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Highlights 

 > Dry metal electrodes with tilted microstructure arrays is fabricated. > Laser 

micromilling process of tilted microstructure arrays is discussed. > Effect of process 

parameters on surface microstructure arrays is investigated. > Optimized process 

parameters are obtained to fabricate tilted microstructure arrays. > Eelectrodes with 

tilted microstructures show lower impedance than vertical microstructures.  

Abstract: A novel dry metal electrodes with tilted microstructure arrays was fabricated 

with laser micromilling process by adjusting the incident angle of the laser beam. After 

discussing the laser fabrication process for dry metal electrodes, the effects of the laser 

incident angle, width of unscanned area, laser output power, and scanning times on the 

shape and size of the microstructures are further discussed. Our experimental results 

show that the tilted angle of the surface microstructures of the dry metal electrodes 

depended on the laser incident angle. The heights of the surface microstructures of dry 

metal electrodes were greatly increased by increases of the laser output power and 

scanning times. Compared with vertical microstructure arrays, the developed dry metal 

electrodes with 60° tilted angle microstructure arrays demonstrated much lower 

impedances.  
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1 Introduction 

     Over the last decade, the research on and applications of bioelectrical signals has 

been given increasing attention with the rapid development of modern medicine, 

neurology, and artificial intelligence. Bioelectrodes, which can be used to measure 

biological signals, have been widely used in modern clinical and biomedical 

measurements, including electrocardiograph (ECG), electroencephalogram (EEG), 

electromyography (EMG), gastric electrical activity, nerve potential, and electrical 

impedance imaging (EIT) measurements [1]. In the detecting process of biological 

electrical signals, a bioelectrode system, as a significant component of the measurement 

system, will come into direct contact with human skin, input a drive current, and receive 

a voltage signal for the purpose of exchanging and transmitting information. Because 

of the weak strengths of bioelectrical signals, there are strict conductivity requirements 

for bioelectrodes, which commonly use metal, silicon, or polymer as the base materials, 

covered by a conductive metal layer on the surface. Moreover, bioelectrodes, which 

come into direct contact with human skin, should be non-toxic and cannot cause allergic 

reactions [2]. Several bioelectrodes have been developed to meet the requirements for 

biological electrical signals measurement. Based on the structure style, bioelectrodes 

are divided into the traditional Ag/AgCl wet electrode, microneedle electrode, flexible 
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textile electrode, foam electrode and insulated dry electrode. 

    To fabricate the microstructure electrodes, the micromachining technology has been 

developed to fabricate microstructure arrays on silicon, metal, polymer, and glass, 

where the size of a single microstructure is usually 30–80 µm, with a length of more 

than 100 µm. Although most of the research has focused on an etching process to form 

microstructures on silicon [3–5], some researchers have developed some fabrication 

methods,such as traditional machining, electrochemical machining and 3D printing 

using the metal or other materials [6–13]. Ng et al. [6] developed a vacuum casting 

method to fabricate micro-spike dry EEG electrodes. These electrodes, which had a low 

impedance and stable performance, showed a good EEG measurement ability. Salvo et 

al. [7] developed a 3D printing method to fabricate a microneedle electrode, which was 

applied to EEG and ECG measurements and had a better performance than the 

traditional wet electrodes. Ruffini et al. [8] developed a novel electrode formed by 

carbon nanotubes. Because of its good ability to adhere to the surface of human skin, 

this electrode showed an accurate bioelectrical signal performance. Kitamura et al. [9-

10] proposed an electrolytical method to fabricate electrodes using the steel wire. This 

method was simple, saved time, and allowed the shape of the microneedle structure to 

be controlled. Electrodes fabricated using this method had good performances as the 

traditional Ag/AgCl wet electrodes. Recently, seveal papers reported their work in 

developing novel dry electrodes with laser method. Laser processing, which is fast and 

accurate, has outstanding advantages in fabricating the microstructure[14-15]. For 

example, Gill et al. [16] developed a new method to fabricate miconeedle electrode, the 
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laser beam ablated the metal sheet and created the miconeedles in the plane of the sheet, 

then miconeedles was manually bent at 90° and electropolished, and the sizes and 

shapes of this electrodes can be controlled. 

