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SUMMARY

Caveolae introduce flask-shaped convolutions into
the plasma membrane and help to protect the
plasma membrane from damage under stretch
forces. The protein components that form the bulb
of caveolae are increasingly well characterized, but
less is known about the contribution of proteins
that localize to the constricted neck. Here we make
extensive use of multiple CRISPR/Cas9-generated
gene knockout and knockin cell lines to investigate
the role of Eps15 Homology Domain (EHD) proteins
at the neck of caveolae. We show that EHD1, EHD2,
and EHD4 are recruited to caveolae. Recruitment of
the other EHDs increases markedly when EHD2,
which has been previously detected at caveolae, is
absent. Construction of knockout cell lines lacking
EHDs 1, 2, and 4 confirms this apparent functional
redundancy. Two striking sets of phenotypes are
observed in EHD1,2,4 knockout cells: (1) the charac-
teristic clustering of caveolae into higher-order as-
semblies is absent; and (2) when the EHD1,2,4
knockout cells are subjected to prolonged cycles of
stretch forces, caveolae are destabilized and the
plasmamembrane is prone to rupture. Our data iden-
tify the first molecular components that act to cluster
caveolae into a membrane ultrastructure with the
potential to extend stretch-buffering capacity and
support a revised model for the function of EHDs at
the caveolar neck.

INTRODUCTION

Caveolae are flask-shaped invaginations of the plasma mem-

brane. They are especially abundant in endothelial cells, adipo-

cytes, and muscle cells [1, 2]. The phenotypes of mice lacking

key components of caveolae, and of human patients with rare
Current Biology 27, 2951–2962, October 9, 2017 ª 2017
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mutations, show that caveolae are important for the mainte-

nance of the normal physiological function in these cell types [1].

Caveolae protect cells from rupture of the plasma membrane

under mechanical stress [3, 4]. When tension in the plasma

membrane increases, caveolae disassemble or flatten out, and

it is possible that the consequent release of membrane convolu-

tion may act as a buffer to prevent excessive tension from

breaking the membrane [4–7]. Further activities of caveolae in

sensing mechanical force and transducing consequent intracel-

lular signals are also likely to be significant [3, 8], and caveolae

may also help maintain membrane integrity through endocytosis

of damaged membrane regions [9, 10]. Caveolae have been

associated with a range of additional functions, including signal

transduction, lipid homeostasis, and endocytosis [8, 11–17].

Given the potential importance of caveolae as reservoirs of

membrane, it is notable that caveolae not only generate mem-

brane convolution because of their individual morphology but

also associate to form extensive higher-order clusters of inter-

linked caveolae [18–20]. One reason why the functional rele-

vance of caveolar clusters remains incompletely understood is

that the molecular mechanism for linking multiple caveolae

together has been unclear.

The protein complex that shapes the caveolar bulb is

composed of caveolin and cavin proteins [21, 22]. In mammals

there are three caveolins, caveolin1 being essential for gener-

ating morphologically defined caveolae in non-muscle cells

[23, 24]. There are four cavins, cavin1 (also termed PTRF

[25–27]) being the most important. Cavin1 is essential for pro-

ducing caveolae in all cell types [25]. The precise stoichiometry

with which cavins and caveolins associate means that studies

overexpressing individual components are prone to artifact

and are hard to interpret, and even moderate overexpression

of caveolin1-GFP generates altered sub-cellular dynamics

[22, 28, 29]. Gene editing to insert fluorescent protein tags into

proteins expressed from endogenous gene loci offers a solution

to this problem [30, 31].

Protein complexes at the neck of caveolae are less well char-

acterized than those at the bulb. They contain EHD2 and may

contain pacsin2 (syndapin2) and dynamin2 at specific points in

the dynamic life cycle of individual caveolae [32–35]. EHD2 is a

member of the Eps15 Homology Domain (EHD) proteins, of
MRC Laboratory of Molecular Biology. Published by Elsevier Ltd. 2951
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which there are 4 in mammals [36]. Despite their high level of

amino acid sequence identity (70%–86%), EHDs have been

reported to have different localizations and functions. Only

EHD2 has been conclusively detected at caveolae [32–34], and

it is also unique among EHDs in having a nuclear localization

signal and a potential role in transcriptional regulation within

the nucleus [37]. EHD1 and EHD3 have overlapping but distinct

roles in the dynamics of peri-nuclear tubular endosomal mem-

branes [38–44]. EHD4 is also involved in endosomal membrane

dynamics [45]. EHD1, EHD3, and EHD4 have been shown to

bind to each other [36]. EHDs 1 and 3 have also been shown

to act together in vesicle trafficking steps critical for early events

in the establishment of a primary cilium [38, 40].

The ATPase activity of EHD2 drives membrane constriction

and remodeling in vitro, behavior analogous to that of the

related mechano-enzyme dynamin [46]. Dynamin has a well-es-

tablished direct role in membrane scission and vesicle budding

[47]. However, experiments in cells show that loss of EHD2

expression or reduced EHD2 ATPase activity caused increased

dynamics of caveolin1, leading to the interpretation that EHD2

acts to stabilize caveolae at the plasma membrane [32, 33].

This posits the role of EHD2 in membrane dynamics as being

opposite to that of dynamin, in that guanosine triphosphate

(GTP) hydrolysis by dynamin drives membrane shape changes

coupled to scission of vesicles while ATP hydrolysis by EHD2 is

thought to drive membrane shape changes and stabilize

caveolae.

The current study was initiated with the goal of ascertaining

more about how EHD2 activity is linked to the dynamics or

budding of caveolae. We found, however, that in cells where

the EHD2 gene is effectively deleted there are minimal effects

on caveolar dynamics. Further experiments revealed that this

is due to functional compensation by EHD1 and EHD4. Cells

lacking all of the members of the EHD family showed caveolar

phenotypes that are not observed in the EHD2 knockout cells

and provide new insight into the function of EHDs at caveolae.

RESULTS

Minimal Effects on the Abundance, Dynamics, and
Sub-cellular Distribution of Caveolae in DEHD2 Cells
We used CRISPR/Cas9 to generate NIH 3T3 cells where muta-

tions in EHD2 lead to the loss of expressed protein (DEHD2; Fig-

ure S1A). Quantification of the number of morphologically

defined caveolae in these cells did not reveal a loss of caveolae

from the plasmamembrane (Figure S1B).We also generated NIH

3T3 cells lacking caveolin1 (DCAV1) to act as a positive control,

and here the loss of caveolae was readily detected (Figure S1B).

In order to assay dynamics of caveolae in DEHD2 cells,

CRISPR/Cas9 and an appropriate targeting construct were

used to express GFP fused to the C terminus of endogenous

caveolin1. Fluorescence recovery after photobleaching (FRAP)

experiments on these cells, and control NIH 3T3 cells where

endogenous caveolin1 had been tagged in the same way [30],

did not detect altered mobility of caveolin1-GFP in the DEHD2

cells (Figure S1C).

Surface biotinylation with NHS-SS-Biotin, followed by selec-

tive removal of extracellular biotin, was used to specifically

label all endocytic compartments [48]. The proportion of endog-
2952 Current Biology 27, 2951–2962, October 9, 2017
enously tagged caveolin1-GFP co-localizing with endocytic

compartments appeared the same in DEHD2 and control cells

(Figure S1D).

