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Abstract—A novel energy minimization method for general
higher-order binary energy functions is proposed in this paper.
We first relax a discrete higher-order function to a continuous
one, and use the Taylor expansion to obtain an approximate
lower-order function, which is optimized by the quadratic
pseudo-boolean optimization (QPBO) or other discrete optimizer-
s. The minimum solution of this lower-order function is then used
as a new local point, where we expand the original higher-order
energy function again. Our algorithm does not restrict to any
specific form of the higher-order binary function or bring in extra
auxiliary variables. For concreteness, we show an application of
segmentation with the appearance entropy, which is efficiently
solved by our method. Experimental results demonstrate that
our method outperforms state-of-the-art methods.

Index Terms—Higher-order energy, image segmentation.

I. INTRODUCTION

Discrete optimization problems have been studied extensive-
ly in computer vision applications, such as image segmentation
[3], [4], [5], [7], [36], [32], saliency [32], [41], [43], [48],
[44], [47] and tracking [39], [45], [46], [42]. When a discrete
energy function is the sum of terms related to two or fewer
variables, it is called a lower-order energy function. In this
case, a lot of energy optimization techniques can be used to
minimize it efficiently, e.g., graph cuts ([9]), belief propagation
([11]), message passing [40], and random walks ([14], [15],
[5]). However, more complicated and useful assumptions of
energy formulations for describing natural images have been
developed, which cannot be expressed by lower-order func-
tions. As a result, higher-order energy functions have attracted
much attention in recent years [27].

Numerous methods for optimizing higher-order energy
functions with specific forms have been proposed including
the Pn Potts model [18], Cooperative Cut [24], Decomposable
submodular functions [22] and Deep Random Field [29].
Kohli et al. [18] propose a higher-order energy to encourage
variables in one segment to take the same value for local
consistency. Jegelka et al. [24] and Kohli et al. [29] use
the cooperative cut and design the higher-order energy to
enforce that the number of cut patterns is as small as possible.
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Gallagher et al. [25] introduce an order reduction inference
algorithm to select the proper order reduction and minimize
the Markov random field (MRF). When a higher-order energy
function is transformed into a lower-order one, graph cuts
can be used to obtain a satisfactory solution. However, if a
lower-order function is not submodular, graph cuts cannot be
applied directly. In such cases, the Quadratic Pseudo-Boolean
Optimization (QPBO) [6], [16] and Tree-Reweighted Message
Passing (TRWS) [13] algorithms can be used to approximately
find the minimum value with partial optimality.

When the form of an explicit higher-order energy function
is general, how to reduce the order of this energy efficiently
is one of the major issues in the field of higher-order ener-
gy minimization. A large number of higher-order reduction
methods have been proposed recently [8], [19], [20], [21],
[26], [31], [30], [34], [33], [35], [38], [28], [23] to solve
any order of higher-order binary energy functions in the poly-
nomial form. Ishikawa [19] presents a Higher-Order Clique
Reduction (HOCR) method by generalizing the minimum
selection reduction method [9] to any order. This method uses
auxiliary variables to transform each higher-order term to a
lower-order one independently. Furthermore, Fix et al. [26]
transform a group of higher-order terms into lower-order ones
at once. In [33], Ishikawa further reduces higher-order binary
terms into lower-order ones without introducing new variables
using the excludable local configuration method. However, the
objective higher-order functions tackled in [19] and [33] need
to be polynomial. In contrast, our minimization method can
be applied to both polynomial and non-polynomial functions,
and polynomial potentials can be minimized by our method
as a degenerate case. Gorelick et al. [31] propose an iterative
approach called trust region to optimize higher-order energy.
They used the first-order Taylor expansion to approximate the
original higher-order function, and find its minimum energy
in the trust region. Ayed et al. [30] present a general auxiliary
function as the upper bound of the higher-order energy for
segmentation, and minimize it with a bound optimization
algorithm. The higher-order terms in [30] described regional
properties of the segments. Our method does not require
specific forms of the energy functions. Tang et al. [35] use
parametric pseudo-bounds for a higher-order function, and
iteratively optimize the bounds until convergence. However, it
requires significant efforts to construct the parametric pseudo-
bounds for all the energy functions. In this work, we construct
approximate lower-order energy functions instead of lower-
order pseudo bounds, which can be found more suitable for
explicit general energy functions.

Any higher-order binary term can be transformed to a
polynomial form with the sum of finite products of variables.
Polynomial higher-order energy is discussed by two represen-
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Fig. 1. An illustration of the proposed higher-order energy minimization
method. The red curve is the higher-order binary energy function. Two blue
curves are the approximate lower-order function at points t and t′. The
minimum value of the dark blue curve at t is obtained in the first iteration;
and the minimum value of the light blue curve at t′ is obtained in the second
iteration. Generally, E(t′) < E(t).

TABLE I
ONE EXAMPLE WITH EACH VALUE OF THE HIGHER-ORDER TERM fh . ALL
VALUES OF fh(x, y, z) = ex · |x− yz| IN THE WHOLE SOLUTION SPACE

{0, 1}3 ARE PRESENTED IN THIS TABLE.

x 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1

fh(x, y, z) 0 0 0 1 e e e 0

tative methods in [19], [33], and can be defined as follows:

fh(x1, x2, . . . , xn) =
∑

S⊂{1,2,...,n}

(αu ·
∏
i∈S

xi)

u = B(S) =
∑
j∈S

2j−1
(1)

where fh(·) is a higher-order term from a higher-order energy
function; S is a subset of the index set (which can be empty);
αu ∈ R is the coefficient of a product; and B(·) is a function
for mapping a set to a nonnegative integer. If S = ∅, we then
define that u = 0 and

∏
i∈S xi = 1.