    In this study, we proposed a laser micromilling fabrication method to make novel dry 

metal electrodes, which allows tilted microstructure arrays to be formed on the surface 

of the dry electrode by adjusting the incident angle of the laser beam. Based on the 

principle of the laser machining method, the effects of laser incident angle, width of 

unscanned area, laser output power, and scanning times on the shape and size of the 

microstructure were discussed in detail. Finally, impedance measurement of dry metal 

electrodes with tilted microstructure arrays was conducted and compared with vertical 

microstructure arrays. 

2 Design, fabrication and impedance measurement of dry metal 

electrode 

2.1 Structural design of dry metal electrode 

A schematic diagram of a dry metal electrode with tilted microstructure array is 

shown in Fig.1. The metal dry electrode was composed of a metal electrode core,  

medical gauze, conductive silver glue, foam backing material, and shielding wire. The 

metal electrode core was made of red copper, which had good machinability and 

conductivity [17]. Laser micromilling was employed to fabricate the 6×6 

microstructure arrays on the surface of metal electrode core with the size of 8×8 mm2. 

After the laser micromilling process, platinum was sputtered on the core to improve the 

contact between the electrode core and human skin, which cloud improves the accuracy 
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of the biological electrical signal measurement. Moreover, a shielding wire was stuck 

to the metal electrode core using conductive silver glue and covered by a foam backing 

material. Then, the medical gauze was affixed to the back side, and the dry metal 

electrode was finally assembled. These surface microstructures are beneficial to 

improve the contact interface and increase the friction force between the electrode and 

skin, leading to a low contact impedance and better measurement stability. 

2.2 Laser micromilling process 

Fig. 2. shows the schematic diagram of the experimental setup for the laser 

micromilling process used for the dry metal bioelectrode. The system was composed of 

a fiber laser, collimator head, F-theta objective lens, computer controller, and 

machining platform [18]. In this study, a pulsed fiber laser (IPG) was used . The laser 

was set to produce 100 ns pulses with a 1064 nm central emission wavelength at a 

repetition rate of 20 kHz. The specifications of the characteristic parameters of the fiber 

laser system used are given in Table 1. The machining platform was composed of 

a linear motion device, rotating device, and fixture. The linear motion device was driven 

by a small stepper motor, which generated a reciprocating motion on the Z axis. A hinge 

was used to connect the linear motion device and rotating device, and the rotating 

device could rotate around the Y axis. The fixture was used to fix a copper plate. The 

incident angle of the laser beam could be controlled by changing the angle of the 

machining platform. In addition, laser processing parameters such as the unscanning 

area, laser output power, and scanning time could be adjusted through computer control.  

One significant parameter of laser milling is the energy density (ED), which is 
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determined as follows: 

spotscan

A

V

P
ED




         

             （1） 

where PA is the output power of the laser source at a fixed frequency, Vscan is the 

scanning speed, and фspot is the focused diameter of the laser spot [19–21]. 

    In this study, the threshold value of about 0.35 J/cm2 can be experimentally derived 

for red copper matrial.When the laser output power was selected over 20 W and 

scanning speed below 1000mm/s, the red copper substrate can be fabricated. 

2.3 Impedance measurement step 

Fig. 3. shows the schematic diagram of impedance measurement of dry metal 

electrode. Two dry metal electrodes were placed on the forearm to measure the 

electrode–skin impedance, with a distance between the electrodes of 5 cm [22–23]. The 

dry metal electrodes did not require any treatment of the skin before the measurement 

[24–26]. Based on the two-electrode measurement principle, the same pair of electrodes 

could be used for the driving and measurement electrodes. The impedance analyzer 

(HIOKI Im3523 LCR Meter, Japan) was controlled by the Labview program through a 

USB interface. The computer sent a signal at a specific frequency to the impedance 

analyzer, which generated a sinusoidal current of 1 mA. Then, the impedance analyzer 

sent the current to the two electrodes on the forearm and measured their potentials. 

Finally, the impedance analyzer transmitted the impedance data to the computer 

through the USB interface, and the data was recorded and analyzed by Labview 

software. A frequency of 50 kHz was used by the impedance analyzer, and the working 

mode was the Z-R mode [27-28]. Short circuit and open circuit calibrations were 
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performed to improve the measurement accuracy before the impedance data was 

recorded. 

3 Results and discussion  

3.1 Formation process of tilted microstructure array  

Laser processing is a thermal processing based on the photothermal effect. When 

a pulsed laser irradiates the base metal, it absorbs the laser beam energy, which causes 

the temperature of the metal to rapidly rise and exceed the evaporation temperature. 