The lack of clear effects on caveolar abundance, dynamics,

and sub-cellular distribution in DEHD2 cells contrasts with

increased internalization or dynamics of caveolin1 reported

when EHD2 is knocked down using small interfering RNAs

(siRNAs) [32, 33]. We and others have noted some variable and

limited co-localization between tagged and overexpressed

EHD1, EHD3, or EHD4 and caveolar markers [32, 34]. This sug-

gested that the activity of other EHD proteins at caveolae could

be relevant to the mild phenotypes of DEHD2 cells.

EHD1 and EHD4 Are Recruited to Caveolae
We produced NIH 3T3 cells expressing GFP fused at the

C terminus of endogenous EHD1, EHD2, and EHD4 using

CRISPR/Cas9 (Figure S2). The same approach did not yield

detectable expression of tagged EHD3. PCR on cDNA from

NIH 3T3 cells did not reveal the expression of EHD3. We

therefore presumed that EHD3 was not expressed in our cells.

Unless otherwise stated, all further experiments in this study

used EHD proteins and caveolar markers (caveolin1 and

cavin1) fused to fluorescent proteins expressed from their

endogenous genomic loci in NIH 3T3 cells, and, for simplicity,

we refer to them simply as the expressed fusion protein

(‘‘EHD2-GFP,’’ and so on).

EHD2-GFP, as predicted, co-localized with the caveolar

marker cavin1-mCherry [32–34]. EHD1-GFP and EHD4-GFP

had the punctate distribution previously described for these

proteins, partially co-localized with endocytosed transferrin,

and they were also present in linear tube-like structures

[43, 45, 49] (Figure S3). Total internal reflection (TIR) micro-

scopy, however, revealed smaller structures containing both

proteins closely associated with the plasma membrane, and

these frequently co-localized with cavin1-mCherry (Figures 1A

and 1B). Therefore, a fraction of the total EHD1-GFP and

EHD4-GFP expressed is likely to be recruited to caveolae.

Use of a pixel mask-based quantitative approach allowed us

to estimate that over 90% of EHD2-GFP detected in TIR

images is in caveolae, while for both EHD1-GFP and EHD4-

GFP the proportion is around 30%.

Immunoelectron microscopy of EHD1-GFP and EHD4-GFP

using pre-embedding labeling with affinity-purified anti-GFP

antibodies confirmed that both proteins can be detected in

caveolae (Figures 1C and 1D). No specific labeling with these

antibodies was detected in cells that do not express GFP.

Gold particles were frequently detected at the neck of caveolae,

agreeing with the apparent distribution of EHD2 around the cav-

eolar neck [22, 32].

EHD2 Co-precipitates with Both EHD1 and EHD4
The presence of EHD1 and EHD4 in caveolae at the same time as

EHD2 suggested that they may form heteromeric complexes.

EHD2-GFP could be efficiently precipitated with anti-GFP anti-

bodies. This resulted in specific co-precipitaton of EHD1 and

EHD4 (Figure 2A). We also carried out the reverse immunopre-

cipitation, precipitating EHD1-GFP or EHD4-GFP and blotting

for endogenous EHD2 (Figure 2B). Again, a fraction of total

EHD2 was specifically associated with EHD1 and EHD4.
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Figure 1. EHD1-GFP and EHD4-GFP Are

Present in Caveolae When Expressed at

Endogenous Levels

(A) TIR imaging of EHD1-GFP and cavin1-mCherry

expressed by gene editing in live NIH 3T3 cells.

Scale bar, 10 mm.

(B) TIR imaging of EHD4-GFP and cavin1-mCherry

expressed by gene editing in live NIH 3T3 cells.

Scale bar, 10 mm.

(C) Immunoelectron microscopy with anti-GFP

antibodies in cells expressing EHD1-GFP by gene

editing. Scale bar, 100 nm.

(D) Immunoelectron microscopy with anti-GFP

antibodies in cells expressing EHD4-GFP by gene

editing. Scale bar, 100 nm.

See also Figures S1–S3.
These data suggest that EHD2 can form complexes containing

both EHD1 and EHD4. To confirm this and to ask whether these

complexes require the presence of both EHD1 and EHD4 at the

same time, we used transient transfection to express GFP-EHD2

and either mCherry-EHD1 or mCherry-EHD4 in a cell line lacking

EHD1, EHD2, and EHD4 (DEHD1,2,4 described below). Specific

association between EHD2 and EHD1 or EHD4 was detected,

and the formation of the relevant complexes was not contingent

on the presence of all three EHD proteins (Figure 2C).

EHD1 Recruitment to Caveolae Is Increased in DEHD2

Cells
We produced cell lines lacking EHD1 and EHD4, once more

using CRISPR/Cas9 (DEHD1 and DEHD4; Figures S2 and S4)
Current B
and identified an antibody against EHD1

that provides highly specific staining via

indirect immunofluorescence (Figure S2).

Control NIH 3T3 cells expressing cavin1-

mCherry and DEHD2 cells also express-

ing cavin1-mCherry were labeled with

the anti-EHD1 antibody (Figure 3A).

Confocal images revealed a marked

redistribution of EHD1 in the knockout

cells, with much more co-localization

with cavin1-mCherry apparent. Indeed,

in the DEHD2 cells, EHD1 co-localized

with cavin1-mCherry to an extent indistin-

guishable from the co-localization

exhibited between EHD2-GFP and

cavin1-mCherry in wild-type (WT) cells

(Figure S5). Co-localization between

EHD1 and cavin1-mCherry was quanti-

fied using Pearson’s correlation coeffi-

cient, confirming the increase in DEHD2

cells (Figure 3B). The change in distribu-

tion of EHD1 was not accompanied by a

significant change in expression levels

of this protein or EHD4 (Figure 3C). As

EHD1 and EHD4 co-localize extensively

and bind to each other, it is likely that

EHD4, like EHD1, re-localizes to caveolae

in DEHD2 cells [36].
We used CRISPR/Cas9 to produce NIH 3T3 cells lacking

expression of both EHD1 and EHD4. Co-localization between

GFP-EHD2 expressed by transient transfection and cavin1-

mCherry expressed by genome editing was indistinguishable in

WT and theDEHD1,4 cells (Figure 3D), so recruitment of EHD2 to

caveolae is not dependent on the presence of EHD1 or EHD4.

We conclude that there is unlikely to be any co-dependency be-

tween EHD1, 2, and 4 for recruitment to caveolae, and that EHD1

and EHD4 could therefore compensate when EHD2 is absent.

DEHD1,2,4 Cells Lack Higher-Order Clusters of
Caveolae
To test the hypothesis that EHD1 and 4 compensate for a lack of

EHD2 function, we used CRISPR/Cas9 to produce NIH 3T3 cells
iology 27, 2951–2962, October 9, 2017 2953
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Figure 2. Co-immunoprecipitation of EHD2 with EHD1 and EHD4

(A) Lysates from cells expressing EHD2-GFP by gene editing of the EHD2

locus or negative controls expressingGFP alonewere incubatedwith anti-GFP

antibody beads. The lysate after this incubation is shown as ‘‘unbound’’ and

washes from the isolated beads as ‘‘wash.’’ Sample eluted from the beadswith

sample buffer is shown as ‘‘IP eluate’’ and is concentrated 103 relative to the

lysate.

