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Background and aims: We aimed at comparing the impact of multiple non-traditional biomarkers (ankle
brachial pressure index (ABI), N-terminal pro-brain natriuretic peptide (NT-proBNP), high sensitivity
cardiac troponin (hs-cTnT), gamma-glutamyl transpeptidase (GGT) and four markers of systemic
inflammation), both individually and in combination, on cardiovascular risk prediction, over and above
traditional risk factors incorporated in the QRISK2 score, in older people with type 2 diabetes.
Methods: We conducted a prospective study of 1066 men and women aged 60—75 years with type 2
diabetes mellitus, living in Lothian, Scotland.

Results: After 8 years, 205 cardiovascular events occurred. Higher levels of hs-cTNT and NT-proBNP and
lower ABI at baseline were associated with increased risk of CV events, independently of traditional risk
factors (basic model). The C statistic of 0.722 (95% CI 0.681, 0.763) for the basic model increased on
addition of individual biomarkers, most markedly for hs-cTnT (0.732; 0.690, 0.774)). Models including
different combinations of biomarkers had even greater C statistics, with the highest for ABI, hs-cTnT and
GGT combined (0.740; 0.699, 0.781).

Conclusions: Individually, hs-cTnT appeared to be the most promising biomarker in terms of improving
vascular risk prediction in people with type 2 diabetes, over and above traditional risk factors incor-
porated in the QRISK2 score. Combining several non-traditional biomarkers added further predictive
value, and this approach merits further investigation when developing cost effective risk prediction tools
for use in clinical practice.
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1. Introduction

The risk of cardiovascular (CV) disease is increased two-fold in
people with type 2 diabetes [1]. In the UK, the National Institute for
Health and Care Excellence (NICE) clinical guidelines recommend
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the use of the QRISK2 score [2] to calculate 10-year CV risk; this
score combines several traditional CV risk factors and has been
validated in patients with and without type 2 diabetes [3].
Numerous CV risk scores have been recommended worldwide, but,
in general, all current scores appear to perform inadequately in
people with type 2 diabetes, either under- or over-estimating risk
of CV events [4—6G]. Although people with type 2 diabetes are
routinely offered lifestyle advice and treatment with lipid-lowering
agents after diagnosis, better risk stratification may allow targeted
use of aggressive prevention strategies.

Increasing numbers of studies have suggested biomarkers,
which might improve vascular risk prediction scores in the general
populations, and, to a lesser extent, in diabetic study populations
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[7—12]. However, such studies have tended to look at the addition
of single risk factors over-and-above a small panel of traditional
risk factors (or an established risk score based on such traditional
risk factors). A direct comparison of the value of different non-
traditional biomarkers has not been well evaluated within the
setting of a single epidemiological study. Similarly, the value of
different combinations of the most promising biomarkers has not
been well studied.

The aim of the current research was to compare the addition of a
number of different biomarkers to a vascular risk score based as
closely as possible on that currently recommended for clinical use
in people with diabetes in the UK (QRISK2), and to investigate the
extent to which different combinations of these various biomarkers
might improve prediction. The biomarkers selected included those
identified in previous research, especially those which might be of
particular importance in diabetes (such as inflammatory markers
which are generally raised in people with diabetes and gamma GT
as a measure of liver dysfunction which has been linked with both
the high prevalence of fatty liver disease in diabetes and with
cardiovascular disease). Since the overall aim was to provide re-
sults, which would be informative for potential application in a
clinical setting, biomarkers selected were also restricted to those
which can be relatively easily measured in a routine clinic setting,
either by means of a blood test (N-terminal prohormone of brain
natriuretic peptide (NT-proBNP), high-sensitivity cardiac troponin
T (hs-cTnT), gamma-glutamyl transpeptidase (GGT) and markers of
systemic inflammation such as C-reactive protein (CRP),
interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-a) and
fibrinogen) or by means of a straightforward physical test (the
ankle brachial pressure index (ABI).

