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Abstract

■ Negative feedback after an action in a cognitive task can lead
to devaluing that action on future trials as well as to more
cautious responding when encountering that same choice
again. These phenomena have been explored in the past by re-
inforcement learning theories and cognitive control accounts,
respectively. Yet, how cognitive control interacts with value
updating to give rise to adequate adaptations under un-
certainty is less clear. In this fMRI study, we investigated
cognitive control-based behavioral adjustments during a
probabilistic reinforcement learning task and studied their
influence on performance in a later test phase in which the
learned value of items is tested. We provide support for the

idea that functionally relevant and memory-reliant behavioral
adjustments in the form of post-error slowing during reinforce-
ment learning are associated with test performance. Adjusting
response speed after negative feedback was correlated with
BOLD activity in right inferior frontal gyrus and bilateral middle
occipital cortex during the event of receiving the feedback. Bi-
lateral middle occipital cortex activity overlapped partly with
activity reflecting feedback deviance from expectations as mea-
sured by unsigned prediction error. These results suggest that
cognitive control and feature processing cortical regions inter-
act to implement feedback-congruent adaptations beneficial to
learning. ■

INTRODUCTION

Reinforcement learning and theories of cognitive control
have both been successful in accounting for aspects of
human behavior concerning learning from feedback
and adjusting future responses. Reinforcement learning
theory (Sutton & Barto, 1998) has been reliably used to
explain human and animal behavior in tasks where one
learns by trial-and-error associations that lead to maxi-
mizing reward (Schultz, 2015). These learning models
rely on the measure of a prediction error, that is, how
a given reward differs from what is expected. Prediction
errors estimated from behavioral data and their neuronal
correlates have been used to study learning from positive
and negative feedback. In particular, they have been used
to study how responses are adjusted according to the size
of the prediction error (Steinberg et al., 2013; Cavanagh,
Frank, Klein, & Allen, 2010; Cohen & Ranganath, 2007).
One brain area that has consistently been implicated in
the coding of positive prediction error is the striatum (see
reviews by Chase, Kumar, Eickhoff, & Dombrovski, 2015;
Garrison, Erdeniz, & Done, 2013). How the brain codes
for negative prediction errors is less apparent. However,
several studies point to a similar role of the striatum in en-
coding aversive outcomes and prediction errors (Asaad &
Eskandar, 2011; Seymour, Daw, Dayan, Singer, & Dolan,
2007; for a review, see Delgado, Li, Schiller, & Phelps, 2008).

Research on cognitive control focuses on how selec-
tion of perceptual input, working memory (WM), and re-
sponse regulation is adjusted for successful performance
(Botvinick, Braver, Barch, Carter, & Cohen, 2001). One
example of cognitive control is the act of slowing or
outright stopping a response after the commission of an
error. Post-error slowing refers to relatively higher RTs
on the next trial after previous negative than after positive
feedback and most likely reflects an increase in response
caution, which is in accord with traditional accounts of
cognitive control (Dutilh et al., 2012; Botvinick et al.,
2001). ACC and medial as well as lateral PFC are thought
to be associated with cognitive control, specifically in
processing negative feedback and in resolving conflicts
(Kerns et al., 2004; Ridderinkhof, Ullsperger, Crone, &
Nieuwenhuis, 2004; Aron, Behrens, Smith, Frank, & Poldrack,
2007). Although post-error slowing has been linked to
greater error awareness (Nieuwenhuis, Ridderinkhof,
Blom, Band, & Kok, 2001), specific learning benefits of
slowing response speed in accordance with errors or
negative feedback are still under discussion (Danielmeier
& Ullsperger, 2011; Hester, Barre, Mattingley, Foxe, &
Garavan, 2007; Hajcak, McDonald, & Simons, 2003).

Behavioral adjustments as postulated by cognitive con-
trol have been observed in reinforcement learning para-
digms (Cavanagh et al., 2010; Frank, Moustafa, Haughey,
Curran,&Hutchison, 2007). These studies showed that par-
ticipants are able to adjust behavior according to stimulus-
specific feedback received several seconds and trials before.Karolinska Institutet, Stockholm, Sweden
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However, it is still unclear how trial-to-trial behavioral ad-
justments interact with reinforcement learning processes
(Ullsperger, Danielmeier, & Jocham, 2014) and if behav-
ioral adjustments in reinforcement learning are associated
with learning outcomes. In this study, we set out to explore
these questions. In concrete, we aimed at investigating
the association between reinforcement learning con-
structs and behavioral adjustments in speed of reaction
and action selected, probing whether feedback-congruent
behavioral adjustments that rely on memory systems lead
to a better learning outcome, and finally, studying possible
neuronal correlates of these processes using fMRI.

METHODS

Participants

Forty-eight healthy right-handed participants (24 women)
were recruited fromadvertisement on aWebpage (student-
kaninen.se) and the Karolinska Institutet campus with sur-
rounding areas. All participants had Swedish as their native
tongue. They gave written informed consent before taking
part in the study. The study was approved by the ethics
committee in Stockholm, Sweden (Dnr No. 2012/1980-32).

In total, 11 participants were excluded before data
analysis. Three participants were excluded because of in-
complete learning or testing phase sessions. One par-
ticipant had to be excluded because of excessive head
motion (displacement of more than one voxel for multi-
ple volumes). Three participants did not reach sufficient
accuracy scores in the testing phase of the probabilistic
learning task (scores less than 10 of a possible 16 in
choosing the best symbol and, at the same time, less than
10 of 16 in avoiding the worst symbol), indicating that
they did not succeed in learning the task. Finally, four
participants had to be excluded because they were aware
of a connection of the probabilistic learning task and the
semantic priming during the scrambled sentence task
(see below) as evaluated via a debriefing form subsequent
to the scanning phase. The final sample thus consisted of
37 participants (17 women; age range = 18–30 years,
mean age = 23.19 years, SD = 3.35 years).

