
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep Gate Recurrent Neural Network

Citation for published version:
Gao, Y & Glowacka, D 2016, Deep Gate Recurrent Neural Network. in RJ Durrant & K-E Kim (eds),
Proceedings of The 8th Asian Conference on Machine Learning. vol. 63, Proceedings of Machine Learning
Research, PMLR, The University of Waikato, Hamilton, New Zealand, pp. 350-365, 8th Asian Conference
on Machine Learning, Hamilton, New Zealand, 16/11/16.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of The 8th Asian Conference on Machine Learning

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/131077741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/deep-gate-recurrent-neural-network(8425b9aa-2935-4851-9d6a-bbc4ed99b24f).html


JMLR: Workshop and Conference Proceedings 63:350–365, 2016 ACML 2016

Deep Gate Recurrent Neural Network

Yuan Gao gaoyuankidult@gmail.com
University of Helsinki

Dorota Glowacka glowacka@cs.helsinki.fi

University of Helsinki

Editors: Robert J. Durrant and Kee-Eung Kim

Abstract

This paper explores the possibility of using multiplicative gate to build two recurrent neural
network structures. These two structures are called Deep Simple Gated Unit (DSGU)
and Simple Gated Unit (SGU), which are structures for learning long-term dependencies.
Compared to traditional Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), both structures require fewer parameters and less computation time in sequence
classification tasks. Unlike GRU and LSTM, which require more than one gate to control
information flow in the network, SGU and DSGU only use one multiplicative gate to control
the flow of information. We show that this difference can accelerate the learning speed
in tasks that require long dependency information. We also show that DSGU is more
numerically stable than SGU. In addition, we also propose a standard way of representing
the inner structure of RNN called RNN Conventional Graph (RCG), which helps to analyze
the relationship between input units and hidden units of RNN.

Keywords: Recurrent Neural Networks(RNN); Deep Neural Networks; Neural Network
Representation

1. Introduction

The use of advanced architectures of RNNs, such as Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber (1997)) and Gated Recurrent Unit (GRU) (Cho et al. (2014a))
for learning long dependencies has led to significant improvements in various tasks, such as
Machine Translation (Bahdanau et al. (2015)) or Robot Reinforcement Learning (Bakker
(2001)). The main idea behind these networks is to use several gates to control the informa-
tion flow from previous steps to the current steps. By employing the gates, any recurrent
unit can learn a mapping from one point to another. Hochreiter proposed using two gates,
namely an input gate and an output gate in the original LSTM (Hochreiter and Schmidhu-
ber (1997)), while Gers added a forget gate to the original LSTM to form the well-known
LSTM network (Gers et al. (2000)). Similarly, in GRU a reset gate and an update gate are
used for the same purpose. In this paper, we simplify GRU to contain only one gate, which
we name Simple Gated Unit (SGU). Then, by adding one layer to SGU, we form Deep SGU
(DSGU). Both models use multiplicative operation to control the flow of information from
the previous step to the current step. By doing so, we can reduce one-third (for SGU) and
one-sixth (for DSGU) of parameters needed and accelerate the learning process compared
to GRU. The results also indicate that adding layers in RNN’s multiplication gate is an
interesting direction of optimizing RNN structure.

c⃝ 2016 Y. Gao & D. Glowacka.



DSGU

In the following sections, we first describe the standard graph for representing detailed
inner structure of RNN, i.e. relationships between the input units and recurrent units of
each time step. We call this graph RNN Conventional Graph (RCG). Next, we introduce
the structures of LSTM and GRU using RCG, followed by a description of the proposed
network SGU and its variant DSGU. Finally, we present experimental results showing the
performance of the proposed networks in several tasks, including IMDB semantic analysis,
pixel-by-pixel MNIST classification task and a text generation task.