2. Materials and methods
2.1. Study population

The Edinburgh Type 2 Diabetes Study (ET2DS) is a population-
based, prospective cohort of 1066 men and women aged 60—75
years with established type 2 diabetes living in the Lothian region
of Scotland, UK. In 2006/2007, participants were recruited at
random from the Lothian Diabetes Register, a registry of almost all
people with type 2 diabetes living in Lothian, resulting in a cohort
largely representative of this target population [13]. Recruitment
and data collection using questionnaires and physical examination
at baseline research clinics (supplemented with data from the In-
formation Services Division (ISD) of National Health Service Scot-
land on all medical and surgical discharge records from Scottish
hospitals since 1981) have been described previously [14]. Subjects
have been followed up over 8 years for development of CV events.
All study participants gave informed consent and ethical approval
was granted by the Lothian Medical Research Ethics Committee.

2.2. Assessment of traditional CV risk factors for the basic model

A range of traditional CV risk factors to be included in a basic risk
prediction model were measured at baseline using methods
described previously in detail [14]. Risk factors were chosen and
defined to replicate variables included in QRISK2 as closely as
possible, including age, sex, smoking, atrial fibrillation (AF), rheu-
matoid arthritis (RA), hypertension, chronic kidney disease (CKD),
body mass index (BMI), systolic brachial blood pressure (sBP),
total:high density lipoprotein (HDL) cholesterol and social status.
Self-reported smoking history from questionnaires was categorised
as: non-smoker, ex-smoker, <10 cigarettes/day, 10—19 cigarettes/
day and 20 + cigarettes/day. RA was recorded from a combination
of self-report and hospital discharge codes in the record linkage

data from ISD. AF was recorded from self-reported use of digoxin,
relevant hospital discharge codes or AF on the 12-lead ECG taken at
the research clinic. Hypertension was defined as self-report of anti-
hypertensive medication. CKD was defined as an estimated
glomerular filtration rate (eGFR) < 60 ml/min on 2 of 3 consecutive
measurements in the 12—24 months prior to baseline in routine
biochemistry data extracted from the Lothian Diabetes Register to
replicate ‘doctor diagnosis of CKD’ used in QRISK2. Social status was
categorised using the Scottish Index of Multiple Deprivation (SIMD)
based on post code [15].

2.3. Assessment of non-traditional biomarkers

Plasma from fasting venous blood samples taken at baseline was
frozen for storage. Plasma NT-proBNP and hs-cTNT were subse-
quently measured using the Elecsys 2010 electro-
chemiluminescence method (Roche Diagnostics, Burgess Hill, UK),
and calibrated using the manufacturer's reagents. The manufac-
turer's controls were used with limits of acceptability defined by
the manufacturer. GGT was analysed using a Vitros Fusion chem-
istry system (Ortho Clinical Diagnostics, High Wycombe, UK) at the
Western General Hospital, Edinburgh, UK. Assays for plasma TNF-a,
IL-6, CRP and fibrinogen were carried out in the University
Department of Medicine, Glasgow Royal Infirmary. TNF-a. and IL-6
antigen levels were determined using high-sensitivity ELISA Kits
(R&D Systems, Oxon, UK). CRP was assayed using a high-sensitivity
immunonephelometric assay. Fibrinogen assays were performed
using stored plasma anticoagulated with trisodium citrate and the
automated Clauss assay (MDA-180 coagulometer, Organon
Teknika). ABI was measured as described previously as the ratio of
systolic BP in the ankle to that in the arm [14]. Participants with a
value > 14 (n = 17), indicative of medial arterial calcinosis rather
than atherosclerosis, were subsequently omitted, in line with pre-
vious studies [29].