This study is part of an ongoing project on the influ-
ence of self-associations on learning. The participants in
this study have been primed by written sentences con-
taining associations to “stupid” or “clever” (20 participants
primed “clever” and 17 participants primed “stupid”). The
priming was achieved by using the scrambled sentence
task (Bargh & Chartrand, 2000). Before every 30 trials of
the probabilistic learning task, during the learning phase,
12 trials of scrambled sentences were given. Thus, in
total, three sets of sentences were given. The priming setup
was adapted from a previous study, and further information
can be found in Bengtsson, Dolan, and Passingham (2011).
In this study, we address the overall effects in the whole
group and control for the manipulation of self-associations
in all analyses.

Probabilistic Learning Task

We used an adapted version of the probabilistic selection
task (Frank, Seeberger, & O’Reilly, 2004), consisting of two
phases: a learning phase and a testing phase (Figure 1).
During the learning phase, participants were presented

with three different sets of symbol pairs (90 pairs overall)
on the computer screen. In a forced-choice paradigm,
participants were asked to choose either of the symbols
by indicating left or right on a keypad. Left was indicated
by the button corresponding to the participant’s index
finger, and right was indicated by the button correspond-
ing to the participant’s middle finger. After response,
written feedback was presented that read either “correct”
or “wrong” (in Swedish). Through trial and error, over the
course of learning, participants acquired information
about the intrinsic probabilities of feedback for each
symbol. For the symbol pair AB, symbol A had an 80%
chance of returning positive feedback, whereas symbol
B only had a 20% chance of returning positive feedback.
For the symbol pair CD, the distribution was 70%/30%,
and for EF, 60%/40%, respectively (Figure 1, left). The
visual character of the symbols in the AB and CD pairs
was switched for 19 of the 37 participants to account
for differences in visual recognizability of particular
symbols. Furthermore, pair presentation order and
stimulus position (left/right) were pseudorandomized
across participants. Each symbol pair was presented for
4000 msec. Afterward, feedback was presented for a dura-
tion of 1000 msec, which in turn was followed by a delay
of 2500 msec before the next pair was presented. Because
of the pseudorandomized presentation of each symbol
pair, the interval in which the same pair was presented
again ranged between 7.5 (the direct next trial) and
98 sec, with an average of 21.8 sec. The learning phase
was divided into three units of 30 symbol pairs each.
In the testing phase of the experiment, symbols A and

B from the learning phase were paired up with symbols

Figure 1. Probability learning task. During the learning phase, participants
learned stimulus–value correspondences through trial-and-error. Symbol
pairs differed in the relative amount of positive feedback: Pair AB
had a distribution of 80% (A) and 20% (B) positive feedback; CD,
70%/30%; and EF, 60%/40%. After the learning phase, symbols A and
B were each paired up with symbols C, D, E, and F in a testing phase
in which no feedback was given.
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C, D, E, and F, respectively. If participants have correctly
learned the relative values of symbols during the learning
phase, they should choose A against all other symbols
and should not choose B against any of the other sym-
bols (Figure 1, right). No feedback was given during
the testing phase. Here, 32 trials were presented to every
participant (four trials for every pairing).
Participants practiced the learning phase of the exper-

iment twice, once outside and once inside the scanner.
For the practice sessions, 25 trials were presented. During
practice, different symbols were used that were unrelated
to the symbols used for data collection.

Reinforcement Learning Model

A standard reinforcement learning model (van den Bos,
Cohen, Kahnt, & Crone, 2012; Sutton & Barto, 1998) was
set up to analyze data from the learning phase. We as-
sumed that participants learn differently from positive
and negative feedback (Klein et al., 2007; Frank, Woroch,
& Curran, 2005; Frank et al., 2004) and investigated
whether this differential learning would be reflected in a
correspondence between a feedback-specific learning
rate and behavioral parameters (e.g., post-error slowing,
staying/shifting after positive/negative feedback). There-
fore, we estimated two learning rates (αpos, αneg) to cap-
ture the influence from positive and negative feedback
on behavior, respectively (van den Bos et al., 2012; Kahnt
et al., 2009; Frank et al., 2007).
Decision weights of individual symbols were initialized

at zero (Niv, Edlund, Dayan, & O’Doherty, 2012; van den
Bos et al., 2012; Jocham, Klein, & Ullsperger, 2011; Frank,
Doll, Oas-Terpstra, & Moreno, 2009; Frank et al., 2007)
and updated for the chosen symbol according to the
positive or negative learning rate (depending on feed-
back) and prediction error on a trial-by-trial basis:

Qtþ1 ¼ Qt þ α pos=negð Þ � δt

Prediction errors were calculated as the difference be-
tween received feedback (r = 1 for positive and r = 0
for negative feedback) and the current decision weight
of the chosen stimulus:

δt ¼ rt − Qt

Choice behavior was modeled by entering symbol
weights on each trial into a softmax function together
with the inverse temperature parameter β, which cap-
tures individuals’ exploitation/exploration tendency, for
example, for the symbol A in the stimulus pair AB, the
probability of choosing A at time t is given by:

P Að Þt ¼
1

1þ e−β Q Að Þt−Q Bð Þtð Þ
The two learning rates and the inverse temperature

were estimated for each participant by fitting the model
predictions to participants’ decisions. We used the con-

strained nonlinear optimization function fmincon in the
optimization toolbox of MATLAB to implement maximum
a posteriori estimation (Daw, 2011) with the constraints
0 ≤ αpos,neg ≤ 1 and β ≥ 0. For αpos,neg, we used beta dis-
tributed priors with both shape parameters equal to 1.2,
and for β, a normal distributed prior with mean = 0 and
variance = 10, as used in previous work (den Ouden
et al., 2013). We initialized the learning rates at 0.5 and
β at 1. After model fitting, we also calculated trial-by-trial
decision confidence as the absolute divergence of the
probability of one of the two symbols from 50%, here
shown again for stimulus pair AB:

Conf ABð Þt ¼ 0:5 − P Að Þt
�� ��

Model Validation

To verify that our model indeed captures important as-
pects of participants’ behavior, we simulated behavior
using the obtained model parameters (αpos,neg, β) from
each respective participant to make softmax-based prob-
abilistic decisions on a trial-by-trial basis for the trial se-
quences of the experimental study. We repeated this
procedure 10,000 times for every participant and calculated
average decision accuracies over all repetitions, separately
for each of the three learning pairs and the three units of
the learning phase.