We give an example of transforming an arbitrary higher-
order term into the polynomial form in (1). Considering a
binary higher-order term fh(x, y, z) = ex · |x−yz|, we obtain
its energies in the whole space {x, y, z} ∈ {0, 1}3 in TABLE
I. After obtaining each solution of this term, we have:

fh(x, y, z) =ex · |x− yz|
=1 · x̄yz + e · xȳz̄ + e · xȳz + e · xyz̄
=(−1− e) · xyz + yz + e · x

(2)

where x̄ = 1− x.
Existing order reduction approaches accommodate any kind

of higher-order binary function in a polynomial form [9],
[19], [33]. For non-polynomial functions, it is necessary to
transform them to polynomial form first, before applying
order reduction methods to optimize them. However, this
transformation step entails significant amount of work as pre-
processing, which is usually implemented by exhaustively
searching the whole solution space of the higher-order term

TABLE II
THE COMPARISON OF EACH HIGHER-ORDER REDUCTION METHODS.

[19] [21] [26] [30] [33] [35] Ours
polynomial

√ √ √ √ √ √ √

non-polynomial -
√ √ √

-
√ √

general form
√

- - -
√

-
√

many variables -
√ √ √ √ √ √

(such as the one in TABLE I). Furthermore, we can consider
a case when the higher-order energy f only contains a higher-
order term (f(x) = 0 · fl(x) + 1 · fh(x), and fl(x) is a lower-
order term). Following the previous minimizing procedure,
we need to transform fh to the polynomial form. After the
transformation step, we already obtain each value of fh in
the whole solution space. That is, the minimum value of f
can be obtained by selecting the smallest value of fh without
optimizing f . This step of transforming a higher-order term
from non-polynomial to polynomial is a redundant burden, but
a necessary process to use existing order reduction methods.

Our method does not require this transformation step and
can optimize a larger range of general higher-order energy
functions directly. Other order reduction methods [30], [35]
are based on iteratively minimizing upper bounds or pseudo
bounds of the higher-order energy, which need to be carefully
designed. These methods cannot find the upper bounds of
general non-polynomial functions easily, and are used in some
specific form of energy with finite higher-order assumptions,
such as the ones for image segmentation. In contrast, our
method reduces the order of a general binary function. Instead
of building an upper bound like [30] and [35], our method
constructs a lower-order function to approximate the higher-
order objective function, which is more easier to construct.

Each of the state-of-the-art order reduction methods has
its limitation. [19] and [33] can handle general polynomial
higher-order terms, while non-polynomial higher-order terms
are required to be converted into polynomial ones before
reduction. Furthermore, [19] can not handle the situation
where one higher-order term contains more than six variables
in a real vision application. [26], [30] and [35] can optimize
non-polynomial energies only with some specific forms. The
higher-order potentials in [21] need to be concave. Our method
can reduce general polynomial and non-polynomial higher-
order terms, without the limitation of the number of variables.
TABLE II shows the comparison of state-of-the-art algorithms
and the advantage of our method briefly.

Numerous classic continuous optimization methods, such as
the gradient descent method, the Newton-Raphson method and
simulated annealing [2], adopt the step by step optimization
approach. Similar ideas based on locally fitting and iterative
optimizations also appear in the field of submodular optimiza-
tion [37]. Our method is also based on this iteratively op-
timization framework. Higher-order energy functions become
more and more popular, due to their representation of complex
statistical information. Therefore, many applications [17], [18]
in the field of computer vision have adopted higher-order
functions to model the problem. In this paper, we use image
segmentation as an example to demonstrate the effectiveness
of our higher-order minimization method.
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In our optimization algorithm, we first relax a discrete
higher-order function to a continuous one, and reduce its order
to a lower-order function at a point, which is approximately
equivalent to the higher-order function locally. By minimizing
this reduced function, a smaller energy of the original function
is obtained, and the optimal solution is obtained through
iteratively performing this process. This iterative optimization
procedure in our method does not require any auxiliary vari-
ables. In each iteration, we construct a lower-order function
to approximate the higher-order one by the first or second-
order Taylor expansion. If the continuous version of the higher-
order function is second order differentiable, we can definitely
obtain its lower-order approximation. This paper will focus on
considering the higher-order binary function whose continuous
version is second order differentiable. Our source code will be
available at 1.

Our main contributions are summarized as follows. 1) We
propose a novel minimization method for general explicit
higher-order energy functions, which can produce accurate
solutions for both polynomial and non-polynomial higher-
order energy functions. 2) Our method can reduce any order of
a general higher-order energy function in a polynomial or non-
polynomial form, without auxiliary variables. 3) We solve the
application of image segmentation with the appearance entropy
by our higher-order minimization method, which demonstrates
the superiority of the proposed minimization algorithm.

II. OUR APPROACH

A. Proposed higher-order minimization algorithm

Our higher-order minimization method for binary energies is
based on an iterative framework. Fig. 1 shows our iterative op-
timization approach, where we denote the higher-order energy
function as E(x). The main idea of the proposed algorithm
is to approximate a lower-order energy function E′t(x) at a
single point t on the higher-order objective function. We then
find the minimum value of this lower-order function and its
solution x∗. x∗ is generally closer to the optimal solution than
t. After that, a new approximate lower-order function E′t′(x)
is found at the new point t′ = x∗. We minimize these lower-
order functions iteratively until convergence. In each iteration,
the minimizer can obtain a lower energy until it converges at
local or global minima.