2.4. Assessment of CVD events

Using pre-defined criteria [13], data collected at baseline from
questionnaires, ECG and hospital discharges were used to record
prevalent CVD (M, angina, transient ischaemic attack (TIA), stroke
and coronary intervention). Data used to identify incident CV
events over 8 years included ECGs plus self-reported and GP-
reported events in questionnaires, all completed after 4 years,
plus ISD record linkage for hospital discharge and death certificate
data together with review of clinical case notes at both four and
eight years. Criteria for fatal and non-fatal events were as follows.
MI: ICD-10 code for new MI (I121—123, 1252) on discharge/death
record, dated after baseline, confirmed by self-reported doctor
diagnosis of MI, positive WHO chest pain questionnaire for MI,
report of MI on GP questionnaire, new ECG changes or inspection of
clinical notes. Angina [1]: ICD-10 code for angina (I20—I25) as
primary diagnosis on hospital discharge record, dated after base-
line, with no previous indication of angina; or [2] at least two of (a)
self-reported doctor diagnosis of angina or new angina medication
since baseline, (b) ECG codes for ischaemia that were not present at
baseline and (c) positive WHO chest pain questionnaire. Fatal
ischaemic heart disease (IHD): subject did not meet any of the
criteria for fatal MI and had an ICD-10 code for IHD (1209, 1249, 1258,
1259) as primary cause of death. Stroke [1]: ICD-10 code for stroke
(I61, 163—166, 1679, 1694) as primary diagnosis on discharge/death
record, dated after baseline; or [2] self-report of stroke or non-
primary ICD-10 discharge/death code for stroke dated after base-
line, both confirmed on scrutiny of clinical notes. TIA [1]: ICD-10
code for TIA (G45, G659) as primary diagnosis on discharge re-
cord; or [2] self-report of stroke or non-primary ICD-10 discharge
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code for stroke or TIA dated after baseline, confirmed as TIA on
scrutiny of clinical notes. Coronary intervention: OPCS operation
code for coronary intervention (K40—K44, K49) on discharge
record.

2.5. Statistical analysis

Distributions of ABI, NT-proBNP, hs-cTNT, Gamma-GT, TNF-a,
CRP and IL-6 were skewed and therefore log-transformed in an-
alyses. The Pearson correlation coefficient r and test of association
were used to assess relationships between biomarkers. The four
inflammation biomarkers (TNF-a, CRP, IL-6 and fibrinogen) were
combined into one general inflammation factor using an unro-
tated principal components analysis. All four markers loaded quite
strongly onto the first principal component (0.44—0.80), which
explained 49% of the total variability, and this was used to calcu-
late the general inflammation factor, g. An incident CV event was
defined as the first CV event (fatal or non-fatal MI or stroke, fatal
IHD, angina, TIA or coronary intervention) occurring after
baseline.

In addition to components of the QRISK2 score (in the devel-
opment of which subjects with prior CVD or taking statins were
excluded) with the exception of family history of CV disease which
was not available in the ET2DS, baseline CVD status and use of lipid
lowering medication were also included to produce a basic model.
The corresponding coefficients were estimated directly from
ET2DS data. Binary logistic regression models were used to eval-
uate the relationships between each biomarker and CV events,
chosen in favour of Cox regression to avoid having to make the
proportional hazards assumption. The added predictive value of
including each biomarker to the basic model was assessed using C
statistics (model discrimination). The net reclassification index
(NRI) was calculated, as well as the net reclassification (NR)
separately for participants who experienced a CV event and those
who did not, giving the change in the proportion of subjects
correctly classified according to pre-specified CV risk categories
(0—10%, 10—20% and >20%). Calibration was assessed using the
Hosmer-Lemeshow test (p-value > 0.05 indicates good calibra-
tion). All subsets regression was used to compare all possible
combinations of biomarkers and obtain the best five models, ac-
cording to a pre-specified statistical criterion (Akaike's Informa-
tion Criterion, AIC) which measures the relative quality of a model
while penalising for increasing numbers of predictors). In addi-
tion, a model was fitted which included conventional CV risk
factors and the full panel of biomarkers.