The metal around the laser spot then melts even vaporizes at the high temperature, 

leading to material removal. The vaporized material will continue to interact with the 

laser beam, with some of the material becoming ionized and forming a plasma, which 

affect the further absorption of laser energy. Recasting is a normal phenomenon in the 

laser micromachining process. This phenomenon causes materials to transfer from the 

area that has been scanned by the laser to the area that has not been scanned [18]. With 

the help of this phenomenon, the recast layer stacking process can be controlled to form 

a microstructure array on the surface of the dry metal electrode.  

As shown in Fig. 4a. to fabricate a dry metal electrode with a tilted microstructure 

array, the nested square machining path and loop multiple-pass reciprocating scanning 

strategies were used in this study. Fig. 4b. shows the schematic diagram of machining 

platform used to fabricate the dry metal electrodes. The incident angle (θ) of the laser 

beam directly affects the angle of the microstructures on the surface of the dry metal 

electrode. Fig. 4c. shows the effect of using a small scanning process for the substrate. 

As a result of gravity, the amount of recast metal below the molten pool was greater 
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than that above it. As the number of scans gradually increases, the laser energy is 

absorbed by the continuous irradiation of the laser. At this stage, the unscanned area 

was continually covered by the recast metal, as shown in Fig. 4d. Later, as the number 

of scans increases, a greater amount of surface material is heated to produce the metal 

steam pressure, which causes further external ejection of the liquid material to increase 

the depth and width of the scanning area, and a large quantity of metal is effectively 

removed during the laser micromilling process [29]. Finally, the recast metal is 

deposited and integrated with the unscanned area to form the cone microstructure array 

on the surface of the sample metal [30-31], as shown in Fig. 4e. Fig. 5. shows a typical 

scanning electron microscope (SEM) image of a tilted microstructure array on the 

surface of a dry metal electrode. It was verified that a tilted microstructure electrode 

could be successfully fabricated by controlling the incident angle of the laser beam. 

3.2 Effects of process parameters on tilted microstructure array 

3.2.1 Laser incident angle 

Fig. 6. shows SEM images of dry metal electrodes with tilted microstructure 

arrays fabricated with different laser incident angles. The incident angle was set at 

60°–90° by controlling the angle of the machining platform. The other machining 

parameters were fixed at a laser output power of 27 W, a scanning speed of 500 mm/s, 

30 scanning times, and an unscanned area width of 100 μm. When the incident angle 

changes from 60° to 90°, the shape of the microstructures changes from a tilted style 

to a vertical style. Table 2 lists the measurement data of the tilted angle and height of 

microstructures fabricated with different laser incident angles. It can be observed from 
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the table that the error between the tilted angle of the microstructures and laser 

incident angle was within 2°. Furthermore, the height of the microstructures is also 

affected by the laser incident angle. When the laser incident angle was 60°, the height 

was found to reach a maximum value of 496 μm. However, the microstructure array 

could not be fabricated with a small laser incident angle. Therefore, we recommend 

60° laser incident angle to produce the microstructure array on the surface of dry 

metal electrodes with much better quality.  

3.2.2 Width of unscanned area  

The machining path is one of the most important parameters influencing the laser 

micromilling process. In this experiment, a nested square machining path was 

selected, and the inner square was the unscanned area, as shown in Fig. 4. Widths of 

60 µm, 80 µm, 100 µm, and 120 µm were selected for the unscanned area under the 

predetermined conditions of a laser output power of 27 W, a scanning speed of 500 

mm/s, 30 scanning times, and a 60° laser incident angle. When the width was set at 60 

µm, it was obvious that an microstructure array was formed on the surface of the 

sample metal, as shown in Fig. 7a. This was mainly because the small unscanned area 

led to a small area for recasting, but the small recast area could not hold most of the 

molten and vaporized metal. When the width was increased to 120 µm, the unscanned 

area was too large to be covered by the recast metal, which led to ladder structures. 

However, when a width of 80–100 µm was selected, the cone microstructure arrays 

were formed, which means the recast metal exactly covered the unscanned area, as 

shown in Fig. 7b. and c. 
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Fig. 8. shows the influence of the unscanned area width on the height and bottom 

width of tilted microstructurethe of dry metal electrode. It can be seen that the width 

of the unscanned area has a significant influence on the bottom width of the 

microstructures. When the width of the unscanned area was increased from 60 μm to 

120 μm, the bottom width of the microstructures increased from 151 µm to 379 µm. 

