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ABSTRACT

This work presents a novel virtual analog model of the
Lockhart wavefolder. Wavefolding modules are among the
fundamental elements of ’West Coast’ style analog synthe-
sis. These circuits produce harmonically-rich waveforms
when driven by simple periodic signals such as sinewaves.
Since wavefolding introduces high levels of harmonic dis-
tortion, we pay special attention to suppressing aliasing
without resorting to high oversampling factors. Results ob-
tained are validated against SPICE simulations of the orig-
inal circuit. The proposed model preserves the nonlinear
behavior of the circuit without perceivable aliasing. Fi-
nally, we propose a practical implementation of the wave-
folder using multiple cascaded units.

1. INTRODUCTION

In 1965, Bob Moog (1934–2005) presented his seminal
work on the design of a voltage-controlled filter (VCF)
at the 17th Annual AES Meeting [1]. Moog’s design be-
came a key element of the celebrated Moog sound and
of electronic music in general. His work paved the way
for the development of a synthesis style known as ”East
Coast” synthesis, named after Moog’s New York origins.
Two years prior, in 1963, the San Francisco Tape Mu-
sic Center, along with composers Morton Subotnick and
Ramon Sender, commissioned a voltage-controlled instru-
ment from the Berkeley-based Don Buchla (1937–2016).
This led to the development of Buchla’s first synthesizer,
the Buchla 100, and the birth of ”West Coast” synthesis [2].

Although contemporaries, the synthesis paradigms of
Moog and Buchla had very little in common. In East Coast
synthesis, sounds are sculpted by filtering harmonically-
rich waveforms, such as sawtooth or square waves, with
a resonant filter. This approach is known in the literature
as subtractive synthesis. In contrast, West Coast synthe-
sis eschews traditional filters and instead manipulates har-
monic content, or timbre, at oscillator level using a variety
of techniques such as waveshaping and frequency modu-
lation. The resulting waveforms are then processed with a

Copyright: c© 2017 Fabián Esqueda et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

lowpass gate (LPG), a filter/amplifier circuit that uses pho-
toresistive opto-isolators, or vactrols, in its control path [3].
To set them apart from their East Coast counterparts, West
Coast oscillators are called ”complex oscillators”.

One of Buchla’s early waveform generators featured a
wavefolding circuit designed to control timbre. Wave-
folding is a type of nonlinear waveshaping where por-
tions of a waveform are inverted or ”folded back” on it-
self. When driven by a signal with low harmonic content,
e.g. a sine or triangular oscillator, wavefolders can generate
harmonically-rich waveforms with distinctive tonal quali-
ties. This work presents a novel virtual analog (VA) model
of the Lockhart wavefolder, a West Coast-style circuit pro-
posed by Ken Stone as part of his CGS synthesizer and
available as a DIY project on his personal website [4].

Recent years have seen an increase in the number of
manufacturers embracing West Coast synthesis and releas-
ing their own takes on classic Buchla and Serge (another
famed West Coast designer of the 1970s) modules. Mod-
ern synthesizer makers, such as Make Noise, Intellijel and
Doepfer, all feature complex oscillators and LPGs in their
product lines. This growing interest in modular synthe-
sizers, which are generally exclusively expensive, serves
as the principal motivation behind the development of VA
models of these circuits. VA synthesizers are generally af-
fordable and are exempt from the inherent limitations of
analog circuits, e.g. faults caused by aging components.

An essential requirement in VA modeling is to preserve
the ”analog warmth” of the original circuit [5,6]. This per-
ceptual attribute is associated with the nonlinear behavior
inherent to semiconductor devices and vacuum tubes, and
can be modeled via large-signal circuit analysis. This ap-
proach has been researched extensively in the context of
VCFs [7–11] and effects processing [12–19]. The use of
nonlinear waveshaping in digital sound synthesis is also
well documented [20–23].

A particular challenge in VA models of nonlinear devices
is aliasing suppression. High oversampling factors are usu-
ally necessary to prevent harmonics introduced by nonlin-
ear processing from reflecting to the baseband as aliases.
Aliasing reduction has been widely studied in the context
of waveform synthesis [24–30]. Moreover, recent work
has extended the use of a subset of these techniques to spe-
cial processing cases such as signal rectification and hard
clipping [31,32]. The proposed Lockhart VA model incor-
porates the antiderivative antialiasing method proposed by
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Figure 1. Schematic of the Lockhart wavefolder circuit.