3. Results
3.1. Study characteristics at baseline and incident CV events

Due to low numbers of non-white participants (n = 17), all
analyses were restricted to Caucasian participants (n = 1049; 515
women, 534 men). Mean age at baseline was 67.9 + 2.4 years.
Baseline prevalences of MI, angina, stroke, TIA and coronary
intervention were 14.0% (n = 147), 27.8% (n = 292), 5.8% (n = 61),
2.9% (n =30) and 10.1% (n = 106) respectively. Use of lipid lowering
medication was reported by 896 subjects (85.4%). Full baseline
characteristics of the study population are shown in Table 1. Cor-
relations between biomarkers, shown in Table 2, were particularly
strong for the inflammatory markers.

A total of 205 first incident CV events (61 fatal/non-fatal MI, 38
angina, 53 stroke, 11 TIA, 24 coronary intervention and18 fatal IHD)
occurred during the eight year follow-up period (19.5% of study
population).

Table 1

Baseline characteristics of the ET2DS population.
Variable
Age (years) 67.9 + 4.2
Sex (female) 515 (49.1)
Lipid-lowering medication 896 (85.4)
Hypertension 858 (81.8)
Smoking status

Non-smoker 411 (39.2)

Ex-smoker 491 (46.8)

Current smoker — light (<10 cigarettes/day) 31(3.0)

Current smoker — moderate (10—19 cigarettes/day) 47 (4.5)

Current smoker — heavy (20 + cigarettes/day) 69 (6.6)
Atrial fibrillation 69 (6.6)
Chronic kidney disease 258 (24.6)
Rheumatoid arthritis 39 (3.7)
SIMD

Quintile 1 (most deprived) 127 (12.1)

Quintile 2 205 (19.5)

Quintile 3 185 (17.6)

Quintile 4 192 (18.3)

Quintile 5 (least deprived) 340 (324)
BMI (kg/m?) 31.5+5.7
sBP (mmHg) 1333 £ 16.5
Total cholesterol: HDL cholesterol 35+ 1.1
CVD at baseline®

MI 147 (14.0)

Angina 292 (27.8)

Stroke 61 (5.8)

TIA 30(2.9)

Cl 106 (10.1)
ABI 1.0 (0.9, 1.1)
NT-proBNP (pg/ml) 76 (38,172)
hs-cTnT (ng/L) 9.6 (6.9, 13.8)
GGT (U/L) 18 (11, 32)
TNF-o (pg/ml) 1.1 (0.7, 1.6)
IL-6 (pg/ml) 2.9 (2.0,4.5)
CRP (mg/L) 1.9 (0.9, 4.4)
Fibrinogen (g/L) 3.6 +0.7

Data are presented as means + SD, n (%) or median (lower IQR, upper IQR).
Maximum n = 1049.
2 Note that there is overlap among these subgroups.

3.2. Individual biomarkers

The basic model had a C statistic of 0.722 (95% CI 0.681, 0.763)
and was well-calibrated (Hosmer-Lemeshow p = 0.97). Individual
biomarkers had much lower C statistics (95% CI) than the basic
model; ABI 0.552 (0.486, 0.618), NT-proBNP 0.575 (0.511, 0.640);
Troponin 0.601 (0.532, 0.669), Gamma-GT 0.554 (0.488, 0.621); g
0.580 (0.515, 0.645). Even when all five biomarkers were combined,
the C statistic did not reach that of the basic model (0.642, 95% CI
0.577, 0.707).

Increased levels of circulating biomarkers were associated with
an increased incidence of CV events over-and above the basic
model (Table 3), but only the associations for NT-proBNP and hs-
cTnT were statistically significant (p<0.05). The strongest associa-
tion was observed for hs-cTnT (OR for 1 SD increase 1.35; 95% CI,
1.13, 1.61). A lower ABI was associated with a higher incidence of
events (OR 0.86, 95% CI 0.73, 1.00).

