that head pose should be considered as a one to many
mapping. And yet there is more to it. When we speak naturally,
we do not issue a monotone dialogue, our voices are highly an-
imated. We use expression, emphasis, intonation or prosody to
make speech much more than merely words. With that in mind,
we must now consider that speech to head motion has a very
diverse expectation.

There have been a number of researchers interested in pre-
dicting head motion from speech in recent years. Initial stud-
ies took the approach of clustering head motion patterns and
giving class labels [6, 7, 5]. Hidden Markov Models (HMMs)
were trained for each cluster, modelling the relation between
the speech features and head motion. Hofer [4, 8] observes the
limitations of the frame wise approach of his predecessors, and
proposes a trajectory based model. More recently Ben-Youssef
[9] proposed an improved clustering for motion. All of these
approaches rely on a suitable labelling of motion units, either
manually or automatically, which is a challenging problem in
itself.

Recently, the Graphics Processor Unit (GPU) has enabled
efficient training of Deep Neural Networks (DNNs), and within
many aspects of speech and language processing, DNNs are
now state of the art [10, 11, 12]. DNNs were proposed as a
modelling strategy for head motion prediction by Ding et al.
[13]. Using a deep Feed-Forward Neural Network (FFN) re-
gression model to predict Euler angles of nod, yaw and roll,
they were able to report advantages over the previous HMM
based approaches and were able to avoid the problem of clus-
tering motion. Although deep FFNs are a powerful modelling
tool, capable of learning complex non-linear mappings, they are
limited in their ability to model long term temporal data.

The Long Short Term Memory (LSTM), introduced by
Hochreiter [14] and further investigated by Gers [15], has been
used to great effect in many domains arguably related to the
speech to head pose problem. Graves [16], demonstrated the
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ability of LSTM networks to model long term structure by pre-
dicting discrete text values, and by predicting the real values
of hand-writing trajectories. Another example by Sutskever et
al. [17] reports state of the art performance for the language
translation task. Ding et al. [18] introduced Bi-Directional
Long Short Term Memory (BLSTM) networks to the head mo-
tion task, noting improvements over their own earlier work [13].
More recently Haag [19] uses BLSTMs and Bottleneck features
[20] and noted a subtle improvement.

In the past few years, generative models [21, 22], train-
able with back propagation [23] have taken an important step in
learning, with models that can perform probabilistic inference
and make diverse predictions. Bowman et al. [24] employed
a Variational Autoencoder (VAE) for natural language gener-
ation. Walker et al. [25] used a Conditional Variational Au-
toencoder (CVAE) to predict video motion vectors conditioned
by a single image. To our knowledge, generative models have
not yet been used for head motion prediction so we introduce a
CVAE to the head motion synthesis task here.

2. Corpus
Recent head motion prediction studies use data that is not
widely available. In fact there are few significant corpora freely
available that are suitable for modelling any rigid gesture with
speech. For our own research we collected data as described in
this section.

2.1. Data Collection

We invited two actors, one female (speaker A), one male
(speaker B) to recite from a scripted set of short conversa-
tional scenarios. The actors were encouraged to speak emo-
tively and emphatically in order to provide natural, expressive
and prosodic speech. In all, 3600 utterances were captured, giv-
ing a total of around six hours of speech.

We used six cameras to record with synchronised frame
timing, with three cameras aimed at each actor. Recording
frequency was 59.94 Frames per Second (FPS) and resolution
1280× 720 pixels (720p). Audio was recorded simultaneously
at 48 kHz and later down sampled to 16 kHz.

Each actor had 62 landmarks distributed about the face,
which along with 58 natural feature landmarks such as eyes
and lip edges, were tracked with Active Appearance Models
(AAMs) [26]. With the cameras arranged such that left and
right stereo pairs were formed on each actor, we were able to
derive 3D models. The 3D models were stabilised by selecting
the least deformed points and, using Procrustes analysis [27],
rigid motion was separated from deformation. The rotations are
about the X,Y and Z axes of a right handed coordinate system,
with Y pointing up.

2.2. Feature Extraction

We used a sliding frame over the time domain audio signal of
2/59.94 s with an overlap of 1/59.94 s, matching the sampling
rate of our motion data. Following convention, each frame was
multiplied by a Hamming window. Although we have experi-
mented with many audio features, for this report we use the log
of the filter bank values as described by Deng et al. in [11]. Un-
der this scenario we have a feature vector of 40 audio samples
temporally aligned with the 3 Euler angles: nod (x), yaw (y)
and roll (z). We normalise all our data to have unit variance and
zero mean.