2. RNN Conventional Graph

RNN is a neural network with recurrent connections. The first step of training an RNN
network is to unfold recurrent connections in time, which results in a deep hierarchy con-
sisting of layers of the inner structure of RNN. In most cases, researchers produce their
own graphs or use only mathematical equations to represent the structure of an RNN net-
work. However, these representations can be rather complicated and idiosyncratic to each
researcher. We designed RCG in order to provide a clear and standard view of the inner
structure of RNN.

RCG consists of an input unit, an output unit, default activation functions and gates.
It is easy to see how many and what kind of gates an RNN has and the graph can be easily
translated into formulas. Normally, RCG takes xt (sometimes also x1 to xt−1 ) and ht−1

(sometimes also h1 to ht−2 ) as inputs and produces ht as an output. An RCG represents
the input on the left side and the output on the right side, which enables the graph to show
clearly how the information from the left side flows through different structures to the right
side.

In the following sections, we use RCG to describe different structures of RNN.

2.1. RCG example: Vanilla Recurrent Neural Network

Vanilla Recurrent Neural Network (VRNN) is the simplest form of RNN. It consists of one
input node and several hidden nodes. Hidden nodes are recurrent units, which means the
current value ht is updated according to the previous unit ht−1 and the current input it.
Figure 1 shows the relationship between xt, ht−1 and ht in VRNN.

In the form of RCG, VRNN can be represented as:

xt

ht−1

ht

⊕ tanh

Figure 1: RCG of Vanilla Recurrent Neural Network. Recurrent input ht−1 is drawn from
the upper side of the graph. Similarly, the input of the current step xt is drawn
from the left side. With an arrow → indicating a matrix multiplication operation,
the information from two different sources goes into the addition node

⊕
in the

middle of the graph. Followed by a non-linear function tanh, it outputs the
current value of hidden units ht

351



Gao Glowacka

Mathematically, the updating rule of VRNN is defined as:

ht = σ (Wxhx+Whhht−1 + b) (1)

In Figure 1, an arrow → represents multiplication with a matrix, an addition node
⊕

indicates an addition operation to all the inputs. For example, xt → represents Wxhxt and
ht−1 → representsWhhht−1. As a consequence, the whole graph can be directly transformed
into Formula 1. The bias vector b is ignored in the graph as it can be integrated into the
multiplication matrix.

3. LSTM and GRU

LSTM and GRU were developed to tackle a major problem suffered by traditional VRNN,
namely the exploding and vanishing gradient problem for long-term dependency tasks (Pas-
canu et al. (2012)). They both use gated units to control the information flow through the
network. However, LSTM differs from GRU in that LSTM uses three gates to control
the information flow of the internal cell unit, while GRU only uses gates to control the
information flow from the previous time steps.

3.1. LSTM

LSTM contains three gates: an input gate, an output gate and a forget gate – illustrated
in Figure 2. At each iteration, the three gates try to remember when and how much the
information in the memory cell should be updated. Mathematically, the process is defined
by Formulas 2 to 6. Similarly to VRNN, LSTM can also be represented by RCG.

Figure 2 shows the RCG representation of LSTM. In the figure, xt → is defined as
Wxix, ct−1 → is defined as Wcict , ht−1 → is defined as Whiht−1, -var- means that the
output from the left side is named var and passed to the right side,

⊕
means summation

over all the inputs,
⊗

means multiplication over all the inputs. For symbols
⊕

and
⊗

,
the input connections are normally defined as left and up connections, but if there are four
connections to the node, then only the right connection is an output connection and the
rest of the connections are input connections.

Mathematically, the relationship between the input and the output of LSTM is defined
by a set of the following equations.

