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The polymorphic blame calculus integrates static typing, including universal types, with dynamic typing.
The primary challenge with this integration is preserving parametricity: even dynamically typed code should
satisfy it once it has been cast to a universal type. Ahmed et al. (2011) employ runtime type generation in the
polymorphic blame calculus to preserve parametricity, but a proof that it does so has been elusive. Matthews
and Ahmed (2008) gave a proof of parametricity for a closely related system that combines ML and Scheme,
but later found a flaw in their proof. In this paper we present an improved version of the polymorphic blame
calculus and we prove that it satisfies relational parametricity. The proof relies on a step-indexed Kripke logical
relation. The step-indexing is required to make the logical relation well defined in the case for the dynamic
type. The possible worlds include the mapping of generated type names to their types and the mapping of type
names to relations. We prove the Fundamental Property of this logical relation and that it is sound with respect
to contextual equivalence. To demonstrate the utility of parametricity in the polymorphic blame calculus, we
derive two free theorems.
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1 INTRODUCTION

The last decade has delivered considerable progress regarding the integration of static and dynamic
typing, both in theory and in practice. On the practical side, languages such as TypeScript [Bierman
et al. 2014; Hejlsberg 2012], Hack [Verlaguet 2013], Flow [Chaudhuri 2014], Dart [Bracha 2011],
and C# [Hejlsberg 2010] combine elements of static and dynamic typing. Over a million lines of
TypeScript code went into the Microsoft Azure portal [Turner 2014]. On the theory side, in the
last decade researchers have studied gradual typing [Allende et al. 2013; Gronski et al. 2006; Ina
and Igarashi 2011; Siek and Taha 2006; Swamy et al. 2014], multi-language integration [Matthews
and Findler 2007; Tobin-Hochstadt and Felleisen 2006], the blame calculus [Wadler and Findler
2009], andmanifest contracts [Greenberg et al. 2010]. In fact, this area of research has a long history,
including the dynamic type of Abadi et al. [1991], the quasi-static types of Thatte [1990], the coercions
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of Henglein [1994], the contracts of Findler and Felleisen [2002], and the dynamic dependent types
of Ou et al. [2004].
The integration of dynamic typing with languages that include polymorphism (i.e., type ab-

straction) is particularly delicate. Abadi et al. [1991] remark that their typecase construct for
eliminating values of type Dynamic could be used to violate type abstraction and suggest static
restrictions to prevent that. Leroy and Mauny [1991] implement this approach in CAML as well
as a non-parametric approach. A few years later, Abadi et al. [1995] allude to using runtime type
generation (RTG) as a mechanism for protecting abstraction. Indeed, Sewell [2001] uses RTG to
protect abstractions in distributed systems and Rossberg [2003, 2006] uses RTG for safe dynamic
linking. Rossberg [2003] proves an Opacity Theorem, showing that substitution of different values
at abstract type does not affect reduction.
The strongest correctness criteria regarding the protection of type abstractions is relational

parametricity [Reynolds 1983]. The idea is expressed in terms of a type-indexed relation, a logical
relation, that captures when two expressions exhibit the same behavior when viewed at a particular
type. Consider the following traditional example [Pitts 1998a]

(0, (λ(x :int ). 1 − x ), (λ(x :int ). x = 0)) vs. (1, (λ(x :int ). 1 − x ), (λ(x :int ). x = 1))

each of which may be given either of the types

int × (int → int ) × (int → bool ) vs. ∃X .X × (X → X ) × (X → bool ).

The two expressions differ when assigned the first type, but behave identically when assigned the
second. To prove that equivalence, one would choose the relation R = {(0, 1), (1, 0)} for X . The
Abstraction Theorem of Reynolds [1983] proves that the polymorphic λ-calculus preserves its type
abstractions by way of showing that every well-typed expression is related to itself in the logical
relation. This kind of theorem is now referred to as the Fundamental Property of a logical relation.
Matthews and Ahmed [2008] studied the integration of Scheme and ML, using RTG to protect

ML’s polymorphic functions from the runtime type testsÐe.g., checking whether a value is an
integer, a Boolean, or a functionÐcommon to dynamic languages like Scheme. For their ML+Scheme
multi-language, they defined a step-indexed logical relation indexed by ML types and a dynamic
type (TST, the Scheme type) and presented a proof of the Fundamental Property for the multi-
language. Unfortunately, they later discovered a flaw in the proof. Ahmed et al. [2011] fixed this
proof by introducing possible worlds that map a type variable to a tuple of the generated type
name, the instantiating type, and a relation to use when relating values at the type variable. This
line of work was put on hold but the above-cited unpublished manuscript is available.

Neis et al. [2011] study G, a polymorphic language extended with Girard’s J operator but without
the type Dynamic. The J operator is a non-parametric cast that tests for type equality at runtime,
after abstract types have been replaced by their instantiating types. Neis et al. [2011] define a
Kripke logical relation, with some similarities to the one we use here, that supports reasoning about
program equivalence and they prove the Fundamental Property. This logical relation, however,
does not ensure that expressions of polymorphic type behave parametrically. It instead associates
parametric behavior with type names that result from RTG. However, they show that parametric
behavior can be obtained by wrapping expressions in a type-directed manner with appropriate
uses of RTG. We have investigated whether a polymorphic language with the dynamic type could
be compiled to G in a way that would ensure parametricity (using recursive types to encode the
dynamic type), but it seems that the results in Neis et al. [2011] are not general enough to make
this possible. Nevertheless, more investigation would be helpful to clarify the relationship between
the polymorphic blame calculus and G.
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In this paper we pick up where Ahmed et al. [2011] left off, but relocate to the more general
setting of the polymorphic blame calculus (λB) of Ahmed et al. [2011]. The relocation came with
many technical changes at the heart of the semantics and logical relation, including the mechanics
of type application and run-time type generation. The λB calculus combines the polymorphic λ-
calculus of Girard [1972] and Reynolds [1974] with the blame calculus of Wadler and Findler [2009]
(minus refinement types). In Section 2 we review these three calculi and make improvements to the
polymorphic blame calculus. We give the formal definition of the new version of the polymorphic
blame calculus in Section 3. With the stage set, Section 4 defines a Kripke logical relation, proves
the Fundamental Property, and proves soundness with respect to contextual equivalence. To
demonstrate the utility of our logical relation, in Section 5 we derive free theorems in the tradition of
Wadler [1989].We prove a theorem about theK combinator and a theorem about how rearrangement
functions commute with the map function.

To summarize, this paper makes the following technical contributions.

• An improved polymorphic blame calculus (λB) that enables a natural notion of parametricity
(Sections 2.4 and 3).
• The definition of a Kripke logical relation for λB for program equivalence and parametricity
(Section 4.2).
• A proof of the Fundamental Property (Section 4.3).
• A proof of Soundness with respect to Contextual Equivalence (Section 4.3).
• Two examples of free theorems derived from our parametricity result (Section 5).

The complete definitions and proofs are in the accompanying technical report [Ahmed et al. 2017].
We explain the relationship between this result and those in the literature in Section 6. We discuss
further research and conclude in Section 7.
This paper subsumes and improves on sections 1 through 4 of an unpublished manuscript by

Siek and Wadler [2016].

2 THE ROAD TO POLYMORPHIC BLAME

The polymorphic blame calculus combines the polymorphic λ-calculus [Girard 1972; Reynolds 1974]
with the blame calculus [Wadler and Findler 2009]. We review the polymorphic λ-calculus and its
notion of parametricity in subsection 2.1. We review the blame calculus, and how it integrates typed
and untyped languages using casts and the dynamic type, in subsection 2.2. We then review the
design considerations in prior versions of the polymorphic blame calculus of Ahmed et al. [2011]
(subsection 2.3) before presenting our improvements to it in subsection 2.4.

2.1 Review of the Polymorphic Lambda Calculus and Parametricity

The polymorphic λ-calculus (λF) extends the λ-calculus to capture the essence of generics. That is,
it enables code to be reused on data of different types. λF adds two language constructs to simply
typed λ-calculus: type abstraction ΛX .e and type application e [B]. Type abstraction parameterizes
an expression e with respect to a type variableX . Values of typeX may flow through the expression
e but e may not manipulate those values in a way that depends on their actual type. A simple
example of a type abstraction is the swap function that exchanges the two elements of a pair:

swap : ∀X .∀Y .X×Y → Y×X

swap = ΛX .ΛY .λ(p :X×Y ). (snd(p), fst(p))

A type abstraction ΛX .e has universal (or polymorphic) type, written ∀X .A, meaning that e has
type A for any type X . One can nest type abstractions, as in swap above, to parameterize over
multiple types.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 39. Publication date: September 2017.
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E JAK ρ = {(e1, e2) | ∃v1,v2. e1 −→
∗ v1 and e2 −→∗ v2 and (v1,v2) ∈ V JAK ρ}

V JX K ρ = ρ (X )

V JintK ρ = {(n,n) | n ∈ Z}

V JboolK ρ = {(b,b) | b ∈ B}

V JA × BK ρ = {(p1,p2) | (fst(p1), fst(p2)) ∈ E JAK ρ and (snd(p1), snd(p2)) ∈ E JAK ρ}
V JA→ BK ρ = {(vf ,vд ) | ∀(v1,v2) ∈ V JAK ρ. (vf v1,vд v2) ∈ E JBK ρ}

V J∀X .AK ρ = {(v1,v2) | ∀B1,B2,R ⊆ B1×B2. (v1 [B1],v2 [B2]) ∈ E JAK ρ (X :=R)}
V J∃X .AK ρ = {(pack(B1,v1), pack(B2,v2)) | ∃R ⊆ B1×B2. (v1,v2) ∈ V JAK ρ (X :=R)}

Fig. 1. A Logical Relation for λF.

Type application e [B] enables the use of a type abstraction (the result of e) by instantiating its
type variable at type B. To swap a pair of an integer and a bool, we apply swap to int , bool , and
then to the pair. We swap back similarly.

swap [int] [bool] (1, true ) −→∗ (true , 1)

swap [bool] [int] (true , 1) −→∗ (1, true )

The following example is rejected by the type system of λF because it tries to add the elements
of the pair, which would depend on both elements having type int .

bad = ΛX .ΛY .λ(p :X×Y ). fst(p) + snd(p)

In return for this restriction on type abstractions, λF provides a reasoning principle called
relational parametricity [Reynolds 1983], for establishing when two expressions of the same type
A have identical behavior, which is expressed in terms of a logical relation. Figure 1 defines the
logical relation for call-by-value λF, consisting of a relation E JAK over pairs of expressions, and an
auxiliary relationV JAK over pairs of values; both relations take an extra argument, an environment
ρ mapping type variables to relations on values. Relation E JAK holds when two expressions behave
the same: when they evaluate to values that behave the same according toV JAK.

