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Highlight 

 Protein film electrochemistry of outer membrane cytochromes are 

consistent with EPR solution potentiometric titrations. 

 Many hemes within a multiheme cytochrome can be identified by their 

electron paramagnetic signatures. 

 MD simulations of flavin docking and microscopic redox potentials 

suggest flavin reduction occurs from hemes 7 or 2 of OMMC. 
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Abstract 

Many species of bacteria can generate energy in the anoxic subsurface by directly 

coupling intracellular oxidative reactions to the reduction of extracellular metal oxides. 

Coupling these processes requires electron transfer networks that extend from the 

inside of the cell, across the outer membrane to the extracellular terminal electron 

acceptors.   The best described of these networks is from Shewanella oneidensis 

MR-1, where four structures of outer membrane multiheme cytochromes (OMMCs) 

have been determined.  These OMMCs contain 10-11 bis-histidine ligated c-type 

hemes and are directly involved in the reduction of iron and manganese oxides at the 

cell surface.  The heme ligands for some of these structures have been 

characterised using electron paramagnetic resonance (EPR), the redox-properties 

have been mapped by protein film electrochemistry (PFE) and more recently 

molecular dynamic simulations have been used to obtain microscopic redox 

potentials for individual heme groups.. This review maps these different experimental 

techniques onto the structures, providing insight into the intramolecular electron 

transfer pathways of OMMCs, revealing future directions for study. 
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Introduction 

Many bacteria can couple heterotrophic oxidation of organic matter to the reduction 

of terminal oxidants that substitute for molecular oxygen, a process commonly 

referred to as anaerobic respiration. This physiological property of bacteria is 

facilitated by oxidoreductase networks that oxidise quinol in the cytoplasmic 

membrane and relay the liberated electrons to specific terminal electron acceptor(s) 

[1]. The majority of Shewanella spp. have been shown to utilise insoluble non-

diffusing terminal respiratory oxidants, namely soluble and insoluble transition metals 

[2,3]. Biogenic reduction of minerals is a link between carbon cycling and 

geochemical cycles that affect mineral formation [4,5].  Mineral reduction also affects 

redox processes such as methanogenesis and sulphate reduction in soil and aquatic 

niches [6,7], and the dissemination of many mineral-adsorbed molecules [8-11]. The 

final enzyme-substrate electron transfer step at the microbe-mineral interface has 

been shown to be dependent on the expression of multiheme cytochromes 

associated with the Shewanella outer-membrane [12,13]. MtrA and MtrD are 

decaheme cytochromes that form putative porin-cytochrome modules (with 

respective β-barrels MtrB and MtrE) to relay electrons from periplasmic reductants 

across the outer-membrane [12,14,15]. Electrons exit the porin-cytochrome 

complexes into Outer Membrane Multiheme Cytochromes (OMMCs) on the surface 

of the cell [16,17]. This review compares the spectropotentiometric and structural 

data available for the four major clades of OMMCs that localize to the extracellular 

surface of the Shewanella outer bacterial membrane [18-22].  

 

Structural Features of the Shewanella OMMC family. 

Shewanellacea genomes encode for multiple OMMCs with apparently similar 

functions. Bioinformatic analysis of Shewanella spp shows that the minimal OMMCs 

encoded for are the decahemes MtrC and either OmcA or UndA [23]. MtrC has been 

extensively characterised for its affinity to the MtrAB complex and its canonical role 

as a mineral reductase [15,16]. MtrF has been identified as a component of the 

paralogous MtrDEF heterotrimer, which is up-regulated in aerobic S. oneidensis MR-

1 biofilms [24]. A lipid anchor maintains OmcA’s outer membrane localisation, and its 

mineral reduction activity is dependent on its association to MtrCAB [13,25,26]. A 

comprehensive gene knock-out study determined that the presence of either mtrC or 

omcA in the S. oneidensis genome maintained significant wild-type iron oxide 

reduction [13]. Known mineral-reducing Shewanella species that do not have omcA 
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in their genomes encode for UndA, an undecaheme cytochrome indicated to have an 

analogous role to OmcA because it is capable of complementing ferrihydrite 

reduction in mtrC-omcA- S. oneidensis MR-1 [22]. 

The molecular structures of representatives of each of the four OMMC clades 

in Shewanella have been determined: the deca-heme MtrF, OmcA & MtrC of S. 

oneidensis and the undeca-heme UndA of S. HRCR-6 (Figure 1) [27-30]. All 

structures are formed of 4 domains, two multiheme domains that are flanked by two 

β-barrels with β-strands arranged in Greek key motifs. MtrF, OmcA & MtrC contain a 

conserved deca-heme ‘staggered cross’ cofactor arrangement, with UndA containing 

an eleventh heme that is inserted between hemes 6 and hemes 7 in the amino acid 

sequence. The staggered-cross heme arrangement means there are four potential 

sites for electrons to enter and exit the structure, with two opposing ends of the cross 

pointing into the β-barrels and two exposed at the edges of the multiheme domains. 