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (2)

f t = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf ) (3)

ct = f tct−1 + it tanh (Wxcxt +Whcht−1 + bc) (4)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (5)

ht = ot tanh(ct) (6)

Formula 2 describes the update rule of the input gate. It takes the output ht−1 of the
last time step of the system, the input for the current time step xt , the memory cell value
of the last time step ct−1 and a bias term bt into its updating rule. Similarly, Formulas 3
to 6 use these parameters to update their values. Generally, the input gate controls the
information flow into the memory cell, the forget gate controls the information flow out of

352



DSGU

xt

ht−1 ct−1

it
⊕ ⊕

xt

ht−1 ⊗⊕

xt

ht−1 ct−1

f t

ct−1 ⊕⊗ ⊕ ⊗

xt

ct ct

htot

ht−1⊕ ⊕ ⊗

tanh

tanh

tanh

tanh
tanh

Figure 2: LSTM represented in the RCG form. The input xt is fed in from the left side
and recurrent connections are fed from either down or up. The outputs ct and
ht of this time step are output on the left side.

the system and the output gate controls how the information can be translated into the
output. These three gates form a path of remembering the long-term dependency of the
system. A direct relationship between the RCG representation of LSTM and Formulas 2
to 6 can be easily observed. The first line of Figure 2 shows Fomula 2. The second line of
Figure 2 shows how Formula 4 calculates ct . Similarly, the third and fourth lines of the
figure map to Formula 3 and Formula 5, respectively. In the RCG representation of LSTM,
three multiplication gates are contained in the graph. It is an important characteristic of
LSTM.

3.2. GRU

GRU was first designed by Kyunghyun Cho in his paper about Neural Machine Translation
(Bahdanau et al. (2015)). This structure of RNN only contains two gates. The update
gate controls the information that flows into memory, while the reset gate controls the
information that flows out of memory. Similarly to the LSTM unit, GRU has gating units
that modulate the flow of information inside the unit, however, without having a separate
memory cell. Figure 3 shows the RCG representation of GRU.

The elements in Figure 3 are similar to the elements in Figure 2. However, the activation
ht of GRU at time t is a linear interpolation between the previous activation ht−1 and the

candidate activation h̃t, which is represented by
∑⊗

in the RCG representation of GRU

and defined mathematically as:

ht = (1− zt) · ht−1 + zt · h̃t, (7)

where an update gate zt decides how much the unit updates its activation, or information
from the previous step.

353



Gao Glowacka

xt

ht−1

rt

ht−1

⊕ ⊗

xt
⊕

xt zt

ht−1

h̃t

ht−1

ht

⊕ ∑⊗

sig

tanh

sig

Figure 3: RCG representation of GRU. The input xt is fed in from the left side. Recurrent
connections are fed from either down or up, and output ht is passed to the left.
The special gate

∑⊗
in the right corner is defined in Equation 7.

zt = σ1(Whzht−1 +Wxzxt) (8)

rt = σ1(Whrht−1 +Wxrxt) (9)

h̃t = σ2(Wchxxt +Wchr(rt · ht−1)) (10)

ht = (1− zt)ht−1 + zth̃t (11)

The RCG representation of GRU can be directly translated into Formulas 8 to 11.
Formula 8 represents the update gate, Formula 9 represents the reset gate and Formula 11
shows how the output ht is calculated.

4. SGU and DSGU

In this section we describe the proposed Simple Gated Unit (SGU) and Deep Simple Gated
Unit (DSGU).

4.1. SGU

SGU is a recurrent structure designed for learning long-term dependencies. Its aim is to
reduce the amount of parameters needed to train and to accelerate the training speed in
temporal classification tasks. As we observed earlier, GRU uses two gates to control the
information flow from the previous time step to the current time step. However, compared

354



DSGU

to GRU, SGU uses only one gate to control the information flow in the system, which is
simpler and faster in terms of computation time.

xt xg

ht−1

zg

ht−1

zout
⊗ ⊗

xt zt

ht−1 ht−1

ht

⊕ ∑⊗

tanh softplus

hard sig

one-layer multiplicative gate

Figure 4: SGU in the form of RCG. This structure receives information from the current
step and amplifies it by multiplying it with the current hidden states.