(B) Lysates from cells expressing EHD1-GFP by gene editing of the EHD1

locus, EHD4-GFP by gene editing of the EHD4 locus, or negative control cells

stably transfected with plasmid to express GFP alone were incubated with

anti-GFP antibody beads as in (A). The eluate was concentrated 503 relative to

the lysate. Anti-EHD2 antibodies cross-react with EHD1 and EHD4; the cross-

reacting bands are indicated with an asterisk and the EHD2 band is arrowed.

(C) Lysates from DEHD1,2,4 triple-knockout NIH 3T3 cells transiently trans-

fected with EHD-expressing or GFP-expressing plasmids as shown were

incubated with anti-GFP antibody beads. The eluate was concentrated

103 relative to the lysate.
lacking expression of all three proteins (Figure S6A). The number

of caveolae, identified morphologically, was not significantly

different between control and DEHD1,2,4 cells (Figure 4A).

Consistent with this, cavin proteins were still found in character-

istic high-molecular-weight complexes when lysates from

DEHD1,2,4 cells were analyzed on sucrose gradients (Figure 4B),
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and co-localization between gene-edited caveolin1-GFP and

anti-cavin1 antibodies was indistinguishable in control and

DEHD1,2,4 cells (Figure S6B). EHD proteins are not, therefore,

an essential part of the core machinery required for generating

the caveolar bulb.

EHD proteins are likely to localize to the neck of caveolae

(Figures 1C and 1D) [22, 32, 33]. We asked whether the ultra-

structure of the caveolar neck is altered in the DEHD1,2,4 cells.

Both inspection of individual caveolae and superimposition of

membrane profiles from multiple caveolae showed that the

neck of caveolae lacking EHD proteins is constricted when

compared to the WT situation (Figure 4C). Measurement of

the diameter of the caveolar neck confirmed this (Figure 4D).

This phenotype was not observed in cells lacking only EHD2

(Figure 4D).

We used immunoelectron microscopy to carry out a detailed

analysis of the morphology of all caveolin1-positive structures

in DEHD1,2,4 cells, as well as DEHD2 cells. Caveolin1-positive

membrane structures were classified as flat membrane, single

caveolae, or clusters of caveolae (Figure 4E). Both DEHD2 and

DEHD1,2,4 cells exhibited a slight increase in the amount of

caveolin1 found on flat regions of membrane (Figure 4F). Clus-

ters of two or more caveolae were strikingly reduced in the

DEHD1,2,4 cells, but not in DEHD2 cells (Figure 4G). Moreover,

when the data were analyzed in terms of the size of clusters of

caveolae in the different cell lines, it was apparent that there

was a loss of clusters of more than three caveolae in the

DEHD1,2,4 cells (Figure 4H).

We sought ways to confirm the conclusion that EHD proteins

promote the formation of the characteristic clusters formed by

caveolae in cells. Clustering of caveolae will result in larger or

brighter puncta detected by conventional light microscopy.

Accordingly, we examined TIR images of caveolin1-GFP

expressed in WT and DEHD1,2,4 cells. These confirmed that

larger puncta were visibly more scarce in the knockout cells (Fig-

ure 5A). Image analysis software was used tomeasure the size of

caveolin1-GFP puncta revealed by TIR illumination in the

different cell lines. This confirmed that in WT cells the population

of caveolin1-GFP puncta contained a significant number of

larger/brighter structures (Figure 5B).

The inference that larger caveolin1-GFP puncta represent

clusters of individual caveolae in WT cells was confirmed using

stimulated emission depletion (STED) microscopy, as struc-

tures detected as larger puncta by conventional confocal imag-

ing could be resolved by STED microscopy into clusters of

individual structures, each with the approximate dimensions

of the caveolar bulb (Figure 5C). Clusters comprising multiple

caveolae were readily detected in WT cells but were much

less prominent in DEHD1,2,4 cells (Figure 5C). Importantly,

when DEHD1,2,4 cells were transiently transfected with

mCherry-EHD1, mCherry-EHD2, and mCherry-EHD4, the pres-

ence of clusters comprising multiple caveolin1-GFP puncta

was restored.

We used the same approach, re-expressing mCherry-EHD1,

mCherry-EHD2, and mCherry-EHD4 by transient transfection

in DEHD1,2,4 cells and examined the cells using electron micro-

scopy. The transfection also included mitochondrially targeted

APEX, allowing the unambiguous identification of transfected

cells through the presence of electron-dense polymerized
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Figure 3. Recruitment of EHD1 to Caveolae

Is Significantly Increased in DEHD2 Cells

(A) Confocal microscopy of fixed wild-type (WT)

andDEHD2NIH 3T3 cells, both expressing cavin1-

mCherry from the endogenous locus. Cells were

labeled with anti-EHD1 antibodies for indirect

immunofluorescence. Scale bar, 10 mm. See also

Figures S1 and S4.

(B) Quantification of co-localization between EHD1

and cavin1-mCherry using Pearson’s correlation

coefficient R. Each data point represents one cell

region. TheWT images were analyzed with the two

fluorescence channels offset by �0.5 mm to give

an indication of the values expected due to chance

overlap. Student’s t test, *p < 0.05 and **p < 0.01.

(C) Western blots to show the abundance of EHD1

and EHD4 proteins inDEHD2 cells. Blots from four

cultures of WT NIH 3T3 cells and four clones of

DEHD2 cells derived from them are shown.

(D) Confocal images showing co-localization be-

tween GFP-EHD2 expressed by transient trans-

fection and cavin1-mCherry expressed from the

endogenous locus, in controlWTNIH 3T3 cells and

in DEHD1,4 NIH 3T3 cells that do not express

EHD1 or EHD4. Scale bars, 10 mm.

See also Figure S5.
diaminobenzidine staining within themitochondrial matrix [50]. In

transfected cells, clusters or rosettes of multiple caveolae were

readily detected, while these were not observed in untransfected

cell populations (Figures 5D and 4H). All of these data reinforce

the conclusion that EHD proteins provide a key molecular
Current B
component for the formation of higher-

order clusters of caveolae.

Turnover and Dynamics of
Caveolin1 Are Increased in
DEHD1,2,4 Cells
Previous experiments have shown that

siRNA-mediated knockdown of EHD2 re-

sults in increased mobility of caveolin1-

GFP puncta [32, 33]. We asked whether

the same phenomenon is detected in

our DEHD1,2,4 cells. Time-lapse TIR im-

aging revealed mobile caveolin1-GFP

puncta in both control and DEHD1,2,4

cells, with more appearing in the latter

(Figure 6A; Movie S1). FRAP experiments

confirmed that caveolin1-GFP is more

mobile in theDEHD1,2,4 cells than in con-

trols (Figure 6B).