Parker et al. [33, 34].
This paper is organized as follows. Sections 2 and 3 fo-

cus on the analysis of the Lockhart circuit and derivation
of an explicit model. Section 4 deals with the digital im-
plementation of the model. Section 5 discusses synthesis
topologies based around the proposed wavefolder. Finally,
Section 6 provides concluding remarks and thoughts for
further work.

2. CIRCUIT ANALYSIS

Figure 1 shows a simplified schematic of the Lockhart
wavefolder adapted from Ken Stone’s design [4]. This
circuit was originally designed to function as a frequency
tripler by R. Lockhart Jr. [4, 35], but was later repurposed
to perform wavefolding in analog synthesizers. The core of
the circuit consists of an NPN and a PNP bipolar junction
transistor tied at their base and collector terminals. In or-
der to carry out the large-signal analysis of the circuit, we
replace Q1 and Q2 with their corresponding Ebers-Moll
injection models [10] as shown in Figure 2. Nested sub-
scripts are used to distinguish between the currents and
voltages in Q1 from those in Q2. For instance, ICD1

is
the current through the collector diode in Q1.

We begin our circuit analysis by assuming that the sup-
ply voltages V± will always be significantly larger than
the voltage at the input, i.e. V– < Vin < V+. This as-
sumption is valid for standard synthesizer voltage levels
(V± = ±15V, Vin ∈ [−5, 5]V), and implies that the base-
emitter junctions ofQ1 andQ2 will be forward-biased with
approximately constant voltage drops for all expected in-
put voltages. Applying Kirchhoff’s voltage law around
both input–emitter loops (cf. Fig. 1) results in

Vin = V+ −RIE1 − VBE1 , (1)
Vin = VBE2 +RIE2 + V−, (2)

where IE1
and IE2

are the emitter currents, and VBE1
and

VBE2 are the voltage drops across the base-emitter junc-
tions of Q1 and Q2, respectively. Solving (1) and (2) for

IE1IE1

↵RICD1 ⇡ 0↵RICD1 ⇡ 0

↵FIED1↵FIED1

IoutIout

RLRL VoutVout

↵FIED2↵FIED2

↵RICD2 ⇡ 0↵RICD2 ⇡ 0

RR

RR

IED1IED1

ICD1ICD1

IC1IC1

IC2IC2

ICD2ICD2

IED2IED2

VinVin

IE2IE2

V+V+

V�V�

Q1Q1

Q2Q2

Figure 2. Ebers-Moll equivalent model of the Lockhart
wavefolder circuit.

the emitter currents then yields:

IE1
=

V+ − VBE1
− Vin

R
, (3)

IE2 =
Vin − VBE2 − V–

R
. (4)

Next, we apply Kirchhoff’s current law at the collector
nodes:

Iout = IC1
− IC2

, (5)
IC1

= αFIED1
− ICD1

, (6)
IC2

= αFIED2
− ICD2

. (7)

Assuming that the contribution of reverse currents αRICD1

and αRICD2
to the total emitter currents IED1

and IED2
is

negligible, we can establish that

IED1
≈ IE1

and IED2
≈ IE2

.

Substituting these values in (6) and (7), and setting the
value αF = 1 gives a new expression for the output cur-
rent:

Iout = IE1
− IE2

− ICD1
+ ICD2

. (8)

Combining (3) and (4) we can derive an expression for
the difference between emitter currents. Since the voltage
drops VBE1 & VBE2 across the base-emitter junctions are
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approximately equal (i.e. VBE1 ≈ VBE2 ) for the expected
range of Vin, their contribution to the difference of emitter
currents vanishes. Therefore,

IE1
− IE2

= −2Vin

R
. (9)

Substituting (9) into (8) yields an expression for the total
output current Iout in terms of the input voltage and the
currents through the collector diodes:

Iout = −2Vin

R
− ICD1 + ICD2 . (10)

Now, the I-V relation of a diode can be modeled using
Shockley’s ideal diode equation, defined as