The relationV JAK is defined by induction on the type A. For integers and Booleans, it requires
the two values to be literally the same. For two pairs of type A × B, the first elements and second
elements must behave the same, respectively. For two functions of type A→ B to behave the same,
they are only required to produce outputs related at B when given inputs related at A. (There
need not be any syntactic similarity between the two functions.) For two type abstractions of type
∀X .A to behave the same, their instantiations must behave the same. However, because the two
abstractions do not manipulate values of type X , it is not required that the values at type X behave
the same. Instead, they can be related according to any arbitrary relation R! The reason for the
mapping ρ becomes apparent: it maps each type variable X to a relation R that says how values at
type X are related. Dually, for two existential packages to be related at type ∃X .A, there must exist
some relation R such that the packed values v1 and v2 are related at type A under an environment
extended with X bound to R.
The Abstraction Theorem of Reynolds [1983] (aka. Fundamental Property, aka. Parametricity)

says that every well-typed expression e of λF behaves the same as itself according to its typeA, that
is, (e, e ) ∈ E JAK ρ. At first glance this is underwhelming; of course e behaves the same as itself!
The powerful part is that e behaves łaccording to its type Až. It is powerful enough to provide
behavioral guarantees, which Wadler [1989] christened theorems for free.
Consider again the swap function of type ∀X .∀Y .X×Y → Y×X . The following free theorem

completely determines the output of swap and any other function with the same type.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 39. Publication date: September 2017.



Theorems for Free for Free: Parametricity, With and Without Types 39:5

Theorem 2.1. (A Free Theorem of ∀X .∀Y .X×Y → Y×X )
Suppose e is any expression of type ∀X .∀Y .X×Y → Y×X . Let A and B be arbitrary types. For any v1
of type A and v2 of type B,

e [A] [B] (v1,v2) −→
∗ (v2,v1)

Proof (sketch)

By the Fundamental Property, we have (e, e ) ∈ E J∀X .∀Y .X×Y → Y×X K. Choose R1 =

{(v1,v1)} and R2 = {(v2,v2)}. So e [A] [B] −→∗ v for some v and

(v,v ) ∈ E JX×Y → Y×X K (X :=R1,Y :=R2)

Note that the input (v1,v2) is related to itself at X × Y

((v1,v2), (v1,v2)) ∈ V JX × Y K (X :=R1,Y :=R2)

so the outputs of v are related at type Y × X .

(v (v1,v2),v (v1,v2)) ∈ E JY×X K (X :=R1,Y :=R2)

Thus, the two copies of v (v1,v2) reduce to some pairs p1 and p2 related at Y × X .

v (v1,v2) −→
∗ p1 v (v1,v2) −→

∗ p2 (p1,p2) ∈ V JY×X K (X :=R1,Y :=R2)

With a little work we obtain p1 = (v11,v12) and p2 = (v21,v22). We have v11 and v21 related at
Y , therefore (v11,v21) ∈ R2. Which means that v11 = v21 = v2. Similarly, we have v12 and v22
related at X , therefore (v12,v22) ∈ R1. Which means that v12 = v22 = v1. So we have shown
e [A] [B] (v1,v2) −→∗ (v2,v1). □

If we had chosen a weaker polymorphic type we would have obtained a weaker theorem. For
example, for the type ∀X .X×X → X×X the free theorem would be e [A] (v1,v2) −→∗ (v3,v4) for
some v3,v4 where v3 ∈ {v1,v2} and v4 ∈ {v1,v2}.

2.2 Review of the Blame Calculus

The blame calculus defines interaction between a typed and untyped λ-calculus. It introduces a
dynamic type⋆ to characterize expressions of statically unknown type and one language construct:
the cast

(e :A
p
=⇒ B)

which checks whether the value produced by e has type B. If not, it ascribes fault to the blame label
p. We abbreviate a sequence of casts in the obvious way,

e : A1
p
=⇒ A2

q
=⇒ A3

def
= (e : A1

p
=⇒ A2) : A2

q
=⇒ A3

One scenario is that a programmer begins with untyped code and then adds types. Here is a
program assembling untyped components. Untyped code is surrounded by ceiling brackets, ⌈·⌉.

let inc⋆ = ⌈λ(x ). x + 1⌉ in
let twice⋆ = ⌈λ( f ). λ(x ). f ( f x )⌉ in

⌈twice⋆ inc⋆ 0⌉

It evaluates to ⌈2⌉ : ⋆.
Following a slogan of Dana Scott [Harper 2013; Statman 1991] we treat łuntyped as unitypedž:

untyped code is typed code where every term has the dynamic type ⋆. By convention, we append
⋆ to the name of untyped functions to distinguish them from their typed counterpart.

It is trivial to rewrite a three-line program to have types, but we wish to add types gradually:
our technique should work as well when each one-line definition is replaced by a thousand-line
module. We use casts to manage the transition between typed and untyped code.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 39. Publication date: September 2017.
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Here is our program again but we add types to the twice component and insert a cast from its
type to ⋆.

let inc⋆ = ⌈λ(x ). x + 1⌉ in
let twice = (λ( f :int→int ). λ(x :int ). f ( f x )) in

let twice⋆ = (twice : (int→int )→int→int
+ℓ

=⇒ ⋆) in

⌈twice⋆ inc⋆ 0⌉

(1)

It evaluates to ⌈2⌉ : ⋆. If in (1) we replace

⌈twice⋆ inc⋆ 0⌉ by ⌈twice⋆ 0 inc⋆⌉ (2)

it now evaluates to blame −ℓ because the number 0 is cast to function type int→int . Blaming −ℓ
indicates fault lies with the context containing the cast. The positive and negative blame labels, +ℓ
and −ℓ, correspond to p and p̄, respectively, in prior blame calculi [Ahmed et al. 2011]. The above
example demonstrates a benefit of casts and blame tracking: the fault lies at the boundary between
the typed and untyped code, providing encapsulation for the typed code.
Conversely, here is the program mostly typed, with twice⋆ the only untyped component, cast

from ⋆ to its type.

let inc = (λ(x :int ). x + 1) in

let twice⋆ = ⌈λ( f ). λ(x ). f ( f x )⌉ in

let twice = (twice⋆ : ⋆
+ℓ

=⇒ (int→int )→int→int ) in

twice inc 0

(3)

It evaluates to 2 : int . If in (3) we replace

⌈λ( f ). λ(x ). f ( f x )⌉ by ⌈λ( f ). λ(x ). x f ⌉ (4)

it now evaluates to blame +ℓ because the untyped code tries to use an number as a function.
Blaming +ℓ indicates fault lies with the term contained in the cast.
Untyped λ-calculus is defined by embedding into blame calculus. For example, ⌈λ(x ). x + 1⌉ is

equivalent to

(λ(x : ⋆). ((x : ⋆
+m
=⇒ int ) + 1) : int

+n
=⇒ ⋆) : ⋆→⋆

+o
=⇒ ⋆

wherem,n,o are fresh blame labels.
Casting an int to ⋆ and back to int acts as the identity.

2 : int
+ℓ

=⇒ ⋆
+m
=⇒ int −→ 2

On the other hand, casting the integer to a function type raises blame.

2 : int
+ℓ

=⇒ ⋆
+m
=⇒ (int→int ) −→ blame +m

A cast that yields a function reduces to two casts, one contravariant on the domain and one covariant
on the range.

(⌈λ(x ). x+1⌉ : ⋆
+ℓ

=⇒ int→int ) 2 −→∗ (λ(x :⋆). ⌈x+1⌉) (2 : int
−ℓ
=⇒ ⋆) : ⋆

+ℓ

=⇒ int −→∗ 3

The blame label is negated on the contravariant cast.
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2.3 Prior Work on Polymorphic Blame

The polymorphic blame calculus of Ahmed et al. [2011] seeks to integrate the blame calculus into λF
without sacrificing parametricity. To see why this is challenging, consider the following variation
on the swap function. It casts a dynamically typed function to one which has the type of the swap
function. The dynamically typed function has no restrictions enforced by its type; we choose it to
be the identity function.

badSwap = ⌈λ(x ). x⌉ : ⋆
+ℓ

=⇒ (∀X .∀Y .X × Y → Y × X )

First, note that the polymorphic blame calculus does not reject this badSwap statically because
it allows casts from any type to ⋆ and from ⋆ to any type, which is needed to accommodate
interactions with untyped code. So we turn to the dynamic behavior of badSwap. Given its type,
parametricity tells us that if we instantiate it at int twice and apply it to (1, 2), the result, if there
is one, should be (2, 1). Let’s see what happens if we evaluate badSwap by simply combining the
reduction rules of λF and the blame calculus, assuming that we can simply replace the type variables
X and Y by their instantiations int .

badSwap [int][int](1, 2)

−→∗ ((λ(x : ⋆). x ) ((1, 2) : int × int
−ℓ
=⇒ ⋆)) : ⋆

+ℓ

=⇒ int × int

−→∗ (1, 2) : int × int
−ℓ
=⇒ ⋆

+ℓ

=⇒ int × int

−→∗ ((1 : int
−ℓ
=⇒ ⋆

+ℓ

=⇒ int ), (2 : int
−ℓ
=⇒ ⋆

+ℓ

=⇒ int ))

−→∗ (1, 2)

This answer is wrong! It violates the Fundamental Property for the type of badSwap, namely
∀X .∀Y .X × Y → Y × X . We would prefer the program to halt with an error, blaming the cast with
label +ℓ.
The problem is that in λF, type application is accomplished by substitution, with the reduction

rule
(ΛX .e ) [B] −→ e[B/X ]

In the badSwap example, the distinction between the type variables X and Y was erased when they
were both replaced by int . Ahmed et al. [2011] solve this problem by delaying the substitution,
using a ν binder and a conversion operator that replaces a ν-bound type variable with its binding
(called a static cast in that paper).

(ΛX .v ) [B] −→ νX :=B. (v : A
+X
=⇒ A[X :=B]) if ⊢ ΛX .v : ∀X .A

With that change, badSwap halts with an error when it fails to cast from X to ⋆ to Y , because
X , Y .

badSwap[int][int](1, 2)

−→∗ νX :=int .νY :=int . *.
,

1 : int
−X
=⇒ X

−ℓ
=⇒ ⋆

+ℓ

=⇒ Y ,

2 : int
−Y
=⇒ Y

−ℓ
=⇒ ⋆

+ℓ

=⇒ X

+/
-
−→∗ blame+ℓ

Ahmed et al. [2011] conjecture that this design ensures parametricity, but they did not formulate a
logical relation for the polymorphic blame calculus nor prove the Fundamental Property 1.

1Ahmed et al. [2009] prove blame and subtyping theorems for a polymorphic blame calculus. Ahmed et al. [2011] present a
proof of a stronger subtyping theorem based on the jack-of-all-trades property, but unfortunately that proof is flawed [Ahmed
et al. 2014].
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2.4 Righting the Topsy-Turvy System

Regardless of parametricity, the design of Ahmed et al. [2011] is ‘topsy turvy’ in that it evaluates
things one might expect to be values, and leaves as values things one might expect to be evaluated.
In particular, following Wright [1995] and Pitts [1998b], one might expect the bodies of type
abstractions to be restricted to values. Ahmed et al. [2011] mention that this would be desirable,
but it is impossible in their system due to their formulation of reductions for casts:

v : A→B
p
=⇒ A′→B′ −→ λ(x :A′).v (x : A′

−p
=⇒ A) : B

p
=⇒ B′ (5)

v : A
p
=⇒ ∀X .B −→ ΛX . (v : A

p
=⇒ B) (6)

The right-hand side of the second rule is a type abstraction with a body that is an arbitrary cast,
and hence not a value. One might take any type abstraction to be a value, regardless of whether
its body is a value, but this would lead to a violation of parametricity. For instance, parametricity
requires that there should be no values of type ∀X .X , but the term ΛX . blame +ℓ has that type! To
avoid the problem, they evaluate underneath type abstractions. That in turn leads to a problem
with ν binders, so instead of generating new names globally, they push ν binders inside of values:

νX :=A. λ(y:B). e −→ λ(y:B[X :=A]). νX :=A. e (7)

νX :=A.ΛX .v −→ ΛX . νX :=A.v (8)

Rule 7 causes ν binders to be retained in function values, where one might expect the ν binder to
be evaluated immediately.