Increased mobility of caveolin1-GFP

in DEHD1,2,4 cells could reflect the

destabilization of caveolae in the absence

of EHD proteins. We asked whether turn-

over of caveolin1 is increased in the

DEHD1,2,4 cells. Although DEHD1,2,4

clones did not exhibit consistent changes

in the steady-state levels of caveolin1

protein (Figure 6C), in all cases qPCR
showed a significant increase in CAV1 mRNA abundance

(Figure 6D). As these observations predict, 35S Methionine

pulse-chase analysis revealed that caveolin1 was consistently

degraded more quickly in the DEHD1,2,4 cells (Figures 6E

and 6F).
iology 27, 2951–2962, October 9, 2017 2955
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EHD Proteins Protect Cells from Repeated Mechanical
Stress
Previous structural and biochemical experiments showed that

EHDs act to deform or sculpt membranes [46, 51]. This prop-

erty could be important for the kinetics of re-formation of cav-

eolae after they have flattened out under mechanical stress [4].

Cells were grown on a deformable substrate and subjected to

cycles of stretching by 20% at 1.5 Hz for 60 min. The number

of morphologically defined caveolae was markedly decreased

in DEHD1,2,4 cells under these conditions (Figure 7A). EHDs

are, therefore, indeed required to maintain steady-state levels

of caveolae when cells are repeatedly stretched, and the cav-

eolae present in DEHD1,2,4 cells are not equivalent to caveolae

in WT cells. Quantification of the abundance of clusters of mul-

tiple caveolae under stretching conditions confirmed the

absence of clusters in the DEHD1,2,4 cells and revealed that,

even in WT cells, stretching decreased the number of clusters

(Figure 7B).

Caveolae protect cells frommembrane damagewhen cells are

under mechanical stress [4–6]. We assayed transient loss of

plasma membrane integrity by incubating cells in high concen-

trations of fluorescent dextran. If plasmamembrane barrier func-

tion is lost under these conditions, fluorescent dextran will gain

access to the cytosol [52, 53]. Cells grown on a deformable sub-

strate were subjected to cycles of stretching by 20%at 1.5 Hz for

60 min. There was no change in expression of caveolin1 or other

caveolar components during the time span of these experiments

(Figure S7). The likelihood of membrane rupture in this experi-

mental system depends critically on the density of cells and

potentially on further local factors. In order to mitigate such

factors, cells of different genotypes were plated as mixed popu-

lations, after labeling with Cell Tracker dyes to allow discrimina-

tion between genotypes (Figure 7C). Quantitative comparisons

were then made between cells growing as a single mixed popu-

lation. There was a significant increase in the proportion of cells

containing cytosolic fluorescent dextran in both DCAV1 and

DEHD1,2,4 cells (Figures 7C and 7D), suggesting that EHDs,

like caveolin1, help to protect cells from damage under mechan-

ical stress.

To obtain more direct evidence that the increased propensity

for membrane rupture exhibited by DEHD1,2,4 cells is directly

attributable to a lack of the EHD proteins, these cells were trans-
Figure 4. The Ultrastructure of the Caveolar Neck and the Formation o

(A) Quantification of morphologically defined caveolae in DEHD1,2,4 triple-knoc

analyzed. Statistical analysis used one-way ANOVA with Dunnett’s multiple com

(B) Sucrose gradient fractionation of lysates from WT and DEHD1,2,4 cells. Grad

fraction quantified using densitometry, and values normalized so that the peak in

Figure S6B.

(C) Electron micrographs showing ultrastructure of the caveolar neck in control W

aggregated membrane profiles from 40 individual caveolae of each genotype. S

(D) Measurement of the width of caveolar neck, as shown in (C), for multiple cave

one-way ANOVA with Dunnett’s multiple comparison test.

(E) Immunoelectronmicroscopywith anti-caveolin1 antibodies to classifymembra

flat membrane, single caveolae, and clustered caveolae are shown.

(F) Quantification of the ratio between caveolin1-positive regions classified

immunoelectron microscopy as in (E).

(G) Quantification of the ratio between caveolin1-positive caveolae classified as

tification are as in (E) and (F).

(H) Quantification of the size of caveolar clusters (the number of caveolar bulbs p

Statistical comparison is one-way ANOVA with Dunnett’s multiple comparison te
fected with mCherry-tagged EHD1, EHD2, and EHD4 (Figure 7E)

and subjected to stretching in the presence of fluorescent

dextran as above. Cells transfected with the EHDs were more

likely to exclude fluorescent dextran than neighboring untrans-

fected cells (Figures 7E and 7F). This confirms that EHD proteins

help to maintain the integrity of the plasma membrane under

exposure to stretch forces.

DISCUSSION

Our data provide three key sets of new observations germane to

the function of EHD proteins at caveolae. (1) We show that EHD1

and EHD4 can be detected in caveolae, that the amount of EHD1

present in caveolae increases when EHD2 is deleted, and that

the absence of all three of these EHD proteins is required to

produce detectable effects on the dynamics and distribution of

caveolin1. (2) We show that characteristic clusters of multiple

caveolae are dependent on the presence of all three EHD pro-

teins. (3) We show that in cells lacking all three EHD proteins,

repeated mechanical stress results in the loss of morphologi-

cally-defined caveolae and an increased likelihood of plasma

membrane rupture.

Previous experiments show that EHD2 is present at the neck

of caveolae, and is not part of the large caveolar coat complex

that shapes the caveolar bulb [22, 32]. Our new data showing

that EHD1 and EHD4 bind to EHD2, and that immuno-electron

microscopy against EHD1 and EHD4 results in labeling close

to the neck, suggest that EHD1 and EHD4 are also found at

the neck domain. We can now state that the loss of EHD proteins

has no discernable effect on the shape of the caveolar bulb, but

does result in ultrastructural changes to the shape of the neck

region.

The structural and biochemical properties of EHD2 are under-

stood in some detail and reveal EHDs asmechano-enzymes that

utilize energy released by ATP hydrolysis to drive changes in

membrane shape [46, 51, 54]. These properties, coupled with

our data showing that the abundance of caveolae is only

dependent on EHDs when cells are under repeated mechanical

stress, suggest to us that one contribution of EHDs to the func-

tional properties of caveolae is to promote rapid re-formation

after mechanically induced flattening, by facilitating membrane

curvature.
f Clustered Arrays of Caveolae Are Dependent on EHD Proteins

kout NIH 3T3 cells (Figure S6). Two different clones of DEHD1,2,4 cells were

parison test.

ient fractions were blotted with antibodies against cavin1, the signal from each

tensity = 1. Each data point is a mean from three separate gradients. See also

T andDEHD1,2,4 triple-knockout NIH 3T3 cells. The right-hand images present

cale bars, 100 nm.

olae from WT, DEHD2, and DEHD1,2,4 NIH 3T3 cells. Statistical comparison is

nemorphology of caveolin1-positive regions. Examples of regions classified as

as flat or as morphological caveolae (clustered + single caveolae) from

single or as in clusters from immunoelectron microscopy. Imaging and quan-

resent in a single structure) identified in immunoelectron microscopy as in (C).

st, using aggregated data from both samples/clones of each genotype.
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Figure 5. Caveolin1-GFP Clusters Are Generated by EHD Proteins
(A) TIR microscopy to show the distribution of caveolin1-GFP in gene-edited WT and DEHD1,2,4 NIH 3T3 cells. Scale bar, 10 mm.