Addition of each individual biomarker to the basic model
increased the C statistic slightly, with the greatest increase seen for
hs-cTnT (an increase of 0.010 from 0.722, 95% CI 0.681, 0.763 to
0.732, 95% CI 0.690, 0.774). Addition of individual biomarkers also
improved the risk classification for participants who did not
experience a CV event, although this generally resulted in poorer
risk classification for participants who did experience a CV event
(Table 3). The addition of hs-cTnT resulted in poorer risk classifi-
cation by 1.6% for participants who experienced a CV event, but
improved risk classification by 2.2% for those who did not. All the
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Table 2

Correlation coefficients between biomarkers at baseline (max n = 1032).°

ABl < 14 NT-proBNP hs-cTnT GGT TNF-a. IL-6 CRP Fibrinogen g

ABl < 14 1 —-0.21** -0.10** —0.05 -0.07* —0.12%** —0.13** —0.18*** -0.18***
NT-proBNP 1 0.38*** -0.03 0.16™** 0.18*** 0.11** 0.21*** 0.23***
hs-cTnT 1 0.03 0.19*** 0.17*** -0.03 0.05 0.12%**
GGT 1 0.08* 0.16*** 0.24*** —0.06 0.16***
TNF-a 1 0.31*** 0.12%** 0.12*** 0.43***
IL-6 1 0.42%** 0.34*** 0.75***
CRP 1 0.54*** 0.80***
Fibrinogen 1 0.76***
g 1

*Pearson correlation test p-value < 0.05.
**Pearson correlation test p-value < 0.01.
***Pearson correlation test p-value <0.001.

@ Missing data ranges from 8 to 39 data points.

Table 3

Adding biomarkers to the basic model (all columns refer to total population with complete case analysis, n = 989, except for final column which gives c-statistics for sub-

population with no CVD at baseline).

Predictors in the model, OR for a one SD C statistic (95% CI) p-value for NR —event‘(%) NR —no event® (%) NRI Goodness C statistic
additional to conventional increase in comparison of fit (95% CI) for
risk factors® biomarker with basic (Hosmer-Lemeshow sub-population
(95% CI) model p value) with no baseline
CVD
Basic model - 0.722 (0.681, 0.763) 0.97 0.685 (0.623, 0.747)
ABI 0.86 (0.73, 1.00) 0.725 (0.684, 0.766) 0.44 -2.2 2.0 0.015 0.83 0.691 (0.628, 0.753)
NT-proBNP 1.23 (1.02, 1.49) 0.726 (0.685, 0.767) 0.39 -2.2 1.5 —0.007 0.81 0.684 (0.623, 0.745)
hs-cTnT 1.35(1.13, 1.61) 0.732 (0.690, 0.774) 0.19 -1.6 22 0.006 0.09 0.685 (0.623, 0.747)
Gamma-GT 1.16 (0.98, 1.37) 0.726 (0.685, 0.766) 0.40 -2.7 1.1 —-0.016 0.40 0.689 (0.626, 0.751)
g 1.07 (0.90, 1.27) 0.724 (0.683, 0.765) 0.29 0.5 1.2 0.018 0.90 0.693 (0.631, 0.755)
Top five models chosen
(all-subsets regression)
ABI, hs-cTnT, GGT - 0.740 (0.699, 0.781) 0.04 -1.1 4.4 0.033 0.15 0.700 (0.637, 0.762)
ABI, hs-cTnT, GGT, proBNP  — 0.740 (0.699, 0.780) 0.06 -2.7 3.5 0.008 034 0.701 (0.640, 0.763)
hs-cTnT, GGT, proBNP — 0.738 (0.697, 0.779) 0.07 -1.6 5.1 0.035 047 0.696 (0.634, 0.758)
ABI, hs-cTnT — 0.735 (0.694, 0.776) 0.12 -3.2 5.4 0.021 035 0.695 (0.633, 0.756)
hs-cTnT, GGT - 0.738 (0.697, 0.778) 0.06 -1.1 3.9 0.028 0.21 0.694 (0.632, 0.756)
Full model
ABI, hs-cTnT, GGT, proBNP, g — 0.740 (0.699, 0.781) 0.06 -1.6 52 0.036 039 0.706 (0.644, 0.767)

