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Abstract

Applications of robotic swarms often face limitations in sensing and
motor capabilities. We aim at providing evidence that the modest equip-
ment of the individual robots can be compensated by the interaction
within the swarm. If the robots, such as the well-known Kilobots, have no
sense of place or directionality, their collective behaviour can still result
in meaningful spatial organisation. We show that a variety of patterns
can be formed based on a reaction-diffusion system and that these patters
can be used by the robots to solve spatial tasks. In this contribution, we
present first results for applications of this approach based on ‘physically
realistic’ Kilobot simulations.

1 Introduction

The design and control of robot swarms is often inspired by biological systems.
However, simple, inexpensive robots may lack the sensory or motor capabilities
of their intended biological counterparts such that following patterns that realise
behavioural goals would not achievable by individual robots. It is an interesting
option to use the interaction among the robots as a source of information such
that the swarm dynamics compensates the limitations of the individuals. In this
way it may also be possible to reduce the effects of obstruction and interference
amongst the robots. Related phenomena have been studied in social insects
and even single living cells, where, as a paradigm, simple local rules lead to
complex behavioural patterns in the swarm, which can enable decision making
and improve efficiency [8].

Here we consider the Kilobot [9], a popular robotic swarm platform, which
is a three-pronged robot with the two back prongs mechanically connected to
vibrational motors. The Kilobot can sense ambient light by a single sensor, and
it can send and receive messages by means of IR signals to other robots in the
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immediate neighbourhood. Ref. [3] uses diffusive information to navigate Kilo-
bots for random walks and shows that this approach allows control to improve
the exploration behaviour by tuning the parameters to optimise either in an
open or a closed environment.

We present here first results for a robot swarm controlled by a reaction-
diffusion (RD) system which is studied for a collective of Kilobots in a few
simple decision-making tasks. The Kilobot’s lack of directionality suggests the
use of this approach, because the RD equations (3) do not involve gradients
with respect to spatial variables, and the diffusion terms do not require a di-
rectional comparison of potentials carried by neighbouring robots. The next
section describes the pattern formation algorithm, which will be followed by the
experimental setup, results and finally a discussion of applications and future
work within the approach.

Figure 1: A Kilobot simulated in ARGoS.

2 Turing patterns

Reaction-diffusion (RD) systems produce stripe-like or honeycomb-like Turing
patterns [10] if two substances are spreading with different diffusion constants
such that the inhibitor is vanishing faster than the activator that in turn has
caused its production. The RD equations

∂u

∂t
= Du4u+ f(u, v)

∂v

∂t
= Dv4v + g(u, v)

(1)

describe the spatiotemporal dynamics of an activator u and an inhibitor v.

The Laplace operator, 4 = ∂2

∂x2 + ∂2

∂y2 , represents the diffusion of u and v,
typically with diffusion constants Du < Dv. The dynamics can be realised
e.g. by substances in solution, but a large variety of natural systems that follow
this dynamics is known [1]. The functions f(u, v) and g(u, v) are the reaction
models for the respective potentials and may vary for the different applications.
Often, the activation function is non-linear and the inhibition is linear. We will
use the FitzHugh-Nagumo model, i.e. choose the reaction terms, f(u, v) and
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g(u, v), as

f(u, v) = λu− αu2 − (1− α)u3 − σv
g(u, v) = u− v

(2)

Whether the system produces spot-like or stripe-like patterns depends, resp.,
on the presence or absence of a quadratic term in the reaction models, which is
governed in Eq. 2 by the parameter α. Moreover, dynamical patterns such as
moving spirals are known to exist in RD systems.

The application of RD systems in robotics is just in its beginning. Morpho-
genetic robotics [6] uses Gene Regulatory Networks (GRN) in order to control
multi-robot systems [5]. Also for the Kilobot problem attempts have been made
to realise the potential of this approach. In principle, two options can be used:
The robots can either realise the RD dynamics by estimating the robot con-
centration from the mutual distances and slow down, or speed up in order to
change the pattern. We will follow here instead the simpler option to simulate
the RD dynamics by exchanging messages with neighbouring robots to account
for the diffusion in Eq. 1, while the behavioural consequences become apparent
only after a pattern has formed. The clustering behaviour (Sect. 4.2, see also
Refs. [2, 7] for earlier attempts) can be used as a precondition for the simulation,
because it can gather all robots to enable a message exchange among all robots.