Behavioral Analysis

All behavioral data were analyzed within R (R version
3.0.3; R Core Team, 2014) and MATLAB (The MathWorks,
Natick, MA). Mixed-level model analyses with participants
as random effects were conducted using the linear
mixed-effects model R package lme4 (Bates, Maechler,
Bolker, & Walker, 2014) and restricted maximum likeli-
hood estimation.

Learning Phase Accuracy and ΔRT

Accuracy during the learning phase was calculated for
every symbol pair as the fraction of choices for the symbol
that was rewarded more on average (i.e., higher accuracy
for choosing symbols ACE over symbols BDF). We de-
termined accuracy on every symbol pair for each of the
three units of the learning phase.

We calculated RT differences in the learning phase on a
trial-to-trial basis by subtracting the subsequent trial RT
from the current trial RT (ΔRT). In accordance with pre-
vious research (Cavanagh et al., 2010), we differentiated
between ΔRT on the next same symbol pair (ΔRTpair,
e.g., RT on subsequent pair AB trial minus RT on current
pair AB trial; Figure 2) and ΔRT on the direct next trial
only when the subsequent pair was different (ΔRTdirect).

We studied the effect of learning phase (Unit 1, 2, or 3) and
symbol pair (AB, CD, or EF) on accuracy and probabilities
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computed from the reinforcement learning model using
linear mixed models with participant as random factor
and prime, learning phase, and symbol pair as fixed fac-
tors. We used F tests and Satterthwaite’s approximation to
the degrees of freedom to test the main effects of learning
phase and symbol pair, as implemented in the R package
lmerTest (Kuznetsova, Brockhoff, & Christensen, 2015).
Post hoc pairwise tests (single-step method) were per-
formed using the R package multcomp (Hothorn et al.,
2015).

Learning Phase Measures and Their Relation to
Testing Phase

To determine whether relevant post-error behavioral ad-
justments (i.e., on the next same pair) have an effect on
the testing phase of the probabilistic learning task, we
used a multiple regression analysis with ΔRTpair after
negative feedback (ΔRTpairneg), percentage of negative
feedback-congruent shifting behavior, and accuracy of
the three symbol pairs during the learning phase (i.e.,
percentage of choosing the better over the worse sym-
bols; Zaghloul et al., 2012) as independent variables
and total test score as the dependent variable. Using
mixed models, we investigated whether individual ΔRT
after positive and negative feedback could be predicted
on a trial-by-trial basis by prediction errors and subjective
confidence estimated by our reinforcement model as
well as whether that trial was followed by staying with
the same or shifting response toward the other symbol.
Furthermore, we explored whether ΔRTpairneg was asso-
ciated with trial onset, that is, whether it changes over
time during the course of the experiment or with one

of the three symbol pairs in particular using onset time
and symbol pair as independent variables in a mixed
model.
On the basis of previous work (Frank et al., 2007), we

also investigated whether a general working memory
(gWM) component as reflected in feedback-congruent
staying/shifting on the first five trials of every pair would
show a relation to the executive process measured by
post-error slowing:

gWM ¼
X5
i¼1

xi þ
X5
j¼1

yj

where i and j index positive and negative feedback trials,
respectively, and

xi¼
�
1 if stay jpos feedback
0 if shift jpos feedback

yj¼
1 if shift jneg feedback
0 if stay neg feedbackj

�

Trials with a missing response and corresponding di-
rect next trials or next pair trials were removed from all
analyses. Missed response trials corresponded to less
than 1% of all trials in all analyses.
For the testing phase, we calculated an overall test

score for the new symbol combinations corresponding
to how often participants chose A and avoided B against
all other symbols.

Image Acquisition: fMRI and Anatomical Data

Imaging data were acquired on a 3-T GE scanner (Dis-
covery MR750; GE, Fairfield, CT) using an eight-channel
head coil. We acquired 40 axial slices in interleaved order
using a gradient-echo EPI sequence (flip angle = 90°, echo

Figure 2. Post-error slowing in
the probability learning task.
Three different pairs (AB, CD,
and EF) are presented in
pseudorandomized order and
symbol position (left/right).
Displayed is the choice of
symbol “B,” followed by
negative feedback and
corresponding hypothesized
RT slowing on the subsequent
same pair trial. Symbol
denominations are not shown
to participants during actual
experiment. Inset shows an
example trial as displayed
during the experiment.
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time = 30 msec, repetition time = 2600 msec) with a field
of view of 28.8 cm,matrix size of 96× 96 (zero-filled before
inverse fast Fourier transform to 128× 128), slice thickness
of 3 mm, and slice spacing of 0.5 mm. Three hundred
eighty-six volumes were acquired for the learning session,
whereas the amount of acquired volumes for the testing
session varied depending on participants’ RTs.
In addition, we acquired high-resolution T1-weighted

anatomical images of every participant after the fMRI
sessions, using a fast inversion-recovery-prepared 3-D
gradient-echo sequence (BRAVO) with a flip angle of 12°,
inversion time of 450 msec, repetition time of 7.9 msec,
echo time of 3.1 msec, field of view of 24 cm, matrix size
of 240 × 240 (zero-filled before inverse fast Fourier trans-
form to 256 × 256), slice thickness of 1 mm (no gap), and
interleaved acquisition.

