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Abstract— Existing block-diagonal representation studies 
mainly focuses on casting block-diagonal regularization on train- 
ing data, while only little attention is dedicated to concurrently 
learning both block-diagonal representations of training and test 
data. In this paper, we propose a discriminative block-diagonal 
low-rank  representation  (BDLRR)  method   for   recognition. 
In particular, the elaborate BDLRR is formulated as a joint 
optimization problem of shrinking the unfavorable representation 
from off-block-diagonal elements and strengthening the compact 
block-diagonal representation under the semisupervised frame- 
work of LRR. To this end, we first impose penalty constraints on 
the negative representation to eliminate the correlation between 
different classes such that the incoherence criterion of the extra- 
class representation is boosted. Moreover, a constructed subspace 
model is developed to enhance the self-expressive power of 
training samples and further build the representation bridge 
between the training and test samples, such that the coherence of 
the learned intraclass representation is consistently heightened. 
Finally, the resulting optimization problem  is  solved  elegantly 
by employing an alternative optimization strategy, and a simple 
recognition algorithm on the learned representation is utilized for 
final prediction. Extensive experimental results demonstrate that 
the proposed method achieves superb recognition results on four 
face image data sets, three character data sets, and the 15 scene 
multicategories data set. It  not  only  shows  superior  potential 
on image recognition but also outperforms the state-of-the-art 
methods. 

Index Terms— Block-diagonal structure, discriminative rep- 
resentation, image recognition, low-rank representation (LRR), 
sparse representation. 

I. INTRODUCTION 

ISCRIMINATIVE and effective data representations 

play an indispensable role in computer vision and machine 

learning, because they tremendously influence the 

performance of various learning systems [1]. A favorable data 

representation can greatly uncover the underlying information 

of observed data and intensely facilitate the machine learning 

methods [2]. As a typical data representation method, sparse 

representation has earned its high reputation in both theoretical 
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research and practical applications [2]–[4]. Recently, low- 

rank representation (LRR) has  captured  considerable 

attention [5]–[7], and has also been proved to be a powerful 

solution to a wide range of applications,  especially  in 

subspace segmentation [6],  feature  extraction  [7],  and  

image classification [8]–[10]. In this paper, we focus on 

learning an appropriate data representation by constructing a 

block-diagonal LRR (BDLRR) for image  recognition. 

Sparse representation has been widely studied and applied 

in signal  processing,  machine  learning,  and  computer  

vision [3], [11]. The key idea of sparse representation  is  

based on the assumption that each signal can be approximately 

represented by a linear combination of a few atoms of an 

overcompleted dictionary. With the successful application of 

sparse representation-based classification (SRC) [3] in face 

recognition, numerous SRC-based modifications have been 

proposed. For example, Nie et al. [13] introduced an efficient 

and robust feature selection method by imposing the l21-norm 

constraint on both loss  function  and  regularization  terms.  

Xu et al. [14] proposed the semisupervised sparse 

representation by employing a  coarse-to-fine  strategy,  and 

Lu et al. [15] developed a weighted sparse representation- 

based classifier by leveraging both data locality and linearity 

to sparse coding. Based on the  basic  theorem  [4]  that 

locality can always  lead  to  sparsity  but  not  necessarily  

vice versa, the locality-constrained linear coding (LLC) [4] 

method achieves the sparse target by enforcing the locality 

embedding of codebook.  In  addition,  some  researchers 

argue that sparsity is not the ultimate reason of achieving 

decent recognition results [12], [16]–[18].  For  example, 

Zhang et al. [16] presented a collaborative representation- 

based classification (CRC) method  by  employing  the  l2-

norm  regularization  rather  than   l1-norm   regularization for 

face recognition. It is  demonstrated  that  CRC  can achieve 

comparable performance but more  efficient  than  SRC    [16].    

The    linear    regression-based    classifica-  tion (LRC) [18] 

is another well-known representation-based method. More 

specifically, LRC exploits each class of training samples to 

represent the test sample, and classifies it to the class leading 

to the minimum representation residual. A recent survey [2] 

comprehensively reviews most representative sparse 

representation-based algorithms, and empirically summarizes 

its wide applications from both theoretical and practical 

perspectives. 

Recently, LRR has gained increasing interest from different 

research fields. It is noted that the sparsity constraint can only 

dominate the local structure of each data vector, whereas the 

low-rank constraint can directly control the global structure of 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/131078362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ieeexplore.ieee.org/


 

 

data [19]. Furthermore, LRR can greatly capture the underly- 

ing correlation behind the observed data [19], [20]. The most 

representative low-rank method, robust principal component 

analysis (RPCA) [21], was proposed to  recover  the  clean 

data with the low-rank constraint from corrupted observations. 

In particular, RPCA first  assumes  that  the  observations lie 

in a single subspace such that they can be decomposed into 

two separate components, i.e., the low-rank and sparse noise 

parts. However, RPCA cannot handle the situation where 

corrupted or outlying data are drawn from a union of multiple 

subspaces. To this end, Liu et al. [6] proposed to perform 

matrix recovery by exploiting LRR for subspace segmentation. 

The latent LRR (LatLRR) [7] was then developed for joint 

subspace segmentation and feature extraction by discovering 

the hidden information underlying the observations. Moreover, 

lots of LRR-based dictionary learning methods were proposed 

for robust image classification. For example, Zhang et al. [10] 

constructed a structured LRR (SLRR) by regularizing all train- 

ing images of the same class to have the same representation 

code. However, the ideal structure in SLRR is questionable, 

because, though data from the same class usually lie in the 

same subspace, it does not mean  that  images  belonging  to 

the same class should have the  same  data  representation.  

Wei et al. [22] developed a low-rank matrix approximation 

method by learning subdictionaries independently for each 

class and meanwhile enforcing the structural incoherence 

between different classes. Li et al. [23] explored a classwise 

block-diagonal structure (CBDS) dictionary learning method, 

which learned discriminative LRR by imposing the  class- 

wise structure constraint. In addition, some variations of LRR-

based methods were proposed to solve different prob- lems. 

For example, Li et al. [24] designed a cross-view low-rank 

analysis framework to address the multiview outlier detection 

problem. Zhuang et al. [25] presented a nonnegative low-rank 

sparse graph construction method for semisupervised learning. 

As a result, it is widely agreed that the low-rank cri- terion 

indeed can disclose the potential data structures of dif- ferent 

classes or tasks’ correlation patterns, such that the effec- 

tiveness of the learned data representation can be   enhanced. 

There is a well-attested fact that the sparse representation   

in [3] is a discriminative representation, whereas it only 

considers the data representation of each input signal indepen- 

dently, which does not take advantage of the global structural 

information in the set. In addition, existing research [22]–[24] 

has demonstrated that imposing specific structures on the  

LRR matrix is beneficial to improve the discriminative capa- 

bility of data representation. However, the performance of 

these methods is still far from being satisfactory. The main 

reason may be that  these  methods  cannot  perfectly  trans-  

fer the original data features to the discriminative feature 

representations. Based on the well-explored self-expression 

property [26], the ideal block-diagonal representation can 

capture the underlying data information of samples by 

embedding the global semantic structure information and 

discriminative identification capability [10]. Consequently, 

promising results can be achieved if the discriminative data 

representation with the block-diagonal structure is exploited 

for  recognition.  In  this  paper,  a  novel  BDLRR  method  is 

proposed to learn discriminative data representations, which 

can simultaneously shrink the off-block-diagonal components 

and highlight the block-diagonal representation under the 

framework of LRR. More specifically, BDLRR first elim- 

inates the negative representation and boosts the  incoher-  

ence of the extra-class representation by minimizing the off-

block-diagonal representation, such that it  can  remove  the 

noisy representation and transfer the positive representa- tion 

to the block-diagonal components. Furthermore, BDLRR 

constructs a subspace model to enhance the self-expressive 

power of training samples and simultaneously bridge the 

representation gap between the  training and test  samples in    

a semisupervised manner, such that the coherence of the 

intraclass representation is further improved and the learned 

representations are consistent. Finally, we introduce an effec- 

tive iterative algorithm to solve the resulting optimization 

problem, and our method is evaluated to verify its adaptive 

capabilities for different recognition tasks. In summary, our 

key contributions are summarized as follows. 

1) A discriminative block-diagonal data representation 

structure is designed to boost the incoherent power of the 

extra-class representation by jointly removing the negative 

representation from the off-block-diagonal components and 

conveying the positive representation to the block-diagonal 

structure, such that better discriminative data representations 

are obtained for recognition  tasks. 

2) A constructed subspace structure is developed to enhance 

the coherence of the intraclass representation by simultane- 

ously improving the self-expressive capabilities of training 

samples and further narrowing the representation gap between 

training and test  samples.  Moreover,  a  low-rank  criterion  

is enforced to capture the underlying feature structures of 

different classes or tasks’ correlation patterns such that more 

competent representation results are achieved. 