3 Experimental setup

The Kilobot swarm is simulated using ARGoS (see Fig. 1) using the Kilobot
plug-in which includes their limited messaging capabilities. The Kilobot broad-
cast at each time step their u and v values and update their own values depend-
ing on the received messages. Due to limited messaging, each robot will receive
a varying number of messages per time step. This is taken into account in the
redefinition of the Laplace operator (1) for a discrete set of robots:

4u = −ru0 +

r∑
i=1

ui (3)

The sum runs over all neighbours of the robot and compares their potential with
its own, u0. The operator (3) is stochastic, because the robot configuration that
sends messages within a time step will typically deviate from a regular grid. It
is possible to scale the diffusion constants in order to reduce the effect of the
variable distances between neighbours, but we prefer Eq. 3 as it tends to produce
a pattern as if the robots were in a regular formation, rather than relative to
the embedding space. In addition to the messaging limitation, the messages
themselves use limited information, namely 8 bit per time step, to implement
the diffusive interaction. This can become problematic if small values of the
potentials are to be broadcasted.

In addition, the RD dynamics needs to be tolerant to discretisation effects.
In our ARGoS simulation, 225 Kilobots are run, usually in a 15×15 grid, with
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an initial distance between the robots such that a communication with eight
immediate neighbours is possible. A border is present so that when motion is
introduced to the Kilobots they do not disperse completely, i.e. given enough
time they will encounter another Kilobot. The initial values for the potentials
were randomly chosen from [0, 0.1]. Uniform noise with a range [-0.0005, 0.0005]
was added to u to escape from chimeric states. Larger noise in combination with
the discretisation noise may result in unstructured patterns, or transitions across
multiple ground states which may impede subsequent decision making.

4 Results

4.1 Pattern formation in stationary swarm

Fig. 2 shows an example run of the set of simulations ran for a stationary
swarm, and that a spotted pattern can emerge. Fig. 3 displays the location of
the Kilobots as well as their activation values. The frequency of the spots in
the pattern can be controlled through Du, which is demonstrated in Fig 4. The
spots will also remain stable over a long period of time, see Fig. 5.

Figure 2: The simulation is of the stationary setup described in section 3. The
first image is of the setup itself. The second and third images are the Kilobots’ u
and v values, resp., at the end of the simulation. These values were normalised
to clearly see the differences between highly and weakly ‘activated’ Kilobots.
In this case the largest values for u and v were, resp., 0.078 and 0.068. It can
be seen quite clearly that there is a single spot, as to be expected since there
is the inclusion of a quadratic term which will make the system favour spotted
patterns. Parameters: α = 1, σ = 1, Du = 0.5, Dv = 1.0 and ∆t = 0.2.

The type of pattern can also be modified, and it is possible to create stripe-
like patterns within these simulations. Under the same setup as before but
through modifying α and Du the system can prefer striped patterns, which is
shown in Fig 6. It does, however, take a significantly longer time for stable
stripes to form in comparison to spot pattern formation. Once formed though,
the pattern will remain stable, see Fig. 7.
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Figure 3: Example of a robot configuration in the physical world space. The
images on the right are showing each Kilobot’s activation and inhibition, resp.,
and each circle represents the actual Kilobot’s place in the boxed environment,
which is shown in Fig. 2.

Figure 4: The simulations demonstrates the effect of increasing Du. After the
simulations the values were normalised, and the images left of the graph shows
the Kilobots’ u values. As Du increases, getting closer to the value of Dv, the
spotted pattern becomes less spatially frequent, and also each spot becomes
larger in size. Parameters: Similar to that in Fig. 2, except Du =0.1, 0.3, 0.7
and 0.9 (from left to right).

4.2 Clustering

A nearly regular configuration of the swarm can be achieved if the robots follow
a form of preferential attachment where detachment is also allowed. The system
is setup so that it favours spots, and after stable spots are formed a threshold
value is used to determine the role of the Kilobot. The Kilobot’s with high
activation will be the centre of these clusters, and the weakly activated will
converge towards the highly activated. Let’s denote these roles as ra and rm,
resp..

The adapt their speed by multiplication dependent upon the number of
neighbours they hear from, and their respective roles. The power sent to the
motors for ra and rm, denoted as pa and pm, are updated as follows

pa = paa
na
1 anm

2 ,
pm = pmm

na
1 mnm

2 , (4)

where na and nm are the number of messages received by a Kilobot with the role
ra and rm respectively, and a1, a2, m1, and m2 are constants. a2 > 1 > a1 > 0
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Figure 5: Stationary simulation where each image displays the normalised u
values. The images are after 100, 400, 700 and 1000 time steps. The evolution
of the spotted formations began as a larger spot which over time broke apart
to form smaller stable spots. Parameters: Similar to that in Fig. 2 except
Du = 0.3.