Here we propose a simple way to avoid these convolutions, taking inspiration from the alternate
approach to function casts that can be made space-efficient [Siek andWadler 2010]. In that approach,
casts between function type are values and the following reduction rule handles the application of
a cast-wrapped function.

(v : A→B
p
=⇒ A′→B′)v ′ −→ v (v ′ : A′

−p
=⇒ A) : B

p
=⇒ B′ (9)

The same approach can be applied to polymorphic values. Declare casts of the form (v :A
p
=⇒ ∀X .B)

to be values and add a reduction rule for applying a cast-wrapped polymorphic value to a type.
The following are the two reduction rules for applying polymorphic values.

Σ ▷ (ΛX .v ) [B] −→ Σ,α :=B ▷v[α/X ] : A[α/X ]
+α
=⇒ A[B/X ] (10)

Σ ▷ (v : A
p
=⇒ ∀X .A′) [B] −→ Σ,α :=B ▷v : A

p
=⇒ A′[α/X ]

+α
=⇒ A′[B/X ] (11)

In place of type abstraction on the right-hand side of reduction rule (6), here in reduction rule
(11) we have application on the left-hand side. Reductions no longer insert casts inside of type
abstractions so their bodies can be restricted to values, as desired. This rules out any need to evaluate
under type abstractions. In particular, ΛX . blame +ℓ is no longer a valid term, since blame +ℓ is
not a value.
With the removal of evaluation under type abstractions, we are free to immediately place

generated names in a global store, forgoing the use of ν binders. Let Σ range over name stores
whose entries take the form α :=B and write Σ ▷ e for a configuration that pairs a name store with
an expression.

3 POLYMORPHIC BLAME CALCULUS

Now that we solved these design challenges, we can proceed with the formal presentation of the
polymorphic blame calculus (λB). The syntax is defined in Figure 2. Let A and B range over types,
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Conversion Labels ϕ ::= +α | −α

Blame Labels p , q ::= +ℓ | −ℓ

Base Types ι ::= int | bool

Types A ,B ::= ι | A×B | A→B | ∀X .A | X | α | ⋆
Ground Types G ,H ::= ι | ⋆×⋆ | ⋆→⋆ | α

Operations ⊛ ::= + | − | ∗ | . . .

Expressions e ::= n | true | false | if e then e else e | e ⊛ e | x |
λ(x :A ). e | e e | ΛX .v | e [B] | ⟨e ,e ⟩ | π1 e |

π2 e | (e :A
ϕ
=⇒ B ) | (e :A

p
=⇒ B ) | blame p

Values v ::= n | true | false | λ(x :A ). e | ΛX .v | ⟨v ,v ⟩ |

(v :A→B
ϕ
=⇒ A′→B′) | (v :∀X .A

ϕ
=⇒ ∀X . B ) |

(v :A
−α
=⇒ α ) | (v :A→B

p
=⇒ A′→B′) |

(v :A
p
=⇒ ∀X . B ) | (v :G

p
=⇒ ⋆)

Type-Name Stores Σ ::= · | Σ ,α :=A
Type Environments ∆ ::= · | ∆ ,X
Environments Γ ::= · | Γ , x :A
Evaluation Contexts E ::= [·] | E ⊛ e | v ⊛ E | if E then e else e | E e | v E |

E [A] | ⟨E,e⟩ | ⟨v,E⟩ | (E :A
ϕ
=⇒ B ) | (E :A

p
=⇒ B )

Fig. 2. Syntax

which are either base types ι, pair types A × B, function types A→ B, universal types ∀X .B, type
variables X , type names α , or the dynamic type ⋆. Let ι include integers int and Booleans bool .
We do not include existential types here but plan to investigate both the encoding into universal
types and directly adding them to the language. The ground types are those types that can be
directly injected into type ⋆, and include the base types, the function type ⋆→ ⋆, the pair type
⋆ × ⋆, and type names α . The other types can be cast to ⋆, but such casts factor through the
ground types. Let e range over expressions, which are either integers n, the Booleans true and
false , variables x , operator applications e ⊛ e , function abstraction λ(x :A). e , function application
e1 e2, type abstraction ΛX .v , type application e [A], pairs ⟨e ,e ⟩, projections π1 e and π2 e , casts

(e :A
p
=⇒ B), conversions (e :A

ϕ
=⇒ B), or errors blame p. The body of a type abstraction must be a

value.

The conversion form (e :A
ϕ
=⇒ B) is used to make explicit the conversion between a type name

and the type it is bound to (in Σ). Let ϕ range over conversion labels of the form +α or −α .
Let v range over values, which include integers, Booleans, function abstractions, pairs of values,

and type abstractions. A value whose type is a name is a conversion of the form (v :A
−α
=⇒ α ). In

addition, conversions and casts to a function or a universal type are values, which reduce when
applied to a value or type, respectively.

We write B[A/X ] (or B[A/α]) for the capture-avoiding substitution of type A for X (or α ) in type
B. We abbreviate a sequence of conversions in the same way as casts and similarly for combinations
of casts and conversions.

Static Semantics. The static semantics for types is defined in Figure 3. Let ∆ range over type
variable contexts, which are lists of X ’s. Let Σ range over name stores, which are lists of binding of
type names to types α :=A. Write ⊢ Σ to indicate that Σ is a well-formed name store and Σ;∆ ⊢ Γ
for well-formed type context. Write Σ;∆ ⊢ A for well-formed types.
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Type-Name Store Well-Formedness ⊢ Σ

⊢ ·

α < Σ Σ ; · ⊢A

⊢ Σ ,α :=A

Type Well-Formedness Σ ;∆ ⊢A where ⊢ Σ

⊢ Σ X ∈ ∆

Σ ;∆ ⊢X

⊢ Σ α :=A ∈ Σ

Σ ;∆ ⊢α

⊢ Σ

Σ ;∆ ⊢ ι

⊢ Σ

Σ ;∆ ⊢⋆

Σ;∆ ⊢A Σ;∆ ⊢B

Σ;∆ ⊢A×B

Σ ;∆ ⊢A Σ ;∆ ⊢B

Σ ;∆ ⊢A→B

Σ ;∆ ,X ⊢A

Σ ;∆ ⊢∀X .A

Convertibility Σ ;∆ ⊢A ≺ϕ B where Σ ;∆ ⊢A , Σ ;∆ ⊢B , and FTN (ϕ ) ∈ Σ

⊢ Σ

Σ ;∆ ⊢ ι ≺ϕ ι

Σ;∆ ⊢A≺ϕ A′ Σ;∆ ⊢B ≺ϕ B′

Σ;∆ ⊢A×B ≺ϕ A′ ×B′

Σ ;∆ ⊢A′ ≺−ϕ A Σ ;∆ ⊢B ≺ϕ B′

Σ ;∆ ⊢A→B ≺ϕ A′→B′

Σ ;∆ ,X ⊢A ≺ϕ B

Σ ;∆ ⊢∀X .A ≺ϕ ∀X . B

⊢ Σ α :=A ∈ Σ

Σ ;∆ ⊢α ≺+α A

⊢ Σ α :=A ∈ Σ

Σ ;∆ ⊢A ≺−α α

⊢ Σ α :=A ∈ Σ α < ϕ

Σ ;∆ ⊢α ≺ϕ α

⊢ Σ X ∈ ∆

Σ ;∆ ⊢X ≺ϕ X

⊢ Σ

Σ ;∆ ⊢⋆≺ϕ ⋆

Label Negation
−(+α )

def
= −α −(−α )

def
= +α

Compatibility Σ ;∆ ⊢A ≺ B where Σ ;∆ ⊢A and Σ ;∆ ⊢B

⊢ Σ

Σ ;∆ ⊢ ι ≺ ι

Σ;∆ ⊢A≺A′ Σ;∆ ⊢B ≺ B′

Σ;∆ ⊢A×B ≺A′ ×B′
Σ ;∆ ⊢A′ ≺A Σ ;∆ ⊢B ≺ B′

Σ ;∆ ⊢A→B ≺A′→B′

Σ ;∆ ,X ⊢A ≺ B X < A

Σ ;∆ ⊢A ≺∀X . B

Σ ;∆ ⊢A [⋆/X ]≺ B

Σ ;∆ ⊢∀X .A ≺ B

⊢ Σ α ∈ Σ

Σ ;∆ ⊢α ≺ α

⊢ Σ X ∈ ∆

Σ ;∆ ⊢X ≺X

Σ ;∆ ⊢A

Σ ;∆ ⊢A ≺⋆

Σ ;∆ ⊢A

Σ ;∆ ⊢⋆≺A

Fig. 3. Type-Level Static Semantics

Write Σ;∆ ⊢A≺ϕ B to indicate that in context Σ;∆ types A and B are convertible under ϕ. Con-
versions must be between convertible types, and the rules for convertibility ensure that reductions

involving conversions preserve convertibility. That is, when a conversion (e :A
ϕ
=⇒ B) occurs on

the right-hand side of a reduction rule, we can deduce that Σ;∆ ⊢A≺ϕ B from the fact that the
conversions of the left-hand side of the rule were well typed. If α :=A ∈ Σ, judgments Σ;∆ ⊢B ≺+α B′

and Σ;∆ ⊢B′ ≺−α B hold iff B′ = B[A/α]. Further, Σ;∆ ⊢A≺ϕ B iff Σ;∆ ⊢B ≺−ϕ A. Write α < ϕ if
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Environment Well-Formedness Σ ;∆ ⊢ Γ where ⊢ Σ

⊢ Σ

Σ ;∆ ⊢ ·

Σ ;∆ ⊢ Γ Σ ;∆ ⊢A

Σ ;∆ ⊢ Γ , x :A

Well-typed Expressions Σ ;∆ ; Γ ⊢ e :A where Σ ;∆ ⊢ Γ and Σ ;∆ ⊢A

Σ ;∆ ; Γ ⊢ e : bool Σ ;∆ ; Γ ⊢ e1 :A Σ ;∆ ; Γ ⊢ e2 :A

Σ ;∆ ; Γ ⊢ if e then e1 else e2 :A

Σ ;∆ ⊢ Γ

Σ ;∆ ; Γ ⊢ true : bool

Σ ;∆ ⊢ Γ

Σ ;∆ ; Γ ⊢ false : bool

Σ ;∆ ⊢ Γ

Σ ;∆ ; Γ ⊢ n : int

Σ ;∆ ; Γ ⊢ e : int Σ ;∆ ; Γ ⊢ e′ : int

Σ ;∆ ; Γ ⊢ e ⊛ e′ : int

Σ;∆; Γ ⊢ e1 :A Σ;∆; Γ ⊢ e2 :B

Σ;∆; Γ ⊢ ⟨e1,e2⟩ :A×B

Σ;∆; Γ ⊢ e :A×B

Σ;∆; Γ ⊢π1 e :A

Σ;∆; Γ ⊢ e :A×B

Σ;∆; Γ ⊢π2 e :B

Σ ;∆ ⊢ Γ Γ (x ) = A

Σ ;∆ ; Γ ⊢ x :A

Σ ;∆ ; Γ , x :A ⊢ e :B

Σ ;∆ ; Γ ⊢ λ(x :A ). e :A→B

Σ ;∆ ; Γ ⊢ e :B→A Σ ;∆ ; Γ ⊢ e′ :B

Σ ;∆ ; Γ ⊢ e e′ :A

Σ ;∆ ,X ; Γ ⊢ v :A Σ ;∆ ⊢ Γ

Σ ;∆ ; Γ ⊢ΛX .v :∀X .A

Σ ;∆ ; Γ ⊢ e :∀X .A Σ ;∆ ⊢B

Σ ;∆ ; Γ ⊢ e [B ] :A [B/X ]