The structures also reveal a conserved CX8–15 C disulfide within the β -barrel of 

domain III. A second CX2-3 C disulphide is in UndA, OmcA and a subpopulation of 

MtrC located within the N-terminal β -barrel domain I; this CX3C motif is present in 

the amino acid sequence of MtrF but the putative disulfide bond was not resolved 

due to poor electron density in that domain. There is appreciable structural 

conservation of OMMC domains, as well as significant maintenance of heme 

positioning, despite less than 25% sequence homology between the least divergent 

clade members [28,30].  

The comparative spectro-potentiometric properties of the OMMCs 

The internal molecular landscape of the OMMCs are likely to lead to distinct 

energy landscapes and subsequently different redox properties of the proteins. 

Protein Film Electrochemistry (PFE) provides high-resolution potentiometric data of 

electrode-adsorbed protein [31]. The OMMCs are lipoproteins and it could be argued 

that protein in solution mimics their molecular environment best, although it is equally 

noted that molecular crowding at a densely-packed membrane surface with an 

insoluble substrate may be better reproduced by adsorbing a protein to an electrode 

[32]. As such, the advantage of high-resolution data comes at the expense of a 

possibility that some proteins may have different potentiometric properties in solution 

than when surface-adsorbed. The PFE of the four OMMCs provides very accurate, 

high-resolution characterisation of the cytochromes’ oxidation state that highlights 

their different redox potential behaviour (Figure 2)[27,33,34]. For each cytochrome a 

representative reducing and oxidising scan is plotted, where the respective negative 
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and positive Faradaic responses correspond to the protein performing electron 

transfer to (positive response) and from (negative response) the working electrode 

during cyclic voltammetry (CV). Each OMMC voltammogram was successfully 

confirmed to have peaks that remained unchanged during rapid electrode rotation 

and a change of buffer, confirming adsorbed species were producing the 

voltammetric responses observed. The redox potentials of the OMMC are broadly 

similar, although MtrC contains a population of hemes that are at a higher potential 

than the other OMMC and lacks the lower potential hemes present for the other 

OMMC. The hemes of MtrF cover a broad range of potentials, and includes a small 

population of hemes that correlate to approximately ≥ -250 mV vs Standard hydrogen 

electrode. Previously the potential window of MtrC was shown to be higher than 

OmcA, with apparent midpoint potentials and window of -138 ± 275 mV for MtrC and 

-175  ± 300 mV for OmcA reported at pH 6 at 40C on graphite electrodes [35]. 

Despite the differences in potential, The overlapping potential windows of MtrC and 

OmcA indicate that reversible electron exchange between the two OMMC, in 

particular MtrC and OmcA, is possible. 

 

 EPR-monitored potentiometric titres provide information on specific heme 

populations, based on the spectroscopic resolution of heme populations that can be 

correlated to their respective OMMC crystal structure. Low-spin, ferric heme has 1 

unpaired 3d valence electron; whereas ferrous heme has 0 unpaired valence 

electrons. Thus, EPR potentiometric titrations can monitor the redox transformations 

of the OMMC c-type hemes from their resonating, oxidized S = 
 

 
 state to their EPR-

silent reduced S = 0 state. To date, MtrC, MtrF and OmcA potentiometric data has 

been published [27,33]. The oxidized EPR spectra of MtrF and MtrC are 

characteristic of low-spin (S = ½) ferric heme populations grouped into two clusters, 

denoted LS (i.e. Low-Spin) or LGM (i.e. Large gmax) (Figure 3). Near-perpendicular 

bis-histidine ligand heme rings result in increased rhombicity of LGM signals which 

thus appear on the low field side of the LS signals at g1 ≈ 3.7 – 3.1 [36]. The LS 

signals are rhombic signals (i.e. 3.1 > g1 > 2.5) characteristic of low-spin ferric hemes 

with decreased rhombicity, such as near-parallel bis-imidazole rings (i.e. g1 ≈ 3.0 – 