Our method can optimize explicit general higher-order bi-
nary functions, which can be defined as:

E(x) = El(x) + Eh(x), where x = [x1, x2, . . . , xn]> (3)

where x is a solution in the discrete space {0, 1}n.
Given an index set V = {1, 2, . . . , n}, x can also be viewed

as a variable set {xi|i ∈ V }. In (3), El(x) is the lower-
order term, which contains unary and pairwise terms. Since
the variables in the energy (3) are binary, lower-order terms
can be expressed as the sum of product terms with two or

1http://github.com/shenjianbing/orderreduction

Fig. 2. An illustration of solutions vibrating around the minimum. x∗ is
the global minimum of energy E(x) (red curve). Three blue curves Et1 (x),
Et2 (x) and Et3 (x) are the lower-order expansions (11) of E(x) at t1,
t2 and t3. t2 and t3 are the minimums of Et1 (x) and Et2 (x). During
iterations, the solution is jumping from t1 to t2, then to t3, until it goes to
x∗. Therefore, if we do not set the step size, solutions will vibrate around
the minima x∗.

fewer variables as follows:

El(x) =
n∑
i=1

uixi +
∑

1≤i<j≤n

pijxixj (4)

= U>x + x>Px (5)

where U ∈ Rn and P ∈ Rn×n. In addition, ui and pij are
the elements of vector U and matrix P .

Unlike unary and pairwise terms, we do not fix the higher-
order term as the product of variables like (1). We define the
higher-order term as follows:

Eh(x) =
∑
c∈C

ψc(xc) (6)

where c denotes a subset of the index set V , and xc = {xi|i ∈
c, c ⊆ V }. In addition, C is a set containing all the higher-order
cliques. For one term ψc(xc) in Eh(x), we denote its variables
as xc = [xc1, x

c
2, . . . , x

c
|c|]
> and xc ⊆ x. Assuming that we have

an initial solution t of E(x), we can extract its sub-solution tc
for higher-order term ψc(xc), which satisfies tc ⊆ t. The order
of the higher-order term ψc(xc) is reduced in the following
way. We relax the discrete term ψc(xc) : xc ∈ {0, 1}|c| to the
continuous one ψ̃c(xc) : xc ∈ R|c|.

Next, each term in Eh(x) is transformed approximately
by the Taylor expansion at the place where xc = tc (tc =
[t1, t2, . . . , t|c|]

> ∈ {0, 1}|c|) as follows:

ψ̃c(xc) = ψ̃c(tc) +

|c|∑
i=1

∂ψ̃c(tc)
∂xci

(xci − ti)

+
1

2!

|c|∑
i,j=1

∂2ψ̃c(tc)
∂xci∂x

c
j

(xci − ti)(xcj − tj) + o

= ψ̃c(tc) + [∇ψc(tc)]>(xc − tc)

+
1

2
[xc − tc]>H(tc)[xc − tc] + o

(7)
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where

∇ψc(tc) =
[

∂ψ̃c(tc)
∂xc

1

∂ψ̃c(tc)
∂xc

2
· · · ∂ψ̃c(tc)

∂xc
|c|

]>
(8)

H(tc) =



∂2ψ̃c(tc)
∂[xc

1]
2

∂2ψ̃c(tc)
∂xc

1∂x
c
2

. . . ∂2ψ̃c(tc)
∂xc

1∂x
c
|c|

∂2ψ̃c(tc)
∂xc

2∂x
c
1

∂2ψ̃c(tc)
∂[xc

2]
2 . . . ∂2ψ̃c(tc)

∂xc
2∂x

c
|c|

...
...

...
∂2ψ̃c(tc)
∂xc

|c|∂x
c
1

∂2ψ̃c(tc)
∂xc

|c|∂x
c
2

. . . ∂2ψ̃c(tc)
∂[xc

|c|]
2

 (9)

and o represents the Peano type remainder of the Taylor
expansion. One prerequisite for the expansion in (7) is ψ̃c(xc)
must be second order differentiable. All the higher-order terms
can be expanded, and thus for E(x), we have:

E(x)|x∈(t−ε,t+ε) ≈ El(x) +
∑
c

(
ψ̃c(tc)

+ [∇ψc(tc)]>(xc − tc) +
1

2
[xc − tc]>H(tc)[xc − tc]

)
= El(x)+∑
c

(
[∇ψc(tc)]>xc +

1

2
[xc − tc]>H(tc)[xc − tc]

)
+
∑
c

(
ψ̃c(tc)− [∇ψc(tc)]>tc

)
= El(x) +

∑
c

(
[∇ψc(tc)]>xc +

1

2
[(xc)>H(tc)xc

− (tc)>(H(tc)> +H(tc))xc + (tc)>H(tc)tc]
)

+ const

= El(x) +
∑
c

(
[∇ψc(tc)]>xc+

1

2
[(xc)>H(tc)xc − (tc)>(H(tc)> +H(tc))xc]

)
+ const

(10)

where ε is a small value. Two terms with underlines are merged
as the constant term.