Figure 6: The results here show a simulation where Du = 0.55, Dv = 1.0,
∆t = 0.02, α = 0 and B = 1. All other parameters are set as that in Fig. 2.
The images displays the activation, u, of the simulated Kilobots. From left to
right, images show time steps 500, 2000, 3000 and 4000. A pattern containing
curved stripes is produced around time step 1000 and is then solidified by time
step 4000.

and m2 > 1 > m1 > 0. Random motion is generated for both ra and rm. The
power can never be below a minimum value, pmin. Kilobots will speed up if
they do not hear from a ra, and slow down if they do. If rm is within a certain
distance of a message sent from ra, then they will change roles to ra. This will
further encourage stable clustering.

The constants in Eq. 4 will determine several aspects, such as compactness.
The Kilobots have the capability to push a single Kilobot, and so if m1 is set to
be a gradual decline it will promote compactness. The Kilobots will converge on
those that are highly active, as they will be surrounded by ras themselves, and
thus will not increase their speed. When Kilobots of role rm join the clusters
and become ra, then there is more potential for the Kilobots to receive messages
from ra, and remain as a cluster, see Fig. 8.
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Figure 7: A simulation with the same setup as in Fig 6 showing the u values
after 50000 and 600000 time steps. It can be seen that the pattern, once formed,
remains fixed.

Figure 8: The Kilobots were randomly spatially distributed and only sent and
received messages for the first 2500 time steps. If a Kilobot’s u exceeds a
threshold θ, then they are ra and their LED turns red. Else they are rm.
Afterwards, the Kilobots will speed up if they do not receive messages from ra,
and slow down otherwise. The top two images displays the simulation after 2500
time steps, and the bottom two from time step 4000. Parameters: Du = 0.6,
Dv = 1.0, λ = 0.97, α = 1, θ = 0.04, pmin = 0.01, a1 = 0.1, a2 = 1.1, m1 = 0.9,
m2 = 1.1, and ∆t = 0.2.

4.3 Stripe segmentation

The Turing pattern constructed by the robots can be controlled to some extent.
The wavelength of the striped pattern can be modified through the parameter
Du. This would lead to the swarm of having the ability to distinctly separate
itself into subswarms. In this experiment, Du was set to form at most two full
parallel stripes through the swarm. Kilobots that have activations u below a
certain threshold, would begin to randomly move until they arrive near other
robots, then they slow down.

Once the stripes are formed the Kilobots will cluster into distinct groups.
Fig. 9 displays an example simulation of this. In this particular case the a stripe
was curving, meaning that the other stripe would barely form as it was parallel
to this stripe. The initial layout of the Kilobots have them all facing forward.
Though the stripes can form in different directions, which will result in different
cluster formations, the stripes will always remain still, thus the other Kilobots
will tend to stop around them as they will be consistently slowing down within
the stripes presence.
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Figure 9: The stripes here were formed within 15000 time steps (left). After
the formation of the pattern, the Kilobots with low u values randomly moved
and would slow down when in contact with other Kilobots, which can be seen
after 370 time steps of stripes formation (right). Parameters: Du = 0.63, α = 0
and ∆t = 0.5.

4.4 Ring formation

It is also possible for the Kilobots, to some success, to form rings based on the
information provided by the RD system. Similar to that in the stripe segmenta-
tion procedure, the Kilobots initially act solely as a platform for the RD system.
The system is setup so that it favours spots, and after stable spots are formed
a threshold value is used to determine the role of the Kilobot. These roles will
be denoted, as that in section 4.3, ra and rm. Kilobots with the role of ra will
form the shape of the ring, and rm will fill in the gaps.

Random motion is generated for rm while for ra there is a probability of 0.2
to perform a random movement, while otherwise the movement depends on the
messages received. If ra receives a message from another active robot r′a then it
shall turn left, otherwise it will move forward. Due to the lossy communication,
it is unlikely that both of the two active Kilobots will receive a message from
each other on the same time step, and thus will result in a repulsion force. They
follow the same power updates as that in Eq. 4, but here a1 > 1 > a2 > 0.

The setup described above takes advantage of the spotted pattern created
since the spots, i.e. ra, will immediately repel each other to create a loose ring.
The other Kilobots will then, through random movement, converge onto these
loose structures. The size of the ring is controlled through a1 and a2, as this
determines the initial repelling force within each of the spots produced.