The height of the microstructures gradually increases when the width of the 

unscanned area increases from 60 μm to 100 μm, but when the width increases to 120 

μm, the height decreases. These changes were attributed to the difficulty of covering a 

large unscanned area with the recast metal material and the fact that a small 

unscanned area could not hold most of the recast metal material. Thus, in both cases, 

the cone microstructure array could not be formed. Therefore, 80–100 µm was the 

optimized width for the unscanned area. 

3.2.3 Laser output power 

The laser output power is one of the significant parameters in the micromilling 

process. Laser output power values of 21 W, 24 W, 27 W, and 30 W were selected 

under the predetermined conditions of a scanning speed of 500 mm/s, 30 scanning 

times, an unscanned area width of 100 μm, and a 60° laser incident angle. The effects 

of the laser output power on the shape and size of the microstructures were studied 

based on the SEM images. When the laser output power was 21 W, the surface 

microstructures could not be effectively fabricated because the low laser energy made 

it difficult to fully achieve the surface evaporation and melting process of the surface 

metal material, which led to a low material removal rate, as shown in Fig. 9a. 
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However, when the laser output power was increased to more than 24 W, the material 

melting and evaporation phenomena become much easier to induce because of the 

higher temperature[27]. Finally, the surface material was removed to produce the 

surface microstructures, as shown in Fig. 9b. to d. The influence of the laser output 

power on height and bottom width of tilted microstructures of dry metal electrode is 

shown in Fig.10. When the laser output power was increased from 21 W to 30 W, the 

bottom width increases from 229 µm to 359 µm, and the height increases from 248 

µm to 480 µm. It is worth noting that the laser output power has a greater influence on 

the height of the microstructures than on the bottom width. This was attributed to the 

fact that the influence of the laser output power on the depth of the melting zone was 

greater than that on the width. 

3.2.4 Scanning times 

    The scanning times, which determined the quality of the structure, also needed to 

be adjusted in the laser micromilling process. SEM images of tilted microstructures 

produced using different scanning times are shown in Fig. 11. Where the 

predetermined conditions were a laser output power value of 27 W, a scanning speed 

of 500 mm/s, an unscanned area width of 100 μm, and a laser incident angle of 60°. 

When the scanning times were less than 10 times, it was difficult to form the top of 

the microstructures, and the total height was low, as a result of the low material 

removal rate, as shown in Fig. 11a. When the scanning times were increased to 20 

times, the cone microstructure array were gradually formed, as shown in Fig. 11b. 

Finally, when more than 30 scanning times were used, the cone microstructure array 
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were successfully fabricated, as shown in Fig. 11c. and d. However, the scanning 

times had a greater effect on the height of the microstructures than on their width, 

which can be seen in Fig. 12. When the scanning times were increased from 10 times 

to 50 times, the height of the microstructures increased from 126 µm to 480 µm, 

whereas the width increased from 160 µm to 314 µm. Therefore, to obtain dry metal 

electrodes with a tilted surface microstructure array, the scan times should be greater 

than 30.  

3.3 Impedance measurement 

Fig. 13. shows the impedance measured value using dry metal electrodes with 

different tilted degree microstructure array and without microstructure array. Under the 

same measurement conditions, the dry metal electrodes with tilted degree 

microstructure array had lower average impedance values comparing with the 

electrodes without microstructure array. Furthermore, the dry metal electrodes with the 

60° tilted microstructure array had lower average impedance values than those with the 

vertical microstructures (less about 18 Ω), as show in Fig. 13a. Fig. 13b. shows the 

impedance measurements over a period of 20 min. The impedance measured by the dry 

metal electrodes with 60° tilted microstructures presented small fluctuations in the first 

15 min, and then gradually became stable, reaching a value that was lower than that of 

the electrodes with the vertical microstructures (90°). This can be attributed to the fact 

that the dry metal electrodes with the tilted microstructures fit more tightly than those 

with the vertical microstructures. However, the tilted microstructures may have needed 

more time to become joined to the skin, which led to a slightly longer settling time. 
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Therefore, the dry metal electrodes with the tilted microstructures have an advantage in 

long-term impedance measurement compared with those with vertical microstructures. 