3) By virtue of the semisupervised  learning  superiority, 

the well-defined representation learning framework simulta- 

neously learns both of discriminative training and test repre- 

sentations to keep consistence of the  learned representations 

for recognition. To accommodate our method for large-scale 

problems, the out-of-sample extension is further explored to 

deal with new data  instances. 

4) An effective optimization strategy based on the alternat- 

ing direction method of multipliers (ADMM) is developed to 

solve the resulting optimization problem, and the convergence 

analysis of the designed optimization problem is presented 

from both theoretical and experimental perspectives. 

The rest of this paper is organized as follows. We briefly 

review the related work on the low-rank theory in Section II. 

Then, we elaborate the  proposed  BDLRR  method  in  

Section III, and the solution to the optimization problem of  

the proposed BDLRR method is presented in Section IV. 

Section V reports extensive experimental results, as well as 

convergence and parameter sensitiveness analysis.  Finally, 

the conclusion remarks are given in Section  VI. 
 

II. RELATED WORK 

In this section, we give a brief review of two typical low- 

rank criterion-based methods, i.e., LRR [6] and RPCA   [21]. 
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Let us first introduce our notations used in this paper. 

Matrices are represented with bold uppercase letters, e.g., X, 

and column vectors are denoted by bold lower letters, e.g., x. 

In particular,  I  denotes an identity matrix, and the entries of  

a matrix or vector are denoted by using [·] with subscripts. 
The i th row and  j th column element of matrix  X  is denoted 

satisfied for real-world data sets, where  multiple  subspaces 

are more reasonable. To this end, LRR [6] assumes that each 

data can be approximately represented by a union of several 

linear low-rank subspaces. The objective function of LRR is 

formulated as 

as xij , and the block-diagonal matrix composed of a collection 
min 
Z, E 

rank(Z) + λ× E×l   s.t. X = DZ + E (3) 

of matrices [X1, ... , XC ] is denoted by 
⎡ 

X1   . . .  0  
⎤

 
where D and λ are the dictionary and balance parameter, 

respectively. ×· ×l indicates the constraint of different norms, 

diag(X1, . . . ,  XC ) = 
⎢ .

. 
. 

. 
.
.   
⎥
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A  matrix’s l0, l1, and l21  norms are  denoted  as  ×X×0   = 

#{(i, j )  :   xi j    ∗=   0},  ×X×1   =   
.

i j |xi j |,  and  ×X×21   = 

and imposing different norms tends to remove specific noise  

as illustrated in [6]. For example, the matrix Frobenius norm 

can effectively capture Gaussian noise, while the l1-norm can 

better process the random noise or corruptions. Similar to 

RPCA, problem (3) can be approximately reformulated  as 
. 

j ×X. j ×, respectively. The norm induced by the l∞-norm 

on the matrix is denoted as ×X×∞ = maxi 
. 

j |xij |. The 
min 
Z, E 

× Z×∗ + λ× E×l   s.t.  X = DZ + E (4) 

matrix Frobenius norm designates ×X 2 = tr (X T X) = tr 

(XX T ) = 
.

ij  x
2 ,  where tr (·) is  the trace operator. ×X×∗ is 

the trace or nuclear norm of matrix X, i.e., ×X×∗ = 
.

i |σi |, 
where σi is the i th singular value of matrix X. X T  denotes the 
transposed matrix of  X. 0mn  denotes an all-zero matrix   with 

which can also be  effectively  solved  by  the  ALM  

algorithm [6], [27]. 

 
III. PROPOSED BLOCK-DIAGONAL 
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A. Robust Principal Component Analysis 

s ,
N

,   s In this section, we introduce a novel BDLRR method, which 

collaboratively learns appropriate block-diagonal representa- 

tions  of  training  and  test  samples  by  jointly  enforcing the 
incoherence of extra-class data representations and enhancing 

Suppose that X = [x1, ..., xn]∈ Rd ×n is the observed data 
matrix and composed of n samples, where each column is a 
sample vector and usually has been highly corrupted. The main 

objective of RPCA is to determine a low-rank matrix X0 from 

the corrupted observations X, and, meanwhile, filter out the 

sparse noise components E, i.e., X = X0 + E. Consequently, 

the objective function of RPCA can be easily formulated   as 

the coherence of intraclass data  representations. 

Assumption 1:  Let X  = [X1, ... , XC ] ∈ Rd ×n  denote N 

training samples with a dimension of d from C classes, where 

each column is a sample vector. Suppose that all the samples are 

rearranged based on the class labels, and each class of training 

samples is stacked together to form a submatrix Xi ∈ R ×ni , 

which denotes ni samples from the i th class (i = 1, 2, . . .  , C). 

min 
X0, E 

rank(X0) + λ× E×0   s.t.  X = X0 + E (1) Definition 1 (Self-Expressiveness Property [26]): Each data 

instance from a union of multiple subspaces can be effectively 

where the rank(·) operator denotes the rank of matrix X0, λ is 

the balance parameter, and ×·  ×0 means the l0 pseudonorm. 

Given an appropriate value of λ, RPCA  can  recover  the  
clean data by X0. Due to the discrete properties of the rank 

function and the l0-norm minimization, both of them are NP-
hard problems and even difficult to approximate. An advis- 

able choice [21] is to replace the rank constraint and l0-norm 

regularization by the nuclear norm and l1-norm regularization, 

respectively. As a result, problem (1) can be reformulated   as 

represented by a linear combination of other data instances, 

which is referred as the self-expressiveness  property. 

Definition 2: Suppose that  a  data  point  y  ∈  Rd  is  from 

the i th class.  z  is a solution of the linear  equation  y =    Xz, 

where the subvectors z j ( j = 1, 2, ... , C) of z, respectively, 

correspond to the  j th class. Based on the  self-expressiveness 

property, the submatrix  Xi  should be  able to  well  represent 

y, and there is y ≈ Xi zi . We define zi as the intraclass 

representation, otherwise, the coding coefficients  z j ( j  ∗= i  
) are called the extra-class representation. 

min 
X0, E 

×X0×∗ + λ× E×1  s.t. X = X0 + E (2) It is worth noting that the self-expressiveness property has 

already been successfully utilized in the context of  classifica- 
where × · ×∗  and × · ×1  are the nuclear norm and    l1-norm, 
respectively. It is known that problem (2)  can  be  effi-  

ciently solved by the augmented Lagrange multiplier (ALM) 

method [27]. 

 
B. Low-Rank Representation-Based Method 

It is noted that RPCA is essentially based on the priori 

hypothesis that the observed data is approximately drawn from 

a low-rank subspace, that is, data can be described by a single 

subspace [6]. However, this assumption is very difficult to   be 

tion [3], [22], low-rank matrix approximation [6] and cluster- 

ing [26]. Typically, SSC and LRR are the most representative 

methods, and the explicit self-expressiveness formulation, X = 

X Z, is easily satisfied, where Z is data representation. Fur- 

thermore, in the presence of the self-expressiveness property, 

the key underlying observation of SSC and LRR is disclosed 

that each data point in a data set can be ideally represented by 

a linear combination of a few points from its  own    subspace. 

Based on this observation and Assumption 1, the desired self- 

expressive  representation  should  be  block-diagonal  and the 

. 



 

2 

n1 

×2 

N −n 
t t 

2 

μ 

 

obtained data representation is sufficiently discriminative. So, 

the ideal block-diagonal structure-based representation is 

IV. OPTIMIZATION AND ALGORITHM ANALYSIS 

X = X Ẑ   s.t. Ẑ  = diag(Z) (5) 

where Z = [Z11, . . .  , ZCC ], and Zij is the representation 

coefficient of Xi corresponding to X j . However, the absolute 

block-diagonal structure  is  not  easy  to  learn.  To  this  end, 

it is natural to assume that the off-block-diagonal components 

are as small as possible to enhance the incoherent extra-class 

representation, which means that Zij tends to a zero submatrix 

for i ∗=  j . In addition, the coherent intraclass representation 
at 

the same time is further boosted. We formulate the following 

structured representation as: 
2 

To solve  the  optimization  problem  of  BDLRR  in  (8),  

we propose to utilize an alternating direction method, and 

separate the problem into several subproblems, which have 

closed-form solutions. 

 

 
 

A. Optimization Algorithm 

To solve optimization problem (8), we first make an equiv- 

alent transformation by introducing two auxiliary variables to 

make the problem separable, and then, problem (8) can be 

min 
Z 

λ1× A Ⓢ Z×F + λ2× D Ⓢ Z×0  s.t. X = XZ (6) rewritten as 

where λ1 and λ2 are positive constants to weigh correspond- 

ing terms, Ⓢ indicates the Hadamard product (i.e., elemen- 

twise  product), and  X  ∈  Rd ×n. More specifically,  the   first 

 
min 

P,Z, Q, E 

 
× P×∗ + 

λ1 

2 
× Ã Ⓢ Z×F +λ2× D Ⓢ Q×1 + λ3× E×21 

term attempts to minimize the off-block-diagonal entries,  and s.t.  X  = Xtr Z + E,  P  = Z,  Q = Z. (9) 
⎡ 

1n1 1
T  . . .  0 

⎤
 

A = 1n1T −Y , where Y = 
⎢ ... 