Σ ;∆ ; Γ ⊢ e :A Σ ;∆ ⊢A ≺ϕ B

Σ ;∆ ; Γ ⊢ (e :A
ϕ
=⇒ B ) :B

Σ ;∆ ; Γ ⊢ e :A Σ ;∆ ⊢A ≺ B

Σ ;∆ ; Γ ⊢ (e :A
p
=⇒ B ) :B

Σ ;∆ ⊢ Γ Σ ;∆ ⊢A

Σ ;∆ ; Γ ⊢ blame p :A

Fig. 4. Expression-Level Static Semantics

ϕ is not +α or −α . Convertability is almost reflexive: in that Σ;∆ ⊢A≺ϕ A if α < ϕ for every free
name α in A. Figure 3 defines negation −ϕ to flip the sign of a conversion label.
Write Σ;∆ ⊢A≺ B to indicate that in context Σ;∆ types A and B are compatible. The intuition

is that two types are compatible if it is possible for a cast from one to the other to succeed. The
type ⋆ is compatible with any type (on either side). A universal type ∀X .A is compatible with a
type B if instantiating it with ⋆ yields a compatible type, that is, if A[⋆/X ] is compatible with B.
On the other hand, a type A is compatible with a universal type ∀X .B if A is compatible with B

while holding X abstract, that is, if Σ;∆,X ⊢A≺ B. The compatibility relation is reflexive but not
symmetric because of the treatment of universal types. The rules for compatibility ensure that
reductions involving casts preserve compatibility.
The static semantics for expressions is defined in Figure 4. Let Γ range over type contexts,

which are lists of hypotheses of the form x :A. Write Σ;∆; Γ ⊢ e :A to indicate that in context Σ;∆; Γ
expression e has type A. Typing for constants, operators, function abstraction, function application,

type abstraction, and type application is standard. A conversion (e :A
ϕ
=⇒ B) has type B if expression

e has type A and Σ;∆ ⊢A≺ϕ B. Similarly, a cast (e :A
p
=⇒ B) has type B if expression e has type A

and Σ;∆ ⊢A≺ B.

Dynamic Semantics. The dynamic semantics of λB is defined in Figure 5. Write e −→ e ′ for
reduction of expressions. Reduction for operators is standard: each operator application n ⊛ n′
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Reduction of Expressions e −→ e′

n ⊛ n′ −→ J⊛K (n,n′)
if true then e1 else e2 −→ e1
if false then e1 else e2 −→ e2

(λ(x :A ). e ) v −→ e [v /x ]
π1 ⟨v1,v2⟩ −→ v1
π2 ⟨v1,v2⟩ −→ v2

(v : ι
ϕ
=⇒ ι) −→ v

(⟨v1,v2⟩ :A × B
ϕ
=⇒ A′ × B′) −→ ⟨(v1 :A

ϕ
=⇒ B),(v2 :A′

ϕ
=⇒ B′)⟩

(v :A→B
ϕ
=⇒ A′→B′) v′ −→ (v (v′ :A′

−ϕ
=⇒ A ) :B

ϕ
=⇒ B′)

(v :α
ϕ
=⇒ α ) −→ v if α < ϕ

((v :A
−α
=⇒ α ) :α

+α
=⇒ A ) −→ v

(v :⋆
ϕ
=⇒ ⋆) −→ v

(v : ι
p
=⇒ ι) −→ v

(⟨v1,v2⟩ :A × B
p
=⇒ A′ × B′) −→ ⟨(v1 :A

p
=⇒ B),(v2 :A′

p
=⇒ B′)⟩

(v :A→B
p
=⇒ A′→B′) v′ −→ (v (v′ :A′

−p
=⇒ A ) :B

p
=⇒ B′)

(v :∀X .A
p
=⇒ B ) −→ (v [⋆] :A [⋆/X ]

p
=⇒ B ) if B , ∀Y . B′ for any Y ,B′

(v :α
p
=⇒ α ) −→ v

(v :⋆
p
=⇒ ⋆) −→ v

((v :G
p
=⇒ ⋆) :⋆

q
=⇒ G ) −→ v

((v :G
p
=⇒ ⋆) :⋆

q
=⇒ H ) −→ blame q if G , H

(v :A
p
=⇒ ⋆) −→ ((v :A

p
=⇒ G ) :G

p
=⇒ ⋆) if A ∼ G,A , G,A , ⋆

(v :⋆
p
=⇒ A) −→ ((v :⋆

p
=⇒ G ) :G

p
=⇒ A) if A ∼ G,A , G,A , ⋆

Reduction of Configurations Σ ▷ e 7−→ Σ′ ▷ e′

e −→ e′

Σ ▷ E [e ] 7−→ Σ ▷ E [e′]

Σ ▷ e 7−→ Σ ′ ▷ e′

Σ ▷ E [e ] 7−→ Σ ′ ▷ E [e′] Σ ▷ E [blame p ] 7−→ Σ ▷ blame p

Σ; (·,X ); · ⊢ v :A α < dom(Σ)

Σ ▷ (ΛX .v ) [B ] 7−→ Σ ,α :=B ▷ (v [α/X ] :A[α/X ]
+α
=⇒ A[B/X ])

α < dom(Σ)

Σ ▷ (v :A
p
=⇒ ∀X .A′) [B] 7−→ Σ,α :=B ▷ ((v :A

p
=⇒ A′[α/X ]) :A′[α/X ]

+α
=⇒ A′[B/X ])

α < dom(Σ)

Σ ▷ (v :∀X .A
ϕ
=⇒ ∀X .A′) [B] 7−→ Σ,α :=B ▷ ((v [α] :A[α/X ]

ϕ
=⇒ A′[α/X ]) :A′[α/X ]

+α
=⇒ A′[B/X ])

Fig. 5. Dynamic Semantics
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is specified by a total meaning function J⊛K (n,n′) that preserves types. Reduction for function
application is standard. Reduction for type application is non-standard and discussed below in the
reduction of configurations.

Conversions are reduced as follows. Conversion from a base type to itself is the identity. Conver-
sion between two function types, when applied to a value, reduces to a contravariant conversion
on the domain (negating the label) and a covariant conversion on the range. Conversion between
two universal types are discussed below. A type name reduces to itself only if the conversion label
refers to a different name. Two mirror image conversions, from A to α and back, reduce to the
identity.
Many of the reductions for casts are similar to those for conversion, but some are different. A

cast from universal type to a non-universal type reduces to an instantiation of the polymorphic
value at type ⋆. A cast from ground type G to ⋆ back to G is the identity whereas a cast from G to
⋆ to a different ground type H raises blame. A cast from a non-ground type to or from ⋆ factors
through its unique ground type.

Write Σ ▷ e 7−→ Σ′ ▷ e ′ for reduction of configurations. In addition to handling reduction under
an evaluation context, the reduction of configurations also handles the reductions that involve
type application, which use the name store Σ. The application of a type abstraction generates a
fresh name α and binds it to the instantiating type B in the store. Then α is substituted for the
abstraction’s variable X in the body. Finally, a conversion is wrapped around the body to mediate
between its type A[α/X ] and the type that the context expects it to have, which is A[B/X ] 2. The
application of a cast whose target is a universal type ∀X .A′ also generates a fresh name α and binds
it to the instantiating type B. The α is substituted for X in A′ and again, a conversion is inserted to
mediate between A′[α/X ] and A′[B/X ]. Finally, the application of a conversion between ∀X .A and
∀X .A′ involves generating α and binding it to B, then instantiating v at α , and substituting α for X
in the conversion. As in the other cases, a conversion is inserted to mediate between A′[α/X ] and
A′[B/X ].

In general, if−→ is a reduction relation, write−→∗ for its reflexive and transitive closure.Wewrite
Σ ▷ e⇓ when a configuration terminates with a valueÐthat is, as shorthand for ∃Σ′, v . Σ ▷ e 7−→∗

Σ′ ▷ v

3.1 Contextual Equivalence

Two open expressions e1 and e2 have the same behavior, formally, when they are contextually equiv-
alent [Morris 1968], that is, when substituting one for the other in the context of a larger program
does not change the result of the program. As is common, we define contextual equivalence, below,
in terms of contextual approximation. We write Σ ;∆ ; Γ ⊢ e1 ⪯ctx e2 :A to say that e2 mimics the
behavior of e1 at type A in the context of Σ, ∆, and Γ. Then we write Σ ;∆ ; Γ ⊢ e1 ≈ctx e2 :A to say e1
and e2 are contextually equivalent, that is, they approximate each other. The definition of contextual
equivalence requires the context C to be well-typed, written ⊢C : (Σ ;∆ ; Γ ⊢A ) ⇝ (Σ′;∆′; Γ′ ⊢A′),
which is defined in the accompanying technical report [Ahmed et al. 2017]. The well-known prob-
lem with contextual equivalence is that it is difficult to reason about all possible contexts. The
advantage of logical relations is that they provide a means for proving the contextual equivalence
of two expressions that only requires reasoning about the two expressions.

2The reduction rule for type abstraction obtainsA, the type of the body, by referring to the type system, but an implementation
would not do that. Instead, we recommend recording the type A during compilation and attaching it to the type abstraction
so that it is available in constant time.
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Definition 3.1. Contextual Approximation and Equivalence

Σ ;∆ ; Γ ⊢ e1 ⪯ctx e2 :A
def
= Σ ;∆ ; Γ ⊢ e1 :A ∧ Σ ;∆ ; Γ ⊢ e2 :A ∧
∀C , Σ′,B . ⊢C : (Σ ;∆ ; Γ ⊢A ) ⇝ (Σ′; · ; · ⊢B ) =⇒

(Σ′ ▷C [e1]⇓ =⇒ Σ′ ▷C [e2]⇓) ∧
(∃Σ1. Σ

′ ▷C[e1] 7−→∗ Σ1 ▷ blame p =⇒
∃Σ2. Σ

′ ▷C[e2] 7−→∗ Σ2 ▷ blame p )

Σ ;∆ ; Γ ⊢ e1 ≈ctx e2 :A
def
= Σ ;∆ ; Γ ⊢ e1 ⪯ctx e2 :A ∧ Σ ;∆ ; Γ ⊢ e2 ⪯ctx e1 :A

4 LOGICAL RELATION AND PARAMETRICITY

In this section, we present our logical relation for λB and prove the Fundamental Property of the
logical relation, which for this language can also be referred to as the Parametricity Theorem.
We show that our logical relation is sound with respect to contextual equivalenceÐthat is, if two
programs are logically related then they are contextually equivalentÐwhich justifies the use of the
logical relation for proving contextual equivalence of programs.