2 A complete case analysis was carried out, n = 989 (n = 643, events = 83 for subpopulation with no CVD at baseline).
b Conventional risk factors: age, sex, smoking, atrial fibrillation, chronic kidney disease, arthritis, hypertension, BMI, sBP, total:HDL cholesterol, social status, baseline CVD

status (MI, angina, TIA and stroke) and lipid lowering medication.
¢ n = 186 for event, n = 803 for no event.

models were shown to be well-calibrated (Hosmer-Lemeshow
p > 0.05).

3.3. Combinations of biomarkers

An all subsets regression was carried out and identified the top
five models according to a pre-specified statistical criterion, after
adjusting for conventional risk factors, from all possible combina-
tions of biomarkers. All five models (Table 3) included hs-cTnT and
none included the general inflammation factor, g. The best model
selected using this method added ABI, hs-cTnT and GGT to the set of
conventional CV risk factors. This model was well-calibrated and
had a C statistic of 0.740 (95% CI 0.699, 0.781), an increase of 0.018
compared to the basic model (p = 0.04). The addition of the three
biomarkers resulted in slightly poorer risk classification by 1.1% for
participants who experienced a CV event, but improved risk clas-
sification by 4.4% for those who did not. The second best model was
well-calibrated and showed the same increase in the C statistic as
the top model, but the NR was poorer for participants who expe-
rienced a CV event (—2.7%s) and for those who did not (3.4%). For
comparison, the full model including all biomarkers is also shown
in Table 3. The C statistic showed the same increase as the top
model. The addition of all biomarkers resulted in poorer risk

classification by 1.6% for participants who experienced a CV event,
but improved risk classification by 5.2% for those who did not.

A high proportion of participants had prevalent CVD at baseline
and removing these subjects from analysis resulted in reduced
statistical power (n = 643 subjects, n = 83 events) and a lower C
statistic for the basic model (0.685, 95% CI 0.623, 0.747). Despite
this, the increases in C statistic found on addition of the individual
biomarkers to the basic model generally mirrored the increases
seen in the full study population (Table 3). Also consistent with
findings in the full study population, C statistics improved more for
models including a combination of biomarkers than for those with
individual biomarkers added (e.g. adding ABI, hs-cTnT and GGT to
the basic model improved the C statistic from 0.685 to 0.700,
p = 0.16).

4. Discussion

In older people with type 2 diabetes, a number of individual
non-traditional biomarkers were associated with increased risk of
incident CV events, independent of factors currently used to predict
CVD. This included higher levels of hs-cTnT and NT-proBNP and a
lower ABIL. hs-cTnT appeared to be the most promising individual
biomarker in terms of improving risk prediction over-and-above
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traditional risk factors incorporated in the QRISK2 score. Combi-
nations of the non-traditional biomarkers further improved risk
prediction compared with one strong biomarker alone, and bio-
markers which on their own did not appear to add much predictive
value still contributed to these models. The strongest predictive
models included combinations of NT-proBNP, hs-cTnT, ABI and
gamma GT, but did not include an inflammation factor representing
four individual markers of systemic inflammation.

Cardiac troponin levels increase in response to clinical and
subclinical myocardial ischaemia and is currently used to aid the
diagnosis of myocardial infarction [17] while NT-proBNP is released
by the heart in response to increased pressure on the ventricular
wall with low levels used in clinical practice to rule out heart failure
[16]. In previous studies on both the general population and in
people with diabetes, hs-cTnT and NT-proBNP have been associated
with the risk of CVD and may add predictive value independent of
conventional risk factors [8,9,18—20]. A reduced ABI is used in the
diagnosis of peripheral arterial disease, is a marker of generalized
atherosclerosis and, in a meta-analysis capturing over 480,000
person years follow-up in the general population, improved CV risk
prediction beyond the Framingham Risk Score [7]. More recently,
two general population studies indicated that ABI had a small effect
on CV risk and only improved risk prediction if the basic model was
weak [21,22], whilst evidence in diabetes has previously been
lacking.