. . 
n ⎣ 

. ... 
⎥

. The second 
⎦ 

T 
Then, we  can  get  the  following  objective  function  of 

the  problem  by  the  ALM  method.  Here,  the     augmented 
0 . . .  1nC 1nC

 

term is the constructed subspace measure to improve the coher- 

ent representation of intraclass representation. d i j  is a distance 

metric between xi and x j such  that  similar  samples  have 

high probabilities to be similar  data  representations.  There 
are many distance metric methods. In this paper, we simply 
define the distance between two  samples  as  the  square  of 

the Euclidean distance, i.e., ×xi − x j 2. Because solving the l0-

norm  minimization   problem   is   an   NP-hard   problem, a  
relaxed  counterpart  of  the  second  term  is  formulated as 

Lagrangian function of problem (9)  is 

 
L( P, Z, Q, E, C1, C2, C3) 

λ1 2 

= × P×∗ +  
2 

× Ã Ⓢ Z×F 

+ λ2× D Ⓢ Q×1 + λ3× E×21 + (C1, X − Xtr Z − E) 
μ 

+ (C2, P − Z)+ (C3, Q − Z)+ 
2

 . 
2 2 2 

× D Ⓢ Z×1. Thus, problem (6) can be reformulated as 
2 

× × P − Z×F + ×X − Xtr Z − E×F +× Q − Z×F 

.
 

min 
Z 

λ1× A Ⓢ Z×F + λ2× D Ⓢ Z×1  s.t. X = X Z. (7) (10) 

In general, a low-rank criterion can further capture the 

underlying classes’ correlation patterns such that the perfor- 

mance of resulting models can  be improved [6], [10], [20].  

By integrating problems (7) and (4), we propose the following 

objective function for the semisupervised  BDLRR: 
2 

 

where ( P, Q) = tr ( P T Q). C1, C2, and C3 are the 

Lagrangian multipliers, and μ > 0 is a penalty parameter. 

The augmented Lagrangian is minimized along one coordinate 

direction at  each  iteration,  i.e.,  minimizing  the  loss with 
respect  to  one  variable  with  the  remaining  variables fixed. 

min 
Z, E 

× Z×∗ + λ1× Ã Ⓢ Z×F + λ2× D Ⓢ Z×1 + λ3× E×21 We  introduce the detailed procedures as follows. 

s.t. X = Xtr Z  + E (8) 

where λ1, λ2, and λ3 are positive scalars that weigh the 

corresponding  terms  in  (8).   Xtr   ∈   Rd ×n   is  the   training 

1) Updating Z: Fix the other variables and update Z by 

solving the following  problem: 

data  matrix  and   X   ∈   Rd ×N   includes  both  training   and 
λ1 2 min Ã Z Ct , X X  Z Et

 

test  samples,  i.e.,   X   =   [Xtr, Xtt].  For  the  second   term, L =   
Z    2 

× Ⓢ   ×F +(  1 − tr   − ) 

Ã  =  [ A, 1n1T
 ],  where  A  is  the  same  as  (6),  and  data 

2 + (C2, P t +1 − Z)+ (C3, Q
t
 − Z) 

representation  Z  =  [Ztr, Ztt]  such  that  an  implicit × Ztt×F t 2 t 2 t 2 

term is imposed to avoid overfitting. For the third term,  D   ∈ 
n×N 

. 
+  

2  
× Pt +1 − Z×F +×X − Xtr Z − E ×F +× Q − Z×F 

.
 

R is denoted as the distance between training samples Xtr 
t
 

and all samples X such that the coherent representation of  

both Xtr and Xtt corresponding to Xtr can be enhanced 

simultaneously.  E  denotes the  noise term  with  the l21-norm 

λ1 μ 

=   
2 

× Ã Ⓢ Z×F +   
2
 

. 
Ct 

regularization to capture sample-specific noise information [6]. 
Moreover, data representation  Z  of training and test  samples 

× ×X − Xtr Z − Et + 1   2  + × P 

μt 
×F 

t +1 

is incorporated into a unified optimization problem such   that Ct   
2 t 

Ct   
2 

. 2 Q   − Z + 3 ×F (11) 

Ztr  and  Ztt  are both optimal and discriminative. + 
μt 

×F +× 
μt
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which is equivalent to 
λ1 2 

L = min  
2 

× Z − R×F 

4) Updating E: When other  variables  are  fixed,  prob-  

lem (10) can be converted into the following   problem: 

min λ3× E×21 + (Ct , X − Xtr Z
t +1 − E) 

μt 
.   

X − Xtr Z − Et + 
t   2 

1 
  

  
+ Pt +1 − Z + t    2 E 1 

2
 

μt
 

+ 
2 μt

 
t 
  + ×X − Xtr Z − E×F    (19) 

  
+   Qt − Z + 

  

t   2 
. 
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F
 

 
(12) 

2 

which is equivalent to 

μt
 . 

 

Ct . 2 

where   R   =  [Y , 0n(N −n)] Ⓢ  Zt .  By  setting  the derivation 

(∂L/∂ Z) = 0, we can easily  infer the optimal solution of    Z, 

min λ3× E×21 + 
  

E − 

2    
X − Xtr Z 

t +1 1 

μt 

    
.   (20)  

F
 

and the closed-form solution to problem (12) is given by the 

following form: 

The solution  to  problem  (20)  is  demonstrated  in  [13].  

In  particular,  let  F =  X − Xtr Zt +1 + (Ct /μt ),  the  i th row 

Zt +1 = . λ1
 (2 + )I + X  X .−1 . 

λ1
 

. 
R + X T S + S + S 

of  Et +1 is ⎧ 
i λ3 

μt tr    tr 
μt 

tr   1 2 3 

(13) Et +1(i, :) = 

⎪ ×F ×2 − μt 

×Fi ×2 
Fi ,  if ×Fi ×2 > 

λ3
 

i λ3 (21) 
where S1  = X − Et + (Ct /μt ), S2  = Pt +1 + (Ct /μt ), and 

⎪⎪0, if  ×F ×2 ≤ 
1 2 

S3 = Qt + (Ct /μt ). 
⎩ 

μt
 

2) Updating P: When fixing the other variables, the objec- 

tive function of (10) is degenerated into a function with respect 

to  P, that is 
t 

Pt +1 = arg min × P×  + (Ct , P − Zt )+ 
μ 

× P − Zt × 

where Fi is the i th row of matrix F. Here, we denote the 

solution  of  E  as  H(λ3/μt )(F) for convenience. 

After we optimize variables P, Z, Q, and E, the ADMM 

algorithm  also   needs  to  update  the  Lagrange    multipliers 
C1, C2,  C3, as well  as parameter μ, for faster    convergence. 

∗ 
P 

μt  
  

2 2 

t 
Ct     

F 

The detailed procedures of solving the proposed  optimization 
problem (8) are described in Algorithm  1. 

= × P×∗ + 
  

P − (Z 

2    
2  
  

−    
F

 
. (14) 

This problem has a closed-form solution by using the 

singular value thresholding operator [27], [28], that  is 

 

Algorithm 1 Solving Problem (8) by  ADMM 

Require:  All  feature  matrix  X   =  [Xtr, Xtt];  Parameters 

P
t +1 = T 1 

. 
Zt − Ct . = US 1 (X)V 

T 
(15) 

λ1, λ2, λ3; Distance measure matrix   D. 
Initialization:  P  =  0,  Z  =  0,   Q  =  0,  E  =  0,  λ1,  λ2, 

μt μt 
μt 

λ3 > 0, C1 = 0, C2 = 0, C3 = 0, μ max = 108, tol  = 10−6, 

where UXV T is the singular value decomposition (SVD)  

of ( Zt − (Ct /μt )), and S(1/μt )(·) is the soft-thresholding 
operator [2], [27], which is defined as 

⎪⎨x − λ,   if  x > λ  

ρ = 1.15. 

While not converged do 

1). Update  Z  by using (13); 

2). Update  P  by using (15); 
3). Update  Q  by using (18); 

Sλ(x) = x + λ,  if  x < −λ 
⎪⎩0, otherwise. 