Image Preprocessing

Imaging data were preprocessed in SPM (SPM 12b, version
6033; Wellcome Trust Centre for Neuroimaging, UCL,
London, United Kingdom) as run in MATLAB, following
standard preprocessing analysis protocols. Briefly, the
first six volumes of every session were discarded to ac-
count for early saturation effects, and the remaining vol-
umes were realigned to the mean image of every session.
For both anatomical and functional images, the origin
was set to the anterior commissure. Anatomical images
were bias corrected via Segment, and functional images
were then coregistered to the bias-corrected T1. Using
the forward deformation field estimated from the seg-
mentation step, the bias-corrected T1 as well as the func-
tional images were normalized into Montreal Neurological
Institute (MNI) 152 space with a spatial resolution of 2 ×
2 × 2 mm. Finally, smoothing in form of a Gaussian kernel
(FWHM = 8 mm) was applied to the functional images.

fMRI Data Analysis

To further our understanding of the link between typical
cognitive control parameters and parameters extracted
from reinforcement learning modeling with brain imag-
ing, we first investigated parametric neural processes of
post-error slowing during the feedback presentation in
the learning phase. We then investigated BOLD that
changed with absolute and signed prediction errors at
the event of seeing the feedback. Subsequently, we stud-
ied if there was any anatomical overlap between the
neural processes involved in the response to absolute pre-
diction error and post-error slowing.
We used an informed basis set (canonical hemodynamic

response function plus time and dispersion derivatives;
Friston et al., 1998) to model the hemodynamic response
at the single participant level. Separate general linear
models were fit to the high-pass filtered data (cutoff fre-
quency = 1/128 Hz).

For each participant, in a first level analysis, we mod-
eled 12 regressors and their derivatives (42 regressors
overall including six movement regressors). We modeled
onsets of positive and negative feedback trials para-
metrically modulated by ΔRTpair as well as decision
phase trials divided according to whether people were
slowing (ΔRTpair > 0) or speeding (ΔRTpair < 0) during
this phase and whether previous feedback was positive
or negative (i.e., four regressors concerning the decision
phase). Further regressors included the unmodulated
onsets of positive and negative feedback trials. The phase
between the key response and the feedback (expectation
phase) was modeled from onsets of the participant’s key-
press until the feedback was received and divided into
trials with average positive expectation (i.e., decisions
for symbols A, C, or E) and average negative expectation
(i.e., decisions for symbols B, D, or F). Furthermore, we
modeled the sentences from the scrambled sentence
task and corresponding keypresses. All regressors were
modeled as events (delta stick functions) apart from the
expectation phase, which wasmodeled as epochs with vari-
able duration corresponding to the time from keypress
until feedback and the sentences that were modeled as
epochs of 8 sec.

The first level design differed slightly for the analysis of
signed prediction error for which positive and negative
feedback onsets were parametrically modulated by re-
spective prediction errors instead of ΔRT and for the
analysis of unsigned prediction error, in which we did
not differentiate between positive and negative feedback
and parametrically modulated all feedback trials by the
unsigned prediction error (36 regressors in total).

First, we addressed the question whether brain activity
during the reception of negative feedback was associated
with slowing down on the next same pair trial. We used
negative feedback trials as onsets and ΔRTpairneg as a
parametric modulator for these events.

Second, we investigated the effect of deviance from
expectations (i.e., surprise) on brain activity when receiv-
ing feedback. This was implemented by using positive
and negative feedback trials as onsets and modulating
them by the unsigned prediction error on that trial, reflect-
ing brain activity that increases with amount of surprise.

Parameter estimates from these single-participant anal-
yses were taken up to the respective second level and in-
cluded in one-sample ANOVAs, testing for the effects
across the group. Here, we included the canonical hemo-
dynamic response function plus time and dispersion de-
rivatives as well as prime as regressors of no interest.
Cluster results are reported at FWE whole-brain cor-
rected level ( pFWE-cluster < .05) with an initial cluster de-
fining threshold of p < .001, uncorrected.

Finally, we analyzed whether signed prediction errors
showed a specific relation to brain activity. On the basis
of previous studies (Chase et al., 2015; Garrison et al., 2013;
Asaad & Eskandar, 2011), we used an a priori ROI mask of
the entire striatum, which was created in WFU PickAtlas
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(Maldjian, Laurienti, Kraft, & Burdette, 2003), and report
small volume corrected (SVC) statistics for this contrast.

We report anatomical locations of significant second
level activations using the SPM Anatomy toolbox (Eickhoff
et al., 2005) in MNI space and visualize group level acti-
vations on a group-averaged normalized structural tem-
plate and rendered on the MNI 152 template brain using
MRIcroGL (www.mccauslandcenter.sc.edu/mricrogl/ ).

RESULTS

Behavioral Results

Learning Phase Accuracy, Computed Probabilities,
and ΔRT

As expected, accuracy depended both on learning phase
(F(2, 292) = 17.119, p< .001) and symbol pair (F(2, 292)=
11.445, p< .001), and this effect was similar for accuracies
computed from the reinforcement learning model simula-

tions for learning phase (F(2, 292) = 81.287, p< .001) and
for symbol pair (F(2, 292) = 69.693, p< .001). As revealed
in the post hoc pairwise tests, significant differences in
accuracy were found between all units (2 > 1: z = 2.619,
p = .024; 3 > 1: z = 5.841, p < .001; 3 > 2: z = 3.222,
p = .004; Figure 3A) and between symbol pairs AB and
CD (AB > CD: z = 4.486, p < .001) as well as AB and EF
(AB > EF: z = 3.683, p < .001), but not between CD and
EF ( p= .7). We found similar differences in the accuracies
of the reinforcement learning model simulations between
the learning units (2 > 1: z = 10.59, p < .001; 3 > 1: z =
11.44, p < .001; no significant difference between 3 and 2,
p= .672; Figure 3B) and between symbol pairs (AB > CD:
z = 9.088, p < .001; AB > EF: z = 11.07, p < .001; no
significant difference between EF and CD, p = .117).
During the last unit of the learning phase, accuracy on

pair AB was high (70% accuracy or higher) for all par-
ticipants but one (50% accuracy). Exclusion of this partic-
ipant did not have an impact on any of the conclusions