Figure 4 shows the structure of SGU. The input is fed into two different function units
of the structure. The first line of the graph represents the gate to the recurrent neural
network and the second line is the normal recurrent operation. Mathematically, Figure 4
represents the following formulas:

xg = Wxhxt + bg (12)

zg = σ1(Wzxh(xg · ht−1)) (13)

zout = σ2(zg · ht−1) (14)

zt = σ3(Wxzxt + bz +Whzht−1) (15)

ht = (1− zt)ht−1 + zt · zout (16)

Compared to GRU, SGU needs fewer parameters. From Figure 4, we can observe that
six weight matrices are needed for GRU, but SGU only needs four weight matrices. Inspired
by IRNN, which is a Recurrent Neural Network (RNN) with rectifier as inner activation
function (Le et al. (2015)), the structure uses softplus activation function for input, which
intuitively enables the network to learn faster.

4.2. DSGU

DSGU is also an RNN structure designed for classification tasks. DSGU is designed to
tackle a problem associated with SGU – we observed that if SGU is continuously trained,
the process might drop dramatically. This is probably due to the shallowness of the gate
and the nature of the softmax activation function.

Adding an extra weight matrix to zout would make controlling the gate with a more
complicated structure easier and the network more stable. The structure of DSGU is shown

355



Gao Glowacka

in Figure 5. The only difference compared to SGU is that before zout one weight matrix is
added to the previous output.

xt

ht−1

zg

ht−1

zout
⊗ ⊗

xt z

ht−1 ht−1

ht

⊕ ∑⊗

tanh sig

hard sig

two-layer multiplicative gate

Figure 5: The structure of DSGU. Similarly to SGU, the input is fed into two different
function units of the structure, namely z and zout.

The first line of the graph represents the gate to the recurrent neural network and the
second line is the normal recurrent operation. Mathematically, Figure 5 represents the
following formulas:

xg = Wxhxt + bg (17)

zg = σ1(Wzxh(xg · ht−1)) (18)

zout = σ2(Wgo(zg · ht−1)) (19)

z = σ3(Wxzxt + bz +Whzht−1) (20)

ht = (1− zt)ht−1 + zt · zout (21)

5. Experimental Results

In this section we report on the performance of SGU and DSGU in three classification tasks.

5.1. IMDB Sentiment Classification Task

We use a collection of 50,000 reviews from IMDB, extracted and provided by Stanford
University (Maas et al. (2011)). Each movie has no more than 30 reviews and the whole
dataset contains an even number of positive and negative reviews. As a consequence, a
totally random algorithm yields 50% accuracy.

We use a system made by a stack of two layers. The first layer is the RNN layer (GRU,
SGU, DSGU or LSTM) and the second layer is a dense layer with one output neuron.
In this experiment, we use sigmoid as the activation function of the output layer and the
binary cross-entropy as the cost function. All the tests were performed using Titan X GPU
architecture.

356



DSGU

We used standard initializations for the LSTM network, including the forget gate. The
network uses glorot uniform as the initialization method of the input matrices and orthog-
onal initialization for the recurrent matrices. See Table 1 for initialization methods and
activation functions for all the parameters in LSTM.

update gate reset gate output gate cell

W glorot uniform glorot uniform glorot uniform None

U orthogonal orthogonal orthogonal None

activation hard sigmoid hard sigmoid hard sigmoid tanh

Table 1: The initialization method and the activation function of each gate of LSTM in the
IMDB sentiment analysis task.

Our implementation of GRU uses the standard structure mentioned above. W is the
matrix used for multiplication of x, and U is the matrix used for multiplication of the hidden
units. Table 2 shows all the configurations of the initialization of different parameters.

input gate forget gate

W glorot uniform glorot uniform

U orthogonal orthogonal

activation sigmoid hard sigmoid

Table 2: The initialization method and activation function of each gate of GRU in the
IMDB sentiment analysis task.