(16) 4). Update  E  by using (21); 
5). Update Lagrange multipliers C1, C2  and  C3: 

3) Updating   Q:   When   the   other   variables   are  fixed, 

⎧ 
t +1 t t 

⎪⎨ C1     = C1 + μ (X − Xtr Z t +1 − Et +1) 
the objective optimization problem (10) with respective to   Q Ct +1

 2
 

2    = Ct + μt ( Pt +1 − Zt +1) is degenerated to the following  problem: ⎪⎩ C t +1
  3

 

L = min λ2× D Ⓢ Q×1 +(Ct , Q − Zt +1)+ 
μ t +1  2 × − ×F 

3    = Ct + μt ( Qt +1 − Zt +1). 
6). Update μ: 

μt +1  = min(μmax , ρμt ) 

Q 
3
 2 

2 7). Check convergence: if 

μt  
  

. 
t  1 

Ct .  
. 

×X − Xtr Z
t +1 − Et +1×  , 

.
 

= λ2× D Ⓢ Q×1 + 
  

Q − 

2    
Z +  −    

F
 

(17) max 
× Pt +1 − Zt +1× 

∞ 

, × Qt +1 − Zt +1× ≤ tol, 

which can be updated by the elementwise strategy. Obviously, 

problem (17) can be equivalently decoupled into n × N 
subproblems. For the i th row and j th column element Qij ,  

the optimal solution of problem (17)  is 

and then stop. 

End While 

Qt +1 

ij    = arg min 
Qij  

μt
 2 

λ2 Dij | Qij |+ 
2 

( Qij − Mij ) 

B. Recognition Method 

When problem (8) is optimized by exploiting Algorithm 1, 

the discriminant data representation Z = [Ztr, Ztt] is obtained. 
= S λ2 Dij (Mij ) (18) 

μt 

where Mij = Zt +1 − ((Ct )ij /μt ). 

We directly employ a simple linear classifier to perform final 

recognition [10].  A  linear  classifier  W  is  learned  based on 
the  training  data  representation   Ztr   and  its  corresponding 

ij 3 

C C 

C 

μt 



 

∈ R   ∈ R   

tr 

.
 tr 

= 

Z × 
= 

W × 

2 

t =0 

∈R  ∈R  ∈ R  

  μ 2 

  

 

label matrix L C ×n  of  training  samples.  The following where C p×N  is  the  Lagrangian  multiplier,  and  μ is a 

optimization problem is  considered: 
2 2 

penalty coefficient. 
It should be noted that problem (9) is a special case of prob- 

Ŵ  = arg min 
W 

×L − W Ztr×F + γ ×W ×F (22) lem (26). Specifically, it can be verified that the constraints   

in  (9)  can  be  transformed into the  form of  RZ + TW = U, 
where γ  is  a  positive regularization parameter. It is  easy   to 
verify that problem (22) has the closed-form solution, that   is where   R  = 

⎛ 
− In 

⎞ 
⎝ − In ⎠,  T   = 

Xtr 

⎡ 
In

 

⎣ In 

⎤ 

⎦,  W   = 
Id 

⎛ 
P 
⎞ 

⎝ Q ⎠, 
E 

Ŵ  = L ZT   Ztr Z
T  + γ I 

.−1
. (23) ⎛ 

0 
⎞ 

The identity of test sample y, the i th sample from the test 

data set, is determined by  judging 

U   =  ⎝ 0 ⎠,  and  In  is  an  n  × n  identity  matrix.  In  this 

X 

label( y) arg max 
j 

(Ŵ zi ) (24) 
way, problem (9)  is reformulated as problem (26).  Moreover, 

ADMM updates two primal variables in an alternating fashion, 

and iteratively solves problem (27) as  follows: 

where zi is the i th column of matrix Ztt. The complete proce- 

dures of our BDLRR model for recognition are summarized  

in Algorithm 2. 

Zt +1 arg min 
n   N 

∈R 

W t +1 = arg min 

Lμ(Z, W t , Ct ) (28a) 

Lμ(Zt +1, W , Ct ) (28b) 

 
 

Algorithm 2 BDLRR Model for  Recognition 
 

 

Input: Training feature set Xtr with label matrix Y , test 

sample set Xtt. 

Output: Predicted label matrix  L  for test samples. 

1). Normalize all the samples of both training and test 

samples to unit-norm by using xi = xi /×xi ×2. 
2). Exploit  Algorithm   1  to  solve  problem  (8),  and   a 

m   N 
∈R 

Ct +1 = Ct + μ(RZt +1 + TW t +1 − U) (28c) 

which have the same updating procedures as Algorithm 1 in 

Section IV-A. In fact, we can see that the  optimization of  Z  

in (28a) is equivalent to optimize Z in (11). Furthermore, it is 

very important that when  fixing  Z, solutions  of  P  in  (15), 

Q  in  (18), and  E  in  (21), are independent on  one   another, 

discriminative  representation  matrix  Z  = [Ztr, Ztt] is for instance, computation of  E t +1 only depends on  Z k+1 and 

obtained. 

3). Employ Eqn. (23) to learn an optimal linear classifier  

Ŵ . 
4). Predict the label matrix L of test samples Xtt by 

utilizing Eqn. (24) one by  one. 
 

 

 

 

C. Convergence Analysis 

To solve the proposed formulation (8), an iterative update 

scheme, the ADMM algorithm, is developed as shown in 

Section IV-A. This section presents a theoretical convergence 

proof of the proposed Algorithm  1. 

Proposition 1: Algorithm 1 is equivalent to a two-block 

ADMM. 

Ck+1  rather  than  Pk+1  or   Qk+1.  Hence,  the  optimizations 

of  P,  Q  and  E  can  be  accumulated  in  W  by  using (28b), 

updating of which is the same as fashion of Jacobian iterative 

method. In this way, problem (9) is a special case of classical 

ADMM problem (26), and the proposed optimization algo- 

rithm shown in Algorithm 1 has the same optimization style  

of classical ADMM (28). Therefore, the proposed optimization 

algorithm shown in Algorithm 1 is equivalent to a two-block 

ADMM, the global convergence of which is theoretically 

guaranteed [29]–[31]. The convergence nature of the proposed 

optimization algorithm is given by Theorem  1. 

Theorem 1 [30], [31]: Consider the problem (25), where 
f (Z) and h(W ) are closed proper convex functions, R has 

full column rank and h(W ) + ×TW ×F is strictly convex. Let 

C0 and  W 0  be arbitrary matrix and μ > 0.  Assume  that  we 
have the sequences {γt } and {νt } such that γt ≥ 0 and νt ≥ 0, The classical ADMM is intended to solve problems in  the .∞ ∞ 

form t =0 γt < ∞ and 
.

 νt < ∞. Suppose that 

min 
n 

m  
f (z) + h(w)  s.t. Rz + Tw = u (25) μ 2 

z∈R ,w∈R  Zt +1 − min f (Z) + × RZ + TW t − U×F 

where R p×n
 , T p×m 

Z 2 
, u p, and f and h  are convex 2   

functions. It is apparent that ADMM for problem (25) can be 

directly extended to solve the matrix optimization problem  as 

+ (Ct , RZ)   
F

 ≤ γt (29) 

follows: 
 

W t +1 − min  h(W ) + × RZt +1 + TW − U×F 

min 
n×N m×N 

W 2 
f (Z) + h(W )  s.t. RZ + TW = U (26) 

t 
2 

Z∈R ,W ∈R + (C , TW )   ≤ 
 

F
 

νt (30) 

where U ∈ Rp×N .  The  augmented  Lagrangian  of  prob-  

lem (26), in the method of multipliers, is formulated   as 
Ct +1 = C + μ(RZt +1

 + TW t +1 − U). (31) 

μ 2 If there exists a saddle point of Lμ(Z, W , C) (27), then Zk → 

Lμ(Z, W , C) = f (Z) + h(W ) + 
2 

× RZ + TW − U×F 

+(C, RZ + TW − U) (27) 

Z∗, W k  → W ∗, and Ck → C∗, where ( Z∗, W ∗, C∗) is such  

a  saddle  point.  On  the  other  hand, if  no  such  saddle point 

t 



 

=  [  ,  n ] 

n×N 

z,e 

2 2 

ˆ ∈ 

 

exists, then at least one of the sequences {γt } or {νt } must be 

unbounded. 

Clearly, the optimization results shown in Section IV-A 

indicate that the proposed method exists an optimal    solution 

we will show that the proposed BDLRR method can naturally 

cope with the out-of-sample examples to learn discriminative 

visual representations. 

Suppose that we have obtained the optimal   block-diagonal 
n×N 

according to [32, Proposition 1.1.5], and the values sequences representation  Z ∈ R  
d ×n from the available samples  X  over 

{γt } and {νt } are directly set to zeros in Algorithm 1. There- Xtr ∈ R using the proposed model (8). Now, we extend the 
fore, the convergence nature of our optimization method is 

demonstrated. Moreover, we empirically show in Section V-F 

that the experimental convergence of the resulting ADMM is 

well preserved. 

