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Abstract

This paper introduces capital flow to the single item stochastic lot sizing
problem. A retailer can leverage business overdraft to deal with unexpected
capital shortage, but needs to pay interest if its available balance goes be-
low zero. A stochastic dynamic programming model maximizing expected fi-
nal capital increment is formulated to solve the problem to optimality. We
then investigate the performance of four controlling policies: (R,Q), (R,S),
(s, S) and (s, Q, S); for these policies, we adopt simulation-genetic algo-
rithm to obtain approximate values of the controlling parameters. Finally, a
simulation-optimization heuristic is also employed to solve this problem. Com-
putational comparisons among these approaches show that policy (s, S) and
policy (s,Q, S) provide performance close to that of optimal solutions obtained
by stochastic dynamic programming, while simulation-optimization heuristic
offers advantages in terms of computational efficiency. Our numerical tests also
show that capital availability as well as business overdraft interest rate can
substantially affect the retailer’s optimal lot sizing decisions.

1 Introduction

Overdraft is widely used by many companies to prevent capital shortage. It is nec-
essary and important for a manager to take capital flow and external financing into
account when making operational decisions. Our contributions to the lot sizing prob-
lem are the following:



• We incorporate capital flow and one kind of external financing, i.e. overdraft, in
the stochastic lot sizing problem and formulate a stochastic dynamic program-
ming model to obtain optimal solutions.

• We discuss four inventory controlling policies for this problem and use simulation-
genetic algorithm to obtain approximate values of the controlling parameters.

• We introduce a simulation-optimization heuristic inspired by the approach.

• We conduct a comprehensive numerical study to compare stochastic dynamic
programming, simulation-genetic algorithm and simulation-optimization heuris-
tic.

2 Problem description

All the notations adopted in this paper is listed in Table 1. In our problem, demand
is stochastic and non-stationary. For each period t, its demand is represented by Dt,
which is a non-negative random variable with probability density function ft, cumu-
lative distribution function Ft, mean µt, variance σ2. Random demand is assumed to
be independent over the periods. Unmet demand in any given period is back ordered
and satisfied as soon as the replenishment arrives. Excess stock is transferred to next
period as inventory and the sell back of excess stock is not allowed.

We assume the initial capital quantity of the retailer is B0; order delivery lead time
is zero; selling price of the product is p and the retailer receives payments only when
the products are delivered to customers; a fixed cost a is charged when placing orders,
regardless of the ordering amount, and Rt is a 0-1 variable to determine whether the
retailer makes order at period t; a variable cost v is charged on every ordering unit;
end-of-period inventory level for period t is It, and we set I+t to represent max{It, 0}
and I−t to represent max{−It, 0}; a variable inventory holding cost h is charged on
every product unit carried from one period to the next; per unit stock-out penalty
cost is π; at the beginning of each period t, its present capital is Bt−1, if its initial
capital is below zero, the retailer has to pay interests with a rate of b.

End-of-period capital Bt for period t is defined as its initial capital Bt−1, plus
payments by customers for satisfied demand of this period, minus the payments to
suppliers for orders made in this period and this period’s fixed ordering cost, holding
and backorder costs, and minus the interest paid if its initial capital is negative. It
can be represented by the following equation.

Bt = Bt−1+pmin
{
Dt+I

−
t−1, Qt+I

+
t−1

}
−
(
vQt + aRt + hI+t + πI−t

)
−bmax{−Bt−1, 0}

(1)



The actual sales amount in period t is min
{
Dt + I−t−1, Qt + I+t−1

}
, where Dt + I−t−1

is demand plus backorder in period t and Qt + I+t−1 is the total available stock in
period t.

For the final capital of the retailer in the whole planning horizon, we defined it as
the end-of period capital BT , minus the interest paid if BT is negative, which is:

BT+1 = BT − bmax{−BT , 0} (2)

We use a tilde above the parameter to represent its expected value. Our aim is
to find a replenishment plan that maximizes the expected final capital increment, i.e.
B̃T+1 −B0.

3 Results and discussion

6 periods with different demand patterns are adopted for experiments and there are
640 numerical cases in total, our computation results show that policies (s, S) and
(s,Q, S) solved by genetic algorithm, in general perform better than other approaches
(RMSE: 3.17 and 3.25, respectively; MAPE: 5.68% and 5.59%, respectively), followed
by policy (R, S) (RMSE: 6.28, MAPE: 26.72%), simulation-optimization heuristic
(RMSE: 13.60, MAPE: 53.67%) and policy (R,Q) (RMSE: 15.90, MAPE: 66.63%).
Considering the confidence levels, performance of policy (s, S) and policy (s,Q, S) are
essentially identical. For the four controlling policies, it can be concluded that their
performance is related with their flexibility. Since policy (s, S) and policy (s,Q, S)
are based on ”dynamic uncertainty” strategy, which is most flexible, they perform
best for the problem, while the least flexible policy (R,Q) has worst performance. It
is however surprising that enforcing a maximum order quantity Q does not seem to
be beneficial, and that an (s, S) policy with parameters carefully selected seems to
provide competitive performances.

The performance of different approaches does not seem to be affected by different
parameter levels under the criterion RMSE; however, it is affected by the margin of
product — selling price and unit variable ordering cost under the MAPE criterion.
Finally, the performance of the simulation-optimization heuristic varies substantially
across different demand patterns.

In terms of computation times, the simulation-optimization heuristic runs faster
than genetic algorithm, with average computation time less than one second (0.04s).
Among the policies solved via genetic algorithm, policy (R, S) runs fastest (42.31s),
followed by policy (R,Q) (46.91s), policy (s, S) (184.88s), policy (s,Q, S) (194.39s).



Notations Description

Indices
t Period index, t = 1, 2, . . . , N

Problem parameters
B0 Initial capital
I0 Initial inventory level
I+t max{It, 0}
I−t max{−It, 0}
p Product selling price
a Fixed ordering cost
v Unit variable ordering cost
h Unit inventory cost
π Unit penalty cost for back orders
b Interest rate for minus capital
M A big number

Random variables

Dt

Random demand at period t with probability density function ft(Dt),
cumulative distribution function Ft(Dt),
mean µt, variance σ2

State variables
It End-of period inventory for period t, we assume I0 = 0
Bt End-of period capital for period t

Decision variables
Qt Ordering quantity at the beginning of period t
Rt whether the retailer orders at period t
St Order up to level at the beginning of period t, and St = It−1 +Qt

st Threshold of the inventory level for (s, S) policy

Table 1: Notations adopted in our paper