ID = IS

(
e
VD
ηVT − 1

)
, (11)

where ID is the diode current, IS is the reverse bias satura-
tion current, VT is the thermal voltage and η is the ideality
factor of the diode. Applying Shockley’s diode equation to
the collector diodes using ideality factor η = 1, and sub-
stituting into (10) gives us

Iout = −2Vin

R
− IS

(
e
VCD1
VT − e

VCD2
VT

)
. (12)

Next, we use Kirchhoff’s voltage law to define expressions
for VCD1 and VCD2 in terms of Vin and Vout

VCD1 = Vout − Vin, (13)
VCD2 = Vin − Vout, (14)

and replace these values in (12). This gives us

Iout = −2Vin

R
− IS

(
e
Vout−Vin
VT − e

Vin−Vout
VT

)
. (15)

As a final step, we multiply both sides of (15) by the load
resistanceRL and remove the exponential functions to pro-
duce an expression for the output voltage of the Lockhart
wavefolder:

Vout = −2RLVin

R
− 2RLIS sinh

(
Vout − Vin

VT

)
. (16)

3. EXPLICIT FORMULATION

Equation (16) describes a nonlinear implicit relationship
between the input and output voltages. Its solution can be
approximated using numerical methods such as Halley’s
method or Newton-Raphson. These methods have previ-
ously been used in the context of VA modeling, e.g. in
[10, 13, 16].

In this work, we propose an explicit formulation for
the output voltage of the Lockhart wavefolder derived us-
ing the Lambert-W function. The Lambert-W function 1

W (x) is defined as the inverse function of x = yey ,
i.e. y = W (x). Recent research has demonstrated its suit-
ability for VA applications. Parker and D’Angelo used it

1 Strictly speaking, W (x) is multivalued. This work only utilizes the
upper branch, often known as W0(x) in the literature.

to model the control circuit of the Buchla LPG [3]. Several
authors have used it to solve the implicit voltage relation-
ships of diode pairs [3,36,37]. As described in [36], W (x)
can be used to solve problems of the form

(A+Bx)eCx = D, (17)

which have the solution

x =
1

C
W

(
CD

B
eAC/B

)
− A

B
. (18)

Since the collector diodes in the model are antiparallel,
only one of them can conduct at a time [38]. Going back
to (10), when Vin ≥ 0 virtually no current flows through
the collector diode of Q1 (i.e. ICD1

≈ 0). The same can
be said for ICD2

when Vin < 0. By combining these new
assumptions with (12)–(14), we can derive a piecewise ex-
pression for the Lockhart wavefolder:

Vout = −2RL

R
Vin + λRLIS exp

(
λ(Vin − Vout)

VT

)
, (19)

where λ = sgn(Vin) and sgn() is the signum function.
This expression is still implicit; however, it can be rear-

ranged in the form described by (17), which gives us:(
2RL

R
Vin + Vout

)
exp

(
λVout

VT

)
= λRLIs exp

(
λVin

VT

)
(20)

Solving for Vout as defined in (18) yields an explicit model
for the Lockhart wavefolder:

Vout = λVTW (∆ exp (λβVin))− αVin, (21)

where

α =
2RL

R
, β =

R+ 2RL

VTR
and ∆ =

RLIS

VT
. (22)

An important detail to point out is that the output of the
Lockhart wavefolder is out of phase with the input signal
by 180◦. This can be compensated with a simple inverting
stage.

4. DIGITAL IMPLEMENTATION

The voltages and currents inside an electronic circuit are
time-dependent. Therefore, the Lockhart wavefolder can
be described as a nonlinear memoryless system of the form

Vout(t) = f(Vin(t)), (23)

where f is the nonlinear function (21) and t is time. Equa-
tion (24) can then be discretized directly as

Vout[n] = f(Vin[n]), (24)

where n is the discrete-time sample index.
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4.1 Aliasing Considerations

The highly nonlinear behavior of (21) poses a challenge for
its accurate discrete-time implementation. As an arbitrary
input waveform is folded, new harmonics will be intro-
duced. Those harmonics whose frequency exceeds half the
sampling rate, or the Nyquist limit, will be reflected into
the baseband and will cause unpleasant artifacts. Oversam-
pling by high factors is commonly employed to mitigate
this problem but this approach increases the computational
requirements of the system by introducing redundant oper-
ations.