In this formulation, the objective higher-order function E(x)
can be transformed approximately to lower-order at the local
area of t (x ∈ (t− ε, t + ε)). To minimize (10), we only need
to minimize the following equation Et(x):

Et(x) = El(x) +
∑
c

[∇ψc(tc)]>xc+

1

2
[(xc)>H(tc)xc − (tc)>(H(tc)> +H(tc))xc] (11)

Namely (11) is the same as (10) without constant terms.
Therefore, pairwise binary energy minimizing methods can be
adopted to obtain minimum of (11) at the local region of t.
Existing pairwise binary energy (even non-submodular energy)
minimization methods, such as QPBO and TRWS algorithms,
can be employed here. We note (10) is an approximate lower-
order energy of the original energy E(x) at t. Instead of min-
imizing E(x) directly, we propose to iteratively minimizing
the following formula:

Lt(x) = Et(x) + λtH(x, t) (12)

where λt ∈ R controls the size of the iteration region
indirectly. A larger λt denotes a smaller iteration step. H(x, t)
is the Hamming distance:

H(x, t) =
n∑
i=1

|xi − ti| =
n∑
i=1

xi + ti − 2xiti (13)

Lt(x) is still in the lower-order form and H(x, t) does not
change the submodularity of Et(x). Different from [31], we do
not find the minimum of the approximate lower-order function
in the trust region. Instead, we control the size of descent step
by using Hamming distance as lower-order energy and putting
it in Lt(x). H(x, t) will cause penalty, if the solution x∗ after
minimizing Lt(x) is different from t. The larger difference
between x∗ and t, the higher penalty H(x, t) will cause. And
thus the descent step ||x∗− t|| is controlled to become smaller
for the penalty of H(x, t).

After minimizing (12), we use the new solution of
arg minx Lt(x) as a new t′, then compute the next minimum
of Lt′(x) until it reaches convergence. Inspired by the gradient
descent method, the value of λt is increasing gradually during
iterations, which means the weight of Hamming distance will
also become larger. This process can 1) ensure convergence
since the search area becomes smaller and 2) avoid solutions
in each iteration vibrating around minima (Fig. 2). However,
simply increasing λt has a drawback: the step in each iteration
becomes smaller, which decreases the speed of descent. Con-
sidering this issue, similar to the Newton-Raphson method,
we adopt the Armijo rule in the Wolfe conditions [1] to
make sure that our minimizer decreases the energy sufficiently
before convergence. Assume two solutions xk and xk+1 before
and after the k-th iteration. Given a descent direction pk
(we set it to a unit vector in our experiments), we have
xk+1 = xk + βkpk, where βk is the step length. The Armijo
rule is the following inequality:

E(xk+1) ≤ E(xk) + b · βkp>k∇E(xk) (14)

where b = 0.1. If the energies before and after this iteration
satisfy the above inequality, it means the energy E(xk+1)
has been reduced sufficiently by the step length. Therefore,
if the energies before and after one iteration do not satisfy the
Armijo rule, our strategy is to reduce λt to get a larger step
size. Finally, we present our method in Algortihm 1.

In Algorithm 1, the parameter λt controls the step size of
convergence. When λt is increased, the step size becomes
smaller. In addition, the step parameter λ determines the speed
of convergence. We utilize the QPBO method to minimize
Lt(x). QPBO can only find the approximate minimum when
the objective function is non-submodular. However, in our
iteration process, it is not necessary to obtain the optimal
solution of Lt(x). In each iteration, our method finds a lower
energy of E(x) rather than the minimum energy. Thus, a sub-
optimal solution by QPBO in each iteration does not prevent
our method from reaching the minimum in the end, as it only
affects the convergence rate.

Existing general higher-order reduction methods focus on
polynomial energy functions. In addition, many higher-order
potentials are in polynomial forms. Optimizing polynomial
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functions can be viewed as degenerate cases of our optimiza-
tion method. For illustration, we use an intuitive example that
considers a higher-order energy term with three variables:

Eh(x, y, z) = α · xyz (15)

where α ∈ R is a non-zero polynomial coefficient.

Algorithm 1: Higher-order energy minimization method

1. Initialize t←arbitrary point, λt ← λ
2. Loop
3. Build Et(x) by Expanding E(x) at t as (11) or (7)
4. Build Lt(x) as (12)
5. x∗ ← arg minx∈{0,1}n Lt(x)
6. If E(x∗) = E(t)
7. If x∗ = t
8. Break
9. else
10. Do not update t
11. Increase λt: λt ← λt + λ
12. If E(x∗) < E(t)
13. If x∗ and t satisfy the Armijo rule
14. Increase λt: λt ← λt + λ
15. else
16. Decrease λt: λt ← max(λt − λ, λ)
17. t← x∗
18. If E(x∗) > E(t)
19. Do not update t
20. Increase λt: λt ← λt + λ
21. Loop end
22. Output:E(x∗) and x∗

Then we need to expand it by Taylor expansion at point
t = {xt, yt, zt}. Following the reduction method discussed
above, the approximate lower-order term is:

Eh(t)(x, y, z) = α ·

 αytzt
αxtzt
αxtyt

>  x− xt
y − yt
z − zt

+

α

2

 x− xt
y − yt
z − zt

>  0 αzt αyt
αzt 0 αxt
αyt αxt 0

 x− xt
y − yt
z − zt


= αytzt(x− xt) + αxtzt(y − yt) + αxtyt(z − zt)+

αzt(x−xt)(y−yt)+αyt(x−xt)(z−zt)+αxt(y−yt)(z−zt)
(16)

where (16) is derived from (7), and it can also follow from
(11). Now, we extend this example to the general polynomial
higher-order term as follows:

Eh(x1, x2, . . . , xn) =
∑
S⊂V

(αu ·
∏
i∈S

xi)

u = B(S) =
∑
j∈S

2j−1
(17)

Fig. 3. The convergence curve of the higher-order energy function (25). The
solution in each iteration is also shown beside. Only 3 iterations are needed
in order to get its optimal solution.

Its approximate lower-order function at t = {t1, t2, . . . , tn} is:

Eh(t)(x1, x2, . . . , xn) =∑
S⊆V

( ∑
i∈S,J=S−i

αu(xi − ti)
∏
j∈J

tj+

∑
i∈S,i′∈S−i,J=S−{i,i′}

αu(xi − ti)(xi′ − ti′)
∏
j∈J

tj

) (18)

As described in Algorithm 1, λt controls the step size and
is changed adaptively when the iteration goes on. In each
iteration, the descent can be sufficient, which demonstrates
that our algorithm can converge efficiently. We set an example
to illustrate the convergence of our minimization method.
Considering a higher-order function (25) with 10 variables
and the 4-th order, here we give its minimum energies of
each iteration. The energy curve is shown in Fig. 3, and the
minimum value of this energy function converges after three
iterations via our optimization method.