4.1 Main Ideas of the Logical Relation

To establish parametricity for λB, we construct a Kripke logical relation which is a logical relation
indexed by possible worlds. Kripke logical relations are needed when reasoning about properties
that depend on certain conditions regarding the state of the computation. The basic idea, then, is to
track prevailing conditions in the current world. Thus, our logical relation for closed terms E JAK
relates two expressions e1 and e2 in a worldW . In contrast, the logical relation for λF (Figure 1) did
not require worlds because λF is a pure language. The worldW keeps track of three ingredients
which we now discuss in turn.

First, a worldW contains a natural number j that, intuitively, represents the number of steps
left in the computation. In essence, we need step-indexed logical relations because λB contains the
dynamic type ⋆which, semantically, behaves like the following type D encoded using recursive
types and tagged sums:

D = µX . ι + (X × X ) + (X → X ) + (α1 + . . . + αn )

where α1, . . . ,αn are the set of type names that have been generated thus far. So unlike λF, the
logical relation cannot be defined simply by induction on the indexing type. Instead we make use
of induction on the step index to ensure that the logical relation is well-founded. This is by now a
standard technique used when defining logical relations for untyped languages or languages with
dynamic type [Acar et al. 2008; Matthews and Ahmed 2008].
Second, a worldW keeps track of the (current) type-name stores Σ1 and Σ2 under which the

expressions e1 and e2, respectively, should be type checked and evaluated.
Finally, for any related type names α in the two programs,W keeps track of the relational

interpretation R that should be used to relate values of type α . Intuitively, what makes these type
names łrelatedž is that they were generated (earlier in the computation) when both programs
performed some type application that we wish to relate. The placement of a map from type names
to relational interpretations in worlds is a significant departure from the logical relation for λF
(Figure 1), where instead the ρ maps type variables to their relational interpretation. This change is
the result of moving from static enforcement of parametricity to dynamic enforcement with RTG.3

3Technically, due to the nondeterministic nature of type-name generation, those two type applications could have generated
different type names α 1 and α 2, with some type variable X replaced by α 1 in one program and with α 2 in the other. But
since we have an infinite supply of type names, we can assume without loss of generality that we can always generate the
same fresh name for both programs when using the logical relation to reason about equivalence. This assumption reduces
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Atomn [A1,A2] = {(W , e1, e2) |W .j < n ∧ W ∈ Worldn ∧
W .Σ1; · ; · ⊢ e1 :A1 ∧ W .Σ2; · ; · ⊢ e2 :A2}

Atomval
n [A1,A2] = {(W , v1, v2) ∈ Atomn [A1,A2] }

Reln [A1,A2] = {R ⊆ Atomval
n [A1,A2] | ∀(W , v1, v2) ∈ R. ∀W ′ ⊒W . (W ′, v1, v2) ∈ R}

Worldn = {(j, Σ1, Σ2,κ ) ∈ Nat × TNStore × TNStore × (TName
fin
→ Relj ) |

j < n ∧ ⊢ Σ1 ∧ ⊢ Σ2 ∧ ∀α ∈ dom(κ ). κ (α ) ∈ Relj [Σ1 (α ), Σ2 (α )] }

Atom [A ] ρ =

⋃

n ≥0
{(W , e1, e2) ∈ Atomn [ρ (A ), ρ (A )] }

World =

⋃

n ≥0
Worldn

⌊R⌋n = {(W , e1, e2) ∈ R |W .j < n}

⌊κ ⌋n = {α 7→ ⌊R⌋n | κ (α ) = R}

W ′ ⊒ W
def
= W ′.j ≤W .j ∧ W ′.Σ1 ⊇W .Σ1 ∧ W ′.Σ2 ⊇W .Σ2 ∧

W ′.κ ⊒ ⌊W .κ ⌋W ′ .j ∧ W ,W ′ ∈ World

κ ′ ⊒ κ
def
= ∀α ∈ dom(κ ). κ ′(α ) = κ (α )

W ′ ⊒n W
def
= W ′.j + n =W .j ∧ W ′ ⊒W

▶R = {(W , e1, e2) |W .j > 0 =⇒ (▶W , e1, e2) ∈ R}

▶(j + 1, Σ1, Σ2,κ )
def
= (j , Σ1, Σ2, ⌊κ ⌋j )

W ⊞ (α ,B1,B2,R)
def
= (W .j,W .Σ1,α :=B1,W .Σ2,α :=B2,W .κ [α 7→ R])

Fig. 6. Logical Relation: Auxiliary Definitions

An essential part of Kripke logical relations is a world extension relationW ′ ⊒W that specifies
constraints on how the current worldW may evolve into a future worldW ′Ðintuitively, capturing
how the properties of the state evolve fromW toW ′ as the computation progresses. In our logical
relation, we allow the step index to decrease over time as steps are used up by the computation,
while allowing type-name stores and the finite map from type names to relational interpretations to
grow over time as new type names are generated (ensuring that we don’t forget information about
existing type names). Intuitively, the semantic treatment of dynamically generated type names is
similar to that of dynamically allocated mutable references, which is why the underlying structure
of our logical relation resembles that of step-indexed Kripke logical relations for ML-style mutable
references [Ahmed et al. 2010, 2003, 2009; Ahmed 2004].

4.2 Logical Relation, Formally Defined

The logical relation for λB is defined in Figures 6 and 7.

Preliminaries. We start by specifying the semantic objects used in the construction of the logical
relation (Figure 6, top). We explain the basic properties of these semantic objects and then discuss
details related to step indexing.

clutter in our logical relation, as otherwise we would have to keep track of a bijection between a subset of the existing type
names of both programs as Neis et al. [2011] and Ahmed et al. [2011] do.
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We construct relational interpretations of types as sets of atoms of the form (W , e1, e2) where
worlds describe the assumptions under which the pair of expressions are related. Atomn [A1,A2]
requires that e1 and e2 have the types A1 and A2 under the type-name stores Σ1 and Σ2 from the
worldW , and that they have no free type or term variables.

WorldsW are 4-tuples of the form (j, Σ1, Σ2,κ). (We use dot notationW .j,W .Σ1,W .Σ2,W .κ to
project out the relevant components of worldW .) Here j is a natural number representing the step
index, Σ1 and Σ2 are the type-name stores under which the terms being related are type checked
and evaluated, and κ is a finite map from type names α to admissible relations R that relate values
of type Σ1 (α ) and Σ2 (α ).4

Reln [A1,A2] specifies the set of admissible relations as relations R that satisfy monotonicity (or
closure) under world extension: if R relates v1 and v2 in a worldW , then R must relate v1 and v2
in any future world ofW . Monotonicity ensures that when we extend the world, associating new
type names with types and relations, we do not lose or modify information associated with old
type names.
Since relations contain worlds and worlds contain relations (in the codomain of κ), we cannot

naïvely construct a set-theoretic model based on the above intentions. As explained byAhmed [2004]
and Ahmed et al. [2009], who present step-indexed logical relations for ML-style mutable references,
a naïve construction would have an inconsistent cardinality. To eliminate the inconsistency, we
stratify both worlds and relations with a step index. We require that an n-level worldW ∈ Worldn
contains only step indices j < n and interpretations κ that map type names to j-level relations
R ∈ Relj [A1,A2]; and the latter may only contain j-level atoms which contain j-level worlds
W ∈ Worldj . Our world structure is similar to that of Ahmed [2004] because dynamically generated
type names are analogous to the dynamically allocated locations of mutable references.

Approximation, World Extension, and Later. The bottom half of Figure 6 presents definitions
of n-approximation ⌊·⌋n , world extension (⊒) and the łlaterž operation (▶). For a set of atoms
R, we define the n-approximation of the set (written ⌊R⌋n) as the subset of its elements whose
step indices are strictly smaller than n. For any interpretation κ mapping type names to relational
interpretations, we define n-approximation (written ⌊κ⌋n) by applying ⌊·⌋n to all relations in the
codomain of κ.
A worldW ′ extendsW (writtenW ′ ⊒ W ) ifW ′ has the same or fewer steps left asW ; if the

type-name stores inW ′ are supersets of the corresponding stores inW ; and ifW ′.κ remembers
the relational interpretations associated with each α ∈ dom(W .κ) up to approximationW ′.j. Note
that this definition allowsW ′ to provide interpretations for a superset of the type names thatW
interprets. Finally, we writeW ′ ⊒n W whenW ′ extendsW and we consume exactly n steps to get
fromW toW ′.

Given a worldW with a positive step index, we use ▶W (pronounced łlaterW ž) to lower the step
index of the worldÐand of theκ in the worldÐby one. We lift this notion to relational interpretations
R as follows: we say ▶R relates two expressions in worldW if R relates the expressions in ▶W
wheneverW has a positive step index.

Relational Interpretation of Types. Figure 7 presents the definition of the logical relation intended
to capture contextual approximation. The value relationV JAK ρ relates closed valuesÐi.e., values
with no free type or term variables, though they may have free type names. The expression relation
E JAK ρ relates similarly closed expressions. The value and expression relations are parameterized
by a type substitution ρ that maps free type variables X in A to type names α . Note that, unlike
existing logical relations for polymorphic languagesÐsuch as the one shown in Section 2 or the

4The notation Σ (α ) looks up the type associated with α in Σ . If Σ contains α :=A , then Σ (α ) = A.
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V JintK ρ = {(W , n , n ) ∈ Atom [int ] ρ}
V JboolK ρ = {(W , b , b ) ∈ Atom [bool ] ρ}
V JA×BK ρ = {(W , ⟨v1,v2⟩, ⟨v

′
1,v
′
2⟩) ∈ Atom [A×B] ρ |

(W ,v1,v2) ∈ V JAK ρ ∧ (W ,v ′1,v
′
2) ∈ V JBK ρ}

V JA→BK ρ = {(W , v f 1, v f 2) ∈ Atom [A→B ] ρ |
∀W ′ ⊒ W . ∀v1, v2. (W ′, v1, v2) ∈ V JAK ρ =⇒

(W ′, v f 1 v1, v f 2 v2) ∈ E JBK ρ}

V J∀X .AK ρ = {(W , v f 1, v f 2) ∈ Atom [∀X .A ] ρ |
∀W ′ ⊒ W . ∀B1,B2,R. ∀e1, e2. ∀α .
W ′.Σ1; · ⊢B1 ∧ W ′.Σ2; · ⊢B2 ∧ R ∈ RelW ′ .j [B1,B2] ∧

W ′.Σ1 ▷ v f 1 [B1] 7−→ W ′.Σ1,α :=B1 ▷ (e1 : ρ (A )[α/X ]
+α
=⇒ ρ (A )[B1/X ]) ∧

W ′.Σ2 ▷ v f 2 [B2] 7−→ W ′.Σ2,α :=B2 ▷ (e2 : ρ (A )[α/X ]
+α
=⇒ ρ (A )[B2/X ])