3. Model Topology
All of our modelling strategies feature LSTM networks, al-
though there are many variations to consider, we describe the
LSTM, H , in the equations (1) - (6):

it = σ(Wixt + Uiht−1 + bi) (1)

C̃t = tanh(Wcxt + Ucht−1 + bc) (2)

ft = σ(Wfxt + Ufht−1 + bf ) (3)

Ct = it ∗ C̃t + ft ∗ Ct−1 (4)

ot = σ(Woxt + Uoht−1 + bo) (5)
ht = ot ∗ tanh(Ct) (6)

where σ is a sigmoid function and i, o, f, C are the input
gate, output gate, forget gate and memory cell respectively.

3.1. Bi-Directional Long Short Term Memory (BLSTM)

Our application of the BLSTM differs from Ding et al. [18].
Instead of predicting one motion coefficient at each time step,
we predict a short span: 1 ≤ k ≤ 29. This allows observation
of frame-wise variation in prediction and permits options on re-
combining each frame. For this report we simply take the mean
at each predicted time step. Notably, we do not apply any post
process to the prediction. We observed distinct motion events in
our data > 500ms and to ensure capturing these events the re-
ceptive field was 29 ≤ n ≤ 129 time steps, n/59.94 s. Figure
1 illustrates the topology of our deep BLSTM showing that for
each time step of audio features, we predict the corresponding
time step of head motion.
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Figure 1: BLSTM network predicts one motion time step at each
speech time step.

3.2. BLSTM with Prior Motion Conditioning

Recall that we regard head motion as having many possible pre-
dictions for an utterance. One approach to mitigate this situa-
tion, that we present now, is to provide a prior motion hint to our
model. Head motion is constrained by anatomy and kinematics.
If we establish the dynamic state of head pose at the start of
the event we wish to predict, we reduce the range of possible
outcomes, particularly in the near term. The concept is some-
what related to the work by Chen et al. in [28], however their
work involves the use of recurrent decision trees to predict tele-
vision camera motion at sporting events. We show the topology
of this network in Figure 2. We accommodate the difference in
time steps by emitting from the final state of our motion input
BLSTM, and repeating to match the output duration.
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Figure 2: Adding a kinetic constraint with prior motion. During
prediction, the output is recursively fed to the motion input.

3.3. Conditional Variational Autoencoder (CVAE)

A Variational Autoencoder (VAE) comprises an encoder and a
decoder. The encoder, Qθ(z|x), seeks to represent input data x
in a latent space z with weights and biases θ, where the encoder
outputs the parameters of a Gaussian probability density. The
decoder, Pφ(x|z), with weights and biases φ, transforms the
parameters to the distribution of the original data. The CVAE
adds a conditioning element to the VAE, such that the encoder
becomes Qθ(z|x, c), and the decoder is Pφ(x, c|z). Figure 3
shows the topology of our CVAE, using BLSTMs as the encoder
and decoder.
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Figure 3: By sampling from a Gaussian the CVAE model can
predict a range of expected motion.

4. Model Training
We trained the networks on our data, split 80% for training, 10%
for validation and 10% for testing. Our objective function is
Mean Squared Error (MSE), except for the CVAE model which
has a custom objective function: the sum of the reconstruction
loss and the Kullback-Leibler divergence [21]. Our optimis-
ing function is RMSprop [29], we set an initial learning rate of
10−3. Training continues until no further improvement on the
validation set, with a patience of 5 epochs. Model weights are
saved at each epoch. We reload the best weights, decrement the
learning rate by a factor of 10 until 10−5, finally stopping at the
best validation error. We then select the model with the low-
est overall validation error. For this report, we present models
trained on a single speaker, speaker A from our corpus. The
total number of examples presented to the network at training

time depends somewhat on the value of span k and time steps
n, and is approximately 7× 104 to 3× 105.

5. Results
To make comparison between each modelling scenario we
plot some results from a highly expressive utterance made by
speaker A. This example has not been part of the training or
validation regime and is randomly selected:

“ I can’t breathe, because you smell like garbage juice, or
rotten meat or something...”

Reconstruction simply involves presenting a test utterance
and forward propagating through each network. Each resulting
motion coefficient has 1 to k values, of which we take the mean.