The majority of spots will lead to ring formations, though difficulty arises
with spots that are present at the borders. These will mostly transform into
semi-rings and more cluster like groupings. Fig. 10 displays an example simu-
lation on a randomly spatially distributed swarm.

5 Discussion

This work has demonstrated not only are Turing Patterns possible in a Kilo-
bot swarm, even with their communication difficulties, pattern formation can
be decided upon (spots or stripes) through parameter choice, and how these
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Figure 10: The Kilobots were initially randomly spatially distributed and were
stationary for the first 104 time steps, which is seen in the left image. The spots
formed after this period can be seen in the middle. The Kilobots were then given
a role dependent upon u. If u > θ then they are ra, else rm. rm would move
randomly and will slow down if they hear from a ra, and speed up otherwise.
ra will speed up and turn left if they hear from a ra, and slow down and move
forward otherwise. ra also has a small chance of moving randomly. Parameters:
Du = 1.1, Dv = 2.0, α = 0, λ = 0.97, θ = 0.135, a1 = 1.8, a2 = 0.8, m1 = 0.2,
m2 = 1.05, and ∆t = 0.05.

patterns form, such as the number of spots. There had been work conducted
into the sensitivity of the parameters, in particular how the parameters affect
the pattern. One of the main parameters is the diffusion ratio between Du and
Dv, and this can be used as a control parameter for the pattern (spots, stripes;
a third type, inverted spots, was not considered here).

This ability to produce stable patterns can then lead to various applications.
The spotted pattern, see Fig. 5, can be controlled with respect to the number of
spots, and this produces distinct teams within the swarm. This would be ideal
for team-based tasks, including swarm exploration as this would allow groups
of robots to detach from the swarm and conduct their exploration within their
own group.

The stripe segmentation used a very basic rule for velocity. It was to show
how the stripes can separate a swarm and that the wavelength can be controlled
to determine the number of splits. Once the stripes have been formed then it
is relatively simple to have control of the swarm by allocating the movement
to those below/above a threshold that can be found analytically. The Kilobots
can also communicate the maximum value of the potential during formation of
a pattern, and use this information to determine the threshold (e.g. as half the
maximum). This can also split them into types which again can be communi-
cated to each other, and thus have more specific segmentation behaviours. For
example, all non active Kilobots should avoid active Kilobots and form their
own cluster.

The other formation demonstrated was the ring formation. The wall borders
hinder ring formation, but as stated in section 3, the borders contain the Kilo-
bots’ Brownian motion and eliminate the chance of swarm dispersement. One
solution to this would be the use of lighting, which the Kilobots could detect
and move away from. This would provide a non-obstacle repellent that would
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keep the Kilobots contained and potentially increase the success of ring forma-
tion. Another approach would be to change the Kilobots’ motion so that it can
home in early on either Kilobots that have the role ra or have seen ra. While
this is difficult given the lack of directional information, it is possible to gain
this information using past data. Interestingly this is where the RD system can
provide additional information such as diffusivity, which will allow the Kilobots
to move with the diffusion, thus a smoother spatial transition.

In order to realise the experiments with real Kilobots, finite battery life
needs may be problematic. Obtaining straight stripes (Fig. 9), would be around
two hours real time, which considerably exceeds the typical battery life of 20
minutes, although in most of our experiments the robots move only for part
of the time. Therefore other robotic platforms may be preferable. A more
capable robotic swarm would also have improved communication abilities, and
thus reduce the time of pattern formation due to lossy communication.

Critical behaviour within a swarm can lead to improved results within a
swarm, and work has been conducted into parameter selection specifically for
particle swarm optimisation [4]. Turing patterns themselves require the correct
parameters to be chosen to be able to form, thus they too will have a critical
point w.r.t. the particular pattern formed. The critical behaviour in this swarm
would allow the swarm to easily transition between one pattern to the other,
thus increasing the range of information and behavioural capabilities of the
entire swarm.

6 Conclusion

This investigation has demonstrated through preliminary analysis that the Kilo-
bots are capable of constructing Turing patterns via a RD system through mes-
sage passing. Furthermore, they have the capability of creating both spotted
and striped patterns with control of how the patterns will be formed. This could
lead to applications such as swarm separation and team formation. Through
the information from the final pattern that was formed, the Kilobots have the
capability to cluster and to form teams and boundaries. Although the Tur-
ing patterns offer only a few formation types, further work will show that a
larger manifold of behaviours will be achievable by scheduling or adapting the
parameter values or in combination with other techniques.
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