We ran GRU, SGU, DSGU and LSTM 50 times on the IMDB sentiment analysis dataset
and calculated the mean and variance over all the experiments. The test results comparing
SGU, DSGU, GRU and LSTM are shown in Figure 6 and Figure 7. Figure 6 compares
the models in terms of the number of iterations, while Figure 7 compares the models in
terms of time. Compared with LSTM and GRU, SGU can converge in a very short period
(in approximately 2000 iterations or 180 seconds). In this task, we can also observe high
variance in the testing phase when learning with LSTM, which makes LSTM less stable
in practice. Both figures use the mean values for comparisons of SGU, DSGU, GRU and
LSTM. In both cases, SGU and DSGU learn faster than GRU and LSTM.

5.2. MNIST Classification from a Sequence of Pixels

Image classification is a major problem in the field of image processing. MNIST is the
simplest and the most well-studied dataset that has been used in many image classification
tasks (LeCun et al. (1998)). In recent studies, pixel-by-pixel MNIST (Le et al. (2015)) was
used to train RNN networks in order to test their ability to classify temporal data. Below,
we follow research presented in Quoc Lee’s paper (Le et al. (2015)) and compare SGU and
DSGU against two models used in the paper (Le et al. (2015)) i.e. LSTM and IRNN.

In our experiments, we use a system made by a stack of two layers of neural networks.
The first layer is a corresponding RNN layer (GRU, IRNN, SGU, DSGU or LSTM) and the
second layer is a dense layer. Rmsprop optimization algorithm, softmax activation function

357



Gao Glowacka

Figure 6: Comparison of SGU, DSGU, GRU and LSTM in the IMDB sentiment classifica-
tion task. The y-axis shows validation accuracy of the model, whist the x-axis
represents the number of iterations.

Figure 7: Comparison of SGU, DSGU, GRU and LSTM in the IMDB sentiment classifica-
tion task in terms of seconds required to perform the task.

and categorical cross entropy were used for LSTM and IRNN in order to match the settings
used by Quoc Lee (Le et al. (2015)). For IRNN, we used a relatively high learning rate
of 1e-6 in order to speed up the learning process (In original paper (Le et al. (2015)), the

358



DSGU

learning rate is 10−8). We also tried using IRNN with Adam as the optimization algorithm,
however the system did not learn in this case. In GRU, SGU and DSGU experiments, we
used Adam (Kingma and Ba (2014b)) as the optimization algorithm, sigmoid function as
the final layer activation function and categorical cross-entropy as the cost function. We
would like to point out that using a sigmoid function as the final layer activation function
does not give a proper probability distribution over different classes but it does provide a
right prediction of class. Using sigmoid function as final layer activation function is essential
for systems built using SGU and DSGU. All experiments were performed without cutting
gradient.

Figure 8: Validation accuracy of GRU, DSGU, IRNN and SGU and LSTM in terms of time
in the MNIST classification task. Both DSGU and SGU reached a very high
accuracy within a short period of time. However, SGU dropped after a short
period, which might be due to the fact that it is too simple for learning this task.

359



Gao Glowacka

Figure 9: Validation accuracy of GRU, DSGU, IRNN and SGU and LSTM in terms of
number of iterations in the MNIST classification task. Both DSGU and SGU
reached a very high accuracy within a short period of time. However, SGU
dropped after a short period, which might be due to the fact that it is too simple
for learning this task.

The results, presented in Figures 8 and 9, show that both GRU and DSGU reached the
best validation error accuracy (0.978) within a relatively short period of time (around 42000
seconds). (The best result of IRNN in paper (Le et al. (2015)) is 97% with a relatively long
training time.) However, SGU failed to increase after around 30 iterations, which indicates
hidden units in SGU might not be enough to keep the information in its structure in this
particular task. This problem could be fixed by cutting the gradient in the structure,
however, in order to provide a more general model and to avoid this problem, we propose
using DSGU. GRU also behaved unstable in this task. We suspect using sigmoid function
as an activation function of the output layer is not very suitable for GRU. This problem
could also be fixed by cutting the gradient. After this paper was accepted, we noticed our
result was surpassed by using LSTM with batch normalization (Cooijmans et al. (2016)).