5.1. BLSTM

We examine the results from our first network variation in Fig-
ure 4. Figure 4a shows the values directly returned from our
model. Each frame-wise span is shown, and we can observe
how coherently the model predicts each time step. We notice
some variation at each step, and when we take the mean at each
motion coefficient, the plot in Figure 4b shows some smoothing
as a result. We rebuild the entire utterance in Figure 4c, which
shows head motion over the audio waveform. We can observe
that our prediction responds to the audio and matches a number
of significant events in the ground truth. Note, we do not expect
the prediction to closely match the ground truth, as the speech to
head pose mapping is diverse. The ground truth however, does
provide a good visual comparison to where we expect motion
events to occur.
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Figure 4: Predicted head motion from BLSTM, (a) is the pre-
diction directly from the model, showing frame-wise span, (b)
shows the mean at each time step. Figure (c) shows reconstruc-
tion of the example utterance. The result is plotted over the au-
dio waveform to show the alignment of key events in the speech.

5.2. Motion Prior

We show the reconstruction from our second model in Figure
5. Similarly, Figure 5a shows the direct output of our model,
and Figure 5b shows the mean at each motion coefficient. This



example shows an extended duration, n = 129 time steps. The
model is provided with a motion hint of the first part of the
ground truth of 45 time steps, leaving the remaining period un-
seeded. Notice the model does not simply learn the identity for
the seeded period. This model exhibits lower variance at each
time step, and we find this is consistent throughout our exper-
iments with this architecture. Figure 5c shows the reconstruc-
tion of the entire utterance. We can rebuild an utterance from
this model by recursively applying the prediction as the motion
seed value. We observe that this model adheres more closely
to the ground truth for the entire utterance. Although again, we
do not expect exact matching, but when the prediction arrives at
a value close to the ground truth the mapping space for future
prediction is much smaller.
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Figure 5: Prior motion model. Figure (a) shows model output
and (b) shows point-wise mean. The full utterance reconstruc-
tion shows how the model is guided by the motion seed.

5.3. CVAE

Figure 6 shows the reconstruction of our example utterance us-
ing our CVAE generative model. We make predictions from
this model by sampling from the unit Gaussian space and con-
ditioning with our example audio features. A parameter for this
model, not present in the earlier models, is the size of the latent
space. For this report we show a model with z in 3 dimensions,
which we found to have no disadvantage to larger space. When
predicting from this model we see variance at each time step,
shown in Figure 6a, resulting in smoothing in our reconstruc-
tion process. When we reconstruct the entire utterance, shown
in Figure 6c, we can observe the prediction responds very well
to the audio, matching key prosodic events of this very expres-
sive utterance. One very interesting feature of this model is
the ability to generate variations of each prediction by taking
further Gaussian samples, but retaining the conditioning audio
features.

6. Discussion
A number of previous authors evaluate results with a correlation
measure or some other point-wise comparison. We strongly
reject this method for the following reasons: We do not ex-
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Figure 6: CVAE model, (a) shows model output, (b) shows
point-wise mean. The full reconstruction in (c) shows how well
this model aligns motion events with audio events. In addition,
we can predict alternative motion from the same audio.

pect a prediction to closely match the ground truth, rather,
each should be one example of many appropriate trajectories.
Further, head motion is quasi-periodic; one could easily mea-
sure quite high correlation without necessarily having appro-
priate motion. Much of the research predicting head motion
from speech has been data driven. Many of the previous au-
thors mentioned in this paper have accumulated their own data,
and without standard corpora and reliable empirical measure-
ment, comparison with prior work is problematic. Some au-
thors have offered subjective tests, yet the scale of the tests are
often small and so statistically unreliable. The question of what
represents appropriate or plausible head motion during speech
is unclear. Subjectively, we have observed certain key events
support viewer acceptance, but we have not yet been able to
identify exactly why this is the case. We do know however, that
it is important to have correct motion [3], and also that we can
identify when it’s not correct [30]. Developing a measurement
of correct head motion, or indeed more broadly gesture, is an
open and difficult problem, and we are actively pursuing this
goal.

Our most interesting results come from the CVAE model,
that solves the one to many mapping problem. We can predict
a number of plausible motion trajectories by choosing new val-
ues for z, but with the same audio features. Quicktime movie
files are provided in the supplementary material showing further
examples from all our models.

7. Conclusions

In this paper we have presented our work on predicting head
pose from audio. We describe our corpora, and present mod-
elling strategies that offer diverse but plausible outcomes for
audio input. The LSTM has been a powerful tool in speech and
language modelling, and as the encoder-decoder in our CVAE
has shown great utility. We feel that generative models offer
great promise to this field and we continue working in this area.
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