4 Conclusions  

     Tilted microstructure arrays could be fabricated with laser micromilling process on 

the surface of dry metal electrodes by adjusting the incident angle of the laser beam. 

The influence of the laser incident angle, unscanning area width, laser output power 

and scanning times on the formation of the microstructure was discussed. In the laser 

micromilling process, the tilted angle of the surface microstructures of the dry metal 

electrodes depended on the laser incident angle, and the error between the tilted angle 

of microstructures and laser incident angle was within 2°. The unscanned area 

affected the fabrication of the tilted microstructures, where a width of 80–100 µm was 

found to be the most suitable for the unscanned area. The height of the 

microstructures was greatly increased by increasing the laser output power and 

scanning times. However, a laser incident angle 60°, a laser output power of 27 W, 30 

scanning times, and an unscanned area width of 100 µm were the most suitable and 

economic machining parameters for fabricating the dry metal electrodes with 60° 

tilted microstructures. In addition, the dry metal electrodes with tilted microstructures 

had much smaller impedance in a bioelectrical measurement compared with those 

with vertical microstructures. Therefore, the developed dry metal electrodes with 

tilted microstructures, which are economic and convenient, have promising 

applications in bioelectrical measurement.  
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Figure captions 

Fig.1 Schematic diagram of dry metal electrode with tilted microstructure array：1-

metal electrode core, 2-shielding wire, 3-conductive silver glue, 4-foam backing 

material, and 5- medical gauze 

Fig.2 Schematic diagram of the experimental setup for the laser micromilling process 

used for the dry metal bioelectrode. 

Fig.3 Schematic diagram of impedance measurement of dry metal electrode  

Fig.4 Schematic diagram of forming process of tilted microstructure array on the dry 

metal electrode 

Fig.5 Typical SEM image of a tilted microstructure array on the surface of a dry metal 

electrode 

Fig.6 SEM images of dry metal electrodes with tilted microstructure arrays fabricated 

with different laser incident angles：(a) 60°, (b) 70°, (c) 80°, and (d) 90°（Vertical 

incident） 

Fig.7 SEM images of dry metal electrodes with tilted microstructure arrays fabricated 

with different unscanned area widths：(a) 60 µm, (b) 80 µm, (c) 100 µm, and (d) 120 

µm 

Fig.8 influence of the unscanned area width on the height and bottom width of tilted 

microstructurethe of dry metal electrode 

Fig.9 SEM images of dry metal electrodes with tilted microstructure arrays fabricated 

with different laser output power values: (a) 21 W, (b) 24 W, (c) 27 W, and (d) 30 W 
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Fig.10 Influence of laser output power on height and bottom width of tilted 

microstructures of dry metal electrode 

Fig.11 SEM images of dry metal electrodes with tilted microstructure arrays fabricated 

with different scanning times：(a) 10, (b) 20, (c) 30 and (d) 50 

Fig.12 Influence of scanning times on height and bottom width of tilted microstructures 

of dry metal electrode 

Fig.13 Impedance measured value using dry metal electrodes with different tilted 

degree microstructure array and without microstructure array 

Table captions 

Table 1 Specifications of characteristic parameters of fiber laser system 

Table 2 Tilted angle and height of microstructures fabricated with different laser 

incident angles 
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Figr-5  

     Fig.13 
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(b) Impedance measurement over 20 min 
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Figr-7  
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Figr-9  
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Fig. 8 

 

  

0

200

400

600

0

200

400

600

60 80 100 120

 B
o
tt

o
m

 w
id

th
（

m
）

 

 

H
ei

g
h
t 

(
m

)

Width of unscanned area(m)

 Height

 Bottom width



 Page 35 of 21 

Figr-13

 

Fig.9 

 

 

  

(a) (b) 

(c) (d) 



 Page 36 of 21 

                               Table 1 

 

Characteristic Parameter range Assumed parameter Unit 

Wavelength 1055~1070 1064 nm 

Nominal average output 
power 

29~31 30 W 

Pulse duration 90~120 100    ns 

Repetition rate 20~200 20 kHz 

Beam quality (M2) <1.1 1  

Incident beam diameter 6~9 7 mm 

Focused diameter 24.3~37.3 31.5 m 
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Table 2  

Laser incident angle Height of microstructure (μm) Titled angle of microstructure 

60° 459.9 58.3° 

70° 395.5 71.8° 

80° 371.2 78.2° 

90° 320.6 89.5° 

 

 