Figure 3. Learning phase accuracy and model simulations. (A) Average accuracy for all three symbol pairs over the three units of the learning phase.
One unit consisted of 30 trials. Error bars indicate 95% CI. (B) Average simulated accuracy for all three symbol pairs over the three units of the
learning phase. (C) Boxplots of average accuracy of the last five learning trials for symbol pairs AB, CD, and EF, respectively. (D) Boxplots of average
simulated reinforcement learning model probabilities of the last five learning phase trials for symbol pairs AB, CD, and EF, respectively. *p < .05,
**p < .01, ***p < .001.

1544 Journal of Cognitive Neuroscience Volume 28, Number 10



drawn from the results, so we are presenting all results
with this participant included.
Accuracy on the last five trials of the learning task for

every pair demonstrated that participants performed
better on symbol pair AB compared with the other two
symbol pairs (overall effect of symbol pair: F(2, 72) = 4.734,
p = .012; accuracyAB > accuracyCD: z = 2.845, p = .012;
accuracyAB> accuracyEF: z=2.438, p= .039; no significant
difference between accuracyCD and accuracyEF, p = .913;
Figure 3C). The averages of the last five probabilities com-
puted from the reinforcement learning model simulations
for every symbol pair during the learning phase reflect
this learned differentiation between AB and the other
two symbol pairs (overall effect of symbol pair: F(2, 72) =
53.753, p < .001; p(A) > p(C): z = 5.386, p < .001; p(A) >
p(E): z= 10.366, p< .001; p(C) > p(E): z= 4.98, p< .001;
Figure 3D). These results indicate that simulations using
fitted parameters from our reinforcement learning model
fit well with participants’ behavior in this paradigm.
Trial-by-trial ΔRTpair differed depending on previously

received feedback. Negative feedback led to slowing
down of RT during the next same pair trial compared
with positive feedback (b = 123.6, t(3180) = 4.59, p <
.001). This effect persisted even when normalizing ΔRTpair
by the current scale of RT, that is, dividing ΔRTpair by cur-
rent RT + previous RT (b = 78.11, t(3180) = 5.04, p <
.001). On the other hand, negative feedback led to speed-
ing during the next irrelevant direct trial compared with
positive feedback (b=−70.07, t(2653) =−2.16, p= .03).

Feedback-congruent Staying/Shifting

Previous feedback also influenced the relative propensity
to stay with the same symbol or shift to the other one. As
expected, participants were more likely to stay after pre-
vious positive feedback relative to previous negative
feedback (b = 1.605, z = 17.449, p < .001).

Furthermore, the overall tendency to shift after negative
feedback over participants correlated with the negative
learning rate (αneg) estimated by our reinforcement learn-
ing model (r = .3298, p = .042) in accordance with previ-
ous studies (van den Bos et al., 2012; Kahnt et al., 2009).

We did not find a significant relation between a gen-
eral WM component calculated for the first five trials and
average post-error slowing over participants (r = .2014,
p = .231).

Learning Phase Measures and Relation to Testing Phase

Average ΔRTpair after negative feedback, accuracy dur-
ing the learning phase on the three pairs (accuracyAB,
accuracyCD, accuracyEF), and shifting versus staying in re-
sponse to negative feedback predicted learning transfer
as reflected in the testing phase results (F(6, 30) = 3.47,
p= .01, adjusted R2 = .29). Test scores were significantly
associated with ΔRTpairneg (b = 15.35, t(30) = 2.653, p =
.013; correlation between ΔRTpairneg and total test score in
Figure 4A) and accuracyAB (b = 14.33, t(30) = 2.918, p =
.007; correlation between accuracyAB and total test score in

Figure 4. Visualization of relationship between learning phase and testing phase measures. (A) Scatterplot illustrating the correlation between
post-error slowing on the next same pair during the learning phase and total score during the testing phase over participants. (B) Scatterplot
illustrating the correlation between accuracy on pair AB during the learning phase and total score during the testing phase over participants.
A random jitter of 0.005 has been applied to x axis values to display overlapping data points.
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Figure 4B), whereas stayshiftneg, t(30) = 1.165, p = .253,
accuracyCD, t(30) = −0.277, p = .784, and accuracyEF,
t(30) =−0.216, p= .83, were not. Slowing down more on
the direct next trial after negative feedback was not sig-
nificantly associated with better performance during the
testing phase (r = .086, p = .613; Figure 5). ΔRTpairneg
was not significantly associated with accuracyAB (t(32) =
−0.671, p= .507), accuracyCD (t(32) = 1.764, p= .087),
or accuracyEF (t(32) = −1.057, p = .299) as assessed by a
multiple regression.

Relation of ΔRT to Computational Model and
Behavioral Measures

Prediction errors on negative feedback were associated
with ΔRTpairneg (b = −345.2, t(1254) = −4.962, p <
.001), indicating that a stronger deviation of the received
negative feedback from expectation led to an increase in
behavioral slowing. In addition, lower confidence was
also associated with ΔRTpairneg (b = −488.45, t(1254) =
−2.966, p = .003), whereas the decision to stay or switch
was not significantly associated with ΔRTpairneg (b =
−90.38, p = .066). On the other hand, prediction errors
on positive feedback predicted speeding on the next same
pair trial (b = −115.02, t(1919) = −2.458, p = .014).