B. Higher-order image segmentation

In this section, we demonstrate the effectiveness of the
proposed higher-order minimization algorithm by solving a
vision problem: image segmentation with appearance entropy.
The higher-order function in [35] is employed to describe
the image segmentation energy. Adopting our optimization
method, we get the segmentation results on two data sets:
the Grabcut data set and the BSD data set. And then we
compare our performance with Grabcut [10] and pPBC [35]
qualitatively and quantitatively.

Some notations for the image segmentation problem are set
first. Let x = [x1, x2, · · · , xn]> ∈ {0, 1}n be the segmentation
result of an image I , where n is the number of pixels in I .
Variable xi = 1 indicates that pixel si belongs to foreground,
otherwise, si belongs to background. Assume hf ∈ Zm
and hb ∈ Zm are the color histograms of foreground and
background, where m is the number of bins of the histograms.
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Then we can get an indicating vector hi =
[hi1, hi2, · · · , him]> ∈ {0, 1}m for each pixel si, where
hik = 1, if pixel si falls into the k-th bin of the histogram,
otherwise, hik = 0. Then we have the following equations:

hf =
∑
si∈I

hixi = Hx

hb =
∑
si∈I

hi(1− xi) = H(1− x)
(19)

where H = [h1,h2, · · · ,hn], and 1 ∈ Rn is a full vector with
value of 1.

Following [10], [35], we obtain the segmentation result by
optimizing a higher-order color model fitting energy:

E(x, θ1, θ0) = Eh(x) + Ep(x)

= −
∑
si∈I

logPr(si|θxi) + |∂x| (20)

where Eh and Ep are the higher-order and pairwise term
of this energy. θ1 and θ0 are the unknown color histograms
for the current foreground x and background x̄, |∂x| =∑
{i,j}∈N pij |xi − xj | is a standard pairwise penalty of the

segmentation boundary. Eh(x) is a color consistency criterion
based on appearance entropy.

The normalized color histograms are used to represent color
models in (20) for each pixel si, then we have:

Pr(si|θ1) = h>i
hf

1>x
=

h>i Hx

1>x

Pr(si|θ0) = h>i
hb

1>(1− x)
=

h>i H(1− x)

1>(1− x)

(21)

where hf

1>x
and hb

1>(1−x) are the normalized foreground and
background histograms.

Then the higher-order energy Eh(x) in (20) can be trans-
formed as follows:

Eh(x) = −
∑
si∈I

xi logPr(si|θ1) + (1− xi) logPr(si|θ0)

= −
∑
si∈I

xi log
h>i Hx

1>x
+ (1− xi) log

h>i H(1− x)

1>(1− x)

(22)

We approximate Eh(x) at a point t using the first-order
Taylor approximation, therefore the approximate lower-order
function is: U0(x) = ∇Eh(t)>(x−t)+o. Compared with the
first-order expansion, the computational cost of second-order
Taylor expansion will increase a lot, since each pixel has one
variable and the number of higher-order cliques is also large.
For computational simplicity, we use the first order expansion
to keep a balance between accuracy and efficiency for image
segmentation. Each component of ∇Eh(t) is:

∂Eh(t)

∂xi
= log 1>t− log h>i Ht

− log 1>(1− t) + log h>i H(1− t)

(23)

Details of derivation are provided in Appendix I.
With (23), the lower-order expansion (11) for this segmen-

tation problem can be rewritten as:

Et(x) = Ep(x) + U0(x) (24)

Fig. 4. The first data block B and its energy Emnist(1) with parameters from
the MNIST dataset. Values from small data sets B[1 . . . 10], B[11 . . . 40] and
B[41 . . . 70] build the unary, pairwise and higher-order terms.

Then, we can use Algorithm 1 to compute the solution.
The proposed order reduction process in Algorithm 1 can use
arbitrary initial value to set t. However, when it comes to
a specific problem in vision application, a meaningful value
depending on the problem would lead to a better result. Thus
we initialize t by a bounding box from user interaction for
image segmentation. We will give more discussion about initial
t and segmentation performance in Section IV.

III. EXPERIMENTAL RESULTS

In this section, we present two different experiments to show
the effectiveness of our minimization method: (a) minimiza-
tion of 1000 higher-order synthetic functions, and (b) higher-
order image segmentation. We compare with two state-of-the-
art order reduction methods in this section: HOCR [19] in the
first experiment and pPBC [35] in two experiments.

A. Synthetic data experiment

In the first experiment, we build 1000 polynomial functions
Emnist(i), i ∈ [1, 1000], whose parameters are taken from
the MNIST dataset (http://yann.lecun.com/exdb/mnist). This
dataset is originally used for character recognition and contains
70000 handwriting digits and their features. We used those
digits (from 0 to 9) to build higher-order functions with
10 variables. By minimizing these synthetic functions, we
compare our method with HOCR. Now we introduce how
one higher-order function is built. We divide 70K numerical
digits into 1000 data blocks, where 70 digits in each block
are used to build one function. The details of building one
function from one block B are shown in Fig. 4. The first
10 digits B[1 · · · 10] in block B are used as the coefficients
of unary terms (vector U in (5)). Values in B[11 · · · 30] are
extracted for pairwise terms, which build the matrix P in (5).
In B[11 · · · 30] , every 3-digits set one pairwise term: the first
digit in the triple as coefficient and the last two as subscripts
of variables. The higher-order terms are built from the last 30
digits B[41 · · · 70] in the block. The first digit in the 5-tuple is
defined as a higher-order coefficient (such as αS in (17)), and
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Fig. 5. The statistics of energy difference of minimum energies from 1000
energy functions between HOCR [19] and our method. The blue region is
much larger than the red region, which shows that our method achieves more
accurate results than HOCR.