In this work, we propose using the first-order antideriva-
tive method presented in [33] and [34]. This method is
derived from the analytical convolution of a continuous-
time representation of the processed signal with a first-
order lowpass kernel. The antialiased form for the Lock-
hart wavefolder is given by

Vout[n] =
F (Vin[n])− F (Vin[n− 1])

Vin[n]− Vin[n− 1]
, (25)

where F () is the antiderivative of f(), the wavefolder func-
tion (21). This antiderivative is defined as

F (Vin) =
VT

2β
(1 +W (∆ exp (λβVin)))

2 − α

2
V 2

in . (26)

Since the antiderivative of W is defined in terms of W
itself, this form provides a cheap alternative to oversam-
pling. This means the valueW , which constitutes the most
computationally expensive part of both (21) and (26), only
has to be computed once for each output sample.

Now, when Vin[n] ≈ Vin[n − 1] (25) becomes ill-
conditioned. This should be avoided by defining the spe-
cial case

Vout[n] = f

(
Vin[n] + Vin[n− 1]

2

)
, (27)

when |Vin[n]− Vin[n− 1]| is smaller than a predetermined
threshold, e.g. 10−6. This special case simply bypasses the
antialiased form while compensating for the half-sample
delay introduced by the method.

4.2 Computing the Lambert-W Function

Several options exist to compute the value of W (x). In
fact, scripting languages such as MATLAB usually contain
their own native implementations of the function. Paiva et
al. [38] proposed the use of a simplified iterative method
which relied on a table-read for its initial guess. In the in-
terest of avoiding lookup tables, we propose approximating
the value of the Lambert-W function directly using Hal-
ley’s method, as suggested in [39]. To compute wm, an
approximation to W (x), we iterate over

wm+1 = wm −
pm

pmsm − rm
, (28)

where

pm = wme
wm − x,

rm = (wm + 1)ewm ,

sm =
wm + 2

2(wm + 1)
,
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Figure 3. Input–output relationship of the Lockhart wave-
folder circuit (inverted) measured using (a) SPICE and
(b) the proposed digital model, for load resistor values
RL = 1k, 5k, 10k and 50kΩ (in order of increasing steep-
ness).

and m = 0, 1, 2, ...,M − 1. M is then the number of iter-
ations required for pm to approximate zero. The efficiency
of the method will then depend on the choice of the initial
guess w0. An optimized MATLAB implementation of this
method can be found in [40].

5. RESULTS

To validate the proposed model, the circuit was simulated
using SPICE. Figure 3(a) shows the input–output relation-
ship of the system measured with SPICE for values of Vin
between –1.2 and 1.2 V and different load resistance val-
ues. Figure 3(b) shows the input–output relation of the
proposed model (21) simulated using MATLAB. The po-
larity of the transfer function was inverted to compensate
for the introduced phase shift. An ad hoc scaling factor of
2 was used on both measurements to compensate for the
energy loss at the fundamental frequency. The results pro-
duced by the proposed model fit those produced by SPICE
closely. As the value of the load resistor RL is raised, the
steepness of the wavefolder function increases. This in-
crease in steepness translates into more abrasive tones at
the output.

Figures 4(a) and (b) show the output of the wavefolder
model when driven by a 500-Hz sinewave with a peak am-
plitude of 1 V, andRL = 10k and 50 kΩ, respectively. Both
curves are plotted on top of their equivalent SPICE simu-
lations, showing a good match. The original input signal
has been included to help illustrate the folding operation
performed by the system.

Figure 5(b) shows the magnitude spectrum of a 1-V
sinewave with fundamental frequency f0 = 2145 Hz
processed by the trivial (i.e. non-antialiased) wavefolder
model (21). A sample rate Fs = 88.2 kHz (i.e. twice the
standard 44.1 kHz audio rate), was used in this and the rest
of the examples presented in this study. This plot shows the
high levels of aliasing distortion introduced by the wave-
folding process, even when oversampling by factor 2 is
used. Figure 5(d) shows the magnitude spectrum of the
same waveform processed using the antialiased form (25).
As expected, the level of aliasing has been significantly re-
duced, with very few aliases left above the −80 dB mark.
As illustrated by the left-hand side of Fig. 5, the antialiased
form preserves the time-domain behavior of the system.
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Figure 4. Time-domain view of the circuit’s SPICE simu-
lation vs the proposed model for a 500-Hz sinusoidal input
with values of RL = (a) 10 kΩ and (b) 50 kΩ.