 
D. Computational Complexity Analysis 

In this section, the computational complexity for 

proposed BDLRR method to learn preferable representation of 

a novel image b       d ×1 in the original observed space. Specif- ∈R  
ically, we aim at learning the discriminative representation z 

for b over Xtr while fixing the previously learned represen- 

tation Z. Therefore, adding terms for a novel data point b in 

model (8) and keeping the already learned variables, the objec- 

tive function of the augmented BDLRR is formulated   as 
2 

Algorithm  1  is  presented,  and  it  is  easy  to  see  that     the 

recognition process of Algorithm 2 is very efficient, which is 

linear with  the sample  number. More specifically, the  major 

min 
z,e 

×[ Z, z]×∗ + λ1× Â Ⓢ [Z, z]×F + λ2× D̂ Ⓢ [Z, z]×1 

+ λ3×[ E, e]×21 

computation cost of Algorithm 1 is in steps 1–4, which require s.t. [X, b] = Xtr[Z, z]+ [ E, e] (32) 

computing the SVD and matrix computation operation. Thus, 

they  will  be  time-consuming  when  the  number  of training 
samples  n   and  the  total  number  of  samples   N   are   very 

where   Â 

Rn× (N +1) 

A 1 1T ,  A  is  defined  as  in  (8),  D 
N +1−n 

is the distance metric between the training samples 

large. In particular, computing SVD decomposition of   matrix Xtr and all samples [X, b], and e is the representation error of 
n×N 2 b over Xtr. We argue that ×[ Z, z]×∗ = × Z×∗. Particularly, for 

P ∈ R needs the complexity of O(n  N ) (N > n).  Note the learned representation Z ∈R  (n < N ), it is easy to find 
that due to the matrix inverse calculation, calculating Z will 

scale in about O(n2d + n2 N ),  where d  is the  dimensionality 
that the linear problem for α in z = Zα is an underdetermined 

system  for  practical  data.  Generally speaking, z Zα has 
of  the  samples.  The  computational  complexity  of  step    3 
is O(nN ), and computing E in step 4  costs  O(dN ). 
Therefore, the total computational complexity of BDLRR is 

Oκ(2n2 N  + n2d  + dN + nN ),  where  κ  is  the  number  of 

= 
infinitely  many  solutions in  practice [33]. Provided n N , 

the matrix  Z is row full rank and z = Zα has solution. In  this 

way, the singular values of matrix Z  coincide with  those  

of   Z, z , which means rank(  Z, z ) rank(Z). Therefore, 
iterations. 

In comparison, the computation burden of the SRC methods, 

such as SRC, LRSI, and LatLRR, is O(n2(N − n)d)  by  

solving (N − n) independent l1-norm minimization problems 
in  an  iterative optimization manner [3], [16], [22], which    is 

[ ] [ ]  = 
×[ Z, z]×∗ = × Z×∗ and it does not change for practical  data 
in (32). By removing the irrelevant terms with  respective to 
the variables z  and  e, it is easy to check that problem (32)  

will be degenerated to the following  formulation: 
2 

slower  than that of  our method. The computation    complex- 
ities  of  regression methods, such  as  low-rank linear  regres- 

min 
z,e 

λ1×z×2 + λ2×d Ⓢ z×1 + λ3×e×2 

sion  (LRLR)  and  Low-rank  robust  regression  (LRRR), are 

O(dn + n2d), which  is  a  little  faster  than  our  method. The 

s.t. b = Xtr z + e (33) 

which can be equivalently reformulated  as 
low-rank  and  sparse  representation-based  methods, such as 

2 2
 

nonnegative low-rank representation sparse (NNLRS), super- 

vised regularization-based robust subspace (SRRS), CBDS, 

and our BDLRR, need to simultaneously compute SVD of 

feature matrix and solve a simple soft-thresholding problem, 

and  a linear classification  algorithm is  used  to  predict  final 

min λ1×z×2 + λ2×d Ⓢ z×1 + λ3×e×2 

s.t. b = Xtr z + e (34) 

where di is  the  distance  between  xi  and  b.  To  make 

problem (34) more compact, it can be rewritten   as 

labels of test data. Generally, the overall computation burden 

of our BDLRR  is  the  same  as  those  of the  low-rank sparse 
min 

z 

1 

2 
×b − Xtr z×2 + 

β1 

2 
×z×2 + β2×d Ⓢ z×1 (35) 

representation learning methods. 

 
E. Out-of-Sample Extension 

where  β1  =  λ1/λ3  and  β2  =   λ2/2λ3.   Apparently, 

problem (35) is an elastic-net  regularized  regression  

problem.     For     convenient     interpretation,     we    denote 
2 2 

It is worth noting that the LRR-based methods have been 

extensively studied, but how to address the out-of-sample 

problem, the capability of dealing with new data instances,     

is  much  less  well-solved.  The  stage  of  BDLRR mentioned 
previously only obtains  the discriminative representations  of 

g(z) = (1/2)×b − Xtr z×2 + (β1/2)×z×2.  With   some 
algebra, problem (35) can be  approximately transformed to 

the following optimization problem: 

zk+1 
k k η k   2 

the  available  samples  X   ∈  Rd ×N .  However,  given unseen arg min 
z β2×d Ⓢ z×1 + (∇z g(z ), z − z )+ 

2 
×z − z ×2 

instances outside the training and test data, it would be unreal- η k k 2 

istic and time-consuming to reimplement the whole model to 

produce the  representations of  novel images.  In  this section, 

arg min 
z β2×d Ⓢ z×1 + 

2 
×z − z  + ∇z g(z )/η×2 + const 

(36) 

= 

= 



 

i 

×F 

2 

k 

s1 

Z, E 

sC 

Z, E 

X Z T 2 

 

where zk is the kth iteration of z, and η = ×Xtr 
2  is a fixed  

step size in this paper. Similar to problem (18), the optimal 

solution of  the i th  entry of  z  is  calculated  by using  zk+1 = 

SSLR is 

min 
Z, E,  

 

× Z×∗ + λ1× Z×1 + λ2× E×1 + λ3× Z − Q×F 

S(β2 di /η)([z −∇z g(z )/η]i ). After obtaining the optimal solu- s.t. Xtr =    Z  + E (38) 
tion z, we identify the new data instance b by employing (24), 

i.e.,  label(b)  =  arg max j   (Ŵ z).  The  promising  recognition 

 

where     is the learned dictionary. Q is the ideal data represen- 

results can be guaranteed based on the observation that the dis- 
⎡ 

1s11
T . . .  0 

⎤
 

criminative block-diagonal training representations are learned 

in the training stage. Therefore, based on the proposed BDLRR 

tation of training samples, i.e., 
⎢
 

⎣ ...
 . . . 

... 

⎥
, where si 

⎦ 

model, the problem of recognizing new instances outside the 

training and test samples is well  addressed. 

 

 

F. Discussion 

As we know, BDLRR simultaneously takes advantages of 

supervised information, i.e., label information, and semisu- 

pervised learning superiority, i.e., learning training and test 

representations in one formulation. Moreover, our method 

intrinsically inherits the superiorities of sparse, low-rank, 

structured, and elastic-net representation learning techniques. 

This characteristic naturally differentiates it from previous 

works, yielding superior recognition results. In this section,  

we establish the relationships between the proposed BDLRR 

method and some related discriminative LRR methods, such  

as the NNLRS method [25], the structured sparse and low- 

rank representation (SSLR) method [10], and the very recently 

proposed SRRS method [24]. 

1) Connection to the NNLRS Method: The NNLRS method 

focuses on constructing the informative graph by jointly con- 

sidering the low-rank and sparse representation to capture the 

global and local structures of data, respectively. Specifically, 

the objective function of NNLRS is formulated  as 
 

min × Z×∗ + λ2× Z×1 + λ3× E×21 

s.t.  Xtr = Xtr Z + E, Z ≥ 0. (37) 

The rationale of NNLRS is under the guidance of the observa- 

tion that the sparse constraint ensures each sample connected 

to only few other samples resulting in sparse representation, 

while the low-rank constraint enforces the learned represen- 

tation from the same class with high correlations. In other 

words, NNLRS is designed to capture the global structure of 

the training data using the low-rank property, and the locality 

information of each data vector is interpolated into NNLRS  

by introducing the sparse term. Proposition 2shows the close 

relationship between the proposed BDLRR method and the 

LRR and NNLRS methods. 

Proposition 2: The proposed BDLRR method is a general- 

ized but discriminative LRR learning model, and both of LRR 

and NNLRS are the special cases of the proposed BDLRR 

method. 

Proof: The detailed proof of Proposition 2 is moved to 

Supplementary file due to page limitation of  this paper. Q 

0 . . .  1sC 1
T

 

is the number of the i th class of . By solving the optimization 

problem (38), the learned dictionary is obtained, and then, 

representations of the training and test data are, respectively, 

achieved by directly removing the ideal representation term 

from (38), resulting in the following optimization   problem: 

min × Z×∗ + λ1× Z×1 + λ2× E×1  s.t. B =   Z + E (39) 

where B is the observations, i.e., Xtr or Xtt. Although the 

experimental results reported in [10] are good, we hold the 

view that enforcing the representation approximal to the ideal 

representation matrix Q is questionable, because it is impos- 

sible to regularize all the training samples of the same  class  

to have the same representation codes. Moreover, the solution 

of learning    by  solving problem (38) sensitively depends    

on the initialization because of the nonconvex optimization. 