(B) Quantification of puncta size in TIR images as shown in (A), shown as frequency distribution of all sizes detected in 10 cells of each genotype shown.

(C) Confocal and stimulated emission depletion (STED) microscopy of WT cells, DEHD1,2,4 cells, and DEHD1,2,4 cells expressing mCherry-EHD1, mCherry-

EHD2, andmCherry-EHD4 by transient transfection. All cells are gene edited to express caveolin1-GFP. The STED images are of the boxed region in the confocal

images. Scale bars, 5 mm (in confocal images) and 1 mm (in STED images).

(D) Electron micrographs of DEHD1,2,4 cells expressing mitochondrially targeted APEX, mCherry-EHD1, mCherry-EHD2, and mCherry-EHD4 by transient

transfection. Cells were stained with diaminobenzidine, producing electron-dense deposits in the mitochondria of transfected cells. Two cells are shown; arrows

highlight mitochondria, and the boxed regions are shown at higher magnification in the additional panels. Scale bars, 500 nm.
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Figure 6. Increased Dynamics and Turnover

of Caveolin1 in DEHD1,2,4 Triple-Knockout

Cells

(A) Averaged projections of the first 10 s of time-

lapse TIR microscopy, with the difference between

these projections and projections of the next 10 s of

the time-lapse sequence overlaid in pink. Original

images acquired at 1 Hz. Scale bar, 10 mm. See also

Movie S1.

(B) Quantification of mobility of caveolin1-GFP by

FRAP. Each line is a mean from >7 individual pho-

tobleached regions from different experiments.

(C) Western blots to show caveolin1 levels in

DEHD1,2,4 triple-knockout NIH 3T3 cells.

(D) Quantitative measurements of caveolin1 mRNA

levels in DEHD1,2,4 triple-knockout NIH 3T3 cells,

using real-time PCR. Each point is a separate bio-

logical replicate itself based on four experimental

replicates. Normalization was to GAPDH. Statistical

analysis is one-way ANOVA with Dunnett’s multiple

comparison test.

(E) Pulse-chase analysis of caveolin1 turnover. Cells

with the genotypes shown were pulsed with 35S

Methionine, and, after the times indicated, were

lysed before immunoprecipitation of caveolin1 and

analysis by SDS-PAGE and autoradiography.

(F) Quantification of pulse-chase experiments as in

(E) using densitometry of autoradiograms (n = 3).
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Figure 7. EHD Proteins Are Required for

Caveolar Stability under Repeated Mechan-

ical Stress, and Cells Lacking EHD Proteins

Are More Likely to Rupture under Repeated

Mechanical Stress

(A) Quantification of morphologically defined cav-

eolae in DEHD1,2,4 triple-knockout NIH 3T3 cells

by electron microscopy. Cells were grown on

deformable silicon substrate and stretched by

20% at 1.5 Hz for 60 min as indicated. For each

genotype, complete reconstructions of the

perimeter of 10 cells were generated from 15–70

high-resolution micrographs per cell. Statistical

analysis used one-way ANOVA with Dunnett’s

multiple comparison. Also see Figure S7.

(B) Quantification of the sizes of clusters of cav-

eolae from immunoelectron microscopy as in

Figure 4E, but with cells fixed during repetitive

stretching. For each genotype shown, 50 micro-

graphs of regions selected as containing positive

staining were acquired at 6,5003 magnification.

Statistical analysis used one-way ANOVA with

Dunnett’s multiple comparison test.

(C) Assay for plasma membrane rupture in cells

with genotypes as shown. Rupture is indicated by

cytoplasmic accumulation of 150 kDa fluorescein

isothiocyanate (FITC)-dextran (green). Cells were

stretched for 60 min at 1.5 Hz. White signal is from

NucRed Live 647 dye. WT cells were labeled with

Cell Tracker red.

(D) Quantification of the incidence of plasma

membrane rupture as in (C) above, expressed as

the proportion of the total number of cells that have

green cytoplasmic staining. Each point represents

6–10 images from a single experiment, each image

containing 50–150 individual cells. The data from

each experiment are paired to allow comparison of

cells with different genotypes grown in the same

mixed population. Statistical analysis is by paired

t test.

(E) Assay for plasma membrane rupture in

DEHD1,2,4 triple-knockout NIH 3T3 cells, some of

which are transiently transfected with mCherry-

EHD1, mCherry-EHD2, andmCherry-EHD4.White

signal is from NucRed Live 647 dye.

(F) Quantification of the incidence of plasma

membrane rupture in transfected versus non-

transfected DEHD1,2,4 triple-knockout cells as

in (E). Statistical analysis is by paired t test.
The absence of membrane convolutions introduced by caveo-

lae correlates with an increased likelihood that the plasma mem-

brane will undergo damage under mechanical stress [4–6].

Our data extend this correlation. We show that DEHD1,2,4 cells

lack the convolutions introduced by higher-order clusters of

caveolae, that DEHD1,2,4 cells under conditions of repeated

stretching have a significant reduction in the total number of

caveolae, and that DEHD1,2,4 cells are more likely to suffer
2960 Current Biology 27, 2951–2962, October 9, 2017
stretch-induced membrane damage.

These observations support a model in

which the membrane convolutions intro-

duced by caveolae act as a buffer, flat-

tening out under stretch forces and
thereby reducing the likelihood of membrane damage. We point

out, however, that neither our new experiments nor those in

previous publications unambiguously demonstrate that such a

stretch-buffering effect is the main or sole cause of the

mechano-protective activity of caveolae. It is possible that

signaling from caveolae contributes to mechano-protection,

and it is possible that functions of the EHDs outside of caveolae,

for example, in endocytic processes, are also relevant.



Wedemonstrate that EHD1 and EHD4 can compensate for the

lack of EHD2 inDEHD2 cells. This evident functional redundancy

may well be relevant for other aspects of the cell biology of the

EHD proteins. Precisely why multiple EHDs are required at

caveolae, or at other functional locations, is not yet clear. It

may be that they recruit different binding partners or have subtly

different effects on membrane curvature. Additionally, in WT

cells only a small fraction of the total EHD1 and EHD4 present

is recruited to caveolae, so there must be mechanisms to regu-

late the recruitment of EHDs to different membrane locations.