=⇒ (W ′ ⊞ (α ,B1,B2,R), e1, e2) ∈ ▶E JAK ρ[X 7→ α]}

V JX K ρ = {(W , (v1 :A1
−α
=⇒ α ), (v2 :A2

−α
=⇒ α )) ∈ Atom [X ] ρ | (W , v1, v2) ∈ ▶W .κ (α )}

V Jα K ρ = {(W , (v1 :A1
−α
=⇒ α ), (v2 :A2

−α
=⇒ α )) ∈ Atom [α ] ∅ | (W , v1, v2) ∈ ▶W .κ (α )}

V J⋆K ρ = {(W , (v : ι
p
=⇒ ⋆), (v : ι

p
=⇒ ⋆)) ∈ Atom [⋆] ∅}

∪ {(W , (v1 :⋆→⋆
p
=⇒ ⋆), (v2 :⋆→⋆

p
=⇒ ⋆)) ∈ Atom [⋆] ∅ |

(W , v1, v2) ∈ ▶V J⋆→⋆K ρ}

∪ {(W , (v1 :α
p
=⇒ ⋆), (v2 :α

p
=⇒ ⋆)) ∈ Atom [⋆] ∅ |

v1 = (v′1 :A1
−α
=⇒ α ) ∧ v2 = (v′2 :A2

−α
=⇒ α ) ∧ (W , v′1, v

′
2) ∈ ▶W .κ (α )}

E JAK ρ = {(W , e1, e2) ∈ Atom [A ] ρ | ∀j <W .j .
(∀Σ1,v1.W .Σ1 ▷ e1 −→

j Σ1 ▷v1 =⇒

∃W ′, Σ2,v2.W .Σ2 ▷ e2 −→
∗ Σ2 ▷v2 ∧ W ′ ⊒j W ∧

W ′.Σ1 = Σ1 ∧ W ′.Σ2 = Σ2 ∧ (W ′,v1,v2) ∈ V JAK ρ) ∧
(∀Σ1,p.W .Σ1 ▷ e1 −→

j Σ1 ▷ blamep =⇒ ∃Σ2.W .Σ2 ▷ e2 −→
∗ Σ2 ▷ blamep )}

S J·K = World
S JΣ ,α :=AK = S JΣK ∩ {W ∈ World |W .Σ1 (α ) = A ∧ W .Σ2 (α ) = A ∧

⊢W .Σ1 ∧ ⊢W .Σ2 ∧ W .κ (α ) =
⌊

V JAK ∅
⌋

W .j }

D J·K = {(W , ∅) |W ∈ World}
D J∆ ,X K = {(W , ρ[X 7→ α]) | (W , ρ) ∈ D J∆K ∧ α ∈ dom(W .κ )}

G J·K ρ = {(W , ∅) |W ∈ World}
G JΓ , x :AK ρ = {(W ,γ [x 7→ (v1, v2)]) | (W ,γ ) ∈ G JΓ K ρ ∧ (W , v1, v2) ∈ V JAK ρ}

Σ ;∆ ; Γ ⊢ e1 ⪯ e2 :A
def
= Σ ;∆ ; Γ ⊢ e1 :A ∧ Σ ;∆ ; Γ ⊢ e2 :A ∧ ∀W , ρ,γ .

(W ∈ S JΣK ∧ (W , ρ) ∈ D J∆K ∧ (W ,γ ) ∈ G JΓ K ρ)
=⇒ (W , ρ (γ 1 (e1)), ρ (γ 2 (e2))) ∈ E JAK ρ

Σ ;∆ ; Γ ⊢ e1 ≈ e2 :A
def
= Σ ;∆ ; Γ ⊢ e1 ⪯ e2 :A ∧ Σ ;∆ ; Γ ⊢ e2 ⪯ e1 :A

Fig. 7. Logical Relation

related work by Neis et al. [2011] and Ahmed et al. [2011]Ðρ does not map type variables X to
relational interpretations R. Instead ρ specifies a mapping from type variables X to type names α
and we look up the relational interpretation for α (which is the same as the relational interpretation
we wish to use for X ) in the worldW . We return to this point below when we discuss the value
relation for universal types.
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The relationV JAK ρ specifies when closed values v1 and v2 are related in a worldW . It requires
that v1 and v2 have type ρ (A) under the type-name storesW .Σ1 andW .Σ2, respectively. The
definition ofV JAK ρ is straightforward for base types and pairs. Two values are related at a base
type ι in any worldW as long as they are equal. Two pairs are related at the type A×B in a world
W if the first components of the pairs are related at type A inW and the second components are
related at type B inW .
Functions v f 1 and v f 2 are related at A→B in worldW if, in any future worldW ′ that extends

W , given two arguments v1 and v2 related at the argument type A inW ′, the functions applied to
the arguments are related expressions at the result type B in worldW ′. The extension to a future
worldW ′ is essential for proving monotonicity ofV JA→BK ρ under world extension. Note that in
λB, the values v f 1 and v f 2 may each be a function abstraction or a conversion or cast from a value
to a function type.

The definition ofV J∀X .AK ρ is made more complex by several factors. Note that it must relate
values v f 1 and v f 2, which may each be a type abstraction or a conversion or cast from a value
to a universal type. V J∀X .AK ρ says that v f 1 and v f 2 are related in worldW if, in any future
worldW ′ that extendsW , given two types B1 and B2 that are well formed under the type-name
stores fromW ′, and given an admissible relation R ∈ Rel [B1,B2] that is good for the remaining
W ′.j steps, the type applications v f 1 [B1] and v f 2 [B2] must be related. The unusual aspect of the
definition is how we specify relatedness of the aforementioned type applications.

Unlike Ahmed et al. [2011] and Neis et al. [2011], who require that the type applications v f 1 [B1]
and v f 2 [B2] are related in E JAK with an environment ρ that maps X to (B1,B2,R), in a world
that extendsW ′ to record (essentially) that X maps to the type name α and the triple (B1,B2,R),
we avoid duplicating the information (B1,B2,R) in both ρ and the world. Instead we rely on the
indirection provided by type names. That is, we let ρ specify simply that X maps to type name
α and store the types and relational interpretation for α in the world (writtenW ′

⊞ (α ,B1,B2,R),
which is defined at the bottom of Figure 6).

But having made the above design decision, we have a bit of a problem regarding how to
specify relatedness of the type applications v f 1 [B1] and v f 2 [B2] in the definition ofV J∀X .AK ρ.
We proceed by noting that the operational semantics guarantees that regardless of whether the
values vf i are type abstractions or conversions or casts to universal type, a type application

Σ ▷vf i [Bi ] steps to a configuration of the form Σ,α :=Bi ▷ (ei : ρ (A )[α/X ]
+α
=⇒ ρ (A )[Bi/X ]). Thus,

V J∀X .AK ρ requires that the subexpressions e1 and e2 be related in ▶E JAK ρ[X 7→ α] in world
W ′
⊞ (α ,B1,B2,R). (At the end of Section 4.2, we explain why the dynamic semantics of type

application in λB precludes a more standard logical-relation design where ρ maps type variables X
to triples (B1,B2,R).)
We use ▶E JAK because we must ensure that we go down a step to avoid circularities due

to impredicative polymorphism (as pointed out in prior work [Ahmed 2006, 2004]). Specifically,
consider what happens if B1 and B2 happen to be the type ρ (∀X .A )Ði.e., types that are not strictly
smaller than the type whose relational interpretation we wish to define. Then, to ensure that our
definition ofV J∀X .AK ρ at worldW is well founded, when we relate e1 and e2 we must use only
the (W .j − 1)-approximation of R (whereW .j ≥W ′.j). This is justified because type application
consumes a reduction step.
The relation V JX K ρ relates values of type ρ (X ) = α . Hence, the values must be of the form

(vi :Ai

−α
=⇒ α ) for i ∈ {1, 2}. These values are related if the underlying v1 and v2 are related by the

relational interpretation for α (i.e.,W .κ (α )) for one fewer step.
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The relationV JαK ρ also relates values of type α . Hence, the values must again be of the form

(vi :Ai

−α
=⇒ α ) for i ∈ {1, 2}. As above, these values are related if the underlying v1 and v2 are

related byW .κ (α ) for one fewer step.

The relation V J⋆K ρ relates values of the form (v1 :G
p
=⇒ ⋆) and (v2 :G

p
=⇒ ⋆) in worldW ,

where both values have the same ground type G. There are three cases to consider. When G is
a base type, v1 and v2 must be equal. When G is ⋆→⋆, v1 and v2 must be related at the type
⋆→⋆ in worldW for one fewer step. Since our definition of the value relation at ⋆ relies on the
value relation for the bigger type ⋆→⋆, it is imperative that we go down a step to ensure that the
logical relation is well founded. Going down a step is justified since extracting the values vi from

(vi :⋆→⋆
p
=⇒ ⋆) consumes a reduction step. Finally, when G is a type name α , the values v1 and

v2 must be of the form (v ′i :Ai

−α
=⇒ α ) and v ′1 and v

′
2 are related by the relational interpretation for

α (i.e.,W .κ (α )) for one fewer step.
The expression relation E JAK ρ is similar to prior step-indexed Kripke logical relations (in

particular, Matthews and Ahmed [2008]). It says that two expressions e1 and e2 are related in world
W if whenever e1 evaluates to a value underW .Σ1 in fewer thanW .j steps, then e2 evaluates to a
value underW .Σ2 and the resulting values and stores are related in some future worldW ′; and
whenever e1 evaluates to blamep underW .Σ1, again in fewer thanW .j steps, then e2 evaluates to
blamep underW .Σ2.
The remaining definitions in Figure 7 specify the logical relation for open terms. First, S JΣK

specifies worldsW that satisfy Σ . It says that the type-name stores inW should be well formed,
and for every α := A ∈ Σ, the type-name stores inW should map α to A and the interpretationW .κ
should map α to theW .j-approximation ofV JAK ∅. Next, D J∆K says that a type substitution ρ

satisfies ∆ in a worldW if it maps all the type variables in ∆ to type names α that are associated
with a relational interpretation inW .κ. Finally, we let the metavariable γ range over relational
value substitutions, i.e., finite maps from variables to pairs of values. G JΓK ρ says that γ satisfies Γ
in worldW if every variable in x ∈ dom(Γ) is mapped to pairs of values related inV JΓ(x )K ρ inW .
The logical approximation relation on open terms Σ ;∆ ; Γ ⊢ e1 ⪯ e2 :A says that given a world

W that satisfies Σ , a type substitution ρ that maps type variables in ∆ to type names inW , and a
relational value substitutionγ that maps variables to pairs of values related inW , the terms ρ (γ1 (e1))
and ρ (γ2 (e2)) are related in E JAK ρ at worldW . The logical equivalence relation Σ ;∆ ; Γ ⊢ e1 ≈ e2 :A
requires that e1 logically approximates e2 and vice versa.

Complications in the Interpretation of Universal Types. Consider defining the logical relation in the
usual way with value interpretations parameterized by an environment ρ that maps type variables
X to triples (B1,B2,R) that record the types B1 and B2 thatX was instantiated with and the relational
interpretation R that should be used to relate values at the type X . Then our interpretation of type
variables and universal types would be as follows:

V JX K ρ = R where ρ (X ) = (B1,B2,R)

V J∀X .AK ρ = {(W , v1, v2) ∈ Atom [∀X .A] ρ | ∀W ′ ⊒ W . ∀α ,B1,B2,R.