5.3. Text Generation

Text generation is a specific task designed for the testing performance of recurrent neural
networks. According to Graves (Graves (2013)), the recurrent neural network needs to be
trained with a large number of characters from the same distribution, e.g. a particular
book.

In this experiment, we use a collection of writings by Nietzsche to train our network. In
total, this corpus contains 600901 characters and we input one character at a time in order
to train the network to find a common pattern in the writing style of Nietzsche.

360



DSGU

The structure for learning includes an embedding layer, a corresponding recurrent layer,
and an output layer. For this experiment, we vary the recurrent layer and the activation
function of the output layer. We tested DSGU, GRU and SGU with the sigmoid activation
function in the output layer, while in LSTM, we used both sigmoid and softmax function
in the output layer. The optimization algorithm for the models is Adam. We run each
configuration 15 times and average the results.

Figure 10 shows the results of the text generation task in terms of the number of itera-
tion. Figure 11 represents the results of the text generation task in terms of time. We can
observe that DSGU reached the best accuracy (0.578) the fastest. SGU is also relatively
fast. However, the best it can get is less than GRU (0.555 vs 0.556).

Figure 10: Validation accuracy of DSGU, GRU and SGU and LSTM in terms of the number
of iterations in the text generation task. Each line is drawn by taking the mean
value of 15 runs of each configuration.

361



Gao Glowacka

Figure 11: Validation accuracy of DSGU, GRU and SGU and LSTM in terms of time in
the text generation task. Each line is drawn by taking the mean value of 15 runs
of each configuration.

6. Conclusion

In this paper, we explored the possibility of using multiplicative gate to build two recurrent
neural network structures, namely Deep Simple Gated Unit (DSGU) and Simple Gated
Unit (SGU). Both structures require fewer parameters than GRU and LSTM.

In experiments, we noticed that both DSGU and SGU are very fast and often more
accurate than GRU and LSTM. However, unlike DSGU, SGU seems to sometimes lack the
ability to characterize accurately the mapping between two time steps, which indicates that
DSGU might be more useful for general applications.

We also found deep multiplication gate to be an intriguing component of RNN. On one
hand, with properly designed multiplication gate, RNN can learn faster than other models
but become more fragile due to the fluctuation of data, on the other hand, adding a layer
to the multiplication gate can make RNN more stable, while keeping the learning speed.

Regarding the potential drawbacks of SGU and DSGU, one thing we would like to point
out is that both SGU and DSGU use sigmoid activation function (instead of softmax) as
the output activation function for binary and multi-class classification tasks. We should
note here that although binary classification using SGU and DSGU provides a probabilis-
tic distribution, in multi-class case these models only provide the best class instead of a
probabilistic distribution.

In the future, we would like to explore the usefulness of deep multiplication gate mathe-
matically, test the performance with a deeper gate as well as perform experiments on more
tasks.

362



DSGU

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. ICLR, 2015.

B Bakker. Reinforcement learning with long short-term memory. In In Advances in Neural
Information Processing Systems 15 (NIPS-2002), pages 1475–1482, 2003.

Bram Bakker. Reinforcement learning with long short-term memory. In Neural Information
Processing Systems, pages 1475–1482, 2001.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014a.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv, 2014b. URL http://arxiv.org/abs/1406.1078.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback
recurrent neural networks. arXiv preprint arXiv:1502.02367, 2015.

Tim Cooijmans, Nicolas Ballas, Csar Laurent, alar Glehre, and Aaron Courville. Recurrent
batch normalization. 2016.

C Daniel, G Neumann, and J Peters. Hierarchical Relative Entropy Policy Search. In Fif-
teenth International Conference on Artificial Intelligence and Statistics (AISTATS 2012),
pages 1–9, 2012. URL http://www.is.tuebingen.mpg.defileadmin/user_upload/

files/publications/2012/AISTATS-2012-Daniel.pdf.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing Machines. pages 1–26, October
2014. URL http://arxiv.org/abs/1410.5401.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. pages
1–13, December 2014a. URL http://arxiv.org/abs/1412.6980.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014b.