Our EHD knockout and fluorescent protein knockin cell lines

should prove useful reagents for tackling these questions.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit anti-cavin1 Abcam Cat# ab48824

rabbit anti-caveolin1 BD Bioscience Cat# 610060

mouse anti-GFP Roche Cat# 11814460001

rabbit anti-RFP (used to detect mCherry) MBL International Cat# PM005

mouse anti-tubulin Sigma Cat# T9026

goat anti-EHD2 Abcam Cat# ab23935

rabbit anti-EHD1 Abcam Cat# ab109311

rabbit anti-EHD4 Proteintech Cat# 11382-2-AP

normal goat serum Aurion Cat# 905.002

rabbit anti-GFP Abcam Cat# ab6556

F(ab’)2 goat anti-rabbit ultrasmall gold Aurion Cat# 100.166

Chemicals, Peptides, and Recombinant Proteins

GFP-Trap agarose beads Chromotek Cat# gta-10

Protein A Sepharose beads GE Healthcare Cat# 17-0780-01

Agarose beads Chromotek Cat# bab-20

‘cOmplete’ protease inhibitors Roche Cat# 04693159001

R-Gent SE-EM for silver enhancement Aurion Cat# 500.033

Critical Commercial Assays

TaqMan Universal Master Mix II Applied Biosystems Cat# 4440043

EasyTag EXPRESS 35S Protein Labeling Mix Perkin Elmer Cat# NEG772002MC

Gibson Master kit New England Biolabs Cat# E2611

ECL Western Blot Detection Reagent Kit GE Healthcare Cat# RPN2209

Immobilon Western Chemiluminescent HRP Substrate Millipore Cat# WBKLS

RNeasy Mini Kit QIAGEN Cat# 74104

High-Capacity RNA-to-cDNA Kit Applied Biosystems Cat# 4387406

Experimental Models: Cell Lines

NIH 3T3 cells Harvey McMahon, MRC-LMB ATCC Cat# CRL-1658

Oligonucleotides

EHD1 PCR genotyping forward CCGTCCTGTAGCAGCCAG This paper N/A

EHD1 PCR genotyping reverse CCGTGCATGACCGCGATG This paper N/A

EHD2 PCR genotyping forward CTCTCCACCTTGTAGTCTCC This paper N/A

EHD2 PCR genotyping reverse CAGGGGAAGAAGTTTCGTGC This paper N/A

EHD4 PCR genotyping forward GGTTCTTACTGAAGTGCGGC This paper N/A

EHD4 PCR genotyping reverse CCTTGGCAACAGCAAGGAAG This paper N/A

All oligonucleotides used for genome editing are shown

in Table S1

N/A N/A

Recombinant DNA

mCherry-EHD1 Carsten Hansen, University of

Edinburgh [34]

N/A

mCherry-EHD2 Carsten Hansen, University of

Edinburgh [34]

N/A

mCherry-EHD4 Carsten Hansen, University of

Edinburgh [34]

N/A

GFP-EHD2 Harvey McMahon, MRC-LMB [46] N/A

Mito-V5-APEX Sean Munro, MRC-LMB [50] Addgene plasmid #42607
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pSpCas9(BB)-2A-GFP Feng Zhang, MIT Addgene plasmid #48138

pSpCas9(BB)-2A-Puro Feng Zhang, MIT Addgene plasmid #48139

piRFP670-N1 Vladislav Verkhusha, Albert Einstein

College of Medicine.

Addgene plasmid #45457

Software and Algorithms

Graphpad Prism Graphpad https://www.graphpad.com/

scientific-software/prism/

Other

ShellPa cell stretching device Menicon Life Science Model# NNMS
CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information, resources and reagents should be directed to and will be fulfilled by the Lead Contact, Ben Nichols

(ben@mrc-lmb.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

NIH 3T3 cells (kind gift from the McMahon lab, MRC-LMB) were grown in DMEM (GIBCO) supplemented with penicillin and strep-

tomycin and 10% calf serum at 37�C. Cells were tested for Mycoplasma contamination but were not authenticated.

METHOD DETAILS

Genome editing
Generation of NIH 3T3 cell lines expressing caveolin1-GFP or/and cavin1-mCherry tagged from endogenous loci were described

previously [30]. For tagging or deleting endogenous EHD1, EHD2, and EHD4 proteins, as well as deletion of endogenous

Caveolin1/CAV1, Cas9 used in this study was applied as described in [31]. For each cleavage site, two potential guide RNA se-

quences were designed using Feng Zhang lab software at http://crispr.mit.edu/ (for sequences see Table S1). The chosen nucleotide

sequences were used for insertion into pSpCas9(BB)-2A-GFP (PX458) or pSpCas9(BB)-2A-Puro (PX459), that were a gift from Feng

Zhang (Addgene plasmid #48138 and #48139).

Donor DNA constructs containing flanking regions for gap repair by homologous recombination and the appropriate fluorescent

protein DNA were produced as follows. Approximately 1 kb of genomic DNA sequence on either side of the EHD1, EHD2 and EHD4

stop codons were amplified from genomic DNA using primers listed in Table S1. DNAs coding for GFP, mCherry or iRFP [55], orig-

inated from pEGFP-N1, pCherry-N1 (Clontech) or piRFP670-N1 (gift from Vladislav Verkhusha (Addgene plasmid #45457)) were

amplified using the primers listed in Table S1. In donor constructs the stop codons of the EHD1, EHD2 or EHD4 genes were deleted

and cDNA of fluorescent protein was fused with linker as described [56], and inserted into pBlueScript SK (-)- using GibsonMaster kit

assembly (New England BioLabs) according to the manufacturer’s instructions.

For generation of genome-edited NIH 3T3 cell lines with tagged proteins, PX459 plasmids with appropriate guiding RNA

sequences and donor plasmids were co-transfected into cells using Neon transfection system (Invitrogen). After transfection, cells

were cultured for 5 days to recover and express the protein of interest, and sorted for relevant fluorescent signals using a Sony iCyt

Synergy Dual Channel High Speed Cell sorter or Beckman Coulter MoFlo High Speed Cell sorter to obtain populations of positive

cells. Genome edited cells expressing tagged proteins were not cloned, but were cultured as populations of positive cells. For

generation of genome-edited NIH 3T3 cell lines deleted of the protein of interest, PX458 plasmids with appropriate guiding RNA

sequences were transfected into cells using Neon transfection system and sorted for GFP-positive signal. For generation of cells

deleted of two/three genes, cells were co-transfected with several PX458 plasmids simultaneously. Cell lines with gene knockouts

were cloned, and screened as individual clones. Correct gene targeting was determined by PCR, and by western blotting.

Cell surface biotinylation and internalization assay
For the internalization assay, cells seeded on fibronectin were washed twice with PBS pH 7.9 and subsequently cell surface mole-

cules were biotinylated with 0.2 mg/ml sulfo-NHS-SS-biotin in the same buffer at 37�C. The reaction was quenched 15 min later with

50 mM Tris and then surface exposed biotin was removed by incubating the cells for 3 3 7 min in 100 mM MESNA (Sodium 2-mer-

captoethanesulfonate) in MESNA buffer (50 mM Tris, 100 mM NaCl, 1 mM EDTA, 0.2% (w/v) BSA, pH 8.6 at 25�C). Cells were fixed

with 4% paraformaladehyde in PBS, permeabilized and labeled with Alexa-546 streptavidin (Invitrogen).
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Polymerase chain reaction
Genomic DNA from cells were extracted using cell lysis and protein precipitation solution (QIAGEN). The gDNA was PCR amplified

using KOD Hot Start DNA Polymerase (Novagen). Primers used for amplification of EHD1 were forward primer CCGTCCTGTAG

CAGCCAG and reverse primer CCGTGCATGACCGCGATG, for EHD2 forward primer CTCTCCACCTTGTAGTCTCC and reverse

primer CAGGGGAAGAAGTTTCGTGC, and for EHD4 forward primer GGTTCTTACTGAAGTGCGGC and reverse primer CCTTG

GCAACAGCAAGGAAG.