We did not find a significant relation between average
ΔRTpairneg and the computed negative learning rate
across participants (r = .1066, p = .532), indicating that
post-error slowing might not be directly coupled with
trial-by-trial value updating from negative feedback.

ΔRTpairneg was neither significantly related to trial onset
(ΔRTpairneg did not change over time in the experiment,

t(1255) = 1.338, p= .181) nor to a particular symbol pair
(t(1255) = 0.992, p = .321).
ΔRTs on the next same pair trial after positive feedback

were faster when staying with the same symbol (b =
273.45, t(1919) = 5.324, p < .001) but were not affected
by computed confidence (b = 139.93, p = .272).
A similar association was found between ΔRTdirect and

prediction errors as well as confidence on direct next ir-
relevant trials. Prediction errors on negative feedback
(b = −265.23, t(1088) = −3.724, p < .001) and confi-
dence on the direct next trial (b = −291.54, t(1088) =
−1.996, p = .046) were associated with slowing on the
direct next trial. After positive feedback, confidence on
the direct next trial (b = −726.20, t(1560) = −6.178,
p < .001) and prediction error (b = −362.45, t(1560) =
−6.225, p< .001) were both associated with RT speeding.
Absolute prediction errors as a measure of deviations

from expectations after both positive and negative feed-
back were not significantly associated with speed adjust-
ments on the next same pair trial (b= 63.46, p= .078) or
direct next trial (b = −65.88, p = .133).
When using weights initialized at 0.5 instead of 0, we

found a similar relation between ΔRTpairneg and negative
prediction error (b = −290.146, t(1254) = −4.21, p <
.001) as well as ΔRTpairneg and confidence (b = −400.21,
t(1254) = −2.469, p = .014). Correlation between esti-
mated prediction errors and confidence values with
weights initialized at 0 and 0.5 was high (r= .8925 for pre-
diction errors and r = .8564 for confidence on positive
feedback trials, r = .8923 for prediction errors, and r =
.8422 for confidence on negative feedback trials). This
indicates that the results are robust with regard to weight
initialization.

fMRI Results

Parametric Modulation of BOLD by ΔRTpairneg

While viewing negative feedback, evoked brain activity in
right inferior frontal gyrus (rIFG; peak x, y, z at 50, 20, 30:
t(1, 107) = 4.35, pFWE-cluster = .013, kE = 369 voxels),
bilateral middle occipital gyri (right peak at 32, −64,
32: t(1, 107) = 4.55, pFWE-cluster = .020, kE = 331 voxels;
left peak at −32, −74, 26: t(1, 107) = 3.99, pFWE-cluster =
.044, kE = 263 voxels), and right inferior occipital gyrus
(peak at 26,−96, −6: t(1, 107) = 4.34, pFWE-cluster = .050,
kE = 253 voxels) was associated with RT slowing on the
next same pair trial (Figure 6 and Table 1).

Parametric Modulation of BOLD by Absolute
Prediction Error

Absolute prediction error on all feedback trials was asso-
ciated with activity in right middle frontal gyrus (peak at 44,
38, 18: t(1, 107) = 4.44, pFWE-cluster = .014, kE = 353 voxels)
and bilateral parietal/occipital cortex (right peak at 30,−64,
40: t(1, 107) = 4.36, pFWE-cluster = .011, kE = 373 voxels;

Figure 5. Scatterplot illustrating the correlation between post-error
slowing on the next irrelevant direct trial during the learning phase and
total score during the testing phase over participants.
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left cluster extending rostrally over left inferior parietal
lobule and caudally over left middle occipital gyrus, peak
at −46, −42, 46: t(1, 107) = 5.05, pFWE-cluster < .001, kE =
1210 voxels) as well as activity in left precentral gyrus
(peak at −30, 0, 48: t(1, 107) = 4.51, pFWE-cluster = .024,
kE = 305 voxels) and right superior frontal gyrus (peak
at 26, 22, 58: t(1, 107) = 4.45, pFWE-cluster = .045, kE =
254 voxels; Figure 7 and Table 1).

Common Activations of ΔRTpairneg and Absolute
Prediction Error

As activity associated with ΔRTpairneg modulation on neg-
ative feedback trials and absolute PE modulation on all

feedback trials recruited in part similar areas, we used a
logical AND procedure to assess common significant ef-
fects across both contrasts. We find overlap in bilateral
occipital areas active in both contrasts (left side: 104 vox-
els, right side: 102 voxels) as well as overlap in one voxel
of rIFG (MNI coordinates: 48, 34, 24), which are shown in
Figure 7.

Striatum ROI Analysis of Signed Prediction Error

In an ROI analysis focusing on the striatum, prediction
errors on negative feedback scaled negatively with activ-
ity in left caudate (−14, 14, 2: t(1, 107) = 3.87, pFWE =
.042 [SVC]), that is, higher activity corresponded to a

Figure 6. fMRI results. BOLD
activity on negative feedback
associated with ΔRTpairneg,
overlaid on group-averaged
anatomical template in
MNI space. Color bar
indicates t values. Results
are shown at p < .001
uncorrected for display
purposes.

Table 1. fMRI Results

Contrast/Cerebral Region

MNI Peak Coordinates

t
Cluster
Extentx y z

Negative feedback parametrically modulated by ΔRTpairneg

Right inferior frontal gyrus* 50 20 30 4.35 369

Right middle occipital gyrus* 32 −64 32 4.55 331

Left middle occipital gyrus* −32 −74 26 3.99 263

Right inferior occipital gyrus* 26 −96 −6 4.34 253

Positive and negative feedback parametrically modulated by absolute prediction error

Right middle frontal gyrus* 44 38 18 4.44 353

Right middle/superior occipital gyrus* 30 −64 40 4.36 373

Left inferior parietal lobule and left middle occipital gyrus* −46 −42 46 5.05 1210

Right superior frontal gyrus* 26 22 58 4.45 254

Left precentral gyrus* −30 0 48 4.51 305

Negative feedback parametrically modulated by negative prediction error

Left caudate** −14 14 2 3.87 62

*Significant at p < .05 (whole-brain FWE cluster level-corrected).