Furthermore, learning representations of the training and test 

data are divided into two separate stages, and there are, 

respectively, three and two parameters in (38) and (39), which 

are very difficult to tune. 

In contrast, our method is reasonable and discriminative. 

BDLRR first shrinks the off-block-diagonal elements to elim- 

inate the unfavorable representations resulting in marginalized 

interclass representations and highlights the block-diagonal 

elements yielding compact intraclass representations. In this 

way, the discriminative constraints in BDLRR simultaneously 

separate the common visual representations from different 

classes, and effectively prevent zero entities from appearing in 

the class-specific representations. Moreover, we believe that it 

is significant for recognition that the learned representations of 

training and testing samples should be consistent. To this end, 

BDLRR builds the representation bridge between the training 

and test samples by imposing the low-rank and locality coher- 

ence property. Thus, the proposed BDLRR method unifies the 

discriminative representations of training and test data into one 

robust learning framework such that better recognition results 

are achieved. 

3) Comparison With the SRRS Method: The main objective 

of SRRS is dedicated to learning a discriminative subspace 

from the clean data recovered by using the LRR constraint. 

The main idea of SRRS is to remove noise from contaminated 

data depending on the denoising capability of the LRR, and 

then, the discriminative subspace is learned based on the 

recovered clean data. The objective function of SRRS   is 

2) Comparison With the SSLR Method: SSLR first learns a 

structured low-rank sparse dictionary by imposing an ideal rep- 

min 
Z, E, P 

|Z×∗ + λ2× E×21 + η× P ×F 

resentation regularization term, and then, an SLRR is achieved 

based  on  the  learned  dictionary.  The  objective  function of 

+λ1[tr (Sb( P T X Z)) − tr (Sw( P T X Z))] 

s.t. Xtr = Xtr Z + E, P T P  = I (40) 

k 



 

 

where Sb(·) and Sw(·) are, respectively, the between-class and 

within-class scatter matrices, and η is a balance  parameter. 

Apparently, our method is different from SRRS. First, SRRS 

directly utilizes the clean data XZ to perform discriminant 

analysis, which means that the performance of SRRS is  

greatly subject to the denoising ability of LRR. However, 

BDLRR aims at directly learning discriminative represen- 

tations from data by imposing the discriminant constraints, 

which are not confined to any other conditions. Moreover, 

SRRS is a subspace learning method, and then, the dimension 

selection of the final representations is very important for 

recognition. However, BDLRR directly learns discriminative 

representations from data, and recognition is  performed on  

the optimal representations without bearing the burden of 

dimension selection. In addition, our BDLRR method jointly 

learns the representations of training and test data, whereas  

the test representations of SRRS is achieved by using PXtt, 

which cannot capture the component connections between the 

learned representations of the training and test data. Therefore, 

the proposed BDLRR method is more robust and discrimi- 

native than SRRS, which is also verified by the subsequent 

experimental results. 

 
V. EXPERIMENTAL VALIDATION 

In this section, the performance of the proposed BDLRR 

method is evaluated for different recognition tasks. Extensive 

experiments are performed on different types of data sets to 

demonstrate the effectiveness and superiority of the proposed 

method in comparison with the state-of-the-art recognition 

methods. Subsequently, the algorithmic convergence and the 

selection of parameters are well  analyzed. 

 
A. Experimental Setup 

We test our method on eight benchmark data sets for three 

basic recognition tasks. Moreover, we compare with some 

state-of-the-art recognition methods, including representation- 

based methods  (such  as  SRC  [3],  LLC  [4],  CRC  [16],  

and  LRC  [18]),  low-rank  criterion-based  methods  (such   

as   LatLRR   [7],   LRLR   [20],   LRRR   [20],   RPCA  [21], 

LRSI  [22], CBDS  [23], SRRS  [24], and NNLRS  [25]),  and 

conventional classification methods, such as support vector 

machine (SVM) [34] with Gaussian kernel. We randomly 

select several images per class to construct the training data 

set, and the rest of images are regarded as the test set. All the 

selection processes are repeated ten times, and the average 

recognition accuracies are reported for all the   methods. 

For fair comparison in all experiments, we use  the 

MATLAB codes from the corresponding authors with the 

default or optimal parameter settings, or directly cite the exper- 

imental results from their original papers. More specifically, 

for RPCA [21], we first use the original RPCA algorithm on 

both training and test data sets to eliminate some noise and 

corrupted terms, and, then, exploit SRC [3] for recognition. 

For LatLRR [7], the learned salient features are used for 

recognition. For SVM, the  LibSVM  software  [34]  is  used 

for multiclass recognition, where the important regularization 

parameter  C  in  SVM  is  selected  by  cross  validation  from 

the candidate set {0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}. The 

parameters of our method, i.e., λ1, λ2, and λ3, are tuned to 

achieve the best performance via fivefold cross validations 

from [0.1, 0.5, 1, 5, 10, 15, 20, 25]. To guarantee the same 

experimental settings between all the compared methods and 

our method on each benchmark, we reimplemented all the 

algorithms using respective optimal parameters via the cross- 

validation strategy, and the training and test samples were 

randomly selected from each data set ten times. Since the 

scene character recognition data sets have the standard splits of 

the training and test data, we directly employ the full training 

and test data for recognition, and the compared experimental 

results are cited from the original papers. Similarly, for scene 

recognition, experiments are performed with the same exper- 

iment protocols as that of the LC-KSVD method [39], and    

we directly cite some experimental results from the original 

papers. For  the  compared  methods  that  are  not  included  

in [39], we rerun them following the same experimental 

settings. Therefore, all the methods presented  in  this  paper 

are performed on the same test bed for  each data set  such  

that our experimental results are convincing and reliable. All 

algorithms are implemented with MATLAB 2013a, and the 

MATLAB code of the proposed method has been released at 

http://www.yongxu.org/lunwen.html. 

 

B. Experiments for Face  Recognition 

In this section, we perform experiments on four face image 

data sets, including the extended YaleB [35], CMU PIE [36], 

AR [37], and Labeled Faces in the Wild (LFW) [38] data sets. 

1) Extended YaleB Database: The extended YaleB database 

is composed of 2414 face images  of  38  subjects,  where  

each person has 59–64 near frontal images under different 

illumination conditions. All the images for  our experiments 

on this database have  been  resized  to  32 × 32  pixels.  For 

all the compared methods, the  suggested  parameters  from 

the corresponding papers are used for recognition. For  the 

LLC  [4]  method,  we  directly  treat  the  training  samples as 

the bases, and the coding coefficients are obtained using the 

approximated LLC strategy. The number of neighbors of LLC 

is set to 15 for this data set, which can achieve the highest 

recognition accuracies. In the experiments, we randomly select 

20, 25, 30, and 35 images per subject for training and the rest 

for testing. The recognition accuracies  of  different methods 

on this database are shown in Table I. Note that the mean 

classification accuracies and the corresponding standard devia- 

tions (acc±std) are reported, and the bold numbers suggest the 

highest recognition accuracies. From Table I, it is easy to find 

that our method can consistently achieve the highest recogni- 

tion results, and outperforms the other 11 competing methods 

significantly, even when using a small number of training 

samples. Moreover, the experimental results also validate that 

our method has an outstanding capability on overcoming the 

challenges of illumination and expression  variations. 

2) CMU PIE Database: The CMU PIE face database 

contains more than 40 000 face images of 68 individuals in 

total. In our experiments, we utilize the images under five  

near frontal poses (C05, C07, C09, C27, and C29), and then 

http://www.yongxu.org/lunwen.html


 

 
TABLE I 

RECOGNITION ACCURACIES (MEAN ± STD %) OF DIFFERENT 

METHODS WITH DIFFERENT NUMBERS OF TRAINING 

SAMPLES ON THE EXTENDED YaleB DATABASE 

 
     

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

     

 

TABLE II 

RECOGNITION ACCURACIES (MEAN ± STD %) OF DIFFERENT  METHODS 

WITH DIFFERENT NUMBERS OF TRAINING SAMPLES ON THE 

CMU PIE DATABASE 

 
     

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

     

 

about 170 image samples are obtained  for each  individual. 

We randomly select 20, 25, 30, and 35 images from each 

subject as training samples and the remaining images are 

regarded as test samples. Each image is cropped and resized  

to be only 32 × 32 pixels. The detailed comparison results 

obtained using different methods are summarized in Table II. 

We can see that, with different numbers of training samples per 

class, our results are always better than those of    all the other 

state-of-the-art methods, which demonstrates the effectiveness 

of our method. 