Transferrin uptake
Cells were incubated with 5 mg/ml transferrin conjugated to Alexa Fluor 647 (Invitrogen) in serum-free media for 30 min at 37�C. Cells
were subsequently stained with appropriate antibodies.

DNA constructs and transient transfection
Different combinations of mCherry-EHD1,mCherry-EHD2,mCherry-EHD4, GFP-EHD2 (kind gift from theMcMahon lab,MRC-LMB),

GFP empty, and Mito-V5-APEX (kind gift from the Munro lab, MRC-LMB (Addgene plasmid #42607)) plasmids were singly or co-

transiently transfected into the appropriate cells using the Neon transfection system. Cells were cultured for 24 hr and experiments

conducted after.

Immunoprecipitation
Cells were washedwith ice-cold PBS and lysed with IP lysis buffer (50mMTris-HCl pH 7.4, 300mMNaCl, 5mMEDTA and 0.5% (v/v)

Triton X-100, supplemented with ‘cOmplete’ protease inhibitors (Roche)). The lysates were centrifuged at 50,000 rpm for 30 min at

4�C. The supernatants were pre-cleared for 1 hr at 4�C with agarose beads (Chromotek), then incubated with GFP-Trap agarose

beads (Chromotek) for 1 hr at 4�C. Proteins were eluted from the beads with sample buffer for 10 min at 95�C. Samples were sub-

jected to western blotting.

For pulse chase samples, cells werewashedwith ice-cold PBS and lysedwith IP lysis buffer (20mMTris-HCl pH 7.4, 100mMNaCl,

5 mM EDTA, 1% Triton X-100 and 1% (w/v) octyl-glucoside, supplemented with protease inhibitors). The lysates were centrifuged at

20,000 g for 20 min at 4�C. The supernatants were pre-cleared for 1 hr at 4�C with Protein A Sepharose beads (GE Healthcare), then

incubated with Protein A Sepharose beads and rabbit anti-caveolin1 antibody overnight at 4�C. Proteins were eluted from the beads

with sample buffer for 10 min at 95�C.

Western blots
Samples were lysed in sample buffer (Novex), boiled and run on pre-cast 4%–20% Tris-Glycine gels (Invitrogen). The gels were then

blotted using wet transfer, the membrane blocked in a PBS solution containing 5% dried skimmed milk powder, incubated with the

appropriate primary antibodies, washed and incubated with HRP conjugated secondary antibodies. The blots were developed using

Immobilon Western Chemiluminescent HRP Substrate (Millipore) or ECL Western Blot Detection Reagent Kit (GE Healthcare) onto

Fuji Super RX X-ray films.

Sucrose velocity gradients
We used a protocol described in [30]. One Petri dish of each cell line was washed in PBS and solubilized in 1 ml lysis buffer (20 mM

Tris-HCl pH 8, 100 mM NaCl, 5 mM EDTA and 0.5% Triton X-100, supplemented with protease inhibitors). The samples were next

incubated for 20 min at RT. Post-nuclear supernatant (PNS) was prepared by a 6 min centrifugation at 1,100 g. PNS (950 ml) was

loaded onto step gradient of 40, 35, 30, 25, 20 and 10% sucrose in the above lysis buffer.

The gradients were centrifuged at 4�C in SW40 rotor (Beckman) for 4.5 hr at 245,000 g with slow acceleration and deceleration.

Twelve 1 mL fractions were collected from the top of the gradient, proteins were precipitated using 10% trichloroacetic acid and

10% of each pellet were analyzed by western blot.

Photobleach experiments
FRAP (Fluorescence Recovery After Photobleaching) studies were conducted on live NIH 3T3 cells expressing endogenous caveo-

lin1-GFP. Cells were seeded in LabTek or Ibidi chambers 24 or 48 hr prior to experiment. Measurements were taken in growth media

supplemented with 10 mM HEPES (Sigma), and the 37�C temperature was controlled by a heated stage incubator insert. FRAP

experiments were performed on an inverted Zeiss LSM510 confocal microscope, using a 63 3, 1.4 NA objective. Three frames

were taken before photobleaching to determine the average pre-bleach fluorescence at starting point. A defined region of interest

(ROI; 8 mm diameter) was photobleached at full laser power. Recovery of fluorescence was monitored by scanning the ROI at low

laser power in movies taken at rate of one frame/2 or 3 s (120-180 frames/movie). The mean fluorescence intensity in the ROI and

the mean non-cellular background were determined from the images using LSM510 software. After subtracting the background,

the ROI fluorescence values were normalized to an unbleached region to correct for the loss in fluorescence caused by imaging.

To be able to compare FRAP curves from different cells, the average fluorescence from 3 frames taken before photobleaching

was set to 100%and the relative recovery in every cells was normalized to its initial level. 6-10 cells were imaged in each independent

experiment.
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Quantitative PCR
Total RNA was isolated from cells using the RNeasy Mini Kit (QIAGEN) and reverse transcribed using the High-Capacity

RNA-to-cDNA Kit (Applied Biosystems). Quantitative PCR analysis of CAV1 was performed using the CAV1 TaqMan probe

(Mm01129316_m1) and TaqMan Universal Master Mix II, with UNG (Applied Biosystems) on a ViiA7 Real-Time PCR System (Applied

Biosystems). This was normalized against GAPDH (Mm99999915_g1).

Pulse-chase
Cells were depleted of methionine and cystine by incubating with DMEM without methionine or cystine (GIBCO) supplemented with

dialysed FBS for 1 hr at 37�C. Cells were pulsed with 50 mCi/ml EasyTag EXPRESS 35S Protein Labeling Mix (Perkin Elmer) for 2 hr at

37�C, and washed into normal growth medium before chase for the times indicated. Cells were lysed in 1% Triton X-100 plus 1%

octyl-glucoside, lysates were subjected to immunoprecipitation and samples were run on pre-cast 4%–20% Tris-Glycine gels.

Gels were fixed in 10% acetic acid, then incubated with Amplify Fluorographic Reagent (GE Healthcare) and subsequently dried.

Samples were exposed at �80�C on Fuji Super RX X-ray films and developed.

Cell stretching experiments
Cells were grown on fibronectin-coated deformable chambers to fit a ShellPa cell stretching device (Menicon Life Science). Cells

were stretched for 60 min by 20% extension with cycles at 1.5Hz. For electron microscopy, cells were fixed while still undergoing

stretch for 5 min, before removal of the chambers and further fixation. For membrane rupture assays the cell culture medium was

supplemented with FITC-DEAE dextran 150KDa (Sigma) at 100 mg/ml, and NucRed Live 647 nuclear stain (Invitrogen) added before

imaging.

For quantification of membrane rupture assays, maximum intensity projections were generated from z stacks acquired with a

20x objective. The FITC channel was subjected to thresholding so that signal from autofluorescence in non-ruptured cells was set

to zero. All cells with uniform cytosolic FITC fluorescence were analyzed. Mean intensity in the FITC channel for individual cell areas

was measured using ImageJ. Cells with mean pixel intensity < 10 were scored as not ruptured, cells with mean pixel intensity > 10

were scored as ruptured.