The proposed antialiased form is particularly effective
at reducing aliased components at low frequencies, espe-
cially below the fundamental. This behavior is illustrated
in Fig. 6 which shows the logarithmic magnitude spectrum
of a 4186-Hz sinewave (MIDI note C8 and highest fun-
damental frequency of a piano) processed both trivially
and with the antialiasing form. The signal depicted by
Fig. 6(a) suffers from a false perceived fundamental fre-
quency at roughly 300 Hz. For the case of the antialiased
signal in Fig. 6(b) this issue has been ameliorated. This
low-frequency behavior is advantageous in our case be-
cause at low frequencies the audibility of aliasing distor-
tion is only limited by the hearing threshold [41].

The performance of the antialiased model form was fur-
ther evaluated by computing the A-weighted noise-to-
mask ratio (ANMR) for a range of folded sinusoidal in-
puts. The ANMR has been previously suggested as a
perceptually-informed measure to evaluate the audibility
of aliasing distortion [28,41]. The algorithm computes the
power ratio between harmonics and aliasing components,
but takes into account the masking effects of the former.
For instance, aliases clustered around harmonics will be
rendered inaudible by the auditorty masking effects of such
harmonics. This phenomenon is particularly common at
high frequencies. An A-weighting filter is applied to all
signals prior to evaluation to account for the frequency-
dependent sensitivity of hearing for low-level sounds [41].
Signals with an ANMR value below −10 dB are consid-
ered to be free from audible aliasing.

Figure 7 compares the measured ANMRs of a set of
unit-amplitude sinewaves with fundamental frequencies
between 1–5 kHz processed by the wavefolder model us-
ing the antialasing form and different oversampling fac-
tors. The reference signals required to compute the ANMR
values were generated using additive synthesis as detailed
in [28]. All signals were downsampled back to audio rate
(i.e. 44.1 kHz) prior to evaluation. This plot demonstrates
that the performance of the proposed method, when com-
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Figure 5. Waveform and magnitude spectrum of a 2145-
Hz unit amplitude sinewave (a)–(b) processed trivially and
(c)–(d) with the first-order antialiased form. Circles indi-
cate non-aliased components. Parameter RL = 50 kΩ.

bined with two-times oversampling, is on par with over-
sampling by factor 8. For all fundamental frequencies be-
low approx. 4.2 kHz the ANMR lies below the −10 dB
line. In terms of computational costs, the antialiasing
method is approx. four times cheaper than trivial oversam-
pling by 8 when measured under similar circumstances.

6. PRACTICAL SYNTHESIS USAGE

In practical sound synthesis applications an individual
wavefolder is rarely used as the timbral variety it can pro-
duce is quite limited. Most designs, for example the In-
tellijel µFold, employ a number of wavefolding stages in
series with intermediate gain elements used to space the
folds. The number of stages varies between designs, and is
in fact user variable in some cases. Typically somewhere
between two and six folders are used.

Timbral control is then achieved using two parameters.
The first is the gain at the input of the wavefolder. This
parameter allows the overall brightness of the sound to be
varied, and can be used to provide articulation to a sound
similarly to a filter in subtractive synthesis or modulation
index in FM synthesis. The second parameter is provided
by adding a DC offset to the input of the wavefolder. This
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Figure 6. Log scale magnitude spectrum of a 4186-Hz
sinewave (a) folded trivially and (b) with antialiasing. Pa-
rameter RL = 50 kΩ.
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Figure 7. Measured ANMR of a range of sinusoidal wave-
forms processed using the Lockhart wavefolder model
(RL = 50 kΩ) under five different scenarios: direct audio
rate, oversampling by factors 2, 3 and 8, and oversampling
by 2 combined with the antialiasing form. Values below
the –10 dB threshold indicate lack of perceivable aliasing.

breaks the symmetry of the folding and varies the relative
amplitudes of the harmonics, without strongly effecting
the overall brightness of the sound. This parameter can
be modulated, e.g. with a low-frequency-oscillator (LFO),
to provide an effect reminiscent of pulse-width modulation
(PWM).