Previous evidence suggesting that inflammatory biomarkers,
including CRP, IL-6, TNF-o and fibrinogen, may add predictive value
independent of conventional risk factors in both general and dia-
betic populations is inconsistent [11,20,23—27]. Given that these
four biomarkers are highly correlated, it has been suggested that
they may best be combined into one general factor, which describes
the overall inflammatory burden [12,28—30]. This was the
approach we chose for our study, but we found little evidence that
the inflammatory factor was associated with incident events or
predicted CV risk either individually or when combined with other
biomarkers. Conversely, the liver function test, gamma GT,
contributed to an increase in prediction when combined with other
biomarkers, despite minimal evidence of a contribution when
included on its own. GGT has previously been associated with CVD
in two large general population studies [31,32] and in people with
type 2 diabetes [33], although it did not improve CV prediction
beyond traditional risk factors [34]. Similarly, a recent general
population cohort study of 2500 patients with acute coronary
syndrome found that GGT was associated with increased risk of all-
cause mortality but not cardiac mortality [35] and the PREVEND
prospective cohort study suggested that adding GGT to conven-
tional CV risk factors did not improve the prediction of first-ever CV
events in the general population [36]. Our findings for gamma GT
highlight the importance of avoiding pre-selecting biomarkers ac-
cording to the statistical significance of their association with
events prior to the inclusion of multiple biomarkers in a risk pre-
diction model.

One of the strengths of the current study was the use of a basic
model based on the risk score currently recommended for use in
type 2 diabetes for risk prediction in the UK (the QRISK2 score,
currently recommended by NICE clinical guidelines). However,
precisely replicating the QRISK2 score in the ET2DS proved chal-
lenging. Family history of CVD was not available in the ET2DS and
the SIMD was used as a measure of social status rather than the
Townsend index, which is only applicable to England and Wales.
The definition of CKD in QRISK?2 is a clinical diagnosis of CKD, but
the list of corresponding clinical codes is not readily available. A
similar doctor-diagnosis definition of CKD created for the ET2DS
only affected 1.7% of the cohort, much lower than anticipated in an
elderly diabetic population [37,38]. A new variable for CKD, based

on an eGFR <60 ml/min (equivalent to Stage 3—5 CKD) identified
24.6% of the cohort and, as this was considered to be a more ac-
curate definition of CKD, was used in subsequent analysis. Also
QRISK2 excluded participants with previous CVD or taking statins
and we were unable to use the statistical algorithm developed by
QRISK?2 as this was not made available to us.

Given the problems replicating QRISK2, and also in the knowl-
edge that existing risk scores based on traditional vascular risk
factors cannot be assumed to be more predictive and/or easier to
apply in clinical practice than a score based on novel biomarkers
alone, we considered C statistics for the biomarkers on their own
(i.e. prior to the addition of traditional risk factors). However, this
showed that biomarkers alone or in combination with each other
were less predictive than traditional risk factors on their own (or
combined with biomarkers), supporting our initial approach of
adding biomarkers to the basic model based on the QRISK2 score.
At 0.722, the C statistic for our basic model was similar in absolute
value to those found by previous studies in type 2 diabetes, which
used a variety of risk factor models and/or CV risk scores [9,27,39].
In our study, an even greater level of risk prediction was found
when a combination of novel biomarkers was added to traditional
risk factors, improving risk prediction beyond that seen with the
addition of any single biomarker. Interestingly, an upper limit to
model performance may be suggested by our finding of the same C
statistic value for the two best models with different combinations
of biomarkers and the model containing all the investigated
biomarkers.