Cell tracker labeling
Cells were labeled with 10 mMCellTracker Red CMTPX (Invitrogen) in serum-free media for 45 min at 37�C then seeded as required.

Light microscopy
For indirect immunofluorescence, cells were rinsed in PBS, fixed in 4% PFA, blocked in 5% FBS supplemented with 0.1% Triton

X-100 for permeabilization, and incubated with the appropriate antibodies. All confocal imaging was carried out using a Zeiss

LSM510 inverted confocal microscope with a 63x, 1.4NA objective, driven by Zen software. TIR images were acquired using an

Olympus TIR microscope equipped with 488, 546 and 647 nm lasers and fitted with a 100x, 1.45NA objective. STED images were

acquired with a Leica SP8 gated STED microscope with a white light laser and 100x, 1.4NA objective. Pixel size for acquired

STED images was set to 20 nm.

Electron microscopy
For counting of morphological caveolae, cells grown on MatTek glass bottomed Petri dishes were fixed in 2.5% glutaraldehyde, 2%

paraformaldehyde in 0.1 M cacodylate buffer. Cells grown on fibronectin-coated silicon chambers for stretching were fixed while

stretching by adding double strength fixative to an equal volume of culture medium for 5min, before removal of the chambers and

exchanging to fresh normal strength fixative.

Cells were then processed on their growing substrate for EM: post fixed in 1% osmium tetroxide, dehydrated in an ascending

ethanol series and embedded in CY212 resin. Cells were cut perpendicular to their growing substrate and ultrathin sections of cells

were stained with 4% aqueous uranyl acetate and Reynolds lead citrate and viewed on a FEI Tecnai Spirit operated at 80kV. Quan-

tification of caveolae were carried out by acquiring images to trace the outline of cells at 6500x magnification, assembling these

images into complete profile of the cell using Adobe Photoshop, and then scoring all morphologically recognizable caveolae blind

to the identity of the sample, with each caveolar bulb counted as one caveola in the case of clusters comprising multiple bulbs.

For immunolabeling, cells were grown on glass bottom Petri dishes (MatTek) or on fibronectin-coated silicon chambers, and fixed

in 4% PFA in 0.1 M phosphate buffer pH 7.4 overnight at 4�C. For fixation while stretching, normal strength fixative was added to the

cells while undergoing stretching and replaced with fresh fixative. After washing, cells were treated with either 0.1% sodium boro-

hydride or 50mMglycine in phosphate buffer for 15 min to block reactive aldehydes, and then permeabilized using 0.03% saponin in

20 mM phosphate buffer, 150 mM sodium chloride. Cells were incubated in normal goat serum (Aurion 905.002) for 40 min before

incubation in either rabbit anti-caveolin1 antibody used at 1:200 or rabbit anti-GFP (Abcam ab6556) used at 1:100 for 4.5 hr at

RT. After washing, cells were incubated in a 1:200 dilution of F(ab’)2 goat anti-rabbit ultrasmall gold (Aurion 100.166) overnight at

4�C. Cells were fixed with 2% glutaraldehyde in 0.1 M phosphate buffer for 30 min, washed with distilled water followed by silver

enhancement of gold using R-Gent SE-EM (Aurion 500.033) reagent. Cells were then post fixed with 0.5% osmium tetroxide in water

for 15 min on ice and processed for EM as above. Quantification was carried out by acquisition of 50 images at 6500x magnification,

all selected to contain gold staining, and then assignation of gold-positive membranes to the different classes shown. In the case of
e4 Current Biology 27, 2951–2962.e1–e5, October 9, 2017



clusters of multiple caveolae each distinct caveolar bulb counted as one caveola. All image analysis was blind to the identity of the

samples.

For 303’-diaminobenzidine (DAB) staining of EHD1,2,4/mitochondrial APEX transfected cells, transiently transfected and non trans-

fected cells grown onMatTek dishes were fixed in pre-chilled 2% glutaraldehyde in 0.1M cacodylate buffer plus 2 mM calcium chlo-

ride for 1 hr on ice. All subsequent steps were carried out on ice until resin infiltration. After 5 washes in buffer, cells were treated for

5min in buffer containing 20mM glycine to quench unreacted fixative, followed by several washes. Freshly prepared DAB (working

concentration 0.5 mg/ml), prepared using free base DAB dissolved in 0.1M HCl plus hydrogen peroxide (0.03%) were mixed and

filtered (0.2 mm) directly onto cells for 10min. The reaction was stopped by washing in buffer. Cells were post fixed in 1% osmium

tetroxide for 1 hr followed by processing for EM as above. Cells containing DAB stained mitochondria identified by transmitted light

were cut out from the discs of resin and mounted on dummy resin blocks with superglue. Ultrathin sections were cut parallel to the

growing surface.

QUANTIFICATION AND STATISTICAL ANALYSIS

N values are given in the Figure Legends, or are visible in the Figure as individual data points are all shown. In Figure 3B each data

point is a single cell area. In Figure 4A each data point represents a complete reconstruction of the perimeter of a single cell, gener-

ated from 15-70 high resolution electron micrographs per cell. In Figure 4B each data point is generated by densitometric quantifi-

cation of signal intensity of western blots from three separate experiments. In Figure 4D each data point is ameasurement of the neck

diameter of a single caveolar bulb, the data are pooled from three separate experiments. In Figures 4F and 4G the values shown are

the frequency of different membrane morphologies identified in 50 electron micrographs containing positive staining. In Figure 4H

each data point is a cluster of two or more caveolae immediately adjacent to each other and labeled with anti-caveolin1 antibodies.

In Figure 6B each line is the mean of > 7 individual photobleached regions, and each line represents a separate experimental repeat.

In Figure 6D each point is a separate biological replicate, itself based on four experimental replicates. In Figure 6F each data point

represents the mean of densitometric measurements from three separate experiments. In Figure 7A each data point represents a

complete reconstructions of the perimeter of a single cell, generated from 15-70 high resolution electron micrographs per cell. In Fig-

ure 7B each data point is a cluster of two or more caveolae immediately adjacent to each other and labeled with anti-caveolin1

antibodies. In Figure 7D and 7F each data point represents 6-10 images from a single experiment, each image containing 50-150

individual cells. Separate data points are separate experiments.

All statistical analysis was carried out using GraphPad Prism software. Details of statistical tests applied are given in the relevant

Figure Legends, and the rationale for these tests was as follows. When two datasets are compared with each other as in Figure 3B

a simple Student’s t test was applied. When multiple samples are compared with a single control dataset a one way ANOVA with

Dunnett’s multiple comparisons test was employed to test whether each sample varies significantly from the mean. In the experi-

ments shown in Figures 7D and 7F the values to be compared are paired, as they represent cells of different genotypes plated in

the samemixed culture, and so a paired t test was employed to assess whether the differences between paired values are significant.

Unpaired t tests were nonparametric and hence do not assume Gaussian distribution of the data. Other datasets were not assessed

for Gaussian distribution.
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