**Significant at p < .05 (SVC).
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more negative prediction error. On the other hand, we
did not find brain activity increasing or decreasing with
positive prediction error in the striatum at this threshold.

DISCUSSION

This study demonstrates that behavioral slowing after
negative feedback is associated with improved test phase
performance, in which symbols are being compared to
evaluate the unique probabilities learned. Importantly,
we found that the post-error slowing concerns pair-specific
slowing in particular that included memory-reliant pro-
cesses of, on average, 22 sec. This memory-based adjust-
ment was associated with activity in rIFG and bilateral
middle occipital gyrus at the time when the participants
were given feedback. Activity in these regions varied ac-
cording to the size of the post-error slowing on the next
same pair trial. The BOLD signal in similar occipital cortex
regions correlated with absolute prediction errors when
the participants were presented with feedback, and we
further discovered a relation between negative prediction
error and post-error slowing. These findings highlight an
intriguing interplay between reinforcement learning and
cognitive control processes.

Pair-specific Post-error Slowing

Previously, delayed adjustments of RTs and neural cor-
relates to behavioral adjustments have been demonstrated
in this type of reinforcement learning paradigm (Cavanagh
et al., 2010; Frank et al., 2007). For example, Cavanagh and
colleagues found both behavioral slowing after negative
feedback on the next same pair as well as behavioral speed-
ing after positive feedback. Behavioral speeding on the
next same pair was predicted by heightened theta power
in lateral PFC.

This study supports these behavioral findings and
points toward a function of lateral PFC in regulating re-

sponse speed adaptations, even for a response that will
occur several trials later, in accordance with current feed-
back. Our results suggest that rIFG implements memory-
reliant inhibitory processes after negative feedback in
particular as indicated by our fMRI results and thus plays
a role in generating the post-error slowing. Unlike tasks
that require immediate error correction, such as the clas-
sical Eriksen Flanker task (Siegert et al., 2014) or a Simon
task (e.g., Danielmeier, Eichele, Forstmann, Tittgemeyer,
& Ullsperger, 2011; King, Korb, von Cramon, & Ullsperger,
2010), feedback has little conceptual meaning for the
immediate subsequent pair-unspecific trial in the current
reinforcement learning task. Previously, no speed adjust-
ments have been found on the direct next trial (Cavanagh
et al., 2010; Frank et al., 2007), and we even find post-error
speeding on the direct next trial. It is possible that this dif-
ference stems from the fact that we utilized a slowed down
version of the same task, suitable for fMRI.

Role of Inferior Frontal Cortex in Processing
Feedback in Accordance with Subsequent
Behavioral Adjustments

During the reception of negative feedback, we observed
increased activity in rIFG related to slowing down on the
next same pair trial. Behaviorally, we observed that this
slowing was positively related to success in the testing
phase. Bilateral IFG has previously been found to play a
role in instrumental learning as IFG activity differentiated
learners from nonlearners when inhibiting a response that
was required to obtain a reward (Guitart-Masip et al.,
2012). It is reasonable to assume that maintenance of
negative feedback in memory over several trials as present
in our task relies on similar mechanisms instigated by
rIFG and that feedback-congruent responses are bene-
ficial for later learning outcome.
In fact, inferior frontal cortex, particularly on the right

side, has previously been implicated to form part of a

Figure 7. fMRI results. fMRI
analysis showing overlap
(blue) of significant clusters
for ΔRTpairneg analysis
(red–yellow) and absolute
prediction error analysis
(green). Color bar indicates
t values. Only clusters
surviving a threshold of
pFWE-cluster < .05 with an
initial cluster defining
threshold of p < .001
uncorrected are shown.
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cognitive control network that is involved in braking or
stopping responses (Aron, Robbins, & Poldrack, 2014;
Aron, Behrens, Smith, Frank, & Poldrack, 2007). A recent
effective connectivity study showed that rIFG modulates
the excitatory influence between the pre-SMA and sub-
thalamic nucleus (Rae, Hughes, Anderson, & Rowe, 2015).
Consistent with the idea that response inhibition requires
online maintenance of relevant information, rIFG has also
been implicated in storing behaviorally relevant infor-
mation in memory (Spitzer, Goltz, Wacker, Auksztulewicz,
& Blankenburg, 2014; Marklund & Persson, 2012; Clark
et al., 2007). More generally, tasks in which storage or
maintenance of value or knowledge is required over sev-
eral trials evoke associated activity in lateral PFC (Curtis
& D’Esposito, 2003). This stands in contrast to paradigms
in which the immediate next trial calls for adjustments,
such as in Simon or Stroop tasks, where brain activity pre-
dicting response threshold adaptation is often seen pre-
dominantly in medial error-related processing regions, for
instance, in ACC (King et al., 2010; Kerns et al., 2004; how-
ever, see also Hester, Barre, Murphy, Silk, & Mattingley,
2008, for an involvement of medial PFC in maintenance
of feedback information over several trials).