2.9).  The EPR spectrum of OmcA contained a signal attributed to a population of 

high spin heme in addition to both LS and LGM signals [37].  However, the crystal 

structure of OmcA revealed that all 10 heme groups were low spin, suggesting that 

the observed high spin signal could be due to a small population of high spin hemes 

within the sample, possibly originating from denatured protein.  
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It is possible to tentatively assign resonance signals to specific structural heme 

populations in the oxidised OMMCs in conjunction with the bis-histidine ring dihedral 

angle (φbH) data available from the published crystal structures (Figure 4).  The 

published EPR spectrum of MtrC contains three resonance populations, including 

LGM (g1 ≈ 3.2), and two low spin: LS1 (g1 ≈ 3.0) and LS2 (g1 ≈ 2.86) (Fig 3). Spin 

quantitation was not reported in this study, and so resonance populations cannot be 

attributed to structural hemes although the propionate group of heme 6 may 

deprotonate its own distal His500 ligand, producing the low potential LS2 signal. LS1 

appears to be the dominant resonance population by g1 peak height. However, the 

double integral of the LGM signal, that has a comparable g1 peak height to the LS1 

signal and must have a larger Magnetic Field coverage, is directly proportional to 

spin concentration and may be larger in MtrC. This would reflect the distribution of 

φbH amongst MtrC’s hemes: excluding the putative LS2 heme 6, there are 4 LGM 

candidate hemes and 6 LS1 candidates.  

Spin quantitation of the EPR spectrum of oxidised MtrF reported 7.86 spins per 

protein split into three different resonance signals, The quantitation of less than 10 

spins per oxidised MtrF was attributed to possible dipolar resonance coupling 

between hemes [27]. The predominantly low φbH of MtrF’s hemes is reflected in the 

EPR spectrum, which accounts for five to six LS1 hemes of the six 

crystallographically observed (i.e. hemes 2, 4, 5, 6, 7 and 8; g1,2,3 = 3.0, 2.26, and 1.5) 

(Figure 3). Two of the three near-perpendicular bis-histidine ligated hemes (i.e. 

hemes 1, 3, 9; g1,2,3 = 3.25, 2.02, and 1.15) are accounted for in spin quantitation of 

MtrF’s LGM resonance signal. The histidinate-ligated heme 10 is attributed to 

producing LS2 resonance (g1,2,3 = 2.84, 2.31, and 1.63). The LS1 heme population of 

near-parallel hemes titrate over a broad potential window, 0 to −250 mV vs S.H.E., 

and the g1 peak height dominated the oxidized EPR spectrum, further supporting the 

origin of the signal from multiple hemes. The broad g1 = 3.26 LGM signal is produced 

by near-perpendicular bis-histidine ligand pairs (hemes 1, 3, or 9) although signal 

quantitation only accounts for two of these LGM hemes titrating between −100 and 

−260 mV. The LS2 signal (i.e. g1 = 2.84) originating from ferric heme with an 

imidazolate ligand amounts to a single heme (i.e. heme 10), the only signal 

remaining at −260 mV. As such heme 10 is putatively the lowest potential heme of 

MtrF .  This correlates well with the PFV, which also identified a low potential heme 

at -250 mV. 

Large-scale molecular dynamic simulations have attempted to resolve the electron 

transport network through the ten hemes of the MtrF molecular structure.    
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Microscopic redox potentials for the single electron reduction of each individual heme, 

with the other nine hemes in the oxidized states (i.e., oxidized MtrF) have been 

reported by two groups [38,39] (Figure 4). Breuer et. al. (33) suggested that the 

potentials of the heme pairs across the two pentaheme domains were similar, 

allowing for bidirectional electron transfer pathways across MtrF. Wanatabe et al. (34) 

alternatively proposed that the heme potentials in domain IV were lower than in 

domain II, suggesting a downhill electron transfer path from domain IV to domain II.  

Both studies identified the heme potentials in hemes 2 and 7 as being suitable for 

electron transfer to flavin groups and suggested heme 9 as being the lowest potential 

heme group, as opposed to heme 10 that was inferred from the crystal structure.  

This may be due to the challenges of accurately modelling a low resolution MtrF 

structure, and it will be interesting to compare similar studies on the high resolution 

MtrC structure in the future.            

 

The interaction of flavins and OMMCs 

S. oneidensis secretes both riboflavin and flavin mononucleotide (FMN) and these 

secreted flavins have a substantial impact on the ability of S. oneidensis to reduce 

Fe(III) oxides [40]. One hypothesis is that both riboflavin and FMN function as soluble 

redox mediators that facilitate electron exchange between S. oneidensis and solid 

metal oxides [41]. This is supported by studies that identified a bfe gene in S. 