the last four digits are denoted as subscripts. For each digit
B[i] in the block, its preceding digit B[i− 1] sets its symbol
as follows:

i) B[i] is used as a coefficient:
If B[i− 1] is even, the coefficient will be B[i];
If B[i− 1] is odd, the coefficient will be −B[i] .

ii) B[i] is used as a subscript:
If B[i− 1] is even, the multiplier will be xB[i] ;
If B[i− 1] is odd, the multiplier will be xB[i].

Fig. 4 gives an example of building a higher-order energy
function with 10 variables and 4 orders from the first block
of the MNIST dataset. And this function is :

Emnist(1)(x0, x1, . . . , x9) = 2x0 − 0x1 + 1x2 − 5x3 − 9x4

−1x5 − 4x6 + 4x7 + 7x8 − 0x9 − 3x2x9 − 6x0x6

+9x0x8 + 9x9x1 − 4x8x6 + 7x6x3 − 0x2x7 − 2x3x1

−0x4x5 − 8x4x1 − 5x1x8x3x7 − 3x9x5x8x1

−6x6x1x7x8 + 2x9x6x7x0 + 4x4x2x0x3 − 5x6x3x4x5
(25)

In these 1000 functions, the average number of iterations
before convergence is 4.5, which proves the fast convergence
of our method. As mentioned before, the convergence curve
of the function (25) extracted from the first block is already
shown in Fig. 3. The task of order reduction is to transform
a higher-order function to a lower-order one, but it does not
promise that the lower-order function is submodular. Then we
use partial optimization methods, such as QPBO, to get an
approximate solution. When QPBO cannot decide whether the
value of one variable in the energy function is ‘0’ or ‘1’, it
labels this variable as ‘-1’, and the solution with ‘-1’ is called
partial solution. This situation happens when the lower-order
function is non-submodular, and we demonstrate the partial
solution of (25). The solutions of the energy (25) are separately
obtained by HOCR and the proposed method as follows:

HOCR : (u, u, u, u, u, u, u, u, u, u), u = −1

Ours : (1, 1, 0, 1, 1, 0, 1, 0, 0, 0)
(26)

Both HOCR and our method adopt QPBO as the lower-order
optimizer. However, our method generates fewer unlabeled
solutions than HOCR. In fact, among all 1000 functions, the
percentage of unlabeled variables of HOCR and the proposed
method are 92.46% and 12.46%.

In the next comparison, when one variable gets the label
‘−1’, we set its solution to ‘0’. We count the minimum
energies of 1000 functions by these two methods. As shown
in Fig. 5, we plot the energy differences of all these 1000
functions from both methods. For instance, we use HOCR
[19] and the proposed method to obtain the minimum energies
of one certain testing function Emnist(i) and get the solution
x∗h and x∗o. The vertical axis in Fig. 5 (a) denotes the value
of Emnist(i)(x

∗
o) − Emnist(i)(x

∗
h). When this value is negative,

the energy difference is shown in blue; when this difference
is larger than 0, the energy difference is denoted by red.
Intuitively, the blue region is much larger than the red region,
which implies that our method can get lower energies than
HOCR. Our method gets smaller energies than HOCR in 974
functions. However, this illustration does not mean that HOCR
obtains incorrect solutions. Both of these two order reduction
methods get partial solutions with label ‘-1’. According to the
formula derivation of (18), our method can preserve the sub-
modularity of the objective polynomial function, which will
be discussed in Section IV. Therefore, our method produces
fewer unlabeled solutions than HOCR. As a result, the final
solutions of HOCR are less accurate than our method, when
we simply change the label ‘-1’ to ‘0’.

B. Image segmentation

Now we demonstrate the viability of our higher-order op-
timization algorithm on the practical higher-order energies by
segmenting images from the Grabcut dataset and the BSD
dataset. The GrabCut dataset includes 50 common size images
with user interaction (bounding boxes) and ground truth. We
run our method on this dataset and compare the results with
the other two well-known methods: Grabcut [10] and pPBC
[35]. We use error rate to measure the qualities of results
from all these three methods, which is the percentage of the
misclassified pixels. As shown in Fig. 6, our method achieves
better performance than both Grabcut and pPBC, where our
segmentation results have smaller error rates. Grabcut min-
imizes (20) via the block coordinate descent optimization
strategy, and it fixes θ1 and θ0 with an initial solution to get a
new solution of x with a lower energy. Then it uses this new
solution to update the foreground and background histograms
θ1 and θ0. pPBC [35] builds the parametric pseudo-bound
in each iteration and picks out the best parameter through
another optimization process, so it runs more slowly than the
proposed method. As for the quantitative comparisons, the
average error rates of Grabcut, pPBC and the proposed method
are 10.0708%, 9.3468% and 7.9254%. The computational
times of pPBC and the proposed method are 11.0290 sec and
1.1628 sec. Grabcut costs 0.9325 sec in average. As discussed
before, Grabcut uses the block coordinate descent optimization
strategy, which is not an actual higher-order reduction process,
therefore it costs slightly less than our method.
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Original image Grabcut [10] pPBC [35] Proposed Ground truth

error=2.22% (0.988s) error=11.13% (9.393s ) error=1.89 % (1.127s)

error= 10.43% (0.825s) error= 10.93% (7.045s) error= 0.54% (1.383s)
Fig. 6. Comparison of interactive segmentation with Grabcut [10], pPBC [35], and the proposed method using the same user interaction (yellow bounding
box). The respective error rates and run time are shown below each image.