Sensory Input to Inferior Frontal Cortex and Its
Relation to Unsigned Prediction Error

The abovementioned findings suggest that activity in lat-
eral PFC goes beyond merely implementing error signals
received from medial PFC. Here, we demonstrate that
brain activity in rIFG correlates with relevant adjustments
even when several intervening trials are presented. We
also find that, in addition to rIFG activation, bilateral
middle occipital cortex activity scales with the amount
of post-error slowing on the next same pair trial. The
parametric modulation of activity in these higher-order
visual regions may reflect that they are involved in pro-
cessing stimulus features when the features are particu-
larly relevant for memory storage (Danielmeier et al.,
2011; King et al., 2010; Ishai, Ungerleider, Martin, &
Haxby, 2000). This is supported by our finding that bi-
lateral middle occipital cortex activity overlapped with
activity that varied parametrically with the unsigned pre-
diction error. Unsigned prediction error can be viewed as
a measure of absolute deviation from the expected out-
come (feedback) and therefore as a proxy for surprise,
which is a typical learning signal (Hayden, Heilbronner,
Pearson, & Platt, 2011; Pearce & Hall, 1980).
Ventrolateral PFC receives converging input from the

ventral visual stream, for example, information about
the shape and color of stimuli (Takahashi, Ohki, & Kim,
2012; Sakagami & Pan, 2007), which it can then convert
into templates for motor commands (Sakagami & Pan,
2007). Previous studies have shown that different regions
in medial and lateral frontal cortex selectively interact with
task-relevant and task-irrelevant brain areas to maintain
sensory information needed for future decisions in mem-

ory (Spitzer et al., 2014; Danielmeier et al., 2011; King
et al., 2010; see Gazzaley & Nobre, 2012, for a review).
The current finding opens up the question as to whether
there is a dynamic interplay between frontal areas and
occipital regions that relies on information from lower
level processes of detailed visual stimuli features that are
in themselves calling for response speed adaptations de-
pendent on feedback or whether the interaction between
reinforcement processes and cognitive control takes place
higher up in the processing hierarchy. We suggest that
future studies address this particular question for a more
comprehensive understanding of learning.

Test Phase Performance

Interestingly, we find that both being accurate on the
symbol pair AB (i.e., choosing A more often than B) and
slowing down after negative feedback on the next same
pair trial contribute to instrumental learning as instan-
tiated by the scores of a later testing phase. To our knowl-
edge, effects of feedback-congruent adjustments on test
performance have not been reported. ΔRTpairneg and
accuracyAB were associated with outcome in the testing
phase to a similar degree, but with independent contribu-
tions. Previous studies have reported that greater accu-
racy during the learning phase benefits overall test score
(Zaghloul et al., 2012), although a dissociation between
learning and testing accuracy has also been described.
For instance, Shohamy and colleagues found that dopa-
mine medication selectively impaired Parkinson’s patients’
ability to learn action-value correspondences during a
learning phase but did not have an effect on later gen-
eralization of that knowledge (Shohamy, Myers, Geghman,
Sage, & Gluck, 2006). Furthermore, Klein and colleagues
reported that participants with relatively increased dopa-
mine D2 receptor density displayed more brain activity in
the rostral cingulate zone during negative feedback in the
learning phase, which in turn predicted positive and nega-
tive learning scores during the testing phase (Klein et al.,
2007). Thus, the link between performance during the
learning phase and performance during a later testing
phase is under debate, and we believe that our finding
that the relative duration of the memory-reliant post-error
slowing impacts on learning as manifested in the test score
is a valuable focus for future studies. It can be speculated
that the additionally recruited time during the decision
phase may promote a better integration of previous nega-
tive feedback with the stored value of a particular symbol
and right inferior frontal cortex is contributing to this pro-
cess (see Dixon & Christoff, 2014, for a review on the role
of lateral PFC in value-based learning). In that sense, re-
sponse slowing after unexpected/contrary feedback may
aid the value updating process, although not relating to
immediate stay or shift decisions.

We did not find evidence for a significant difference in
post-error slowing when choosing to stay with the same
symbol or shift to the respective other symbol. In addition,
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decisions to stay with the same symbol after positive feed-
back or shift to the other symbol after negative feedback
were not directly associated with test performance. Note
that, after negative feedback, participants only shifted
their response to the other symbol on about 42% of all
trials (compared with about 87% staying after positive
feedback), indicating that negative feedback did not
always lead to an immediate choice correction. Impor-
tantly, the probabilistic structure of the task would allow
for trials with negative feedback, which do not actually
require a shifting decision—for example, if participants
encounter negative feedback on symbol A, which had
previously accumulated a large positive weight in the re-
inforcement history. The appropriate response in this
case would be not to switch toward symbol B, yet a slowing
in response speed as we observed in this study could still
indicate the conflicting feedback.

As the computed symbol–action values are dependent
on the participant’s reinforcement history, we cannot
tease apart the interaction between these two variables
in this study. Yet, including post-error slowing a priori
into the computational model could provide an interest-
ing ground for exploration in the future (e.g., Niv, Daw,
Joel, & Dayan, 2007).

Negative Prediction Error

We observed that post-error slowing correlated negatively
with previous prediction error after negative feedback as
well as confidence in the current decision. That is, a more
negative prediction error on previous feedback and less
confidence on the subsequent same pair trial both led
to increased post-error slowing. This is in line with earlier
research showing that action preparation can be influ-
enced by uncertainty on a trial and the stimulus-related
surprise (Bestmann et al., 2008). Yet, we find that negative
prediction error was both associated with RT slowing on
the direct next trial and the next same pair trial, indicating
a general impact of negative prediction error on response
speed and not a pair-specific one.

Our findings on the coding of negative prediction errors
in the caudate nucleus replicate a recent study in non-
human primates (Asaad & Eskandar, 2011) and provide
support for the idea that negative reward prediction error
is related to increasing rather than decreasing activity in
error-detecting brain regions.

Conclusion

In summary, our results suggest that feedback-congruent
response speed adaptations benefit learning in a reinforce-
ment learning context. We illustrate that the slowing in
RT could be predicted by using trial-by-trial estimated pre-
diction errors via a reinforcement learning model. The
brain imaging data showed that rIFG plays a role in inte-
grating feedback to adjust memory-dependent responses
relevant to the task at hand and that dorsal occipital cortex

contributes to these speed adjustments, conceivably signal-
ing deviations from reward expectations.
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