W ′.Σ1; · ⊢B1 ∧ W ′.Σ2; · ⊢B2 ∧ R ∈ RelW ′ .j [B1,B2] =⇒
(W ′
⊞ (α ,B1,B2,R), v1[B1], v2[B2]) ∈ E JAK ρ[X 7→ (B1,B2,R)]}

With the above definitions, assuming a standard definition of the open term relation, we fail to
prove the compatibility lemma for type abstraction. That lemma says: if Σ ;∆ ,X ; Γ ⊢ v1 ⪯ v2 :A
then Σ ;∆ ; Γ ⊢ΛX .v1 ⪯ΛX .v2 :∀X .A .
Next, we show the proof attempt for a simpler version of that lemma which says: if ·; ·,X ; ·

⊢ v1 ⪯ v2 :A then ·; · ; · ⊢ΛX .v1 ⪯ΛX .v2 :∀X .A . GivenW that satisfies the empty type-name
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store, it suffices to show that (W ,ΛX .v1,ΛX .v2) ∈ V J∀X .AK ∅. Unrolling the definition given
above, we assume appropriateW ′, α , B1, B2, and R and need to show

(W ′
⊞ (α ,B1,B2,R), (ΛX .v1) [B1], (ΛX .v2) [B2]) ∈ E JAK ∅[X 7→ (B1,B2,R)]

or equivalently (after taking a step),

*
,
W ′
⊞ (α ,B1,B2,R),

(v1[α/X ] :A[α/X ]
+α
=⇒ A[B1/X ]),

(v2[α/X ] :A[α/X ]
+α
=⇒ A[B2/X ])

+
-
∈ ▶E JAK ρ[X 7→ (B1,B2,R)]

But instantiating the premise ·; ·,X ; · ⊢ v1 ⪯ v2 :A withW ′
⊞ (α , B1, B2,R) and ∅[X 7→ (B1,B2,R)]

gives us:

(W ′
⊞ (α ,B1,B2,R), v1[B1/X ], v2[B2/X ]) ∈ E JAK ρ[X 7→ (B1,B2,R)]

and we have no way of completing the proof.
The problem is that the logical relation for open terms substitutes the Bi forX while the reduction

rule for type application substitutes a fresh type name α for X and then performs a conversion
from A[α/X ] to A[Bi/X ]. To fix this mismatch, we would at a minimum need to make ρ a mapping
from type variables X to (α ,B1,B2,R) so we can keep track of the type name generated for each X .
In addition, the logical relation for open terms Σ ;∆ ; Γ ⊢ e1 ⪯ e2 :A would have to be modified so
that once we have picked a worldW that satisfies Σ; a ρ that maps all Xi in ∆ to (αi ,Bi1,Bi2,Ri ),
where the αi are fresh type names with respect to the type-name stores inW ; and a substitution γ
that satisfies Γ, we would require that the two terms being related by E JAK ρ (for j ∈ {1, 2}) be of
the form:

((ej [α1/X1] . . . [αn/Xn] :A[α1/X1] . . . [αn/Xn]
+α1
=⇒ A[B1j/X1][α2/X2] . . . [αn/Xn]) . . .

:A[B1j/X1] . . . [B (n−1)j/Xn−1][αn/Xn]
+αn
=⇒ A[B1j/X1] . . . [Bnj/Xn])

Clearly, the logical relation design we just sketched out is more complicated than the logical
relation we present in this paper. The lesson is that every logical relation must łlistenž to the (static
and dynamic semantics of the) language at hand. The design of λB presents different challenges in
the design of the logical relation compared to the related work by Neis et al. [2011] and Ahmed et al.
[2011] even though all three use Kripke logical relations (which is to be expected for any language
with RTG). We give a detailed comparison with the aforementioned related work in Section 6.

4.3 Parametricity and Soundness of the Logical Relation

In this section, we summarize the proofs for the Fundamental Property and soundness of the logical
relation with respect to contextual equivalence. The full proofs are in the accompanying technical
report [Ahmed et al. 2017].
The Fundamental Property is that any well-typed term of λB is related to itself by the logical

relation.

Theorem 4.1 (Fundamental Property / Parametricity). If Σ ;∆ ; Γ ⊢ e :A, then Σ ;∆ ; Γ ⊢ e ⪯ e :A.

The proof of the fundamental property is by induction on the derivation of Σ ;∆ ; Γ ⊢ e :A ,
relying on a compatibility lemma for each kind of expression in λB. The compatibility lemmas for
conversion, type application, and cast are interesting.
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For conversion, the proof boils down to showing that if e1 and e2 are related, applying a conversion
to them, either positively or negatively, yields related expressions:

Σ ;∆ ⊢A ≺+α B and (W , e1, e2) ∈ E JAK ρ

implies (W , (e1 : ρ (A )
+α
=⇒ ρ (B )), (e2 : ρ (A )

+α
=⇒ ρ (B ))) ∈ E JBK ρ

Σ ;∆ ⊢B ≺−α A and ∧ (W , e1, e2) ∈ E JBK ρ

implies (W , (e1 : ρ (B )
−α
=⇒ ρ (A )), (e2 : ρ (B )

−α
=⇒ ρ (A ))) ∈ E JAK ρ

We prove these two statements simultaneously by induction on the size of A, using numerous
technical lemmas (e.g., anti-reduction, monotonicity, and compositionality).
The proof of compatibility for type application requires that we show

(W ,v1,v2) ∈ V J∀X .AK ρ implies (W ,v1 [ρ (B)],v1 [ρ (B)]) ∈ E JA[B/X ]K ρ

The proof of this does not require induction, but it uses the above property of conversion as well as
many of the same technical lemmas.

The proof of compatibility for casts boils down to showing that if some expressions e1 and e2 are
related, casting them yields related expressions:

Σ ;∆ ⊢A ≺ B and (W , e1, e2) ∈ E JAK ρ

implies (W , e1 : ρ (A)
p
=⇒ ρ (B), e2 : ρ (A)

p
=⇒ ρ (B)) ∈ E JBK ρ

We prove this by induction on the step index inW and the derivation of Σ ;∆ ⊢A ≺ B . The induction
on the step index is needed for the cases that cast to and from ⋆. We rely on the above property of
type application for the cast from ∀X .A′ to ⋆.
Next we discuss the proof that the logical relation is sound with respect to contextual approxi-

mation (and therefore contextual equivalence).

Theorem 4.2 (Soundness w.r.t. Contextual Approximation).

If Σ ;∆ ; Γ ⊢ e1 ⪯ e2 :A then Σ ;∆ ; Γ ⊢ e1 ⪯ctx e2 :A.

The proof follows the usual route of going through congruence and adequacy.

Lemma 4.3 (Congruence). If Σ ;∆ ; Γ ⊢ e1 ≈ e2 :A and ⊢C : (Σ ;∆ ; Γ ⊢A ) ⇝ (Σ′;∆′; Γ′ ⊢B )
then Σ′;∆′; Γ′ ⊢C [e1]≈C [e2] :B.

Congruence is proved by induction on the typing derivation for C, using a weakening lemma for
cases where C is empty, and the compatibility lemmas for all other cases.

Lemma 4.4 (Adeqacy). If Σ ; · ; · ⊢ e1 ≈ e2 :A then Σ ▷ e1⇓ if and only if Σ ▷ e2⇓.

Adequacy follows easily from the definition of the logical relation.

5 FREE THEOREM EXAMPLES

We consider two examples of obtaining theorems for free from parametricity. The first example,
about the K combinator, comes from Ahmed et al. [2011]. The second example comes from Wadler
[1989], and revisits our discussion of swap from Section 2.
We write Σ ⊢ e :A as shorthand for Σ; · ; · ⊢ e :A.

5.1 K Combinator

Ahmed et al. [2011] discuss the K combinator to motivate the design of the polymorphic lambda
calculus, so it is illustrative to return to this example. On the left we have the untyped K combinator
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and on the right we have the untyped K combinator again, but with a typo!

K⋆
= ⌈λ(x ). λ(y). x⌉

K = (K⋆ :⋆
ℓ1
=⇒ ∀X .∀Y .X → Y → X )

badK⋆
= ⌈λ(x ). λ(y).y⌉

badK = (badK⋆ :⋆
ℓ2
=⇒ ∀X .∀Y .X → Y → X )

Let us consider the behavior of these two combinators once they are cast to the polymorphic type
that one would expect for the K combinator, that is, ∀X .∀Y .X → Y → X . As explained by Ahmed
et al. [2011], parametricity should tell us that a value of type ∀X .∀Y .X → Y → X is a polymorphic
function that returns its first argument or is a function that diverges or a function that raises blame.
Indeed, the above expression K is an example of the former and badK is an example of the later.
Furthermore, with our parametricity result in hand we can prove that in general, values of type
∀X .∀Y .X → Y → X behave as expected.

Theorem 5.1 (Free Theorem: K-Combinator).

If Σ ⊢v :∀X .∀Y .X→Y→X , Σ ⊢v1 :A, and Σ ⊢v2 :B, then either

(1) Σ ▷v [A] [B] v1 v2 7−→∗ Σ′ ▷v ′1 and v
′
1≈

ctxv1, for some Σ′,v ′1, or
(2) Σ ▷v [A] [B] v1 v2 ⇑, or
(3) Σ ▷v [A] [B] v1 v2 7−→∗ Σ′ ▷ blamep , for some Σ′,p.

Proof (sketch)

(The full proof is in the accompanying technical report [Ahmed et al. 2017]). Here we give the
high points.) We focus on case (1) where v [A] [B] reduces to a value. Let e = v [A] [B] v1 v2.
We need to show that v ′1≈

ctxv1.
By the Fundamental Property (Theorem 4.1), we have

(W0,v,v ) ∈ V J∀X .∀Y .X → Y → X K ∅ (12)

The type applications reduce as follows.

Σ ▷v [A] [B] 7−→∗ Σ′ ▷ e1 : α → β → α
+α
=⇒ A→ β → A

+β
=⇒ A→ B → A (13)

where Σ′ = Σ,α :=A, β :=B. Let e ′ be the right-hand side of the above reduction. Let v ′′1 be the

result of normalizing v1 : A
−β
=⇒ A, so we have v ′′1 ≈

ctx v1. From (12) and (13) we have

(W1, e1, e1) ∈ E Jα → β → αK ∅ (14)

withW1.Σ1 (α ) =W1.Σ2 (α ) = A,W1.Σ1 (β ) =W1.Σ2 (β ) = B,W1.κ (α ) = RX , andW1.κ (β ) =

RY , where we choose

RX = {(W ,v
′′
1 ,v

′′
1 )∈Atom

val
W0 .j

[A,A]} and RY = {(W ,v2,v2)∈Atom
val
W0 .j

[B,B]}. (15)

Next, we have the reduction

Σ′ ▷ e ′ v1 v2 7−→
∗ Σ′ ▷ e1 (v

′′
1 : A

−α
=⇒ α ) (v2 : B

−β
=⇒ β ).

From (15) we have

(W2,v
′′
1 : A

−α
=⇒ α ,v ′′1 : A

−α
=⇒ α )∈V JαK ∅ and

(W2,v2 : B
−β
=⇒ β ,v2 : B

−β
=⇒ β )∈V JβK ∅.

So from (14) we have that e1 (v ′′1 : A
−α
=⇒ α ) (v2 : B

−β
=⇒ β ) reduces to a value vr : A

−α
=⇒ α

and (W3,vr ,vr ) ∈ W3.κ (α ) for someW3 ⊒W1. So (W3,vr ,vr ) ∈ RX and therefore vr = v ′′1 .
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Finally, we have the reduction

(v ′′1 : A
−α
=⇒ α

+α
=⇒ A

+β
=⇒ A) −→ (v ′′1 : A

+β
=⇒ A) −→∗ v ′1 and v ′1 ≈

ctx v ′′1 ≈
ctx v1.