In order to further demonstrate the effectiveness of the
proposed method, we apply these three segmentation methods
on the more challenging BSD dataset. The BSD dataset
includes images with a size of 841×321 and ground truth,
where 100 images containing foreground objects are randomly
selected for testing. We manually add boxes on each of them
as user interactions, which indicate the region of foreground
objects roughly. We run the optimization procedure with our
minimization method on these 100 images, and compare the
results with Grabcut and pPBC. The average error rates of
Grabcut, pPBC and the proposed method are 24.20%, 18.83%
and 15.51% on the BSD data set. And the standard deviation
of their error rates are 17.6% (Grabcut), 16.1% (pPBC) and
12.6% (ours). Combining the results on the GrabCut data set,
we can conclude that our method gets better segmentation
performance than both Grabcut and pPBC. The average num-
ber of iterations for our segmentation method for this 100
images is about 5. The average run time for each image of
Grabcut, pPBC and the proposed method are 0.63, 8.71 and
0.87 sec. Our method obtains better segmentation performance
than both Grabcut and pPBC, and the proposed method yields
about 10 times speedup than the pPBC [35].

IV. MORE DISCUSSIONS AND LIMITATIONS

Now we will discuss the local minima and its relations with
initial t. Our optimization framework is similar to the Newton-
Raphson method and the gradient descent method. The latter
two methods find the gradient at local area in each iteration
to obtain a smaller energy. The proposed method builds a
lower-order energy each time and continues the search in the
direction of decreasing energy until the convergence criteria
is satisfied. The main limitation of the proposed algorithm
is that this framework can not determine whether the current
solution is the global minima when the continuous version of
the higher-order energy is non-convex in theory.

As shown in Fig. 7, the red curve is the higher-order energy
E(x). We set two different values t1 and t2 as initial t.
Starting with t1, the minimizer gets convergence at x∗1. The
minimizer starts at t2 ends up at x∗2. And when it converges

(a) (b)

Fig. 7. Illustration of local minima. In (a), t1 and t2 are two initial t
for Algorithm 1. After iterations, these two minimizers get convergence at
x∗1 (global minima) and x∗2 (local minima). Blue dots are solutions in each
iteration beginning at t2, and they are getting closer to x∗2 . These solutions
are moving away from the global minima. (b) shows the local minima of
gradient descent. The blue arrow points to global minima, which is different
from the actual direction of descent (black arrows). Here E(x∗1) < E(x∗2).

at x∗2, it is difficult to jump out of this local minima. For the
minimizer starting with t2, it moves away from the optimal
solution x∗1 in each iteration. The phenomenon that minimizer
is not getting closer to global minima also happens in gradient
descent algorithm, which is shown in Fig. 7 (b). Generally, it
would be a useful technique to initialize t by choosing multiple
values to get a lower energy. However, in our synthetic data
experiment, we set the initial t to ‘0’ vector. In the experiment
of image segmentation, the initial t is defined by the bounding
box. We only use one value to initialize vector t for simplicity.
In addition, we have made two efforts to jump out of the local
minimum at the earlier stage of descent in our implementation.
First, the step size is large with a small λ, which can avoid
getting stuck in local minimum to a large extent. Second, we
adopt Armijo rule in the Wolfe conditions to make sure each
descent is sufficient enough.

The step parameter λ has influence on the convergence rate.
Fig. 8 gives the example of energy curves about the energy
descent with different values of λs. The smaller λ we set,
the faster this energy converges, and also the lower energy it
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Fig. 8. Comparison of energy curves with different values of λ for the image
‘80090’. When λ ≥ 0.01, the smaller λ gets, the faster the energy converges
and the lower energy it achieves.

reaches. That is because a small λ leads to a small λt, which
represents a large step range in each iteration. Thus, the speed
of descent becomes faster. In addition, when the step range is
larger, the proposed method has a higher probability to jump
out of local minima. Therefore, it can reach a lower energy.
However, our experiments show that, when λ < 0.01, it will
not converge faster than the one with λ = 0.01 (see the red
line in Fig. 8). In addition, as mentioned before, if λ = 0,
the minimizer may be vibrating around the minima (Fig. 2).
Among the 1000 energies of our synthetic experiment, there
are 426 energy functions with vibrations if we set λ = 0. In
these 426 functions, the vibration may cause non-convergence.
As a result, we choose λ = 0.01 in our experiments.

Now we discuss the submodularity of our optimization
method. A set function f : 2V → R is called submodular
[12] if it satisfies:

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ), ∀S, T ⊆ V (27)

We denote the marginal gain in the subset of S by f(i|S) =
f({i}∪S)− f(S). Submodular functions satisfy the property
of diminishing gains: f(i|S) ≥ f(i|T ) for all S ⊆ T ⊆ V .
Based on our algorithm, we will set a conclusion:

Property: If the higher-order terms of the objective func-
tion are submodular, the lower-order terms they are trans-
formed to in our minimization method are also submodular.
Our method can preserve submodularity. If a higher-order term
ψc(xc) in (6) is submodular, its lower-order terms in (7) are
also submodular. The proof is given in Appendix II.