363

http://arxiv.org/abs/1406.1078
http://www.is.tuebingen.mpg.defileadmin/user_upload/files/publications/2012/AISTATS-2012-Daniel.pdf
http://www.is.tuebingen.mpg.defileadmin/user_upload/files/publications/2012/AISTATS-2012-Daniel.pdf
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1412.6980


Gao Glowacka

J. Kober, J. a. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32:1238–1274, 2013. ISSN 0278-3649.
doi: 10.1177/0278364913495721. URL http://ijr.sagepub.com/cgi/doi/10.1177/

0278364913495721.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. Advances In Neural Information Processing Systems,
pages 1–9, 2012. ISSN 10495258.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep Learning for Detecting Robotic Grasps.
CoRR, abs/1301.3, 2013. URL http://arxiv.org/abs/1301.3592.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and
Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association for Com-
putational Linguistics. URL http://www.aclweb.org/anthology/P11-1015.

Maja J Matari, Complex Systems, and M.J. Matarić. Reinforcement learning in the multi-
robot domain. Autonomous Robots, 4:73–83, 1997. ISSN 0929-5593. doi: 10.1023/A:
1008819414322. URL http://www.springerlink.com/index/K662611455651Q42.pdf.

Hermann Mayer, Faustino Gomez, Daan Wierstra, Istvan Nagy, Alois Knoll, and Jürgen
Schmidhuber. A system for robotic heart surgery that learns to tie knots using recurrent
neural networks. In IEEE International Conference on Intelligent Robots and Systems,
pages 543–548, 2006. ISBN 142440259X. doi: 10.1109/IROS.2006.282190.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. arXiv preprint arXiv:1211.5063, 2012.

Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In IEEE International
Conference on Intelligent Robots and Systems, pages 2219–2225, 2006. ISBN 142440259X.
doi: 10.1109/IROS.2006.282564.

Anton Maximilian Schäfer, Steffen Udluft, et al. Solving partially observable reinforcement
learning problems with recurrent neural networks. In Workshop Proc. of the European
Conf. on Machine Learning, pages 71–81, 2005.

Yi Sun, Daan Wierstra, Tom Schaul, and Juergen Schmidhuber. Efficient natural evolu-
tion strategies. Proceedings of the 11th Annual conference on Genetic and evolutionary
computation GECCO 09, pages 539–545, 2009. doi: 10.1145/1569901.1569976. URL
http://portal.acm.org/citation.cfm?doid=1569901.1569976.

364

http://ijr.sagepub.com/cgi/doi/10.1177/0278364913495721
http://ijr.sagepub.com/cgi/doi/10.1177/0278364913495721
http://arxiv.org/abs/1301.3592
http://www.aclweb.org/anthology/P11-1015
http://www.springerlink.com/index/K662611455651Q42.pdf
http://portal.acm.org/citation.cfm?doid=1569901.1569976


DSGU

Richard S. Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In In Advances in
Neural Information Processing Systems 12, pages 1057–1063, 1999. doi: 10.1.1.37.9714.

Paul J. Werbos. Backpropagation through time: What it does and how to do it. Proceedings
of the IEEE, 78:1550–1560, 1990. ISSN 00189219. doi: 10.1109/5.58337.

Yezhou Yang, Y Li, and Y Aloimonos. Robot Learning Manipulation Action Plans by
”Watching” Unconstrained Videos from the World Wide Web. Under Review, 2015.
URL http://www.umiacs.umd.edu/~yzyang/paper/YouCookMani_CameraReady.pdf.

365

http://www.umiacs.umd.edu/~yzyang/paper/YouCookMani_CameraReady.pdf

	Introduction
	RNN Conventional Graph
	RCG example: Vanilla Recurrent Neural Network

	LSTM and GRU
	LSTM
	GRU

	SGU and DSGU
	SGU
	DSGU

	Experimental Results
	IMDB Sentiment Classification Task
	MNIST Classification from a Sequence of Pixels
	Text Generation

	Conclusion