3) AR Database: The AR face database contains  about 

4000 color face images of 126 subjects. For each subject, 

there are 26 images taken in two separate sessions under 

different conditions. In our experiments, we randomly choose 

a subset, including 2600 images of 50 female and 50 male 

subjects. Random face images of the AR face database1 are 

employed in our experiments. Following the implementation 

in [39], each image is projected onto a 540-D feature vector 

with a randomly generated matrix with a zero-mean normal 

distribution. We randomly select 11, 14,  17,  and 20 images 

of each subject as training samples and treat the remaining 

images  as  test  samples.  The  experimental  results  obtained 

1This  data  set  is  publicly   available   from   http://www.umiacs.umd.edu/ 

~zhuolin/projectlcksvd.html. 

TABLE III 

RECOGNITION ACCURACIES (MEAN ± STD %) OF DIFFERENT 

METHODS WITH DIFFERENT NUMBERS OF TRAINING 

SAMPLES ON THE AR DATABASE 

 
     

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 

      

 
 

TABLE IV 

RECOGNITION ACCURACIES (MEAN ± STD %) OF DIFFERENT 

METHODS WITH DIFFERENT NUMBERS OF TRAINING 

SAMPLES ON THE LFW DATABASE 

 
     

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

     

 

 
using different recognition methods are shown in Table III. 

From the results shown in Table III, we know that our method 

still achieves the best recognition results, which also verifies 

the fact that the proposed method has particular potential for 

image recognition. It is notable that even when using smaller 

number of training samples, the performance gain of our 

method is still obvious in comparison with other   methods. 

4) LFW Database: The LFW face  database  is  designed 

for the study of unconstrained identity verification and face 

recognition. It contains more than 13 000 face images from 

1680 subjects pictured  under  the  unconstrained  conditions. 

In our experiments, we employ a subset including 1251 images 

from 86 people, and each subject has only 10–20 images [40] 

with  an  imbalanced  number  of  samples.  Each  image   was 

manually  cropped  and  resized  to  32  ×  32  pixels.  In   our 

experiments, we randomly select 5, 6, 7, and 8 images of each 

subject as training samples and the remaining face images are 

treated as test samples. The experimental results of different 

recognition methods on this data set are presented in Table IV. 

We can see that the best recognition results are still achieved 

by our BDLRR method. Especially, the performance of our 

method has exceedingly advantages for this data set in com- 

parison with the rest of  methods. 

http://www.umiacs.umd.edu/


 

 
TABLE V 

RECOGNITION ACCURACIES (MEAN ± STD %) OF DIFFERENT 

METHODS WITH DIFFERENT NUMBERS OF TRAINING 

SAMPLES ON THE USPS DATABASE 

 
     

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

     

 

C. Experiments for Character Recognition 

In this section, we evaluate the performance of our method 

for character recognition. More specifically, three character 

image data sets are employed for our experiments, including 

one handwriting data set (i.e., the USPS [41] data set) and two 

scene character recognition data sets (i.e., the Char74K [42] 

and SVT [43] data sets).  It is worth noting that this paper     

for the first time learns discriminative data representations for 

scene character recognition. 

1) Handwriting Image Recognition: The USPS  Database2
 

refers to numeric data images cropped from the scanning of 

handwritten digits from envelopes. It consists of 9298 hand- 

written digits  (“0”–“9”).  All  the  images  are  resized  into  

16 × 16 pixels with 8-b grayscale images. Each digit has 

about 1100 images. In the experiments, we randomly choose 

30, 60, 90, and 120 images of each digit as training samples, 

and regard the rest of images as test samples. The experi- 

mental results of different methods with varying numbers    of 

training samples are shown in Table V. The proposed method 

performs consistently better than all the compared methods, 

which further confirms that the proposed method has apparent 

advantages on recognizing handwriting digit  images. 

2) Scene Character Image Recognition: Two scene charac- 

ter image data sets are utilized for measuring the effective- 

ness of our method. As we know, natural scene character 

recognition is a typical yet challenging  pattern  recognition 

task due to the cluttered background, which  is  very difficult 

to separate from text. We evaluate the performance of our 

method in comparison with the state-of-the-art methods exper- 

imented on both data sets, including GB [42] (GB+SVM and 

GB+NN), HOG+NN [43], CoHOG [45], ConvCoHOG [46], 

PHOG [47], MLFP [48], RTPD [49], GHOG [50], LHOG [50], 

and SBSTR [51]. All the images in the experiments are first 

resized into 32 × 32 pixels, and  gray scale  images are  used 

in all the experiments. To make fair comparisons, we directly 

employ the standard partitions of training and test samples   

for each data set as in [44]–[46], and the state-of-the-art 

algorithms evaluated on respective data sets are directly  cited 

 
2In   this   paper,  the   publicly   available   set   is   from  http://cs.nyu.edu/ 

~roweis/data.html is used. 

TABLE VI 

RECOGNITION ACCURACIES (%) OF DIFFERENT METHODS ON  

THE SCENE CHARACTER DATABASE 

 
 

  
  

 

  
 

  
 

 

 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 
 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 

from their original papers. For the features3 used in our 

experiments, we exploit the method in a  recent  paper  [44] 

for feature extraction. Specifically, we first use RPCA [21] to 

jointly remove noisy pixels and recover clean character images 

from the blurred or corrupted images, and then, the well- 

known HOG method is applied to extract gradient features 

from the recovered images. The obtained HOG features are 

utilized for recognition. 

a) Char74K database: was collected for the study of 

recognizing characters in images of natural scenes. An anno- 

tated database of images, including English and Kannada 

characters, was obtained from images captured in Bangalore 

and India. We mainly focus on the recognition of English 

characters and digits (i.e., “0”–“9,” “A”–“Z,” and “a”–“Z”) 

with 62 classes  in total. In our experiments, a  small subset    

is used in our experiments, i.e., Char74K-15,  which  con-  

tains 15 training samples and 15 test  samples  per  class.  

Table VI presents the recognition results of our method and 

several recently proposed character recognition methods. From 

Table VI, we can see that our method can continually achieve 

the highest recognition results in comparison with the state-of- 

the-art methods. Specifically, it is easy to see that our method 

outperforms the second  best  algorithm  by  a  large  margin  

of 3%. 

b) Street view text (SVT) database: was collected from 

Google Street View of road-side scenes. All the images are 

very difficult and challenging to recognize due to the large 

variations in illumination, character image size, and font size 

and style. The SVT character data set, which  was annotated 

in [43], is utilized for evaluating different scene character 

recognition methods. About  3796  character  samples  from 

52 categories (no digit images) are annotated for recognition. 

Moreover, the SVT character data set is more difficult to 

recognize than the Char74K data set. The experimental results 

of using different methods on the SVT data set are summa- 

rized in Table VI. For this data set, the proposed method 

significantly outperforms all the other state-of-the-art methods. 

 
3The features of both data sets are publicly available at http:// 

www.yongxu.org/databases.html. 

http://cs.nyu.edu/
http://www.yongxu.org/databases.html


 

 
TABLE VII 

RECOGNITION ACCURACIES (MEAN ± STD %) OF DIFFERENT METHODS ON 

THE 15 SCENE CATEGORIES DATABASE 

 

 

    
 

  

  
  

  
 

 
   

 
 

   
 

 
 

  
 

We can see that the proposed method  (BDLRR)  achieves 

79% accuracy, which improves the accuracy by 4% in com- 

parison with the second best competitors such as SRC used in 

[44], CoHOG [45], and PHOG  [47]. 

 
D. Experiments for Scene Recognition 

The performance of the proposed method for scene recog- 

nition is evaluated on the 15 scene categories database [52].   

It contains 4485 scene images falling into 15 categories, 

including livingroom, bedroom, mountain, outdoor street, 

suburb, industrial, kitchen, opencountry, coast, forest, high- 

way, insidecity, tallbuilding, office, and  store. The features4  

of 15 scene categories provided in [39] is employed for recog- 

nition. More specifically, the obtained features are processed 

as the following steps. First, the spatial pyramid feature with   

a four-leel spatial pyramid [52] is computed on an SIFT- 

descriptor codebook with a size of 200, and then, the spatial 

pyramid features are  reduced to  3000 by exploiting PCA    to 

make feature dimension reduction. Following the same experi- 

mental setting of [39] and [52], we randomly select 100 images 

per category as training data, and regard the remaining samples 

as test samples. For LLC, the numbers of local bases of LLC∗ 

and LLC are set to 30 and 70, respectively, which are the  

same parameters used in [4] and [39]. Similar to the above- 

mentioned experiments, we also report the mean recognition 

results (mean±std) of our method over ten times run. For fair 

comparison, we directly cite the results reported in LC-KSVD 

[39] for performance evaluation. The experimental results are 

summarized in Table VII. There is no doubt that our approach 

maintains the highest recognition accuracies and   outperforms 

all the competing methods. Specifically, at least 3% improve- 

ments are achieved when comparing with the other  methods. 
 