oneidensis that was essential both for secretion of flavin into the extracellular 

medium and the ability of S. oneidensis to reduce Fe(III) oxides [42]. As both bfe and 

mtr are important for extracellular electron transfer it is likely that flavins must interact 

with either directly or indirectly with extracellular outer membrane multiheme 

cytochromes (OMMC) on the cell surface. Dissociation constants of 29 μM and 255 

μM between oxidised FMN and oxidised MtrC or OmcA, respectively, have been 

measured [43]. Given that the S. oneidensis extracellular FMN concentration does 

not exceed 1 μM during growth, these dissociation constants suggest a transient 

interaction between FMN and the OMMC. However, electrochemical and 

voltammetric studies on S. oneidensis biofilms generated on the surface of 

electrodes indicated that under anaerobic conditions MtrC associated with FMN to 

produce a semi-reduced flavin at the biofilm-flavin interface, suggesting the formation 

of a MtrC-FMN complex [44,45]. These different results could be harmonised if the 

interaction between MtrC and FMN was different under aerobic and anaerobic 

respiratory conditions. Accordingly, a reversible transition of MtrC between 

cytochrome and flavocytochrome states that is controlled by the redox state of a 
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conserved disulfide has been reported [30]. S. oneidensis strains that are unable to 

form the disulfide were severely compromised in their ability to grow aerobically, but 

not anaerobically, suggesting that the MtrC-FMN flavocytochrome may reduce 

oxygen and produce reactive oxygen species, so its formation must be closely 

regulated during life at oxic-anoxic interfaces.  This indicates that the flavin must bind 

within the proximity of conserved disulfide and close enough to one or more heme 

groups to support electron transfer at catalytic rate. For OmcA mutation of the distal 

axial ligand of heme 7 in OmcA has been shown to lower the affinity of OmcA for 

FMN, indicating a similar interaction [46].  Different groups have utilised molecular 

dynamic simulations to identify riboflavin and FMN binding sites on OMMC [43,47,48]. 

Most recently two sites capable of binding riboflavin FMN binding sites were 

identified on OmcA close to hemes 5 and 7, while up to four possible binding sites 

were identified on MtrC close to hemes 1, 4, 7 and 9 [49]. The experimental data 

supports the binding of two flavin molecules to OmcA, and only one to MtrC, so it is 

still unclear which of these MD simulations best supports the experimental data. 

Conclusion 

The four x-ray crystal structures of representative members of each of the four 

clades of OMMC published over the last 6 years have provided a molecular 

foundation for many research groups to study the electrochemical properties of these 

proteins, both experimentally and through theoretical models. Much remains to be 

understood though, notably the precise nature of flavin binding to the OMMCs and 

the structures of the complexes with which the OMMCs interact in order to receive 

electrons from inside the cell at the cell surface. Functional MtrCAB complexes that 

catalyses trans-outer membrane electron transfer in proteoliposomes have given 

some insight into this process, but further progress on a molecular understanding 

that might underpin further electrochemical insights will benefit from a high-resolution 

structure of the complex. 
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Figure 1: Crystal structures of MtrC [30], MtrF [27], OmcA [28] of Shewanella 

oneidensis MR-1 and UndA  [29] of Shewanella sp. Strain HRCR-6. Polypeptide 

chains are shown in cartoon representation and coloured from blue (N-terminus) to 

red (C-terminus). Hemes are shown in stick representation with the iron atoms 

shown as orange spheres. 
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Figure 2: Protein film electrochemistry of extracellular cytochromes. Cyclic 

voltammetry of MtrC (black line), pH 7.6 [15], MtrF (red line), pH 7.0 [27], OmcA 

(grey dash), pH 7.4 [34]  and UndA (blue dash), pH 7, measured at 30 mV/s in 25 

mM HEPES, 100 mM NaCl. 

 

Figure 3: Continuous wave EPR spectra of 140 µM MtrC (upper) and 95 µM MtrF 

(Lower) in 50 mM HEPES, 100 mM NaCl, 0.5 % CHAPS [27,33].  EPR recorded 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

using a Bruker ER100 EPR spectrometer at 10 K using 9.68 GHz frequency, 10-G 

modulation amplitude and 2 mW power. Low spin (LS1 and LS2) and Large gmax 

(LGM) signals are indicated in parentheses next to their corresponding g-values.  

 

Figure 4:  The structural arrangement of MtrF hemes.  Hemes of domain II and IV are 

shown within blue and red boxes respectively. Hemes with near-perpendicular bis-

histidine ligation that would give LGM EPR signals (φbH ≥ 450) are shown in blue.  

Near-parallel bis-histidine ligated that would give LS1 EPR signals (φbH ≤ 450) are 

shown in red.  Heme 10, that is likely to give an imidazolate histidine based on the 

crystal structure and generate an LS2 EPR signal, is shown in cyan.  Each heme has 

assigned microscopic redox potentials that correspond to single-electron reduction of 

a fully oxidised MtrF.  Microscopic redox potentials are from Wanatabe et al. (left [38]) 

and Breuer et al.  (right [39]). The macroscopic heme potential determined for heme 

10 is shown in bold [27]. 
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