Because a very large proportion of the ET2DS had prevalent CVD
at baseline or were taking lipid lowering medication (representing
the situation in the target population of elderly people with type 2
diabetes) we included all subjects in our analyse, subsequently
including prevalence of CVD and lipid lowering medication as
additional covariates. Results of our sensitivity analysis in subjects
free of CVD at baseline suggested that key findings were also similar
in this more healthy sub-population. Our model therefore has the
advantage of being potentially applicable to all people with type 2
diabetes, including those both with and without clinically-
diagnosed CVD, all of whom could benefit from more accurate CV
risk prediction. However, as power for our sensitivity analysis was
limited, this findings needs to be confirmed in larger studies.

The size of improvements in the C statistic following the addi-
tion of various biomarkers was consistent with previous studies.
Although the increases in C statistic were small, it should be noted
that the C statistic can be insensitive when adding a new predictor
to a model, even though such a predictor may make an indepen-
dent and statistically significant contribution to the model [40].
This phenomenon is particularly noticeable when the baseline
model includes strong predictors and has a large C statistic. In order
to evaluate the clinical usefulness of our models, we also consid-
ered the NR as a measure of reclassification. This suggested that, in
general, the risk classification improved after the addition of a
biomarker for people who did not experience a CV event, but
slightly worsened for people who did experience an event. Further
large studies are needed to validate this conclusion and to ascertain
whether any improvements are clinically significant.

Overall, this study benefited from the representativeness of the
type 2 diabetes population, the relatively long term follow up for CV
events and the thorough and systematic approach for assessing
incident CV events which ensured loss to follow-up was minimal.
The wide variety of biomarkers available allowed for the inclusion
of a large panel of potential predictors, both individually and in
combination. The study also has limitations. In addition to the
insensitivity of the C statistic, the NR is dependent on the choice of
risk thresholds. The continuous net reclassification index can be
used to avoid this decision, but this is less clinically relevant. The NR
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should therefore be considered as a descriptive tool to demonstrate
what would happen to risk scores in a clinical setting if the new
model was used with the chosen risk categories (0—10%, 10—20%,
>20%). Data were missing for some of the predictor variables and
the complete case analysis performed can produce biased estimates
or reduce statistical power. However, since missing data was less
than 5%, and an analysis of subjects with missing data versus those
without indicated that missing data rates did not depend on the
outcome or key predictor variables, these risks were considered to
be negligible.

In conclusion, our results suggest that in people with type 2
diabetes, a risk score based on a combination of both traditional
and non-traditional (‘novel’) biomarkers may help identify patients
who are at higher risk of cardiovascular mortality and morbidity
and may be useful to stratify patients into those who are more or
less likely to derive significant benefit from intensive preventive
therapy or to avoid the unwanted side effects of unnecessary
intervention. It has previously been suggested that it might be best
to abandon estimates of individual risk in people with diabetes, and
to treat all people with this condition as high risk [41]. Part of this
argument is based on the lack of an accurate risk prediction tool,
many of which have been developed in general population samples
with only a small number of participants with diabetes, and which
under estimate the risk of cardiovascular disease in people with
diabetes. Our results suggest that not only can risk scores devel-
oped in the general population perform well in a diabetic popula-
tion, but also that additional predictive ability can be achieved by
adding a combination of non-traditional risk factor to an existing
score based on traditional risk factors. Our results are particularly
important in highlighting the incremental benefit that can be
achieved by adding multiple novel risk factors to existing risk
prediction models. However, before considering adopting any or all
of the specific biomarkers identified in our ‘best’ model in clinical
practice, our results need to be replicated in other cohorts, given
that any model is likely to perform better in the population in
which it is developed. If confirmed in future studies, consideration
of the use of threshold values for each included biomarker may also
help to increase the clinical utility of a risk score. We recommend
that multiple traditional and non-traditional risk factors are
considered both individually and in combination when identifying
and testing clinically useful risk prediction scores for use in patients
with diabetes, along with the equally important issue of the ease
with which such variables can be measured in a primary or sec-
ondary care setting.
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