E. Experimental Analysis 

Based  on  the   numerical   experimental   results   shown  

in Table I–VII, the following observations are  reached. 

First, the proposed BDLRR method gains the best perfor- 

mances in comparison with all the compared state-of-the-art 

methods for recognition tasks on eight data sets. This demon- 

strates that the proposed method enables to effectively learn a 

 
4In this experiment, the features used are publicly available at http:// 

www.umiacs.umd.edu/~zhuolin/projectlcksvd.html. 

Fig. 1.     Data representation  comparisons  on the extended  YaleB  data   set. 
(a) and (b) Data representations of the test set obtained using SRC and 
BDLRR, respectively.  The data representation values are multiplied by  five. 

 

discriminative and robust representation from data. Moreover, 

we can conclude that it is beneficial to image recognition when 

transferring the original image features to the discriminative 

BDLRR based on the pivot features, i.e., training features, in a 

semisupervised manner. 

Second, the proposed BDLRR is significantly superior to 

some related methods, i.e., RPCA, LRSI, LatLRR, LRLR, 

LRRR, and CBDS, which demonstrates the benefit and 

necessity of imposing the discriminative  structure  on  LRR 

and leveraging the l21-norm to overcome noise and outliers. 

With the purpose of constructing the discriminative structure, 

the margin between block-diagonal and off-block-diagonal 

components is enlarged such that the incoherent data repre- 

sentation is boosted and the coherent data representation is 

enhanced simultaneously. Furthermore, it is also revealed that 

jointly learning the training and test representations can greatly 

improve the performance of recognition  tasks. 

Third, an interesting scenario in the experimental results is 

that there does not exist the absolute best algorithm among all 

the compared methodologies on eight data sets, because the 

performance relative to each other is mixed and inconsistent 

for different recognition applications. However, our BDLRR 

method outperforms all other methods on these low-resolution, 

limited training sample  experiments. The main  reason may  

be that our method intrinsically inherits the superiorities of 

sparse, low-rank, structured, and elastic-net representation 

learning techniques. Specifically, the low-rank regularization, 

on the one hand, can effectively mine the underlying structure 

of data correlation, and the global  latent  structure  of  the  

data matrix is uncovered. One the other hand, the sparsity 

characteristic mainly focuses on finding the nearest subspace 

of data. However, they neglect the fact that constructing block- 

diagonal representation is  the  most  straightforward  fashion 

to explore the intrinsic structure of data and elucidate the 

nearest subspace of data points. For  instance,  we  use  the 

first ten classes of test samples from  the  extended  YaleB  

data set to visually present the representation results of SRC 

and BDLRR, which are shown in Fig. 1. Images of the first  

ten subjects from the extended YaleB data set are used for 

experiments. We randomly select 35 images per subject as 

training samples and treat the rest of images as test samples. 

All images are rearranged by  Assumption  1.  From  Fig.  1, 

we can see that our method can more clearly show the nearest 
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Fig. 2. Convergence curves of the proposed method on different databases. (a)–(d) Convergence curves  on the extended  YaleB  (#Tr  35), AR (#Tr  20),  
USPS (#Tr 90), and Char74K-15 (#Tr  15) data sets,   respectively. 

 

 

    

 
Fig. 3.        Performance evaluation  (%) of BDLRR versus parameters  λ1  and λ2  on (a) extended  YaleB  (#Tr 35), (b) AR (#Tr 20), (c) USPS (#Tr  90), and 
(d) Char74K-15 (#Tr 15) data  sets. 

 

subspace (block-diagonal structure) of test samples, leading to 

better recognition results. 

Fourth, our BDLRR method consistently  outperforms 

CBDS and LatLRR on all data sets. For CBDS, it locally 

enforces the classwise diagonal structure on the low-rank 

criterion, whereas our BDLRR method globally imposes the 

block-diagonal constraint on the low-rank criterion by directly 

minimizing the off-block-diagonal components. Moreover, our 

method further enhances the within block-diagonal structure  

to be more compact by increasing the coherent intraclass 

representation. For LatLRR, it extracts salient features from 

observations for recognition, and the unfavorable performance 

may result from the certain truth that too many image details 

are lost. 

Finally, we can see that the proposed method can overcome 

the difficulty of noise-induced data uncertainty in face recogni- 

tion, such as occlusion, disguise, severe illumination changes, 

and expression variations. Moreover, our method works well 

on the challenging natural scene character recognition task, 

which further indicates that BDLRR is robust to the obstacles 

and difficulties of scene text images, such as complex back- 

ground, low-resolution, occlusion, blurring, and the  changes 

of text size or  font. 

F. Convergence and Parameter Sensitiveness Analysis 

In this section, the convergence property of BDLRR  and 

the influence of parameter selection are empirically studied   

on four data sets, i.e., the extended YaleB, AR, USPS, and 

Char74K-15 data sets. 

1) Convergence Study: The theoretical convergence proof of 

the proposed optimization method is analyzed in Section IV-C. 

It is demonstrated that BDLRR can converge to a stationary 

point under mild conditions. Now we experimentally validate 

its  convergence  on  different  data  sets  to  demonstrate     its 

efficient convergence. The convergence curves on four data 

sets are presented in Fig. 2, where #Tr denotes the number of 

training samples per subject selected for experiments. Similar 

to [8],  the  relative  error  (i.e.,  ×X − Xtr Z − E ×F /×X ×F ) 

is employed to show its convergence. We can see that the 

relative error generally decreases with the increasing number 

of iterations. More specifically, although the relative error 

exists a little vibration at the first 15 iterations on the extended 

YaleB data set, the overall values of the relative error change 

only slightly after 60 iterations for these four data sets  shown 

in Fig. 2, which demonstrates that the proposed optimization 

algorithm holds the convergent nature. 

2) Parameter Sensitiveness: In the proposed optimization 

problem (8), there are three parameters to be tuned. In our 

experiments, it is observed that the performance of BDLRR    

is not sensitive to λ3 when it is in  the  range  of  [10,  25], 

which is also an empirical setting. To test how the remaining 

parameters λ1 and λ2 influence the performance of BDLRR, 

we perform extensive experiments to validate their robustness. 

Similar to convergence validations, we still use the extended 

YaleB, AR, USPS, and Char74K-15 data sets for evaluation. 

Fig. 3 shows the performance variations with respect to 

parameters λ1 and λ2. We can  see  that  the  performance of 

our BDLRR method is generally insensitive to the varying 

values of λ1 and λ2. More specifically, the performance is 

promising when parameter λ1 is not too  large  or  small,  

which indicates the necessity of boosting the extra-class data 

incoherent representation. Moreover, for parameter λ2, it is 

easy to see that  it  should  be  small,  and  the  best  results  

are usually achieved when the value is smaller than 1, yet 

bigger than 0.01. The possible reason of a smaller λ2  may     

be that the Euclidean distance metric used in our experiments 

is too simple to perfectly measure the similarity of samples. 

However,  we  have  achieved  very  impressive   experimental 



 

 

results, even with a simple distance metric. In a word, our 

BDLRR method is robust to parameter changes in most cases. 

 
G. Limitation 

From the objective function of our BDLRR method, i.e., (8), 

we can see that the proposed model is a semisupervised 

representation learning model and concurrently learns both 

block-diagonal representations of training and test samples, 

which indicates that the test samples and the label of training 

samples are both  given  in  the  learning  process.  However,  

in some cases, we cannot get access of test data at the training 

stage, which may limit the generalization of our model. To this 

end, we extend our BDLRR method to address the out-of- 

sample problem in Section IV-E to circumvent this problem.  

In this way, our results are somewhat subject to the learning 

capability of algorithms in handling the out-of-sample cases. 

Fortunately, these methods have been examined to effectively 

formulate favorable representations of new instances. More- 

over, the learned data representations of training samples are 

reasonably block-diagonal in the training stage, which in turn 

guarantees the satisfactory recognition results. 

 
VI. CONCLUSION 

In this paper, we have proposed a novel discriminative 

block-diagonal representation learning model, i.e.,  BDLRR, 

for robust image recognition. BDLRR focuses on learning a 

discriminative data representation by imposing an effective 

structure in an LRR framework, where the extra-class inco- 

herent representation and the intraclass coherent representation 

are simultaneously enhanced. The proposed method incorpo- 

rates the learned BDLRR into the semisupervised model to 

collaboratively optimize the training data representation and 

test data representation, and then, an efficient linear classifier is 

obtained to perform final robust image recognition. Moreover, 

an effective optimization algorithm is developed to solve the 

resulting optimization problem. Last but not least, the pro- 

posed method was evaluated on eight publicly available bench- 

mark data sets for three different recognition tasks. Extensive 

experimental results have demonstrated that the proposed 

BDLRR method is superior to the state-of-the-art  methods. 
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