V. CONCLUSION

We have presented a novel minimization approach for gener-
al higher-order binary energy functions. The proposed method
adopts first or second-order Taylor expansion to transform a
higher-order energy function to a lower-order one at a local
region, and then the lower-order function is minimized to
get a new solution with smaller energy. Our method obtains
the satisfactory solution of the original higher-order function
by iteratively optimizing the lower-order function. In the
experiments, we solve the image segmentation problem by
optimizing the higher-order energy with appearance entropy
via our minimization method. The comparison results show
that our method achieves better performance than state-of-the-
art order reduction methods. And the convergence rate of our

method is faster than the previous approaches. In the future
work, we expect to explore the application of image denoising
by our higher-order reduction method using the Field of
Experts (FoE) model as [19] and [33]. Furthermore, we are
working on finding more higher-order priors for complex
nature scene, which is not in polynomial form. Then we can
utilize the advantage of the proposed energy minimization
method to solve more computer vision problems.

APPENDIX I: THE DERIVATION OF THE HIGHER-ORDER
TERM Eh(x) FOR SEGMENTATION

As shown in (23) in Section II, Eh(x) is built as follows:

Eh(x) = −
∑
si∈I

xi log
hT
i Hx

1Tx
+ (1− xi) log

hT
i H(1− x)

1T(1− x)

= −
∑
si∈I

xi logh
T
i Hx+

∑
si∈I

xi log 1
Tx

−
∑
si∈I

(1− xi) logh
T
i H(1− x)

+
∑
si∈I

(1− xi) log 1
T(1− x)

= A(x) +B(x) + C(x) +D(x)

(28)

where the bottom number of log is 2. In (28), we split
this higher-order term into four parts: A(x), B(x), C(x)
and D(x). The process of obtaining the partial derivative of
Eh(x) equals to get the partial derivatives of the above four
components respectively.

We give some notations for simplifying hT
i Hx. First we

define ei ∈ Rn as an indicating vector. Especially, the
i − th element of ei equals to 1 and the others equal to 0.
Then we define a index set fallin(i) = {j|the pixel sj ∈
I falls in the histogram bin which si contributes to}.

According to the definition of hi, it can be found that:

If j ∈ fallin(i), then hi = hj,h
T
i hj = 1

If j /∈ fallin(i), then hT
i hj = 0

(29)

As a result, we can rewrite hT
i Hx as follows:

hT
i Hx = hT

i (h1,h2, · · · ,hn)x

= (hT
i h1,h

T
i h2, · · · ,hT

i hn)x

=

 ∑
j∈fallin(i)

eT
j

x =
∑

j∈fallin(i)

xj

(30)

For k /∈ fallin(i), hT
k Hx =

∑
j∈fallin(k) xj does not

include xi. Then we can further split A(x) to two components
for each xi:

A(x) = −
∑

j∈fallin(i)

xj logh
T
j Hx−

∑
j /∈fallin(i)

xj logh
T
j Hx (31)

Since the second component of A(x) in (31) does not
consist of xi, we only need to consider the first component to
get the partial derivative on xi. Finally, the derivative of A(x)
is defined as follows:
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∂A(x)

∂xi
= − xih

T
i Hei

hT
i Hx ln 2

− loghT
i Hx−

∑
j 6=i,j∈fallin(i)

xjh
T
j Hej

hT
j Hx ln 2

= − loghT
i Hx−

∑
j∈fallin(i)

xjh
T
j Hej

hT
j Hx ln 2

= − loghT
i Hx−

∑
j∈fallin(i)

xj( ∑
k∈fallin(i)

xk

)
ln 2

= − loghT
i Hx−

∑
j∈fallin(i)

xj( ∑
k∈fallin(i)

xk

)
ln 2

= − loghT
i Hx− 1

ln 2
(32)

Similarly, we can obtain the derivative of B(x):

∂B(x)

∂xi
=

xi
1Tx ln 2

+ log 1Tx+
∑
j 6=i

xj
1Tx ln 2

= log 1Tx+
∑
j

xj
1Tx ln 2

= log 1Tx+
1

ln 2

(33)

By defining y = 1− x, we then obtain C(x) = A(y),
D(x) = B(y). It is easy to find the derivative of C(x):

∂C(x)

∂xi
=
∂A(y)

∂yi

∂yi
∂xi

= −∂A(y)
∂yi

= loghT
i H(1− x) +

1

ln 2

(34)

And the derivative of D(x) becomes:

∂D(x)

∂xi
=
∂B(y)

∂yi

∂yi
∂xi

= −∂B(y)

∂yi

= − log 1T(1− x)− 1

ln 2

(35)

Adding each terms from (32) (33) (34) (35), we can get
the derivative of Eh(x):

∂Eh(x)

∂xi
= log 1Tx− loghT

i Hx

− log 1T(1− x) + loghT
i H(1− x)

(36)

APPENDIX II: THE PROOF OF THE PROPERTY IN SECTION IV

Property: If the higher-order terms of the objective function
are submodular, the lower-order terms they transform to in our
minimization method are also submodular. Specifically, if a
higher-order term ψc(xc) in (6) is submodular, its lower-order
terms with the form of (7) are also submodular.

Proof: According to the property of diminishing gains of a
submodular function, if a discrete function f(x) is submodular,
then ∀i, the discrete derivative ∂f(x) = f(x + ei) − f(x) is
non-increasing in x, and ∂2ψ̃c(tc)

∂xc
i∂x

c
j

in (7) is non-positive. We
consider one pairwise term in (7):

P c(xci , x
c
j) =

1

2!

|c|∑
i,j=1

∂2ψ̃c(tc)
∂xci∂x

c
j

(xci − ti)(x
c
j − tj) (37)

Then we have:

P c(0, 1) + P c(1, 0)− P c(1, 1)− P c(0, 0)

= −1

2

∂2ψ̃c(tc)
∂xci∂x

c
j

≥ 0
(38)

Therefore, the lower-order functions in (7) are submodular,
since unary terms are always submodular.
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