□

5.2 Rearrangements Commute with Map

Wadler [1989]’s introductory example of a free theorem showed that any function r of type
∀X .ListX → ListX (r is for łrearrangementž) commutes with the map function. That is, for any
function f : A→ B and list l : ListA,

map f (r [A] l ) = r [B] (map f l ).

Herewe derive the free theorem for rearrangements on pairs instead of lists. That is, any function r of
type ∀X .X ×X → X ×X commutes with the pair-mapping operation:map f ⟨v1,v2⟩ = ⟨f v1, f v2⟩.
Note that functions of type ∀X .X × X → X × X include untyped functions that have been cast to
this type, such as

swap⋆ = ⌈λ(p). ⟨π2 p,π1 p⟩⌉ : ⋆
ℓ

=⇒ ∀X .X × X → X × X

id⋆ = ⌈λ(x ). x⌉ : ⋆
ℓ

=⇒ ∀X .X × X → X × X

bad⋆ = ⌈λ(p). ⟨π1 p + π2 p, 42⟩⌉ : ⋆
ℓ

=⇒ ∀X .X × X → X × X

We write e↓ for the value resulting from normalizing the expression e , if it exists.

Theorem 5.2 (Free Theorem: Rearrangement).

Suppose Σ ⊢ r :∀X .X ×X→X ×X , Σ ⊢ f :A→B, Σ ⊢v :A×A, Σ ▷ f (π1v )⇓,
and Σ ▷ f (π2 v )⇓. Then Σ; · ; · ⊢map f (r [A] v ) ≈ctx r [B] (map f v ) :B ×B.

Proof (sketch)

(The full proof is in the accompanying technical report [Ahmed et al. 2017].) We focus on the
case where r terminates with a value. The type applications reduce as follows

r [A] −→ r ′ : α × α → α × α
+α
=⇒ A ×A→ A ×A and

r [B] −→ r ′ : α × α → α × α
+α
=⇒ B × B → B × B.

By the Fundamental Property (Theorem 4.1), we have

(W0, r , r ) ∈ V J∀X .X × X → X × X K ∅ and therefore

(W1, r
′, r ′) ∈ E Jα × α → α × αK ∅ (16)

in a worldW1 withW1.Σ1 (α ) = A,W1.Σ2 (α ) = B, andW1.κ (α ) = RX . We choose

RX = {(W ,v
′, f v ′↓) ∈ Atomval

W ′ .j [A,B] | Σ ⊢ v
′ : A}. (17)

Let v = ⟨v1,v2⟩. We have

(W1,v1 : A
−α
=⇒ α , f v1↓ : B

−α
=⇒ α ) ∈ V JαK ∅ and

(W1,v2 : A
−α
=⇒ α , f v2↓ : B

−α
=⇒ α ) ∈ V JαK ∅.

Let p = ⟨v1 : A
−α
=⇒ α ,v2 : A

−α
=⇒ α⟩ and p ′ = ⟨f v1↓ : B

−α
=⇒ α , f v2↓ : B

−α
=⇒ α⟩.

So (W1,p,p
′) ∈ V Jα × αK ∅ and from (16) we have (W2, r

′p, r ′p ′) ∈ E Jα × αK ∅. We have
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the reductions

r ′p −→∗ ⟨v3 : A
−α
=⇒ α ,v4 : A

−α
=⇒ α⟩ and

r ′p ′ −→∗ ⟨v ′3 : B
−α
=⇒ α ,v ′4 : B

−α
=⇒ α⟩

so (W3,v3,v
′
3) ∈ V JαK ∅ and (W3,v4,v

′
4) ∈ V JαK ∅. Therefore, from (17) we havev ′3 = f v3↓

and v ′4 = f v4↓. Next we have the reductions

⟨v3 : A
−α
=⇒ α ,v4 : A

−α
=⇒ α⟩ : α × α

+α
=⇒ A ×A −→∗ ⟨v3,v4⟩ and

⟨f v3↓ : B
−α
=⇒ α , f v4↓ : B

−α
=⇒ α⟩ : α × α

+α
=⇒ B × B −→∗ ⟨f v3↓, f v4↓⟩.

To put this all together, we have

map f (r [A] v ) −→∗ map f ⟨v3,v4⟩ −→
∗ ⟨f v3↓, f v4↓⟩ and

r [B] (map f v ) −→∗ ⟨f v3↓, f v4↓⟩.

We conclude that map f (r [A] ⟨v1,v2⟩)≈ctxr [B] ⟨f v1, f v2⟩. □

6 RELATED WORK

The syntactic type abstraction of Grossman et al. [2000] inspired the conversion construct used
in this paper. They use brackets to hide a host’s knowledge that X=A from a client; so their [M]B

h

corresponds to our negative conversion M : B[α :=A]
−α
=⇒ B and their [M]Bc corresponds to our

positive conversionM : B
+α
=⇒ B[α :=A]. In their semantics, brackets push through λ, in contrast to

our approach. Grossman et al. [2000] do not prove parametricity but they do prove a weaker value
abstraction property.

Greenberg [2013] and Sekiyama et al. [2017] study a language that combines polymorphism and
manifest contracts (aka. refinement types), but not type dynamic, and they prove parametricity. In
their language parametricity is enforced statically (as in System F), so no dynamic enforcement is
needed.
Sulzmann et al. [2007] study System F extended with type equality coercions, to serve as an

intermediate language for Haskell. Their coercions have a similar purpose to the conversions of
λB and their reduction rules push coercions through abstractions, similar to those of Ahmed et al.
[2011] that we discussed in Section 2.4.

Non-parametric Polymorphism. Several language designs provide polymorphism but do not
enforce parametricity. The argument in favor of this design choice is that it increases expressiveness.
The languages include CAML [Leroy and Mauny 1991], Typed Racket [Tobin-Hochstadt and
Felleisen 2006, 2008, 2010], and those generated by the Gradualizer [Cimini and Siek 2016, 2017].

Sealing for Parametricity. The use of sealing to enforce type abstraction goes back to Morris
[1973], who described a language with a Createseal primitive that returns a pair of functions for
sealing and unsealing, which respectively correspond to encryption and decryption. The distinction
between sealing and RTG is that the seals are values, not types. Thus, sealing applies in untyped
languages. Guha et al. [2007] use sealing in the design of polymorphic contracts for PLT Scheme.

Sumii and Pierce [2003] create a simply typed λ-calculus with cryptographic sealing. They define
a logical relation, prove parametricity for the language, and present an embedding of System F into
their calculus [Pierce and Sumii 2000]. Their logical relation uses possible worlds analogous to
ours, but they connect relational interpretations to private keys instead of type names.
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Pitts and Stark [1993] and Stark [1995] study a language with fresh name generation (akin to
Scheme’s gensym) and define a logical relation for reasoning about representation independence. It
is straightforward to implement sealing using name generation and equality on names.
Takikawa et al. [2012] present a gradual type system for class-based code that uses sealing

contracts to protect row-polymorphic functions on classes. Sealing is applied at the level of fields
and methods, which hides abstracted behavior within an object. They present a formal model
of gradually typed dynamic class composition with an operational semantics that carries extra
information for contract monitoring and blame assignment, including ownership information for
valuesÐwhere a value’s owners include any components that may affect the flow of that value. They
prove type soundness and a property called complete monitoring [Dimoulas et al. 2012]. The latter
ensures that sealing and unsealing are handled properly, in essence, ensuring row parametricity.
Instead of using a logical relation, they use a standard progress-and-preservation-style proof, but
at the cost of having to augment the operational semantics to track extra information such as
ownership labels.

Runtime Type Generation. As discussed in Section 1, Matthews and Ahmed [2008] studied the
integration of Scheme and ML by designing a multi-language that uses RTG to protect ML’s
polymorphic functions from Scheme’s runtime type tests. Their multi-language contains boundaries
that mediate between Scheme and ML code and are annotated with conversion schemes κ (which
are essentially types). Boundaries have the form SMκ (ML inside, Scheme outside: convert from κ

to ⋆) and κMS (Scheme inside, ML outside: convert from ⋆ to κ). Ahmed et al. [2011] later fixed
their proof of parametricity, making cosmetic changes to the multi-language in the process. Their
reduction rule for type application is as follows:

K ▷ (ΛX .e ) [B] −→ K ,k ▷ e[X := ⟨k ;B⟩]

where K is a type-name store, k is a freshly generated type name, and e[X := ⟨k ;B⟩] denotes a
sealing substitution, which replaces occurrences of X in the conversion schemes κ that appear on
boundaries in e . Performing sealing substitution on conversion schemes provides two things: (1)
local storage of type-name bindings, whereas in λB, type-name bindings reside in a global store;
and (2) a means to insert many local conversions, whereas in λB, the type application rule performs
one global conversion from A[α/X ] to A[B/X ]. Recall that at the end of Section 4.2, we discussed
the ramifications of this global conversion on the design of the logical relation for λB. Due to the
sealing substitutions and many-local-conversions aspects of the multi-language design, Ahmed
et al. [2011] can parameterizeV JAK with a ρ that maps X to (B1,B2,R) without storing type names
in ρ. A final distinction between the Scheme+ML multi-language and λB is that the former only
allows casts to and from ⋆, while we support casts between many more (compatible) types, which
makes our calculus more general.

In Section 1, we also discussed the work by Neis et al. [2009] who present a Kripke logical relation
for G, a polymorphic language extended with Girard’s non-parametric J operator, but without the
type ⋆. Since their language is non-parametric, they have a conversion typing rule that essentially
says that if e : A and A ≈ A′ under some type-name store Σ (where A ≈ A′ allows all type names in
A andA′ to be replaced by the types they are bound to in Σ), then e : A′. In λB, we do not have such
a conversion rule, which would break parametricity. These language distinctions lead to differences
in the design of the logical relation as discussed in Section 4.2.

Finally, Igarashi et al. [2017] present work at the same conference that is complementary to this
paper. They design a gradually typed variant of System F, called FG, and prove that it satisfies the
static part of the gradual guarantee [Siek et al. 2015] thanks to a careful definition of consistency
for universal types. They give a dynamic semantics to FG via translation to FC, a calculus based
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on the λB of this paper, though there are a few differences to note. They considered using the
compatibility relation of this paper for FG, but found that it broke conservativity of typing with
respect to System F. So they instead develop a new consistency relation that solves that problem.
As a result, they also use consistency in FC instead of compatibility. A second difference is that
Igarashi et al. [2017] differentiate between static and gradual type variables, building on the work
of Garcia and Cimini [2015]. Only the gradual type variables require RTG; the static ones can be
erased. The final difference between FC and λB is that they replace conversions with the use of
type environment application. Regarding the metatheory of FC, they prove that it is type safe and
they prove the blame theorem.

7 CONCLUSION

This paper settles a long-standing open question: can a language that integrates dynamic typing
into a statically typed language with universal types satisfy parametricity? For a variant of the
polymorphic blame calculus of Ahmed et al. [2011], we define a Kripke logical relation, prove the
Fundamental Property (Theorem 4.1), and prove that the logical relation is sound with respect to
contextual equivalence (Theorem 4.2). To demonstrate the utility of this parametricity result, we
prove free theorems about the K combinator and about rearrangements.
Looking to the future, it would be interesting to see our parametricity result adapted to FC of

Igarashi et al. [2017]. We are also eager to see whether the dynamic aspect of the gradual guarantee
holds for FG, which requires challenging lemmas regarding FC. Finally, we plan to investigate
whether a coercion-based version of the polymorphic blame calculus can achieve space efficiency.
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