In order to build a well-behaved cascade of wavefolders,
we need to make sure the individual folders satisfy two cri-
teria. Firstly, the individual folders must provide approxi-
mately unity gain when Vin ≈ 0, and approximately nega-
tive unit gain beyond the folding point, when |Vin| >> 0.
Secondly, each stage should start folding at the same point
with respect to its individual input. We can achieve this
with the model described above by appropriate setting of
RL and the addition of static pre- and post-gain stages.

An appropriate RL can be determined empirically. The
pre- and post- gain can be determined by measuring the
value of Vout at exactly the folding point. The pre-gain is
taken to be approximately this value, and the post-gain is
taken to be its inverse. In this case, RL = 7.5 kΩ was
chosen, which leads to pre- and post-gains of approx. 1/4
and 4, respectively.

The proposed structure is shown in Fig. 9, in this case
employing four folders. In addition to the folding stages,
a saturator is placed at the output to model the behaviour
of an output buffer stage. Table 1 summarizes the compo-
nent and constant values for the proposed structure. Figure
8(a) shows the result of processing a unity gain sinusoidal
input with this structure for G = 10 and zero DC offset.
Figure 8(b) illustrates the outcome of processing the same
waveform for G = 10 and a DC offset of 5V.

A real-time demo of the proposed topology implemented
using Max/MSP and Gen is available at http://research.spa.
aalto.fi/publications/papers/smc17-wavefolder.
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Figure 8. Waveform for a unit gain sine signal processed
using the proposed cascaded structure with (a)G = 10 and
(b) G = 10 plus a 5-V DC offset.

Component Value Constant Value
R 15 kΩ VT 26 mV
RL 7.5 kΩ IS 10−17 A

Table 1. Summary of component and constant values for
the proposed cascaded model. Parameter Fs = 88.2 kHz.

7. CONCLUSION

In this work we explored the behavior of the Lockhart
wavefolder circuit, a West Coast-style nonlinear wave-
shaper. A VA model of the circuit was then derived using
the Lambert-W function. Results obtained were validated
against SPICE simulations of the original circuit. To tackle
the aliasing caused by the nonlinear nature of wavefolding,
the proposed model was extended to incorporate the first-
order antiderivative antialiasing method. When combined
with oversampling by factor 2, the antialiased wavefolder
model is free from perceivable aliasing while still being
suitable for real-time implementation.

Furthermore, a proposed synthesis topology consisting of
four cascaded wavefolding stages was presented. The rec-
ommended structure demonstrates the capabilities of the
derived circuit model in a synthesis environment. How-
ever, the proposed topology is not unique, as it can be
modified according to the needs of the particular applica-
tion. For instance, the number of stages can be modified.
Similarly, the value of the internal load resistance can be
increased for added brightness. This effectively showcases
the flexibility of VA models.

Future work on the topic of wavefolding will focus on
modeling the original Buchla timbre circuit. This kind of
work can then extend to the study of other West Coast cir-
cuits and synthesis techniques.
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tialiasing for memoryless nonlinearities,” IEEE Signal Process. Lett.,
to be published.

[35] R. Lockhart Jr., “Non-selective frequency tripler uses transistor satu-
ration characteristics,” Electronic Design, no. 17, Aug. 1973.

[36] K. J. Werner, V. Nangia, A. Bernardini, J. O. Smith III, and A. Sarti,
“An improved and generalized diode clipper model for wave digital
filters,” in Proc. 139th Conv. Audio Eng. Soc., New York, USA, Oct.–
Nov. 2015.

[37] A. Bernardini, K. J. Werner, A. Sarti, and J. O. S. III, “Modeling
nonlinear wave digital elements using the Lambert function,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 63,
no. 8, pp. 1231–1242, Aug 2016.

[38] R. C. D. de Paiva, S. D’Angelo, J. Pakarinen, and V. Välimäki, “Em-
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